
A Probabilistic-Based Framework for INFOSEC Alert
Correlation

A Thesis
Presented to

The Academic Faculty

by

Xinzhou Qin

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

College of Computing
Georgia Institute of Technology

August 2005

Copyright c© 2005 by Xinzhou Qin

A Probabilistic-Based Framework for INFOSEC Alert
Correlation

Approved by:

Dr. Wenke Lee, Advisor
College of Computing
Georgia Institute of Technology

Dr. Mustaque Ahamad
College of Computing
Georgia Institute of Technology

Dr. Ralph Merkle
College of Computing
Georgia Institute of Technology

Dr. Henry Owen
School of Electrical and Computer Engi-
neering
Georgia Institute of Technology

Dr. Chuanyi Ji
School of Electrical and Computer Engi-
neering
Georgia Institute of Technology

Date Approved: July 15, 2005

To my dear family:

Thank you for all of your love, support and encouragements.

iii

ACKNOWLEDGEMENTS

I would like to express my sincere and deep gratitude to my advisor, Dr. Wenke Lee, for his

great support, guidance, patience and encouragement during the past several years. Wenke

has not only guided and helped me on my research work, but also taught me important

values of life. He can always directly point out my weakness that I need to overcome and

also always give me cheers when I have achievedf milestones. The thesis would not have

been possible without help of Wenke and many other people. I would also like to thank Dr.

S. Felix Wu at UC Davis for introducing me to Wenke and for his great help when I had

difficulties.

Many thanks to Dr. Mustaque Ahamad, Dr. Ralph Merkle, Dr. Henry Owen and Dr.

Chuanyi Ji for being my proposal and dissertation committees and providing insightful

suggestions on my research. I would also like to thank Dr. João B. D. Cabrera for his

friendship and help on my research work. Also thanks to Dr. Lundy Lewis for his support

and encouragement during my Ph.D. studies.

I have also been very fortunate to have a great team at InfoSec Lab at Georgia Tech.

Many thanks to our terrific team members, Yi-an Huang, David Dagon, Guofei Gu, Mo-

hamad Kone, Prahlad Fogla, Oleg M. Kolesnikov and Monirul Sharif, for their great help

on my research and bringing me the wonderful and enjoyable graduate student life at Tech.

I will never forget our discussions on ideas, collaborations on research, travels on confer-

ences and wonderful chats on fun. Special thanks to David Dagon. David is an energetic

researcher, also like an elder brother, helping us on everything that he can, patiently, warmly

and unselfishly. I believe each of the team members will become a super star in the InfoSec

community.

I would also like to thank Dr. Marsha Duro, Dr. Alexander Bronstein and Ms. Julie

iv

Symons for mentoring me during my summer internship at HP Labs.

Many thanks to Dr. Fengmin Gong at McAfee for being my mentor and bringing me to

the information security field during my internship at MCNC.

Finally, I would like to dedicate this dissertation to my family: my parents, my wife

and my brother. I would never have made it through the whole Ph.D. process without their

priceless love, encouragements and support. Special thanks to my wife for her great love,

patience and understanding during the past several years. She has shared the hardship that

I have endured and enjoyed the success that I have achieved. Thank you, my dear family!

v

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . ix

LIST OF FIGURES . x

SUMMARY . xi

I INTRODUCTION AND MOTIVATION . 1

1.1 Intrusion Detection . 1

1.2 Alert Correlation and Attack Plan Recognition 3

1.3 An Overview of Our Alert Correlation System 5

1.4 Dissertation Overview . 7

1.4.1 Problem Statement and Formalization 7

1.4.2 Thesis Contributions . 13

1.4.3 Thesis Organization . 16

II RELATED WORK . 17

2.1 Alert Correlation in Security Management System 17

2.2 Alert Correlation in Network Management System 19

2.3 Problems in Current Alert Correlation Systems 21

2.4 Plan Recognition . 22

2.5 Our Approach . 23

III ALERT AGGREGATION AND PRIORITIZATION 25

3.1 Alert Aggregation and Clustering . 25

3.2 Alert Verification and Prioritization . 27

IV PROBABILISTIC-BASED ALERT CORRELATION 31

4.1 Motivation . 31

4.2 Model Description . 32

vi

4.3 Parameters in Bayesian Model . 36

4.3.1 Parameters in Bayesian Model I: Prior Probability or Estimation
on Attack Transition . 36

4.3.2 Parameters in Bayesian Model II: Adaptive CPT Update 37

4.4 Summary . 39

V CAUSAL DISCOVERY-BASED ALERT CORRELATION 41

5.1 Motivation . 41

5.2 Introduction to Causal Discovery . 41

5.2.1 Causal Bayesian Network . 42

5.2.2 Approaches to Causal Discovery 44

5.3 Applying Causal Discovery Analysis to Alert Correlation 47

VI TEMPORAL-BASED ALERT CORRELATION 51

6.1 Motivation . 51

6.2 Time Series Analysis . 51

6.3 Granger Causality and Granger Causality Test 53

6.4 Procedure of Data Processing in GCT . 54

6.5 Applying GCT in Alert Correlation . 56

6.5.1 Alert Time Series Formulation 56

6.5.2 GCT-based Alert Correlation . 56

VII SYSTEM INTEGRATION AND ATTACK SCENARIO ANALYSIS 60

7.1 Integration Process of Three Correlation Engines 60

7.2 Probability/Confidence Integration . 62

7.3 Attack Transition Table Updates . 64

7.4 Attack Strategy Analysis . 64

VIIIATTACK PLAN RECOGNITION . 66

8.1 Attack Tree Analysis . 66

8.2 Converting An Attack Tree to A Causal Network 68

8.3 Correlating Isolated Alert Sets . 70

vii

8.4 Probability Evaluation and Attack Plan Recognition 73

8.4.1 Iterative Belief Propagation Concepts 73

8.4.2 Link Matrix at “noisy-OR” and “noisy-AND” Causal Networks . 74

8.4.3 Attack Evaluation and Prediction 77

IX EXPERIMENTS AND PERFORMANCE EVALUATION 79

9.1 The Grand Challenge Problem (GCP) . 79

9.1.1 GCP Scenario I . 80

9.1.2 Discussion on GCP Scenario I 84

9.1.3 GCP Scenario II . 85

9.1.4 Discussion on GCP Scenario II 88

9.1.5 Attack Plan Recognition and Prediction 88

9.1.6 Discussion on Statistical and Temporal Correlation Engines 91

9.2 Experiments on Backbone Data . 94

X CONCLUSION AND FUTURE WORK . 103

10.1 Research Summary . 103

10.2 Thesis Contribution . 104

10.3 Future Work . 107

10.4 Conclusions . 109

REFERENCES . 110

VITA . 116

viii

LIST OF TABLES

1 Predicates used in impact evaluation . 34

2 Prior Estimation on Attack Transition . 37

3 An example of transaction data set . 48

4 An example of CPT associated with node B 49

5 An example of alert time series formulation 56

6 An example of CPT in a “noisy-OR” polytree 76

7 An example of CPT in a “noisy-AND” polytree 77

8 Ranking of paths from node DB FTP Globbing Attack to node DB New-
Client. P = P (DB FTP Globbing Attack) 83

9 Alert Correlation by the GCT on the GCP Scenario II: Target Alert: Plan
Service Status Down . 86

10 Alert Correlation by the GCT on the GCP Scenario II: Target Alert: Plan
Server Status Down . 86

11 Ranking of paths from node IIS Buffer Overflow to node Plan Server Status
Down. P = P (IIS Buffer Overflow) 87

12 The Likelihood evaluation of sub-goals and final goal with different evidence. 90

13 An example of a weekly alert numbers . 97

14 An example of alert correlation at Web Server. 100

ix

LIST OF FIGURES

1 Framework of Alert Correlation Process 6

2 Classification of the problem space of alert correlation 12

3 Granular classification of the problem subspace: alert pair without direct
causal relationship. 12

4 Alert Priority Computation Model . 28

5 Probabilistic reasoning model . 32

6 An example of a causal network . 42

7 An example of the causal network model of alert A, B and C 49

8 An example of time delay between time series instances 59

9 An example of integration process . 61

10 An example of correlation graph . 65

11 An example of attack tree . 67

12 An example of a causal network converted from an attack tree 68

13 An example of correlation of two isolated scenarios 72

14 An example of a “noisy-OR” structure . 76

15 An example of a “noisy-AND” structure 77

16 The GCP scenario I: The correlation graph discovered by Bayesian-based
approach. 83

17 The GCP scenario I: The correlation graph discovered by the integrated
approach. 84

18 GCP I: Attack strategy graph . 84

19 The GCP Scenario II: Correlation graph of the plan server 87

20 Correlation of isolated scenarios . 89

21 An example of alert correlation graph constructed by Bayesian-based cor-
relation engine . 99

22 An example of correlating isolated scenarios 100

x

SUMMARY

Deploying a large number of information security (INFOSEC) systems can provide

in-depth protection for systems and networks. However, the sheer number of security alerts

output by security sensors can overwhelm security analysts and keep them from performing

effective analysis and initiating timely response. Therefore, it is important to develop an

advanced alert correlation system that can reduce alarm redundancy, intelligently correlate

security alerts and detect attack strategies. Alert correlation is therefore a core component

of a security management system.

Correlating security alerts and discovering attack strategies are important and challeng-

ing tasks for security analysts. Recently, there have been several proposed techniques to

analyze attack scenarios from security alerts. However, most of these approaches depend

on a priori and hard-coded domain knowledge that lead to their limited capabilities of de-

tecting new attack strategies. In addition, these approaches focus more on the aggregation

and analysis of raw security alerts, and build basic or low-level attack scenarios.

This thesis focuses on discovering novel attack strategies via analysis of security alerts.

Our framework helps security administrator aggregate redundant alerts, filter out unre-

lated attacks, correlate security alerts, analyze attack scenarios and take appropriate actions

against forthcoming attacks.

In alert correlation, we have developed an integrated correlation system with three com-

plementary correlation mechanisms based on two hypotheses of attack step relationship.

The first hypothesis is that some attack steps are directly related because an earlier attack

enables or positively affects the later one. We have developed a probabilistic-based cor-

relation engine that incorporates domain knowledge to correlate alerts with direct causal

relationship. The second hypothesis is that some related attack steps, even though they do

xi

not have obvious or direct (or known) relationship in terms of security and performance

measures, still exhibit statistical and temporal patterns. For this category of relationship,

we have developed two correlation engines to discover attack transition patterns based on

statistical analysis and temporal pattern analysis, respectively. Based on the correlation

results of these three correlation engines, we construct attack scenarios and conduct attack

path analysis. The security analysts are presented with aggregated information on attack

strategies from the integrated correlation system.

In attack plan recognition, we address the challenges of identifying attacker’s high-level

strategies and predicting upcoming attack intentions. We apply graph-based techniques to

correlating isolated attack scenarios derived from low-level alert correlation based on their

relationship in attack plans. We conduct probabilistic inference to evaluate the likelihood

of attack goal(s) and identify potential attacker’s intentions based on observed attack activ-

ities.

We evaluate our approaches using DARPA’s Grand Challenge Problem (GCP) data sets

and live data sets collected from our department backbone network. Our evaluation shows

that our approach can effectively discover novel attack strategies, provide a quantitative

analysis of attack scenarios and identify attack plans.

xii

CHAPTER I

INTRODUCTION AND MOTIVATION

1.1 Intrusion Detection

The information security industry has been very active in recent years. In order to counter

security threats to computer systems and networks, many technologies have been devel-

oped and applied in security operations, such as firewall, encryption, authentication and

access control. However, all these technologies have their own limitations that may allow

intruders to break in. An Intrusion Detection System (IDS) is a security mechanism that

can intelligently monitor computer systems and networks to detect intrusions in real time,

and then respond to attacks quickly and effectively.

“Intrusion detection is the process of identifying and responding to malicious activity

targeted at computing and networking resources [2].” Intrusion detection can be host-based

or network-based. Host-based IDS can protect critical network devices storing sensitive

and security information. Intrusions are detected by analyzing operating system and ap-

plication audit trails, e.g., BSM [81]. Network-based IDS monitors all activities over a

network connection or segment and performs an analysis of the traffic by using the param-

eters or rules set up by the experts.

Two main techniques have been applied in IDS. One is misuse detection, the other is

anomaly detection. Misuse detection uses signatures of known attacks, i.e., the patterns of

attack behavior or effects, to identify the matched activity as an attack. Anomaly detection

uses the established normal profiles to identify any unacceptable deviations as possible re-

sults of an attack. Misuse and anomaly detection both have advantages and disadvantages.

Misuse detection systems usually have a relative high accuracy in intrusion detection and

usually produce only a few false positives. However, these systems can only detect attacks

1

that have already been modeled. Anomaly detection systems, by contrast, have the advan-

tage of being able to detect new intrusions that have not had any known signatures yet.

However, anomaly detection has relatively high false positives because some legitimate be-

haviors may be regarded as intrusions due to their deviations from normal profiles. Another

challenge to anomaly detection system is that it is usually difficult to train a system in a

very dynamic environment.

IDS has been an active research area for about two decades. James Anderson published

an influential paper [3] in 1980. In 1987, Dorothy Denning provided a methodological

framework of IDS in her milestone paper [28]. Since then, both academia and industry

have begun to study intrusion detection technologies and develop IDS products. There are

several influential research IDSs. For example, EMERALD [68] uses statistical techniques

for anomaly detection and expert system rules for misuse detection. STAT [42] uses state

transition analysis for anomaly detection. The assumption in STAT is that the unauthorized

activity can be reflected by a certain sequence of actions that indicate the system has been

moved from an initial authorized state to a compromised state by the intruder. Bro [64]

filters network streams into a series of events, and executes scripts that contain site-specific

ID rules.

The industry has also been actively developing commercial IDS products, e.g., Net

Ranger by Cisco Systems and RealSecure by Internet Security Systems. Recently, many

companies have started developing Intrusion Prevention System (IPS) based on IDS tech-

niques with more proactive response capabilities. In addition to traditional IDS or IPS

appliance, there has appeared a trend to integrate IDS with other security devices (e.g.,

Firewall, SSL, VPN) into one security appliance or into a switch or router, e.g., Cisco Sys-

tems and Juniper Networks. From the perspective of intrusion detection technique, most

IDS or IPS products are built based on signature pattern matching.

2

1.2 Alert Correlation and Attack Plan Recognition

Information security (INFOSEC) is a complex process with many challenging problems.

As more security systems are developed, deploying a large scale of INFOSEC mecha-

nisms, e.g., authentication systems, firewalls, intrusion detection systems (IDSs), antivirus

software, network management and monitoring systems, can provide protection in depth

for the IT infrastructure. INFOSEC sensors often output a large quantity of low-level or

incomplete security alerts because there is a large number of network and system activities

being monitored and multiple INFOSEC systems can each report some aspects of security

events. The sheer quantity of alerts from these security systems and sensors can overwhelm

security administrators and prevent them from performing comprehensive security analysis

of the protected domains and initiating timely response.

From a security administrator’s point of view, it is important to reduce the redundancy

of alarms, intelligently integrate and analyze security alerts, construct attack scenarios (de-

fined as a sequence of related attack steps) and present high-level aggregated information

from multiple local-scale events. To address this issue, researchers and security product

vendors have proposed alert correlation, a process to analyze and correlate security alerts

to provide an aggregated information on the networks and systems under protection. Ap-

plying alert correlation techniques to identifying attack scenarios can also help forensic

analysis, response and recovery, and even prediction of forthcoming attacks. Therefore,

alert correlation is a core component in a security management system.

Recently there have been several proposals on alert correlation, including alert sim-

ilarity measurement [83], probabilistic reasoning [33], clustering algorithms [27], pre-

and post-condition matching of known attacks [15, 23, 58], and chronicles formalism ap-

proach [57]. Most of these proposed approaches have limited capabilities because they

rely on various forms of predefined knowledge of attack conditions and consequences.

They cannot recognize a correlation when an attack is new or the relationship between at-

tacks is new. In other words, these approaches in principle are similar to misuse detection

3

techniques, which use the “signatures” of known attacks to perform pattern matching and

cannot detect new attacks. It is obvious that the number of possible correlations is very

large, potentially a combinatorial of the number of known and new attacks. It is infeasible

to know a priori and encode all possible matching conditions between attacks. To further

complicate the matter, the more dangerous and intelligent adversaries will always invent

new attacks and novel attack sequences. Therefore, we must develop significantly better

alert correlation algorithms that can discover sophisticated and new attack sequences.

In addition, all these approaches focus on the aggregation and analysis of raw security

alerts, and build basic or low-level attack scenarios. However, in practice, an alert cor-

relation system should have a hierarchical architecture. The analysis is conducted from

low-level alert correlation to abstract scenario analysis at high levels. In addition, there

can exist isolated attack scenarios derived from low-level alert correlation due to various

reasons, e.g., IDSs miss detecting critical attacks. Therefore, in addition to the low-level

correlation analysis, it is necessary to develop algorithms and tools for security analysts

to further analyze and correlate attack scenarios so that they can make situation and mis-

sion assessment accurately, and take appropriate responses to minimize the damages. In

addition, threat analysis and attack prediction are also helpful and important for security

operators to take actions in advance to avoid potential attacks and damages.

Recognizing attack plans is one of the goals of security analysts. Plan recognition has

been a research area in artificial intelligence (AI) for decades. In AI, plan recognition is a

process of inferring the goals of an agent from observations of the agent’s activities. Plan

recognition can be characterized as keyhole recognition and intended recognition based

on the role of an agent whose plan is being inferred [19]. In keyhole recognition, the

agent is not aware that its action is being observed, i.e., the agent is only engaged in the

task and does not attempt to impact the recognition process. In intended recognition, the

agent attempts to perform actions that can aid the recognition of its plan, e.g., a language

understanding system [19].

4

Unfortunately, traditional plan recognition techniques cannot be applied to attack plan

recognition. Unlike the traditional agent that either aids the recognition of its plan or does

not attempt to impact the recognition of the process, attackers can perform activities to es-

cape detection and avoid the recognition of their attack strategies. Therefore, this type of

recognition process can be categorized as adversary recognition that is more challenging

and more uncertain in the recognition process. In addition, some assumptions of traditional

plan recognition techniques are not valid anymore. First, in plan recognition, there is al-

ways an assumption that there exists a valid plan in the plan library that the agent can reach.

In network security, we cannot assume that we have a complete attack plan library that in-

cludes all the possible strategies of attackers. Therefore, we have to deal with the case that

the observed attacker’s activity is beyond or partially matched with our pre-defined attack

plans. Second, plan recognition assumes a complete, ordered set of tasks for a plan. How-

ever, we cannot always observe all of the attacker’s activities, and often can only detect

incomplete attack steps due to the limitation or deployment of security sensors. Therefore,

the attack plan recognition system should address partial order and unobserved activities.

1.3 An Overview of Our Alert Correlation System

The main objective of the correlation process is to provide an aggregated information on

the security-related activities on the network under protection. In this section, we present

an overview of our alert correlation process. This process consists of a collection of com-

ponents that focus on different aspects of the overall correlation task and transform sensor

alerts into aggregated intrusion reports.

Figure 1 shows the graphical representation of the framework of our alert correlation

process. The core of the correlation process consists of several components including alert

aggregation and clustering, alert verification and prioritization, alert correlation, attack plan

recognition and intention prediction.

Alert aggregation and clustering reduces the redundancy of raw security alerts. This

5

Alerts

Alert

& Clustering
Aggregation

Alert
Correlation

Attack

Analysis
Scenario

Instrusion
Response Actions

Attack
Plan

Recognition

Attack
Intention
Prediction

Verification &
Prioritization

Alert

Figure 1: Framework of Alert Correlation Process

component combines alerts corresponding to the same attack instance detected by the same

intrusion detection system, as well as alerts corresponding to the same attack detected by

different intrusion detection systems.

Alert verification and prioritization verifies and prioritizes each alert based on its

success and relevance to the mission goals as well as the severity assessed by security an-

alysts. The verification component filters out false positive alert cross checked by multiple

security sensors. The prioritization component computes an appropriate priority value to

each alert. This priority information is important for security analysts to quickly discard

information that is irrelevant or of less importance to a particular site.

Alert correlation discovers the relationship among attacks or attack steps in a coordi-

nated attack, and constructs attack scenarios. Our alert correlation mechanism integrates

three different correlation methods based on two hypotheses of attack step relationships to

discover and analyze relationships among alerts. Bayesian-based correlation engine [71]

applies probabilistic reasoning to correlate alerts that have direct causal relationships ac-

cording to some domain knowledge. This correlation mechanism is based on the hypothesis

that some attack steps have direct relationship because prior attack step enables the later

one. Causal discovery theory-based correlation mechanism [72] performs alert correla-

tion using statistical analysis of attack occurrences to identify the dependency between

alerts. Time series-based correlation engine [69] conducts alert correlation using statisti-

cal test and investigating temporal relationship between alerts. These two statistical and

6

temporal-based correlation mechanisms are based on the hypothesis that some attack steps

have temporal or statistical patterns even though they may not have direct or obvious (or

known) relationships in terms of security or performance measures. We integrate results of

these three correlation engines to construct attack scenarios and detect attack strategy. The

result of alert correlation is a set of candidate attack plans corresponding to the intrusions

executed by the attacker. The outputs of this phase can be used for further analysis in the

later phase, i.e., attack plan recognition [70].

Attack scenario analysis analyzes attack scenarios resulted from prior alert correla-

tion. In this step, we provide an approach to quantitatively analyze and rank various attack

paths and inform security analysts of the ones with the highest likelihood.

Attack plan recognition and intention prediction identifies the attacker’s intentions

by analyzing and correlating the candidate attack plans or scenarios output by the prior alert

correlation phases. In this phase, security analysts conduct situation assessment and threat

analysis based on the scenario correlation. This phase should provide a global analysis

on the attacker’s activities of past, current and future (i.e., intention prediction). Security

analysts depend on the results of this phase to take appropriate countermeasures and actions

to protect systems and networks, and prevent further attacks.

1.4 Dissertation Overview

In this section, we define our thesis and highlight the contributions presented in this disser-

tation.

1.4.1 Problem Statement and Formalization

This thesis studies the problem of

How to effectively analyze and correlate security alerts to identify novel attack strate-

gies and plans.

In the process of attack strategy identification, alert correlation is an important and

7

major analysis component. According to our knowledge and understanding of the prob-

lem, we have identified the properties of causal alert pairs and the problem space of alert

correlation.

Definition 1 Alert correlation is a process to identify the causal relationship between

alerts.

More formally, we denote a set of security alerts as A = {a1, a2, ..., ai, ..., an}, in which

each alert ai ∈ A is associated with a time stamp tai
.

In addition to time information, each alert has a number of other attributes, such as

source IP, destination IP, port(s), user name, process name, attack class, and sensor ID,

which are defined in a standard document, “Intrusion Detection Message Exchange Format

(IDMEF)”, drafted by the IETF Intrusion Detection Working Group [35]. Alert correlation

is to investigate if any two alerts ai and aj has a causal relationship.

When two alerts have a causal relationship, e.g., ai causes aj (denoted as ai → aj),

they have all the following three properties.

• First, they have a cause-effect relationship. It means that the causal attack (as repre-

sented by ai) has a positive impact or make a preparation for the attacker to launch a

follow-up attack (as represented by aj). More formally, for an attack A (represented

by alert a), we denote P (a) as attack A’s prerequisite or pre-conditions (e.g., ex-

istence of vulnerable services), and C(a) as attack A’s consequences (e.g., getting

root privilege). The cause-effect or direct causal relationship between a causal at-

tack Ai and an effect attack Aj can be interpreted as Ai’s consequences (i.e., C(ai))

has contributed to the prerequisite of the later attack Aj (i.e., P (aj)). Such causal

relationship can be represented in terms of security and performance measures.

• Second, they have a sequential relationship. It implies a time constraint between

a causal alert and an effect alert. A causal alert should appear prior to an effect

8

alert, i.e., tai
< taj

. A sequence of causally related alerts can be constructed from

the cause-effect alert pairs. For example, given three causally related alert pairs,

ai → aj , aj → am and am → an, we can have the sequence of causally related alert

stream as ai → aj → am → an. The associated time constraint of the sequence is

that tai
< taj

< tam < tan .

• Third, there exists a high statistical one-way dependence from the effect alert (aj)

to the causal alert (ai), i.e., P (aj|ai) > θ, where, θ (0 ≤ θ ≤ 1) is a dependence

threshold. In other words, the probability that an effect alert occurs whenever a cause

alert occurs is high.

In addition to the above three properties, in our security operations and data analysis,

we have noticed that attack step transition can also have a temporal pattern in the

time intervals of attack steps. For example, when an attacker runs a script to launch a

series of attacks, the time interval between attack steps is relatively stable. Although

such temporal pattern of time intervals does not necessarily exist in all causally re-

lated alerts (i.e., it is not an inherent property of cause-effect alerts), incorporating it

into the correlation analysis is helpful for us to discover and improve the correlation

accuracy when alerts under the correlation have a temporal pattern.

More formally, we use ∆tij as the time interval between a cause alert (ai) and an

effect alert (aj), i.e., ∆tij =| tai
− taj

|. When the causally related alert pairs have

occurred multiple k times, we denote ∆Tij to represent the corresponding time inter-

val set, i.e., ∆Tij = {∆t1ij, ∆t2ij, ..., ∆tkij}.

According to the variation of ∆Tij , we have the following definition of pairwise

temporal patterns.

Definition 2 Two causally related alerts (ai → aj) have a strong temporal pattern

if their time intervals have relatively stable values. In other words, the variance of

9

their time lags has a small value, i.e., V ar(∆Tij) ≤ ε, where, ε is a small positive

value.

Two causally related alerts (ai → aj) have a loose temporal pattern if the variance

of their time intervals has a large value, i.e., V ar(∆Tij) > ε.

Intuitively, the loose temporal pattern characterizes the situation that alert ai leads

to aj , but the time is not precise. The strong temporal pattern specifies that alert aj

happens after ai with a relatively stable time distance.

Having stated the properties of causally related alerts, we can define the problem space

of alert correlation as follows.

• Alert pairs have direct causal relationship. As defined before, direct causal relation-

ship means a prior attack makes preparation for a later one. The study of this problem

subspace is to find a way to represent the prerequisite and consequence of each at-

tack and evaluate such preparation-for relationship using security and performance

measures. It is also needed to evaluate the properties of sequential time constraints

and statistical one-way dependence between alert pairs under analysis.

• Alert pairs have no known direct causal relationship in terms of security and perfor-

mance measures. In this problem subspace, we aim to correlate alerts with strong

statistical dependence and temporal patterns found in alert data. The study of this

problem subspace is to design algorithms to perform statistical and temporal corre-

lation.

From a statistical analysis point of view, statistical dependence between two alerts

(e.g., ai and aj) can be either one-way dependence or mutual dependence. A strong

one-way dependence from aj to ai implies that whenever ai occurs, aj occurs (de-

noted as ai → aj), i.e., P (aj|ai) > θ, where, θ (0 ≤ θ ≤ 1) is a dependence

threshold. Alerts ai and aj have strong mutual dependence (denoted as ai À aj) if

10

P (aj|ai) > θ and P (ai|aj) > θ, which means whenever ai occurs, aj occurs and

vice versa.

As described before, the goal of alert correlation is to construct the attack scenario

in order to identify attack strategies. An attack scenario is usually represented by a

directed graph to represent the dependency or correlation among attack steps. We

denote such directed graph as an alert correlation graph. Dependencies among attack

steps represented in an alert correlation graph can have two structure forms. The first

one is a non-loop one-way dependency structure, e.g., a1 → a2 → a3 → a4. The

second one has a loop-structured dependency form that can be composed by either a

series of one-way dependence that form a loop (e.g., a1 → a2 → a3 → a1) or mutual

dependence (e.g., a1 À a2). The loop dependency can be formed, for example, in a

series of attack steps that has a repeat pattern.

Based on the structure of dependency among alerts (i.e., loop-structured or non-loop

structured) and the temporal pattern of time intervals between the correlated alerts,

we can further classify this problem space to four subspaces as follows.

– Dependency among alerts has a non-loop structure.

∗ The alert pair has a strong temporal pattern.

∗ The alert pair has a loose temporal pattern.

– Dependency among alerts has a loop structure.

∗ The alert pair has a strong temporal pattern.

∗ The alert pair has a loose temporal pattern.

Figure 2 shows the classification of the problem space of alert correlation. We use the

direct or indirect causal relationship between alerts as a criteria to divide the problem space

to two sub-spaces.

11

Alerts without
direct causal
relationship

Alerts with direct

causal relationship

Figure 2: Classification of the problem space of alert correlation

StrongLoose

&

Temporal relationship

&
Loose temporal

&
Strong temporal

Strong temporal
&

Loose temporal
relationship

relationship relationship

relationship

 of
Structure

dependency among

attack steps

Loop structured

Non-loop
structured

Loop structured Loop structured

Non-loop structured Non-loop structured

Figure 3: Granular classification of the problem subspace: alert pair without direct causal
relationship.

Figure 3 shows the granular classification of the problem subspace in which alert pairs

do not have direct causal relationship. In this problem subspace, we use the structure of

dependency among attack steps and the strength of temporal pattern between alert pairs as

criteria to further identify four problem sub-spaces.

We have studied and developed alert correlation algorithms based on the above problem

space definition and classification.

This thesis proposes a framework of alert correlation that helps security administrator

aggregate alerts output by security sensors, filter out spurious or incorrect alerts, analyze

attack scenarios and take proactive actions against forthcoming attacks. The proposed re-

search includes an integrated correlation system, an attack plan recognition and intention

prediction system. There are four major contributions expected in the proposed framework.

12

1.4.2 Thesis Contributions

This thesis research contributes to the intrusion detection and security management fields

in the following areas:

Knowledge-based Probabilistic Correlation Model. In this research, we study how to

incorporate domain knowledge into security alert analysis and correlation to discover alert

pairs that have direct causal relationship, i.e., an earlier attack enables or positively affects

the later one. For example, a port scan may be followed by a buffer overflow attack against

a scanned service port. In particular, we have developed a Bayesian-based correlation

mechanism [71] to correlate alerts and identify the causally related alerts if they conform

to the three properties of cause-effect alerts as described in Section 1.4.1. Specifically, this

correlation engine uses predicates to represent attack prerequisite and consequence, and

applies probabilistic reasoning to evaluating the preparation-for relationship between alerts

based on security states of systems and networks. We also apply time constraints to testing

if causally related alert pair candidates conform to the property of sequential relationship.

In the process of probabilistic correlation, we evaluate the property of statistical one-way

dependence between alerts being correlated using an attack transition table that shows the

likelihood of attack step transitions from different attack classes. We pre-defined the attack

transition table based on our domain knowledge, experiment evaluation and related work.

Our approach does not rely on the strict pre-/post-condition matching and can also function

on the partial correlation evidence.

Statistical and Temporal-based Alert Correlation Models. Besides the knowledge-

based correlation model that identifies alert pairs with direct causal relationship, we have

developed two statistical and temporal-based correlation models to discover novel and new

attack transition patterns. The development of these two correlation techniques is based

on the hypothesis that attack steps can still exhibit statistical dependency patterns (i.e., the

third property of cause-effect alerts) or temporal patterns even though they do not have

an obvious or known preparation-for relationship (i.e., the first property of cause-effect

13

alerts) in terms of security and performance measures. Therefore, these two correlation

engines aim to discover correlated alerts based on statistical dependency analysis and tem-

poral pattern analysis with sequential time constraints (i.e., to ensure the conformity to the

second property of cause-effect alerts). More formally, these two engines actually perform

correlation analysis instead of a direct causality analysis because the preparation-for rela-

tionship between alerts are either indirect or unknown. In theory, causality is a subset of

correlation [38], which means that a causally related alert pair is also correlated, however,

the reverse statement is not necessarily true. Therefore, the correlation output is actually a

super set of correlated alerts that can include the causally related alert pairs as well as some

correlated but non-causally related alerts. Our goal is to apply these two correlation engines

to identifying the correlated alerts that have strong statistical dependencies and temporal

patterns, and also conform to the sequential time constraint property. We present these

correlated alert candidates to the security analysts for further analysis. In the correlation

process, these two correlation mechanisms do not rely on prior knowledge of attack causal

relationship.

• Causal Discovery Theory-based Alert Correlation Model. We have developed

an alert correlation engine based on causal discovery theory [72]. This correlation

engine aims to discover the strong statistical dependence among alerts. Since this

correlation engine is based on the assumption that causality among variables can be

represented by a causal Bayesian network (represented by a directed acyclic graph

(DAG) in which there is no directed cycle path), this correlation mechanism can dis-

cover the dependency among attack steps that has a non-loop structure. Since this

model only applies and depends on probability theory and computation to investigate

and identify the statistical one-way dependence, and the temporal pattern of time in-

terval between alerts are not involved in the correlation process, therefore, this model

covers the problem subspaces of {Non-loop structured, Loose temporal relationship}
and {Non-loop structured, Strong temporal relationship} as shown in Figure 3.

14

• Granger-Causality-based Alert Correlation Model. In addition to developing an

correlation engine to discover the statistical one-way dependency (i.e., no depen-

dency loop), we have studied and developed another statistical and temporal-based

correlation mechanisms using Granger-Causality Test analysis [69]. This correla-

tion engine investigates and tests the statistical dependency and temporal patterns of

alert pairs to identify attack relationship. This correlation engine aims to discover

the statistical dependency (including mutual dependence and one-way dependence

that forms a dependency loop in the attack step dependency graph), i.e., the prob-

lem subspace of {Loop structured, Strong temporal relationship} as shown in Fig-

ure 3. In addition, since this correlation engine performs pairwise correlation, it can

also complement the causal discovery theory-based correlation engine in the problem

subspace of {Non-loop structured, Strong temporal relationship}, as shown in Fig-

ure 3, to identify the non-loop dependency pattern missed by causal discovery-based

correlation engine.

System Integration and Attack Strategy Analysis. We integrate three complemen-

tary correlation engines to perform alert analysis and correlation. We construct attack sce-

narios and conduct attack path analysis based on the output of three correlation engines.

We evaluate and rank the overall likelihood of various attack paths and identify those with

higher probabilities.

Attack Plan Recognition and Intention Prediction. We have developed techniques

applied to attack plan recognition and intention prediction [70]. We have developed a series

of techniques to solve three problems. First, we consider how to correlate isolated attack

scenarios derived from low-level alert correlation. Second, we address how to recognize

the attacker’s attack plan and intentions. Third, we discuss how to make predictions of

potential attacker’s intentions based on current observations and analysis. In our approach,

we apply graph-based techniques to correlating isolated attack scenarios and identifying

their relationship. Based on the correlation results, we further apply probabilistic reasoning

15

technique to recognizing the attack plans and evaluating the likelihood of potential attack

intentions.

1.4.3 Thesis Organization

The remainder of the thesis is organized as follows. Chapter 2 reviews the related research

work on alert correlation and plan recognition. Chapter 3 describes two components of

our correlation system, i.e., alert aggregation and prioritization. Chapter 4 describes our

probabilistic-based correlation mechanism. Chapter 5 introduces an approach to alert cor-

relation based on statistical analysis. Chapter 6 describes our correlation approach based

on temporal analysis of security alerts. Chapter 7 discusses the integration strategy of three

correlation engines. Chapter 8 introduces our attack plan recognition techniques. Chap-

ter 9 reports the experimental performance. Finally, Chapter 10 summarizes the thesis and

outlines ideas for future work.

16

CHAPTER II

RELATED WORK

2.1 Alert Correlation in Security Management System

Recently, there have been several proposed techniques of alert correlation and attack sce-

nario analysis.

Valdes and Skinner [83] proposed probabilistic-based approach to correlate security

alerts by measuring and evaluating the similarities of alert attributes. In particular, the

correlation process includes two phases. The first phase aggregates low-level events using

the concept of attack threads. The second phase uses a similarity metric to fuse alerts

into meta-alerts to provide a higher-level view of the security state of the system. Alert

aggregation and scenario construction are conducted by enhancing or relaxing the similarity

requirements in some attribute fields.

Porras et al. designed a “mission-impact-based” correlation system with a focus on the

attack impacts on the protected domains [67]. The work is an extension to the prior system

proposed in [83]. The system uses clustering algorithms to aggregate and correlate alerts.

Security incidents are ranked based on the security interests and the relevance of attack to

the protected networks and systems.

Some correlation research work are based on pre-defined attack scenarios or associ-

ation between mission goals and security events. Goldman et al. [33] built a correlation

system based on Bayesian reasoning. The system predefines the causal relationship be-

tween mission goals and corresponding security events as a knowledge base. The inference

engine relies on the causal relationship library to investigate security alerts and perform

alert correlation.

Debar and Wespi [27] applied backward and forward reasoning techniques to correlate

17

alerts. Two alert relationships were defined, i.e., duplicate and consequence. In a correla-

tion process, backward-reasoning looks for duplicates of an alert, and forward-reasoning

determines if there are any consequences of an alert. They used clustering algorithms to

detect attack scenarios and situations. This approach pre-defines consequences of attacks

in a configuration file.

Other researchers use attack modeling languages to describe attack transition patterns

or attack scenarios to perform alert correlation. Templeton and Levitt [82] defined an at-

tack description language JIGSAW to model computer attacks. In JIGSAW, capabilities

and concepts are used to represent attack conditions. In particular, capabilities are used to

describe prerequisite information that the attacker needs to know in order to take an effec-

tive attack. Concepts are used to model components or fragments of complex attacks. The

attack prerequisites and impacts are expressed in terms of capabilities. A complex attack

scenario can be identified by composing the capability provided by one concept with the

capability required by another one. In fact, this is an example of pre- and post-condition

matching approach to detect attack scenarios based on knowledge modeling. However,

other than the capability of detecting multi-step attacks, JIGSAW does not provide support

for functionalities of other correlation components.

Krügel et al. [51] proposed a distributed pattern matching scheme based on an attack

specification language that describes various attack scenario patterns. Alert analysis and

correlation are based on the pattern matching scheme.

Morin and Debar [57] applied chronicles formalism to aggregating and correlating

alerts. Chronicles provide a high level language to describe the attack scenarios based

on time information. Chronicles formalism approach has been used in many areas to mon-

itor dynamic systems. The approach performs attack scenario pattern recognition based on

known malicious event sequences. Therefore, this approach is analogous to misuse intru-

sion detection.

Ning et al. [58], Cuppens and Miège [23] and Cheung et al. [15] built alert correlation

18

systems based on matching the pre- and post-conditions of individual alerts. The idea of

this approach is that prior attack steps prepare for later ones. Therefore, the consequences

of earlier attacks correspond to the prerequisites of later attacks. The correlation engine

searches alert pairs that have a consequence and prerequisite matching. In addition to the

alert pre- and post-condition matching, the approach in [23] also has a number of phases

including alert clustering, alert merging, and intention recognition. In the first two phases,

alerts are clustered and merged using a similarity function. The intention recognition phase

is referenced in their model, but has not been implemented. Having the correlation result,

the approach in [58] further builds correlation graphs based on correlated alert pairs [58].

Recently, Ning et al. [60] have extended the pre- and post-condition-based correlation tech-

nique to correlate some isolated attack scenarios by hypothesizing missed attack steps.

2.2 Alert Correlation in Network Management System

In the field of network management, alert or event correlation has been an active research

topic and a subject of numerous scientific publications for over 10 years. The objective of

alert correlation in a network management system (NMS) is to localize the faults occurred

in communication systems. The problem of alert correlation in NMS is also referred as

root cause analysis. During the past 10 more years, many solutions have been proposed

that derive from different areas of computer science including artificial intelligence (AI),

graph theory, neural networks, information theory, and automata theory. In this section,

we introduce several well-known approaches that have been implemented in real network

management systems to analyze and correlate alerts.

Case-based systems base their decisions on experience and past situations [53]. In a

case-based reasoning system, successful solutions to prior alert correlation cases are stored

in a knowledge base, called case base. When a new problem brings up, the system searches

the case base for similar problems. When similar cases are retrieved, the various solutions

to the prior cases must be adapted to the case at hand. If this adapted solution successfully

19

solves the problem, the present problem is added to the case base with the adapted solution

for future use.

Model-based approaches incorporate deep knowledge in the form of a model of the un-

derlying system. Model-based systems reason using explicit representation of the system

being diagnosed. Deep knowledge of the system may describe its structure (static knowl-

edge) and function (dynamic knowledge). The model-based approaches differ with each

other in terms of technologies used to define the system model. Model-based reasoning sys-

tems usually use rules to represent heuristic knowledge of the communication networks for

system diagnosis. In [61,62], the correlation system performs alert analysis and correlation

based on pre-defined causal relationship trees. The correlation tree shows the cause-effect

relationship between events. A rule language was developed to express the correlation

trees and used to correlate alerts. Another example of model-based correlation system is

IMPACT [43, 44]. IMAPCT is an expert system specifically designed for event correlation

in telecommunications networks. The system uses rule-based reasoning as its inference

engine and an object-oriented frame hierarchy as a general knowledge representation.

Code book-based technique [50] applies information-theory to the process of fault lo-

calization. It uses a code book to represent the causal relationship between every possible

fault and its corresponding symptoms (i.e., alerts). In this approach, event propagation is

conceptually regarded as data transmission over a channel. A set of optimal codes is input

and the output alphabet is a set of all possible symptom combinations [50]. Therefore,

event correlation is equivalent to decoding a received output symbol to one of the valid

input symbols. Spurious and lost symptoms are analogous to channel errors. The number

of errors that may be detected or corrected depends on the code book and the decoding

scheme. Extensions to this correlation technique have been proposed [55, 56] to identify

several simultaneous root causes and improve the overall performance.

20

2.3 Problems in Current Alert Correlation Systems

Alert correlation is a challenging task in security management. A correlation system should

effectively reduce the alert redundancy, intelligently analyze alerts and correctly identify

the attack strategies.

Most of the proposed approaches have limited capabilities because they rely on various

forms of predefined knowledge of attacks or attack transition patterns using attack model-

ing language or pre- and post-conditions of individual attacks. Therefore, those approaches

cannot recognize a correlation when an attack is new or the relationship between attacks

is new. In other words, these approaches in principle are similar to misuse detection tech-

niques, which use the signatures of known attacks to perform pattern matching and cannot

detect new attacks. It is obvious that the number of possible correlations is very large, po-

tentially a combinatorial of the number of known and new attacks. It is infeasible to know

a priori and encode all possible matching conditions between attacks. In practice, the more

dangerous and intelligent adversaries will always invent new attacks and novel attack se-

quences. Therefore, we must develop significantly better alert correlation algorithms that

can discover sophisticated and new attack sequences.

In the network management system (NMS), most event correlation techniques also de-

pend on various knowledge of underlying networks and the relationship among faults and

corresponding alerts. In addition, in an NMS, event correlation focuses more on alerts re-

sulted from network faults that often have fixed patterns. Therefore, modeling-based or

rule-based techniques are mostly applied in various correlation systems. Whereas in secu-

rity, alerts are more diverse and unpredictable because the attackers are intelligent and can

use flexible strategies. Therefore, it is difficult to apply correlation techniques developed in

network management system to the analysis of security alerts.

21

2.4 Plan Recognition

In artificial intelligence (AI), plan recognition has been an active research area. Different

types of inference techniques have been applied to plan recognition, e.g., deduction and

abduction. In particular, the earliest work in plan recognition was rule-based inference

system [74, 84]. A milestone work of plan recognition was done by Kautz and Allen in

1986 [49]. In [49], they defined the problem of plan recognition as finding a minimal set

of top-level actions (i.e., plan goals) that were sufficient to explain the observed actions.

The inference was conducted by going through the rule sets. Charniak and McDemott [13]

proposed that the plan recognition problem can be solved by abduction, or reasoning to

the best explanation. Charniak and Goldman [11, 12] applied Bayesian networks to plan

recognition. Carberry [10] applied Dempster-Shafer theory [76] to computing the com-

bined support by multiple evidences to hypotheses plans. Albrecht et al. [1] proposed to

construct a plan recognition inference system based on Dynamic Belief Networks [26]. In

Dynamic Belief Networks, the influence of temporal aspects is represented by multiple

nodes to indicate the status of a variable at different instances of time.

There are some challenges in applying traditional plan recognition techniques to se-

curity applications. First, traditional plan recognition techniques are usually applied in

non-adversary situation. The recognition process can be either aided or non-interfered by

the agent being observed. However, in the security application, the plan recognition pro-

cess is an adversary recognition where attackers are trying to avoid or interfere with any

recognition process on their intrusion activities.

Second, the assumptions used in traditional plan recognition are not valid in adversary

recognition anymore. For example, in non-adversary plan recognition, a single agent and

a single plan have to be determined. The observed activities are conducted by a single

agent toward a single plan. Although there are some works on multi-agent plan recogni-

tion, they also share that assumption. In attack plan recognition, by contrast, it is possible

that an attacker has multiple dynamic attack plans. There also exist coordinated attacks

22

conducted by multiple attackers. In addition, in non-adversary plan recognition, there is

a complete, ordered and correct set of activities. The observations available are correct

and corresponding to a determined plan. Every action that is performed is observed. In

adversary plan recognition, this assumption is not valid anymore.

The most related work to ours is [31] in which Geib and Goldman applied probabilistic

reasoning to recognizing the attacker’s intentions. The approach conducts the plan recog-

nition from raw security alerts. The plan library is defined by detailed specific attacks.

This definition method has the limitation that it can increase the computation complexity

of inference. In addition, it also requires a complete and ordered attack sequence (if there

are missing attack steps, it inserts hypothesized attack steps in order to have a complete

activity sequence) when conducting the plan recognition.

2.5 Our Approach

Our approach aims to address the challenge of how to detect novel attack strategies that can

consist of a series of unknown patterns of attack transitions. In alert correlation techniques,

our approach differs from other work in the following aspects. Our approach integrates

three complementary correlation engines to discover attack scenario patterns. It includes

both knowledge-based correlation mechanisms and statistical and temporal-based correla-

tion methods.

We apply a Bayesian-based correlation engine to the attack steps that are directly re-

lated, e.g., a prior attack enables the later one. Our Bayesian-based correlation engine

differs from previous work in that we incorporate knowledge of attack step transitions as

a constraint when conducting probabilistic inference. The correlation engine performs the

inference about the correlation based on broad indicators of attack impacts without using

the strict hard-coded pre-/post-condition matching.

In addition to domain knowledge-based correlation engine, we have developed two

statistical and temporal-based correlation engines. The first one applies causal discovery

23

theory to alert analysis and correlation. This approach identifies alert relationship based

on statistical analysis of attack dependence. Having observed that many attack steps in a

complicated attack strategy often have a strong temporal relationship, we have developed

a correlation engine using temporal analysis. In particular, we applied Granger-Causality

Test technique to discovering attack steps that have strong temporal and statistical patterns.

These two statistical and temporal-based correlation techniques differ from other re-

lated work in that they do not rely on prior knowledge of attack strategies or pre- and

post-conditions of individual attacks. Therefore, these two statistical and temporal-based

approaches can be used to discover new attack strategies that can have unknown attack

transition patterns. To the best of our knowledge, our approach is the first approach that

detects new attack strategies without relying on pre-defined knowledge base.

Our integrated approach also provides a quantitative analysis of the likelihood of var-

ious attack paths. With the aggregated correlation results, security analysts can perform

further analysis and make inferences about high-level attack plans.

In attack plan recognition, our approach is unique in the following aspects. First, we

build our plan recognition system after a low-level alert correlation step that includes alert

aggregation, alert prioritization and alert correlation. The advantage of this approach is that

it can reduce the computation complexity when performing the high-level attack scenario

correlation and probabilistic inference. Second, we do not require a complete ordered alert

sequence for inference. We have the capability of handling partial order and unobserved

activity evidence sets. In practice, we cannot always observe all of the attacker’s activities,

and can often only detect partial order of attack steps due to the limitation or deployment of

security sensors. For example, security sensors such as IDSs can miss detecting intrusions

and thus result in an incomplete alert stream. Third, we provide an approach to predict

potential attacks based on observed intrusion evidence.

24

CHAPTER III

ALERT AGGREGATION AND PRIORITIZATION

In this chapter, we describe two major components in our alert correlation system, i.e., alert

aggregation and alert prioritization.

3.1 Alert Aggregation and Clustering

One of the issues with deploying multiple security devices is the large number of alerts

output by the devices. The large volume of alerts make it very difficult for the security

administrator to analyze attack events and handle alerts in a timely fashion. Therefore, the

first step in alert analysis is alert aggregation and volume reduction.

In our approach, we use alert fusion and clustering techniques to reduce the redundancy

of alerts while keeping the important information. Specifically, each alert has a number of

attributes such as time stamp, source IP, destination IP, port(s), user name, process name,

attack class, and sensor ID, which are defined in a standard document named “Intrusion De-

tection Message Exchange Format (IDMEF)” drafted by IETF Intrusion Detection Working

Group [35].

IDMEF has defined alert formats and attributes. IDMEF is intended to be a standard

data format that intrusion detection systems can use to report alerts about suspicious events.

A Document Type Definition (DTD) has been proposed to describe IDMEF data format by

XML documents.

In IDMEF, three temporal attributes have been defined to be associated to an alert.

detect-time refers to the time that the attack occurs, create-time represents the time when the

attack is detected and analyzer-time is the time when the alert is output by an IDS. Create-

time and analyzer-time are fully dependant on the characteristics of the IDS. Therefore,

25

we use detect-time attributes in our alert aggregation process. In other words, two alerts

might be considered similar even though their create-time and analyzer-time are completely

different.

In the IDMEF format, the structures of attributes source and target are similar. They

can be described by a node, a user, a process and a service. A node might be identified by

its IP address (typically by a network-based IDS) or by its host name (typically by a host-

based IDS). Similarly, some IDSs provide service names or port numbers. We create and

use two correspondence tables between host names and IP addresses, and between services

and port numbers. For most alerts output by a host-based IDS, we specify that a similarity

exists between alerts’ source and target attributes if both their nodes, users, services and

processes are similar. And for most network attacks, we compare the nodes and services.

Alert fusion has two phases, i.e., aggregation of alerts of the same IDS and aggrega-

tion of alerts of different sensors. Specifically, we first combine alerts that have the same

attributes except time stamps. This step is intended to aggregate alerts that are output by

the same IDS and are corresponding to the same attack but have a small delay, i.e., the

time stamps of those alerts can be slightly different, e.g., two seconds apart. Second, based

on the results of step 1, we aggregate alerts with the same attributes but are reported from

different heterogeneous sensors. The alerts varied on time stamp are fused together if they

are close enough to fall in a pre-defined time window.

Alert clustering is used to further group alerts after alert fusion. Based on various

clustering algorithms, we can group alerts in different ways according to the similarity

among alerts, (e.g., [83] and [46]). Currently, based on the results of alert fusion, we

further group alerts that have same attributes except time stamps into one cluster. After this

step, we have further reduced the redundancy of alerts.

Definition 3 A hyper alert is defined as a time ordered sequence of alerts that belong to

the same cluster.

For example, after alert clustering, we have a series of aggregated alert instances,

26

a1, a2...an, in one cluster that have the same attributes along the time axis. We use hy-

per alert A to represent this sequence of alerts, i.e., A = {a1, a2, ..., an}.

3.2 Alert Verification and Prioritization

The next phase of alert processing is to verify and prioritize each hyper alert based on its

success and relevance to the mission goals.

When a correlation engine receives false positives as input, the quality of correlation

results can degrade significantly. Therefore, the reduction of false positive and irrelevant

alerts is an important prerequisite to achieve a good correlation results.

The task of alert verification is to examine an alert and determine the success or failure

of the corresponding attack. It aims to filter out the false positive alerts output by security

sensors.

We apply evidence cross checking to identifying the false positive alert. In other words,

we use alerts or evidence output by other security sensors to cross check the validity of

an alert. In particular, for an alert generated by a security sensor (e.g., an IDS), we check

if there are any similar alerts output by other security sensors or if there are any alerts

or evidence corresponding to the impact of the attack. For example, when a network-

based IDS output a buffer overflow alert targeting a specific process running on the target

host, and if the host-based IDS installed on the target machine also generated an alert

representing an abnormal running of that process or other abnormal activities (e.g., illegal

file access) corresponding to the evidence of the attack impact, then we can enforce the

validity of the buffer overflow alert.

Priorities are important to classify alerts and quickly discard information that is irrel-

evant or of less importance to a particular site. The alert prioritizing component has to

take into account the security policy and the security requirements of the site where the

correlation system is deployed. The objective is that, with the alert priority rank, security

analyst can select important alerts as the target alerts for further correlation and analysis.

27

Specifically, the priority score of an alert is computed based on the relevance of the alert to

the configuration of the protected networks and hosts as well as the severity of the corre-

sponding attack assessed by the security analyst. In practice, a correlation system uses the

information from the impact analysis and the asset database to determine the importance of

network services to the overall mission goals of the network.

Porras et al. proposed a more comprehensive mechanism of incident/alert rank com-

putation model in a “mission-impact-based” correlation engine, named M-Correlator [67].

Since we focus on alert correlation and scenario analysis instead of alert priority ranking,

and alert prioritization is just an intermediate step to facilitate further alert analysis, we

adapted the priority computation model of M-Correlator with a simplified design.

Services/Ports OS

Interest
User

Applications

Priority

Figure 4: Alert Priority Computation Model

Figure 4 shows our priority computation model that is constructed based on Bayesian

networks [65]. We use Bayesian inference to obtain a belief over states (hypotheses) of

interests. A Bayesian network is usually represented as a directed acyclic graph (DAG)

where each node represents a variable, and the directed edges represent the causal or de-

pendent relationships among the variables. A conditional probability table (CPT) [65] is

associated with each child node. It encodes the prior knowledge between the child node

and its parent node. Specifically, an element of the CPT at a child node is defined by

CPTij = P (child state = j|parent state = i) [65]. The belief in hypotheses of the root

is related to the belief propagation from its child nodes, and ultimately the evidence at the

leaf nodes.

Specifically, in our priority computation model, the root represents the priority with

28

two hypothesis states, i.e., “high” and “low”. Each leaf node has three states. For node

“Interest”, its three states are “low”, “medium” and “high”. For other nodes, the three

states are “matched”, “unmatched” and “unknown”. The computation result is a value in

[0,1] where 1 is the highest priority score.

We denote ek as the kth leaf node and Hi as the ith hypothesis of the root node. Given

the evidence from the leaf nodes, assuming conditional independence with respect to each

Hi, the belief in hypothesis at the root is: P (Hi | e1, e2, . . . , eN) = γP (Hi)
∏N

k=1 P (ek|Hi),

where γ = [P (e1, e2, . . . , eN)]−1 and γ can be computed using the constraint
∑

i P (Hi|e1,

e2, . . . , eN) = 1. For example, for the hyper alert of FTP Globbing Buffer Overflow at-

tack, we get evidence [high, matched, matched, unknown, unknown] from the correspond-

ing leaf nodes, i.e., Interest, OS, Services/Ports, Applications and User, respectively. As

Figure 4 shows, the root node represents the priority of hyper alert. Assume that we

have the prior probabilities for the hypotheses of the root, i.e., P (Priority = high) =

0.8 and P (Priority = low) = 0.2, and the following conditional probabilities as de-

fined in the CPT at each leaf node, P (Interest = high|Priority = high) = 0.70,

P (Interest = high|Priority = low) = 0.10, P (OS = matched|Priority = high) =

0.75, P (OS = matched|Priority = low) = 0.20, P (Services = matched|Priority =

high) = 0.70, P (Services = matched|Priority = low) = 0.30, P (Applications =

unknown|Priority = high) = 0.15, P (Applications = unknown|Priority = low) =

0.15, P (User = unknown|Priority = high) = 0.10, P (User = unkown|Priority =

low) = 0.10, we then can get γ = 226.3468, therefore, P (Priority = high|Interest =

matched,OS = matched, Service = matched,Applications = matched, User =

unknown) = 0.9959. We regard this probability as the priority score of the alert. The

current CPTs are predefined based on our experience and domain knowledge.

To calculate the priority of each hyper alert, we compare the dependencies of the corre-

sponding attack represented by the hyper alert against the configurations of target networks

and hosts. We have a knowledge base in which each hyper alert has been associated with

29

a few fields that indicate its attacking OS, services/ports and applications. For the alert

output from a host-based IDS, we will further check if the target user exists in the host

configuration. The purpose of relevance check is that we can downgrade the importance

of some alerts that are unrelated to the protected domains. For example, an attacker may

launch an individual buffer overflow attack against a service blindly, without knowing if

the service exists. It is quite possible that a signature-based IDS outputs the alert once

the packet contents match the detection rules even though such service does not exist on

the protected host. The relevance check on the alerts aims to downgrade the impact of

such kind of alerts on further correlation analysis. The interest of the attack is assigned by

the security analyst based on the nature of the attack and missions of the target hosts and

services in the protected domain.

30

CHAPTER IV

PROBABILISTIC-BASED ALERT CORRELATION

4.1 Motivation

In practice, we observe that when a host is compromised by an attacker, it usually becomes

the target of further attacks or a stepping-stone for launching attacks against other systems.

Therefore, the consequences of an attack on a compromised host can be used to reason

about a possible matching with the goals of another attack. In a series of attacks where

the attackers launch earlier attacks to prepare for later ones, there are usually strong con-

nections between the consequences of the earlier attacks and the prerequisites of the later

ones. If an earlier attack is to prepare for a later attack, the consequence of the earlier attack

should at least partly satisfy the prerequisite of the later attack.

It is possible to address this type of correlation by defining pre- and post-conditions

of individual attacks and applying condition matching. However, it is infeasible to enu-

merate and precisely encode all possible attack consequences and goals into pre- and post-

conditions. In addition, in practice, an attacker does not have to perform early attacks to

prepare for a later one, even though the later attack has certain prerequisites. For example,

an attacker can launch an individual buffer overflow attack against a service blindly without

knowing if the service exists or not. In other words, the prerequisite of an attack should

not be mistaken for the necessary existence of an earlier attack. A hard-coded pre- and

post-conditions matching approach cannot handle such cases.

Having the challenges in mind, we apply probabilistic reasoning to alert correlation

by incorporating system indicators of attack consequences and prior knowledge of attack

transitions. In this chapter, we discuss how to apply probabilistic reasoning to attack con-

sequences and goals in order to discover the subtle relationships between attack steps in an

31

Evaluators

Correlation
Output

Probabilistic
Inference

Alert Pairs
(a) Inference flowchart

Suspicious
Connection

Probability of Correlation(Ai, Aj)

Privilege
Root

User
Privilege

Availability

Probe/

Malicious
Concealment

Access
Violation

Info Disclosure

Integrity
Violation

Surveillance

(b) Bayesian-based correlation model

Figure 5: Probabilistic reasoning model

attack scenario.

4.2 Model Description

Figure 5(a) shows the procedure of correlation inference. Given a stream of alerts, eval-

uators first analyze one or more features of alert pairs and output results as evidence to

the inference module. The inference module combines the individual opinions expressed

by the evaluators into a single assessment of the correlation by computing and propagating

correlation beliefs within the inference network.

In our inference module, we use a Bayesian network [65] as our reasoning engine.

Bayesian networks are usually used as a principle method to reason uncertainty and are

capable of leveraging prior expert opinions with the learned information from data. A

Bayesian network is usually represented as a directed acyclic graph (DAG) where each

node represents a variable that has a certain set of states, and the directed edges represent

the causal or dependent relationships among the variables. A Bayesian network consists of

several parameters, i.e., prior probability of parent node’s states (i.e., P (parent state =

i)), and a set of conditional probability tables (CPT) associated with child nodes. CPT

encodes the prior knowledge between child node and its parent node. Specifically, an entry

of the CPT at a child node is defined by CPTij = P (child state = j|parent state = i).

We have more discussions on probability properties of a Bayesian network and two specific

32

Bayesian models in Section 5.2.1 and Section 8.4.2 respectively.

Figure 5(b) shows the structure of our Bayesian inference model for pairwise correla-

tion. Since we depend on domain knowledge to correlate directly related alert pairs, we

design a one-level Bayesian network that is good enough to perform inference.

In the inference model, the root node represents the hypothesis that two attacks are

correlated. Specifically, the root node has two hypothesis states, i.e., “high correlation”

and “low correlation”. Each child node represents a type of attack consequences on the

host. The evaluator on each child node detects the condition matching between the conse-

quences and the necessary conditions of the two alerts being correlated. The evaluation

result on each leaf node is mapped to a state of the child node. Each child node has

three states: “matched”, “not matched” and “unknown”. The state “unknown” handles

the case that there is no need of condition matching, e.g., some attacks do not necessar-

ily have any pre-conditions in order to be launched. The output of the inference engine

represents the probability or confidence of the correlation between two alerts being ana-

lyzed (i.e., P (correlation = high|evidence)) based on the evidence (e.g., “matched” or

“unmatched”) provided by the leaf nodes.

The belief computation is conducted by propagating belief messages among leaf nodes

and the root node. Specifically, we denote ek as the kth leaf node and Hi as the ith

hypothesis of the root node. Given the evidence from the leaf nodes, assuming con-

ditional independence with respect to each Hi, the belief in hypothesis at the root is:

P (Hi | e1, e2, . . . , eN) = γP (Hi)
∏N

k=1 P (ek|Hi), where γ = [P (e1, e2, . . . , eN)]−1 and γ

can be computed using the constraint
∑

i P (Hi|e1, e2, . . . , eN) = 1 [65]. Since the belief

computation can be performed incrementally instead of being delayed until all the evidence

is collected, the Bayesian inference engine can also function on partial evidence, and the

lack of evidence input from an evaluator does not require special treatment.

As Figure 5(b) shows, each leaf node represents an attack consequence on the attack

victim.

33

When reasoning about the correlation between two alerts, we consider broad aspects

of attack consequences, in particular, (1) Probe/Surveillance: information on system or

network has been gained by an attacker, e.g., a probing attack can get information on open

ports. (2) Availability: the system is out of service or the service is negatively affected by

the attack, e.g., because of a DoS attack. (3) Access Violation: an illegal access to a file

or data of a system. (4) Information Disclosure: the attacker exports (sensitive) data to

external site. (5) Root Privilege has been obtained by an attacker, for example, by a buffer

overflow attack. (6) Malicious Concealment: malicious binary codes have been installed

on the system, e.g., a Trojan horse. (7) Integrity Violation: the file on a system has been

modified or deleted, violating the security policy. (8) Suspicious Connection: a covert

channel has been set up by the attack. (9) User Privilege has been obtained by the attacker.

For each attack, it may result in one or more of those impacts on the victim host or

network. Each attack may also need some pre-conditions prepared by prior attack(s) in

one or more above fields. Therefore, when correlating two alerts, we compare the causal

alert candidate’s consequences with effected alert’s pre-conditions in each leaf nodes of

Figure 5(b).

Table 1: Predicates used in impact evaluation

FailService DegradeService FailProcess
DegradeProcess ModifyData DeleteData

GainUserPrivilege GainRootPrivilege GainServiceInfo
GainOSInfo InstallMaliciousDaemon InstallTrojan

SetupCovertChannel FailCovertChannel ExportData
GainFile AccessSystem LeakInformation

Table 1 shows the set of predicates that we defined to assess the consequences of attack.

Each attack impact shown in Figure 5(b) has been associated with a set of predicates defined

in Table 1.

For example, predicates “FailService” and “DegradeService” represent the attack im-

pacts on the availability of the target’s service. The definition of predicates is a broad

34

template and each predicate can be instantiated to a specific consequence instance ac-

cording to information provided by alerts. For example, when a port scan alert is out-

put, its corresponding impact instance is GainServiceInfo.targetIP. For another example,

an attack may result in compromise of the root privilege and modification of the pass-

word file at a victim host. The corresponding attack consequence can be represented by

{GainRootPrivilege.targetIP, ModifiyData.passwordFile}.

Each alert has also been defined a pre-condition(s) using the predicates shown in Ta-

ble 1. Like the definition of impact of attack, pre-condition(s) of each alert can also be

instantiated based on alert specific attributes. Each alert can provide the necessary infor-

mation from its attributes, such as source IP, target IP, attack class.

Correlating two alerts includes the following steps. First, each alert first initializes its

corresponding pre-condition and impact fields. Second, alert pairs are checked to see if

they comply with certain constraints, e.g., an implicit temporal constraint between these

two alerts is that alert Ai occurs before alert Aj . Third, evaluations are conducted by

comparing the causal alert’s impacts and effected alert’s pre-conditions on each of the leaf

nodes as shown in Figure 5. Fourth, results of evaluations are mapped to the states of

leaf nodes, i.e., “matched”, “unmatched” and “unknown”. Finally, an overall probability

computation is conducted based on the state evidence of each leaf node.

For example, alert portscan has a consequence defined as GainServiceInfo.targetIP

that is associated with attack consequence Probe/Surveillance as shown in Figure 5(b).

Alert imap buffer overflow has a pre-condition as GainServiceInfo.targetIP, where pred-

icate “GainServiceInfo” is associated with attack consequence Probe/Surveillance shown

in Figure 5(b). If portscan alert occurs before alert imap buffer overflow and they have

the same target IP addresses, then their pre- and post-conditions are matched. The cor-

responding state of leaf node Probe/Surveillance in Figure 5(b) will be set as “matched”.

The Bayesian-model computes the evidence and outputs the probability or confidence of

the correlation of these two alerts.

35

4.3 Parameters in Bayesian Model

When using a Bayesian model for inference, we need to set two types of parameters, i.e.,

prior probability of root’s states and CPT associated with each child node. In this section,

we describe how we set the parameters used in our Bayesian model.

4.3.1 Parameters in Bayesian Model I: Prior Probability or Estimation on Attack
Transition

In this section, we describe the attack classes used in our work and the prior probability

estimation on attack transition, i.e., the root states in our model.

The prior probability of root states (e.g., P (correlation = high)) used in the inference

engine is set based on the attack class of alerts being correlated. It indicates the prior knowl-

edge estimation of the possibility that one attack class reasonably transits to another one.

For example, it is reasonable for us to have a higher estimation of the possibility that an ex-

ploit attack follows a probe than the other way around. We use domain-specific knowledge

based on prior experience and empirical studies to estimate appropriate probability values.

Related work [83] also helps us on the probability estimation.

In our work, we denote the attack classes as the follows.

C1: Super Privilege Violation. C2: User Privilege Violation. C3: DoS. C4: Probe. C5:

Access Violation. C6: Integrity Violation. C7: Asset Distress. C8: Connection Violation.

C9: Malicious Binary Installation. C10: Exfiltration.

In alert correlation, the pair of alerts being evaluated in the correlation engine (as shown

in Figure 5(b)) is only known at run-time. Therefore, we cannot use an inference engine

with a fixed set of CPT parameters. Instead, we set up a set of CPTs based on each pair

of attack classes (e.g., Malicious Concealment and DoS). At run-time, when correlating

a pair of alerts Ai and Aj with respective corresponding attack classes C(Ai) and C(Aj)

(e.g., alert imap buffer overflow with attack class Super PrivilegeV iolation and alert

illegal file access with attack class Access V iolation), the inference engine selects the

36

corresponding CPT parameters for the attack classes C(Ai) and C(Aj), and computes the

overall probability that Aj is “caused” by Ai given the evidence from the evaluators, i.e.,

P (correlation = high|e = evidence). An implicit temporal constraint between these two

alerts is that alert Ai occurs before Aj . In this example, we can interpret the correlation as:

the imap buffer overflow attack is followed by an illegal access to a file after the attacker

gets root privileges on the target. Initial values of CPTs are pre-defined based on our

experience and domain knowledge.

Table 2: Prior Estimation on Attack Transition
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

C1 0.5 0.6 0.3 0.7 0.6 0.6 0.3 0.7 0.5 0.4
C2 0.6 0.5 0.3 0.6 0.5 0.5 0.3 0.1 0.5 0.4
C3 0.3 0.3 0.5 0.6 0.3 0.3 0.5 0.1 0.6 0.3
C4 0.2 0.2 0.3 0.5 0.7 0.3 0.3 0.8 0.3 0.3
C5 0.6 0.3 0.5 0.6 0.5 0.6 0.3 0.1 0.5 0.5
C6 0.5 0.3 0.5 0.4 0.8 0.5 0.3 0.1 0.5 0.4
C7 0.3 0.3 0.6 0.3 0.3 0.3 0.5 0.4 0.3 0.2
C8 0.1 0.1 0.3 0.4 0.3 0.3 0.5 0.5 0.3 0.7
C9 0.3 0.3 0.3 0.3 0.6 0.6 0.3 0.1 0.5 0.6

C10 0.5 0.5 0.3 0.3 0.6 0.6 0.3 0.3 0.6 0.5

Table 2 shows the estimated possibility that how reasonably an attack with class Ci

(i.e., ith column in the matrix) may progress to another attack with class Cj (i.e., jth row in

the matrix). The table entry is used as the prior probability of the root state in our model.

The estimation is based on our prior experience and empirical studies. In the process of

estimation, we also refer to the related work in [83].

4.3.2 Parameters in Bayesian Model II: Adaptive CPT Update

Another important parameter in Bayesian model is the CPT associated with each node.

CPT values associated with each node adapt to new evidence and therefore can be updated

accordingly. We apply an adaptive algorithm originally proposed by [4] and further de-

veloped by [18]. The motivation of using adaptive Bayesian network is that we want to

fine-tune the parameters of the model and adapt the model to the evidence to fix the initial

37

CPTs that may be pre-defined inappropriately. The intuition of the algorithms proposed

by [4] is that we want to adapt the new model by updating CPT parameters to fit the new

data cases while balancing movement away from the current model.

Specifically, we denote X as a node in a Bayesian network, and let U be the parent

node of X . X has r states with values of xk, where k = 1, ..., r and U has q states with

values of uj , where j = 1, ..., q. An entry of CPT of the node X can be denoted as:

θjk = P (X = xk|U = uj). Given a set of new data cases, denoted as D, D = y1, ..., yn,

and assuming there is no missing data in evidence vector of yt, where evidence vector yt

represents the evidence at the tth time, the CPT updating rules are:

θt
jk = η + (1− η)θt−1

jk , for P (uj|yt) = 1 and P (xk|yt) = 1. (1)

θt
jk = (1− η)θt−1

jk , for P (uj|yt) = 1 and P (xk|yt) = 0. (2)

θt
jk = θt−1

jk , otherwise. (3)

η is the learning rate. The intuition of the above updating rules is that, for an entry of

CPT, e.g., θmn, we either increase or decrease its value (i.e., P (X = xn|U = um)) based on

the new evidence received. Specifically, given the evidence vector yt, if the parent node U

is observed in its mth state, i.e., U = um, and X is in its nth state, i.e., X = xn, we regard

the evidence as supporting evidence of the CPT entry θmn. We then increase its value (i.e.,

P (X = xn|U = um)), which indicates the likelihood that X is in its nth state given the

condition that parent node U is in its mth state, as shown in Eq. (1). By contrast, if node X

is not in its nth state while its parent node U is in the mth state, we then regard the evidence

as un-supporting evidence of θmn and decrease θmn’s value as shown in Eq. (2). We do

not change the value of θmn if no corresponding evidence is received. The learning rate η

38

controls the rate of convergence of θ. η equaling 1 yields the fastest convergence, but also

yields a larger variance. When η is smaller, the convergence is slower but eventually yields

a solution to the true CPT parameter [18]. We build our inference model based on above

updating rules.

We also need to point out that the adaptive capability of the inference model does not

mean that we can ignore the accuracy of initial CPT values. If the initial values are set with

a large variance to an appropriate value, it will take time for the model to converge the CPT

values to the appropriate points. Therefore, this mechanism works for fine-tuning instead

of changing CPT values dramatically.

For an alert pair, (Ai, Aj), if its correlation value computed by the Bayesian-based

model, denoted as Pbayes, is larger than a pre-defined threshold, e.g., 0.5, then we say

Bayesian-based correlation engine identifies that alert Aj is “caused” by alert Ai.

4.4 Summary

Our alert correlation engine using Bayesian network has several advantages. First, we can

incorporate prior knowledge and expertise by populating the CPTs. It is also convenient

to introduce partial evidence and find the probability of unobserved variables. Second, it

is capable of adapting to new evidence and knowledge by belief updates through network

propagation. Third, the correlation output is probability rather than a binary result from a

logical combination. We can adjust the correlation engine to have the maximum detection

rate or a minimum false positive rate by simply adjusting the probability threshold. By

contrast, it is not directly doable when using a logical combination of pre-/post-condition

matching. Finally, Bayesian networks have been studied extensively and successfully ap-

plied to many applications such as causal reasoning, diagnosis analysis, event correlation

in NMS, and anomaly detection in IDS. We have confidence that it can be very useful to

INFOSEC alert correlation.

There are also several limitations in our approach. First, our correlation engine relies

39

on the underlying security sensors (e.g., IDSs) to provide alerts. If the security sensors

miss a critical attack that links two stages of a series of attacks, the related attack steps

may be split into two correlated groups. Therefore, we need some other techniques (e.g.,

attack plan recognition) to link isolated alert sets that includes correlated alerts. Second, our

approach is based on domain knowledge of attack transition patterns. If there are new attack

transition patterns or two related alerts have no direct causal relationship, our approach is

not fully effective. Therefore, we need to develop complementary correlation techniques

(e.g., statistical-based correlation technique) and use them along with our Bayesian-based

correlation engine.

40

CHAPTER V

CAUSAL DISCOVERY-BASED ALERT CORRELATION

5.1 Motivation

Knowledge-based alert correlation system depends on attack transition patterns to correlate

security alerts. It has the advantage of efficiency and accuracy. However, the signature-

based correlation system lacks the capability of detecting the attack transitions whose sce-

nario patterns are unknown. In practice, security analysts are more interested in those novel

attack strategies that can easily evade signature-based correlation analysis and can poten-

tially cause more damages due to the lack of knowledge about them.

Bearing this challenge in mind, we have studied and built a correlation technique based

on statistical analysis. This correlation engine is based on the hypothesis that for some at-

tack steps, even though they do not have direct causal relationship, they can have statistical

dependence patterns. For example, a malicious daemon keeps uploading sensitive infor-

mation to an external site and downloading new malicious code updates from the external

site. For this type of attack transition patterns, our correlation engine applies causal discov-

ery theory [66] to correlating alerts. Our goal is to identify new attack transition patterns

beyond the limitation of domain-knowledge.

In this chapter, we introduce and describe our correlation mechanism using causal dis-

covery theory.

5.2 Introduction to Causal Discovery

Causal discovery has been an active research topic in the fields of artificial intelligence (AI)

and social science. The goal of causal discovery is to test and identify causal relationships

among variables under study. Researchers have developed and shown that causal Bayesian

41

Earthquake

John Calls Mary Calls

TV News
Report

Alarm

Burglary

Figure 6: An example of a causal network

network can be used to represent the causal relationships between variables [66].

5.2.1 Causal Bayesian Network

A Bayesian network is usually represented as a directed acyclic graph (DAG) where each

node represents a variable, and the directed edges represent the causal or dependent rela-

tionships among the variables.

Figure 6 shows an example of a causal network adapted from [65]. Here, a house alarm

may sound as a result of either a burglary or an earthquake. An earthquake may also result

in a TV news report. Neighbors John or Mary may report a call when the alarm sounds.

The directed edge represents the cause-effect between variables.

In practice, causal discovery can be regarded as a task of constructing causal Bayesian

networks from observational data.

Learning a Bayesian network from data includes two subtasks, i.e., learning the struc-

ture of the Bayesian network and learning the parameters of the network. The first sub-

task learns the causal relationship between variables and the second one represents the

strength of these dependencies, which are encoded in conditional probability tables (CPTs)

associated with each child node. Specifically, an element of the CPT at a child node is a

conditional probability defined as CPTij = P (child state = j|parent state = i) [65].

Since it is relatively straightforward to learn the parameters given observational data and

a causal network structure, the challenge in causal discovery is the first task, i.e., learning

the network structure from data sets.

In the causal discovery theory, the fundamental assumption is causal Markov condition.

42

Causal Markov condition means that, in a causal Bayesian network, any node is condition-

ally independent of its non-descendants (i.e., non-effect nodes) given its parent nodes (i.e.,

direct causes) [79]. The independence relationships represented by the structure of a causal

Bayesian network are given by the causal Markov condition.

Figure 6, the independence properties implied by the network intuitively satisfy the

notion of causality. For example, when an earthquake or burglary happens, the probability

of neighbor John or Mary hearing the alarm will increase. An example of casual Markov

condition is that, when the alarm has sounded (i.e., given the direct cause of John’s calling),

the belief that John will report the alarm sound is independent of an earthquake or burglary

(i.e., a non-effect node of John’s calling).

The conditional independence properties of a causal network can be deduced from the

structure of the DAG by the d-separation criterion as defined in [65].

Definition 4 If X , Y and Z are three disjoint subsets of nodes in a causal network D with

a DAG structure, then Z is said to d-separate X from Y , denoted as I < X|Z|Y >D, if

along every path between a node in X and a node in Y there is node w satisfying one of

the following conditions: (1) w has converging arrows and none of w or its descendants

are in Z, or (2) w does not have converging arrows and w is in Z.

In the example of Figure 6, if X = {John Calls}, Y = {Mary Calls} and Z =

{Alarm}, according to second criteria in d-separation definition, X and Y are d-separated

by Z because there is no converging arrows at w = {Alarm} along the path X−Z−Y and

Alarm also belongs to Z. In other words, given the fact of Alarm sounds, the probability

of John’s call is independent with Mary’s activity. On the other hand, applying d-separation

criterion, we can deduce that the belief on Earthquake and Burglary are dependent on

the evidence of Alarm. It fits our intuitive notions of causality. When Alarm has occurred,

our increasing confidence on Earthquake reduces the belief that Burglary causes Alarm.

The structure of a causal network under discovery is a directed acyclic graph (DAG)

that encodes conditional independencies via the causal Markov assumption. Learning the

43

Bayesian network structure from the data actually is the process of identifying the condi-

tional independency among variables.

5.2.2 Approaches to Causal Discovery

Based on causal Markov assumption, there have been many research work on causal dis-

covery. Generally, there are two approaches to discovering causal Bayesian networks.

One causal discovery approach is based on score functions, e.g., Bayesian computa-

tion [21,30,39]. Intuitively, this approach computes the probability that the causal relation-

ship exists among the variables. For each pair of variables, a probabilistic computation is

conducted to exam the dependence or independence between the two variables. In looking

for the structures that fit for the conditional independence constraints, the approach in [39]

makes probabilistic inferences about the conditional-independence constraints and the goal

is to find the Bayesian network structures that have maximum score.

In [39], the score is defined as the posterior probabilities p(m|D), where m corresponds

to the causal network models learned from the given data D. This Bayesian-based approach

can give a quantitative evaluation of causal network structures constructed from data. The

goal is to identify a causal network structure m̃ (m̃ ∈ m) so that p(m̃|D) has the maximum

value among all other causal network structures learned from data D. One challenge to this

approach is model search and selection. Researchers usually use model selection method

to select the best fitted model among others (i.e., the one with highest posterior probability

p(m|D)) or selective model averaging method to average a number of better fitted models

from all models [39]. There are still challenges to these two model selection methods, in

particular, the accuracy issue [39]. In practice, people use some heuristic search algorithms

to solve the model selection problems. However, those heuristic search algorithms may not

give the best causal Bayesian network structures. Some scoring-based algorithms also have

the issues that the different input ordering of variables can generate very different causal

network structures.

44

Another category of causal discovery mechanism is constraint-based or dependency

analysis-based approach (e.g., [14, 79]). This category of approaches usually apply sta-

tistical tests (e.g., χ2 test, a statistical test for accepting or rejecting an hypothesis [38],

and mutual information, a measure of dependency between variables [22]) to discovering

conditional independence and dependence among variables and use these relationships as

constraints to construct a Bayesian network. Specifically, for each pair of variables, this

approach tests if any dependence exists. If so, an edge will be added between these two

variables accordingly. Further tests will be conducted on each edge to examine if the two

end-nodes are found to be conditionally independent. If the conditional independence is

identified, the edge will be removed. The intuition on this approach is that a pair of nodes

with larger test score (e.g., mutual information that measures the dependency between vari-

ables) is more likely to represent a direct connection (an edge) than a pair with smaller test

score, which may represent an indirect connection. Search and scoring methods can be

applied to identifying the directions of edges.

In our work, we applied constraint-based approach using mutual information for con-

ditional independence test [14].

In information theory [22], mutual information is defined and used to measure the sta-

tistical dependence between two random variables.

Definition 5 For two random variables X and Y with a joint probability distribution

P (x, y) and marginal probability distributions P (x) and P (y), mutual information I(X, Y)

is defined as [22]

I(X, Y) =
∑
x,y

P (x, y) log
P (x, y)

P (x)P (y)
(4)

Definition 6 For three random variables X , Y and Z with a joint probability distribu-

tion P (x, y, z) and conditional probability distributions P (x, y|z), P (x|z) and P (y|z), the

conditional mutual information I(X,Y |Z) is defined as [22]

45

I(X, Y |Z) =
∑
x,y,z

P (x, y, z) log
P (x, y|z)

P (x|z)P (y|z)
(5)

Intuitively, mutual information I(X,Y) measures the information of X that is shared

by Y. If X and Y are independent, then X contains no information about Y and vice versa,

so their mutual information is zero. If X and Y are dependent, knowing the value of one

variable can give us some information about the value of the other. In building the causal

Bayesian network, we can apply mutual information to test if two variables are dependent

and evaluate the strength of corresponding dependence.

Similarly, conditional mutual information I(X, Y |Z) is used to test if two variables

(i.e., X and Y) are dependent given the condition variable Z.

In theory, we claim X and Y are independent when I(X, Y) = 0 given the actual distri-

butions of corresponding variables. In practice, given a data set D, we use empirical instead

of theoretic distributions of variables when computing mutual information. Therefore, the

normal practice is usually to set up a small threshold ε and claim X and Y are independent

when I(A,B) < ε. Similarly, we declare X and Y are conditionally independent given Z

when I(X,Y |Z) < ε.

The intuition of applying mutual information to causal discovery is that when two vari-

ables have a strong statistical dependency pattern, mutual information can detect it. The

causality direction is determined by the conditional mutual information measure under the

assumption that, in a causal network, two cause nodes are independent with each other,

but conditionally dependent with each other given a common effect node. Specifically,

based on mutual information measure, if we have identified variable A, B are mutually

independent (i.e., I(A, B) < ε), and are dependent with C respectively (i.e., I(A,C) > ε,

I(B, C) > ε), and if we have also identified variable A and B are conditionally dependent

given C based on conditional mutual information measure (i.e., I(A, B|C) > ε), then we

can determine that A, B are causes to C, i.e., {A → C,B → C}. Such structure is called

46

V-structure [39]. Such determination intuitively satisfies the notion of causality because

when an effect is determined (i.e., given C), the increasing confidence on cause A reduces

the belief that B causes C. In our example of Figure 6, we have seen such cause-effect

pattern among Earthquake, Burglary and Alarm.

In our work, we did not to select the score function-based approach (e.g., [39]) because

that approach usually requires prior knowledge (e.g., prior probability) of causal network

models in the model construction, model comparison and final model selection. According

to our experience it is difficult to get such prior knowledge in the security application. In

fact, our goal is to identify novel attack transition patterns that can be totally unknown in

the past. In [14], the researchers have developed algorithms to avoid complex conditional

independence tests based on mutual information divergence. The enhanced test algorithms

have eliminated the need for an exponential number of conditional independence tests that

is an issue in earlier constraint-based algorithms.

5.3 Applying Causal Discovery Analysis to Alert Correla-
tion

Before we apply causal-discovery approach to alert correlation, raw alerts need to get ag-

gregated and clustered into hyper alerts as described in Section 3.1 so that we can investi-

gate the statistical patterns between alerts.

After the above process, we formulate transaction data for each hyper alert. Specifically,

we set up a series of time slots with equal time interval, denoted as tslot, along the time

axis. Given a time range T , we have m = T/tslot time slots. Recall that each hyper

alert A includes a set of alert instances with the same attributes except time stamps, i.e.,

A = [a1, a2, . . . , an], where ai represents an alert instance in the cluster. We denote NA =

{n1, n2, ..., nm} as the variable to represent the occurrence of hyper alert A during the time

range T , where ni is corresponding to the occurrence (i.e., ni = 1) or un-occurrence (i.e.,

ni = 0) of the alert A in a specific time slot sloti. In other words, if there is one or more

47

instances of alert A (e.g., a) occurring in the time slot sloti, then ni = 1; otherwise, ni = 0.

Using the above process, we can create a set of transaction data and input them to the

causal discovery engine for analysis. Table 3 shows an example of the transaction data

corresponding to hyper alert A, B and C. The correlation engine will output the causal

network model based on transaction data set.

Table 3: An example of transaction data set

Time slot AlertA AlertB AlertC
slot1 1 0 1
slot2 0 0 1

...
sloti 1 0 0
slotm 0 0 1

Algorithm 1 Alert correlation using causal discovery theory
1. For each alert pair Ai, Aj

if Ai and Aj are dependent using mutual information measure, i.e., I(Ai, Aj) > ε, where
ε is a small threshold, then

Connect Ai and Aj directly.
end if
2. For any three alerts Am, An, Ak that have the connection pattern that Am and An, An

and Ak are directly connected, and Am and Ak are not directly connected (i.e., Am −
An − Ak)
if Am and Ak are conditionally dependent given An using conditional mutual information
measure, i.e., I(Am, Ak|An) > ε then

Let Am be the parent node of An, and Ak be the parent node of An, respectively, (i.e.,
Am → An and Ak → An).

end if
3. For any three alerts Am, An, Ak that have a partially directed pattern (Am → An−Ak),
i.e., Am is a parent node of An, An and Ak are directly connected (edge (An, Ak) is not
oriented), and Am is not directly connected with Ak

if Am and Ak are conditionally independent given An, i.e., I(Am, Ak|An) < ε, then
Let An be the parent node of Ak, i.e., An → Ak.

else if Am and Ak are conditionally dependent given An, i.e., I(Am, Ak|An) > ε, then
Let Ak be the parent node of An, i.e., Ak → An.

end if

Algorithm 1 shows the steps to apply causal discovery theory to correlating alerts. In

48

A B

C

Figure 7: An example of the causal network model of alert A, B and C

step 1, we apply mutual information measure to identify alerts with strong statistical depen-

dence. In step 2, we identify alert triplets that have a V-structure (i.e., X → Z, Y → Z, as

described in Section 5.2). The causality directions in a V-structure triplets are determined

by the conditional mutual information measure under the assumption that, in a causal net-

work, two cause nodes are respectively dependent with a common effect node. These two

cause nodes are mutually independent with each other, but conditionally dependent with

each other given a common effect node. In step 3, for the partially directed alert triplets,

since Am and Ak are not directly connected, it means Am and Ak are mutually independent

(otherwise they should have been connected in step 1). The causality direction between An

and Ak is tested based on the causal Markov assumption (i.e., in a causal network, a node

X is independent to other nodes (except its direct effect node) given X’s direct cause).

Therefore, if Am and Ak are also conditionally independent given An, we can identify the

causality direction between An and Ak (i.e., An → Ak). Otherwise, if Am and Ak are

conditionally dependent given An, the triplet has a v-structure, then Ak is the parent node

of An (i.e., Ak → An).

Table 4: An example of CPT associated with node B

AB = 0 AB = 01 AB = 10 AB = 11
C = 0 p1 p2 p3 p4

C = 1 p5 p6 p7 p8

Figure 7 shows an example of the causal network model among alert A, B and C of

which A and B are two causal alerts of C. As described in Section 5.2.1, in a causal

network, each non-root node is associated with a conditional probability table (CPT) that

49

shows the strength of the causal relationship between the node and its parent node. Table 4

shows the CPT entries associated with alert C in which “1” represents the occurrence of the

alert and “0” represents the nonoccurrence. Among the CPT entries as shown in Table 4, we

are more interested in p6 and p7. The value of p6 represent the probability of the occurrence

of alert C given that alert B has already occurred, i.e., p6 = P (C = 1|B = 1). Similarly,

the entry of p7 shows the dependency of alert C to the causal alert A, i.e., p7 = P (C =

1|A = 1). In practice, we can regard p6 and p7 as the likelihood of attack step transition

from attack B to attack C and from attack A to attack C, respectively.

Given the transaction data, computing the CPT entries is more straightforward. For ex-

ample, the value of p6 can be empirically computed as P (C = 1|B = 1) = # of (B=1,C=1)
of (B=1)

.

We can also apply the algorithm of adaptive CPT updates as described in Section 4.3.2 to

update the parameters.

50

CHAPTER VI

TEMPORAL-BASED ALERT CORRELATION

6.1 Motivation

The motivation to develop another complementary correlation mechanism is to discover

more attack step dependency that the prior correlation engines have missed. Our Bayesian-

based correlation engine focuses on discovering alert pairs with direct causal relationship.

The causal discovery theory-based correlation engine identifies attack steps with strong sta-

tistical dependence (in particular, the dependency among attacks with a non-loop one-way

dependency structure). In order to discover attack steps that have loop dependency pattern

and strong temporal patterns, we develop another correlation engine based on statistical

and temporal analysis, in particular, the Granger Causality Test (GCT) [34]. In this section,

we introduce our GCT-based correlation mechanism.

6.2 Time Series Analysis

Time series analysis aims to identify the nature of a phenomenon represented by a sequence

of observations. The objective requires the study of patterns of the observed time series

data.

There are two main goals of time series analysis: (a) identifying the nature of the phe-

nomenon represented by the sequence of observations, and (b) forecasting (predicting fu-

ture values of the time series variable). Both goals require that the pattern of observed time

series data is identified and more or less formally described. Once the pattern is established,

we can interpret and integrate it with other techniques to extrapolate future events.

A time series is an ordered finite set of numerical values of a variable of interest along

the time axis. It is assumed that the time interval between consecutively recorded values is

51

constant. We denote a univariate time series as x(k), where k = 0, 1, . . . , N − 1, and N

denotes the number of elements in x(k).

Time series causal analysis deals with analyzing the correlation between time series

variables and discovering the causal relationships. Causal analysis in time series has been

widely studied and used in many applications, e.g., economy forecasting and stock market

analysis.

Granger Causality Test (GCT) is a time series-based statistical analysis method that

aims to test if a time series variable X correlates with another time series variable Y by

performing a statistical hypothesis test. In time series analysis theory, although there ex-

ist some other simple lagged correlation analysis, e.g., computing correlation coefficients

between two time series variables, GCT has been proved to be more rigorous. GCT was

originally proposed and applied in econometrics, it has been widely applied in other areas,

such as weather analysis (e.g., [48]), automatic control system (e.g., [9, 32]) and neurobi-

ology (e.g., [40, 47]).

Network security is another application in which time series analysis can be very useful.

In our prior work [6, 7], we have used time series-based causality analysis for pro-active

detection of Distributed-Denial-of-Service (DDoS) attacks using MIB II [80] variables. We

based our approach on the Granger Causality Test (GCT) [34]. Our results showed that the

GCT is able to detect the “precursor” events, e.g., the communication between Master and

Slave hosts, without prior knowledge of such communication signatures, on the attacker’s

network before the victim is completely overwhelmed (e.g., shutdown) at the final stage of

DDoS.

In this work, we apply the GCT to INFOSEC alert streams for alert correlation and

scenario analysis. The intuition is that attack steps that do not have well-known patterns or

obvious relationships may nonetheless have some temporal correlations in the alert data.

For example, there are one or more alerts for one attack only when there are also one

or more alerts for another attack within a certain time window. We can apply temporal

52

causality analysis to find such alerts to identify an attack scenario. We next give some

background on the GCT.

6.3 Granger Causality and Granger Causality Test

The intuition of Granger Causality is that if an event X is the cause of another event Y,

then the event X should precede the event Y. Formally, the Granger Causality Test (GCT)

uses statistical functions to test if lagged information on a time-series variable x provides

any statistically significant information about another time-series variable y. If the answer

is yes, we say variable x Granger-causes y. We model variable y by two auto-regression

models, namely, the Autoregressive Model (AR Model) and the Autoregressive Moving

Average Model (ARMA Model). The GCT compares the residuals of the AR Model with

the residuals of the ARMA Model. Specifically, for two time series variables y and x with

size N, the Autoregressive Model of y is defined as:

y(k) =

p∑
i=1

θiy(k − i) + e0(k) (6)

The Autoregressive Moving Average Model of y is defined as:

y(k) =

p∑
i=1

αiy(k − i) +

p∑
i=1

βix(k − i) + e1(k) (7)

Here, p is a particular lag length, and parameters αi, βi and θi (1 ≤ i ≤ p) are computed

in the process of solving the Ordinary Least Square (OLS) problem (which is to find the

parameters of a regression model in order to have the minimum estimation error). The

residuals of the AR Model is R0 =
∑T

k=1 e2
0(k), and the residuals of the ARMA Model is

R1 =
∑T

k=1 e2
1(k). Here, T = N − p.

The AR Model, i.e., Eq.(6), represents that the current value of variable y is predicted

by its past p values. The residuals R0 indicate the total sum of squares of error. The

ARMA Model, i.e., Eq.(7), shows that the current value of variable y is predicted by the

53

past p values of both variable y and variable x. The residuals R1 represents the sum of

squares of prediction error.

The Null Hypothesis H0 of GCT is H0 : βi = 0, i = 1, 2, · · · , p. That is, x does not

affect y up to a delay of p time units. We denote g as the Granger Causality Index (GCI):

g =
(R0 −R1)/p

R1/(T − 2p− 1)
∼ F (p, T − 2p− 1) (8)

Here, F (a, b) is Fisher’s F distribution with parameters a and b [37]. F -test is con-

ducted to verify the validity of the Null Hypothesis. If the value of g is larger than a critical

value in the F-test, then we reject the Null Hypothesis and conclude that x Granger-causes

y. Critical values of F-test depends on the degree of freedoms and significance value. The

critical values can be looked up in a mathematic table [38].

The intuition of GCI (g) is that it indicates how better variable y can be predicted using

histories of both variable x and y than using the history of y alone. In the ideal condition,

the ARMA model precisely predicts variable y with residuals R1 = 0, and the GCI value g

is infinite. Therefore, the value of GCI (g) represents the strength of the causal relationship.

We say that variable {x1(k)} is more likely to be causally related with {y(k)} than {x2(k)}
if g1 > g2 and both have passed the F-test, where gi, i = 1, 2, denotes the GCI for the input-

output pair (xi, y).

6.4 Procedure of Data Processing in GCT

Before applying GCT to data sets, we propose a procedure of data processing. In each step,

there are multiple possible testing techniques and we chose the one that is most commonly

used and conveniently implemented.

Step 1: testing for individual stationary. This step is to statistically test if each data set

is stationary. A stationary time series means the probability distribution is stable during the

stochastic process. In this step, we use testing technique proposed by Dickey-Fuller [29].

54

Step 2: data transformations. For non-stationary data sets, we can apply transform

functions to change a non-stationary time series into a stationary one. The most common

used transformations are log transformation and the differencing transformation. They

can be also used together. For example, an initial log transformation is followed by first

differencing, i.e., (1−L)Log(x(t)) = Log(x(t))−Log(x(t− 1)), where L represents lag

operator defined as Lx(t) = x(t− 1) and (1− L)x(t) = x(t)− x(t− 1).

Step 3: testing for multivariate independence. This step is to test if two time series vari-

ables are statistically independent of each other. The available test techniques are proposed

by Chitturi [16] and Hosking [41].

In practice, we can go through this step and then conduct the GCT for the non-independent

bivariates. Results of GCT can tell us if they are causally related and the causal order or di-

rection. As an alternative, we can also skip this step and conduct GCT directly because we

can also infer the variable relationship from GCT output that can tell if they are independent

of each other or if there are any causal relationships.

Step 4: testing for co-integration of data sets. In this step, we can apply multivariate

version of Dickey-Fuller Test or Johansen Test [45] to test the existence of co-integration

between two time series. Theoretically, GCT can be conducted on two co-integrated time

series variables. However, as Lee et al. [52] empirically pointed out, GCT can result in

spurious causality when testing co-integrated variables. Therefore, we recommend not to

apply GCT on co-integrated time series in order to avoid the inaccuracy.

Step 5: testing Granger Causality. As described in Section 6.3, we conduct the statistical

hypothesis test with a significance level, e.g., 5% or 1%.

Step 6: confidence computation. This step is to compute the probability or confidence

of correlation. As GCI conforms to F -distribution, i.e., F (p, T −2p−1), therefore, we can

compute the corresponding probability as: Pgct = CDFF−distribtuion(p, T − 2p− 1, GCI),

which represents the correlation confidence between two variables.

55

6.5 Applying GCT in Alert Correlation
6.5.1 Alert Time Series Formulation

Before applying GCT to alert correlation, we need to formulate each hyper alert into a

univariate time series.

Specifically, we set up a series of time slots with equal time interval, denoted as tslot,

along the time axis. Given a time range T , we have m = T/tslot time slots. Recall that

each hyper alert or cluster A include a set of alert instances with the same attributes except

time stamps, i.e., A = [a1, a2, . . . , an], where ai represents an aggregated alert instance

in the cluster, we denote Ã as the corresponding time series variable of hyper alert A.

Ã = {n1, n2,, nm}, where each value ni represents the number of alert instances of

hyper alert A occurring within a specific time slot sloti.

Table 5: An example of alert time series formulation

Time slot Number of A’s alert instances Ã’s value
slot1 1 1
slot2 5 5

...
sloti 9 9
slotm 0 0

Table 5 is an example that shows how we formulate a time series variable for each hyper

alert. From Table 5, we can see that the time variable Ã’s value equals the number of alert

instances of hyper alert A occurring within a time slot.

We currently do not use categorical variables such as port accessed and pattern of TCP

flags as time series variables in our approach.

6.5.2 GCT-based Alert Correlation

Applying the GCT to alert correlation, the task is to determine which hyper alerts among

A1, A2, ..., Al most likely have the causal relationship with hyper alert B (a hyper alert

represents a sequence of alerts in the same cluster). Based on alert priority value and

56

mission goals as described in Chapter 3, the security analyst can specify a hyper alert

as a target (e.g., alert Mstream DDOS against a database server) which other alerts are

correlated with. The GCT algorithm is applied to the corresponding alert time series. The

formulation of alert time series is described in Section 6.5.1.

As described in Section 6.5.1, values of a hyper alert’s time series (e.g., B̃) represent

the number of alert instances occurring within a certain time period. Specifically, given a

hyper alert B, for each hyper alert pair, i.e., (Ai, B), i = 1, 2, . . . , m, we apply GCT to

their corresponding time series variables, i.e., GCT (Ãi, B̃). In other words, we are testing

the temporal correlation of alert instances to determine if Ãi has a causal relationship with

B̃.

As described in Section 6.3, the GCT index (GCI) g returned by the GCT function

represents the evidence strength of the cause-effect relationship, and GCI also conforms

to F -distribution. In practice, after performing GCT computation on each pair of alert

time series variables (e.g., GCT (Ãi, B̃), i = 1, 2, . . . ,m), we record the alert time series

variables whose GCI values have passed the F -distribution test (e.g., Ã1, Ã5, Ã9), then

select the corresponding hyper alerts (e.g., A1, A5, A9) as candidates of causal alerts w.r.t.

alert B. We rank order the candidate alerts according to their GCI values, then select the top

m candidate alerts and regard them as being causally related to alert B. These candidate

relationships can be further inspected by other techniques or security analyst based on

expertise and domain knowledge. The corresponding attack scenario is constructed based

on the correlation results.

In alert correlation, identifying and removing background alerts is an important step.

We use Ljung-Box [54] test to identify the background alerts. The assumption is that back-

ground alerts have characteristic of randomness. The Ljung-Box algorithm tests for such

randomness via autocorrelation plots. The Null Hypothesis is that the data is random. The

test value is compared with critical values to determine if we reject or accept the Null

Hypothesis.

57

When applying GCT, one important parameter is the variable p as shown in Eq.(6) and

Eq.(7). This parameter represents the number of history values (or the length of lagged

time window) needed when performing the GCT.

Given two hyper alerts A and B that have corresponding time series Ã = {ã1, ã2, ..., ãi,

..., ãn} and B̃ = {b̃1, b̃2, ..., b̃j, ..., b̃n} respectively, we want to identify if A Granger-causes

B or not. As described in Section 6.2, a time series variable is under the assumption that

the time interval between consecutively recorded values is constant. Therefore, the position

difference between time series instances can be regarded as the time delay between alert

instances.

In our work, We denote the corresponding parameter p as pÃB̃. We set the parameter

pÃB̃ as follows.

Definition 7 Given a time series variable instance ãi (ãi ∈ Ã and ãi 6= 0) and its most

adjacent time series instance b̃j (b̃j ∈ B̃, b̃j 6= 0 and j > i), we denote ∆di,j as the adjacent

time delay between ãi and b̃j .

∆di,j = j − i

We denote dadjacent time gap as a set variable that unions all the time delays between

adjacent time series instances inÃ and B̃.

dadjacent time gap =
⋃ {∆di,j}

where i, j = 1, 2, ..., n.

We then set pÃB̃ as pÃB̃ = max{dadjacent time gap}.

The intuition of the method of setting parameter p is that we want to have a time window

with an enough length so that we can include all potential causal alerts with respect to an

effect alert.

Figure 8 shows an example how we set the parameter p. In the figure, time series

variable Ã has 3 non-zero instances at k = 2, 15, i (i.e., ã2, ã15, ãi), time series variable B̃

has 3 non-zero instances at k = 4, 17, j (i.e., b̃4, b̃17, b̃j). We set p as the maximum value of

delays between adjacent time series instance as shown in Figure 8.

58

b17

~
b4

~
jb

~

a2

~
ai

~

2,4d 15,17d di,j

p=max{d2,4 , d15,17 , di,j}

a15
~

15
k

30

15
k

2 30

1

1 4 . . . 17 j

. . .

. . .

B
~

2 . . .

. . .A
~

. . . i

i

Figure 8: An example of time delay between time series instances

The main advantage of using statistical causality test such as GCT for alert correlation

is that the approach does not require a priori knowledge about attack behaviors and how

the attacks could be related. This approach can identify the correlation between two attack

steps as long as the two have a temporal pattern (not necessarily high frequency) when

occurring together. We believe that a large number of attacks, e.g., worms, have attack steps

with such characteristics. Thus, we believe that causal analysis is a very useful technique.

As discussed in [6–8], when there are sufficient training data available, we can use GCT

off-line to compute and validate very accurate causal relationships from alert data. We

can then update the knowledge base with these “known” correlations for efficient pattern

matching in run-time. When GCT is used in real-time and finds a new causal relationship,

as discussed above, the top m candidates can be selected for further analysis by other

techniques.

59

CHAPTER VII

SYSTEM INTEGRATION AND ATTACK SCENARIO

ANALYSIS

7.1 Integration Process of Three Correlation Engines

Our three correlation engines are built on different techniques and focus on different cor-

relation aspects. Bayesian-based correlation engine is analogous to an extension of pattern

matching-based detection. Causal discovery theory-based correlation mechanism investi-

gates statistical pattern of attack step occurrences to identify causal relationship between

alerts. GCT-based correlation engine focuses on temporal pattern of attacks to discover

new attack transition patterns.

The rationale of our integration process in alert correlation is analogous to intrusion

detection where security analysts usually first apply pattern-based detection, then anomaly

detection to cover the attack space that pattern-matching method cannot discover.

In practice, we integrate and apply the three correlation mechanisms with the following

steps.

First, we apply Bayesian-based correlation engine on target hyper alerts. Target alerts

are hyper alerts with high priorities computed by the alert priority computation module as

described in Section 3.2. Thus, they should be the main interests in the correlation analysis

to correlate with all the other hyper alerts. The goal of this step is to correlate alerts that

have direct relationship based on prior knowledge of attack step transitions. The result of

this step can be a set of isolated correlation graphs. For those alert pairs that have not got

any causal relationship, we leave them to be processed in the next step.

Second, for those uncorrelated alert pairs, we run causal discovery-based correlation

60

A1

A3

A2

A7

A5

A6

A4

A8

Figure 9: An example of integration process. The solid line represents a correlation iden-
tified by Bayesian-based correlation engine. The dotted line shows the causal relationship
found by causal discovery-based correlation engine. The dashed line represents a new cor-
relation specified by GCT-based correlation engine.

engine to correlate them. The goal of this step is to discover more correlation between

alerts that have not been identified in the prior step.

Third, for each alert pair that has not established any cause-effect relationship from

prior correlation engines, we apply GCT to it. That is, GCT is used to correlate alerts that

have strong temporal relationship and link the isolated correlation results together.

Figure 9 shows an example of our integration process. For example, we have 8 hyper

alerts, denoted as A1, A2, A3, A4, A5, A6, A7, A8. Assuming we have identified alert A2

and A5 as target alerts and we want to identify causal alerts w.r.t. A2 and A5 respectively.

After applying Bayesian-based correlation engine, i.e., the first step of correlation, we have

got two groups of correlated alerts, i.e., {A1 → A2, A3 → A2} and {A4 → A5}, as

shown by solid lines in Figure 9. We then apply causal discovery algorithm to the rest

isolated alerts that have not been correlated with A2 and A5 respectively. In particular, we

check if causal relationship exists between alerts {A1, A5}, {A2, A5}, {A3, A5}, {A6, A5},

{A7, A5}, {A8, A5}, {A4, A2}, {A5, A2}, {A6, A2}, {A7, A2} and {A8, A2}. Assuming

after this step, we have got 3 more causal-related alert pairs, i.e., {A3 → A5}, {A6 → A2},

{A4 → A2} as represented by dotted lines in the figure. We finally apply GCT to check if

the rest isolated alert pairs {A1, A5}, {A2, A5}, {A6, A5}, {A7, A5}, {A8, A5}, {A4, A2},

{A5, A2} and {A8, A2} have the causality w.r.t. A5 and A2 respectively. Figure 9 shows

that GCT identifies the causality of {A7 → A2} and {A8 → A5} as shown by the dashed

line.

61

7.2 Probability/Confidence Integration

In Section 4.2, we introduced our Bayesian-based correlation engine that outputs the cor-

relation probability or confidence of two alerts, denoted as Pbayes. In practice, we have a

threshold t, and when Pbayes is over the threshold t, we say the corresponding alert pair has

a causal relationship identified by the Bayesian-based correlation engine.

As described in Section 5.3, the CPT associated with each child node in a causal net-

work shows the strength of relationship between the child node and its parent node. Partic-

ularly, one CPT entry (i.e., P (childnode = 1|parentnode = 1) can be interpreted as the

probability of attack transition from parent node (attack) to child node (attack), e.g., the p11

in Table 4. We denote such attack transition probability as Pcausal−discovery.

As discussed in Section 6.3, GCT Index (GCI) represents the strength of correlation

between two alerts being correlated. It conforms to F -distribution with parameters of p

and N − 3p − 1, where p is the number of history values of the time series variable used

in the GCT computation, and N is the size of the time series variable. Therefore, for

any two correlated alerts identified by GCT-based correlation engine, we can compute the

corresponding F -distribution probability values, i.e., Pgct = CDFF−distribution(p,N−3p−
1, GCI), where CDF represents the cumulative distribution function. Pgct represents the

probability/confidence of correlation between two alerts.

When integrating the three correlation engines, we can adjust the confidence output

from GCT-based engine as:

Pgct final = (Pgct − t) ∗ ω + t (9)

In Eq. (9), t is the threshold defined in Bayesian-based correlation engine, and ω is a

weight value that is determined based on prior experience and performance measurements

of the two correlation engines. The adjusted value of Pgct final is in the range of [0, t + ε],

where ε is a small positive number. The intuition of this adjustment is that we want to

62

downgrade the output of GCT-based correlation engine a little because it is based on tem-

poral analysis that is less accurate than the domain-knowledge-based Bayesian correlation

engine.

Therefore, for a correlated alert pair, e.g., (Ai, Aj), we can have a probability or confi-

dence of its correlation (i.e., attack transition from Ai to Aj) computed by Bayesian corre-

lation engine (i.e., Pbayes), causal discovery algorithm (i.e., Pcausal discovery) or GCT-based

correlation mechanism (i.e., Pgct final) depending on which correlation engine identifies the

causal relationship. We denote the probability of alert correlation (or attack transition) as

Pcorrelation(Ai, Aj), i.e.,

Pcorrelation(Ai, Aj) =

Pbayes, if causality found by Bayesian-based correlation

engine

Pcausal discovery, if causality found by causal discovery-based

correlation engine

Pgct final, if causality found by GCT-based correlation

engine
(10)

We also note that two different approaches have been proposed to integrate isolated

correlation graphs. Ning [59] et al. apply graph theory to measure and merge similar

correlation graphs. In [60], Ning et al. link isolated correlation graphs based on attack pre-

/post-conditions. Our approach is different from their work in that our integration method

is based on the correlation probability evaluated by our three complementary correlation

engines instead of graph or pre- /post-condition-based merging algorithms.

63

7.3 Attack Transition Table Updates

Statistical and temporal-based alert correlation has the advantages of discovering attack

transition steps without depending on prior domain knowledge. However, compared with

pattern-matching correlation techniques, it is has relatively high positive false rate and the

computation cost is also relatively high.

In practice, we periodically incorporate newly discovered attack transition patterns into

our domain knowledge so that we can use our Bayesian-based correlation engine to analyze

and correlate alerts efficiently. Also based on new analysis results and data sets, we update

the attack transition table as shown in Table 2.

Denote θ as an original entry in Table 2, θ
′ as the corresponding new value computed

based on new analysis results and data after a regular period T , the current table update

policy is that we do not update the table entry until the new value θ
′ has varied from θ by a

certain percentage β, e.g., 5%.

7.4 Attack Strategy Analysis

Attack strategy analysis is an important component in a correlation system. It can pro-

vides security analysts an aggregated information about what has happened and what is

happening to the protected IT infrastructure.

Having correlated alert pairs output by correlation engines, we can construct attack

scenarios represented by correlation graph to represent the attack strategies. A correlation

graph is defined as a directed graph where each edge Eij represents a causal relationship

from alert Ai to Aj . Alerts with causal relationship compose the nodes in the scenario

graph. We denote the node corresponding to the causal alert as cause node, and the node

corresponding to the effected alert as effect node. A threshold t is pre-defined and alert Aj

is considered to be caused by alert Ai only when Pcorrelation(Ai, Aj) > t. In constructing

scenario graphs, we only include the correlated alert pairs whose Pcorrelation values are over

the threshold t.

64

A1
A3

A4
A2p1

p3 p4

p2

Figure 10: An example of correlation graph

In a correlation graph, each edge is associated with a correlation probability (i.e.,

Pcorrelation) from cause node to effect node, which can be also regarded as the probability

of attack step transition. Having such information, we can perform quantitative analysis

on the attack strategies. In a correlation graph, each path is potentially a subsequence of an

attack scenario and can be seen as a Markov chain [31, 73]. Having the probability associ-

ated with each edge, for any two nodes in the graph that are connected by multiple paths,

we can compute the overall probability of each path [73].

In the example of Figure 10, nodes A1 and A4 have to paths to connect each other. As-

suming the conditional independence of A4 and A1, we can compute the overall probability

of each path, e.g., P (A1, A2, A4) = P (A4|A2)P (A2|A1)P (A1) = p2 ∗ p1 ∗ pA1 .

We then rank order and select the path(s) with the highest overall correlation probability

as the most likely sequence(s) connecting two nodes.

Combining all the probability along each edge, we can also compute an overall proba-

bility of two nodes connected with multiple paths. For example, in the Figure 10, P{A1 to A4}
= 1− (1− p1 ∗ p2)(1− p3 ∗ p4).

65

CHAPTER VIII

ATTACK PLAN RECOGNITION

In this chapter, we introduce our models and algorithms for correlating isolated alert sets

and attack plan recognition.

8.1 Attack Tree Analysis

In security operations, security analysts usually pre-define a set of attack plans or attack

libraries that incorporate the domain knowledge of attacks or attack scenario patterns, and

the knowledge of the networks and systems under protection. Attack plans or libraries are

usually represented by graphs (i.e., attack graphs) that show all paths through a system that

end in a state where an intruder can successfully achieve his goal. Schneier [75] described

attack tree analysis that quantifies the security or vulnerability of a system based on the

goals of the attacker. When defining the attack trees, security analysts first evaluate the

vulnerabilities of the systems and networks, then pretend to be attackers and work out

attack plans to achieve the intrusion goals. In this process, an attack tree is extended and

branches are built to identify the different subgoals of the attacker and penetration points

available to the attacker. The process continues by decomposing or expanding the means

of penetration to the lowest level of intrusion, known as the leaves. An attack tree can

represent each opportunity for an attack against a computer system or network. Computer

systems and networks potentially contain numerous penetration points and vulnerabilities.

An attack forest is defined as a consolidation of numerous attack trees [75].

Figure 11 shows an example of an attack tree that indicates attack methods to steal

the data stored on a server and export it to the external. In the Figure 11, the “OR” node

represents different ways to achieve the goals. In practice, in addition to the “OR” node,

66

1.1.1.2 Get System Administrator’s (root) privilege

1.1 Get data from Server directly (OR)
1. Get confidential data

2. Export_confidential_data
2.1 Transfer data via normal method (OR)
2.2 Transfer data via covert channel
2.2.1 Setup covert channel

Steal_and_export_confidential_data

1.1.1 Get access to server
1.1.1.1 Get normal user privilege (OR)
1.1.1.1.1 Steal ID file and password file (OR)
1.1.1.1.2 Use Trojan program (OR)
1.1.1.1.3 Eavesdrop on the network

1.1.1.2.1 Exploit Server’s vulnerabilities

1.1.1.2.1.1.1 Inspect Server’s activeness

1.1.1.2.1.1.1.1.1 Identify Firewall IP address
1.1.1.2.2 Eavesdrop on the network (OR)
1.1.1.2.3 Brute force guess
1.2 Eavesdrop on the network

1.1.1.2.1.1 Identify Server’s OS and active ports (OR)

1.1.1.2.1.1.1.1 Identify Firewall access control policy

Figure 11: An example of attack tree

the “AND” node is also always used in an attack tree to represent different steps to achieve

the intrusion goals.

Attack tree analysis can serve as a basis for intrusion detection, defense, response and

forensic analysis. However, defining attack trees is a very challenging task. It is usually

done manually and is very time consuming. Recently, Sheyner et. al [77] proposed a model

checking-based technique to automatically construct attack graphs. Although it helps fa-

cilitate the task of defining attack graphs, the approach still has the limitation of scalability,

in particular, when defining the attack graphs for a large network and computer systems.

In our approach, we first use attack trees to define attack plan libraries to correlate iso-

lated alert sets. We then convert attack trees into causal networks on which we can assign

probability distribution by incorporating domain knowledge to evaluate the likelihood of

attack goals and predict future attacks. Figure 12 shows an example of the causal network

converted from the attack tree as shown in Figure 11. In defining attack trees, instead of

using various specific attacks to define the nodes of an attack tree, we use the abstract attack

67

Steal_and_export_confidential_data

Get_confidential_data Export_confidential_data

Eavesdrop_on_the_network

Get_data_from_Server_directly Transfer_data_via_normal_method Transfer_data_via_covert_channel

Steal_ID_and_password_file

Use_Torjan_program

Get_normal_user_privilege

Get_access_to_Server

Get_root_privilege

Identify_Firewall_access_policy

Identify_Firewall_IP_address

Inspect_Server_activeness

Identify_Server_OS_and_active_ports

Exploit_system_vulnerabilitiesPassword_brute_force_guess

Setup_covert_channel

Figure 12: An example of a causal network converted from an attack tree

class or type to represent an attack approach. For example, we use Exploit Server Vulner-

ability instead of a specific buffer overflow attack to indicate the method to break into a

server to get the root access. The advantage of using attack classes to represent attack tree

nodes is that it can reduce the computation complexity of probabilistic inference on the

causal network that is converted from attack trees. It is well known that querying an arbi-

trary causal network is an NP-hard problem [20]. Therefore, in practice, a causal network

is usually defined in the form of causal polytrees (i.e., singly-connected causal networks

in which no more than two paths exist between any two nodes) so that the probabilistic

reasoning can be conducted in polynomial time [65].

8.2 Converting An Attack Tree to A Causal Network

In Section 5.2.1, we have introduced the causal Bayesian network and its probability prop-

erties. A causal network (or Bayesian network) is usually represented as a directed acyclic

graph (DAG) where each node represents a variable that has a certain set of states, and the

directed edges represent the causal or dependent relationships among the variables.

68

A Bayesian network consists of several parameters, i.e., prior probability of parent

node’s states (i.e., P (parent state = i)), a set of conditional probability tables (CPT)

associated with child nodes. CPT encodes the prior knowledge between child node and its

parent node. Specifically, an element of the CPT at a child node is defined by CPTij =

P (child state = j|parent state = i).

In our study, we build the causal networks based on attack trees and apply probabilistic

inference. The root node of a causal network represents the final goal of an attack plan,

non-leaf nodes represent subgoals, and leaf nodes indicate the nodes receiving evidence.

We define each node of the causal network to have a binary state, i.e., 1 or 0. The value of

1 represents the goal is achieved for goal or subgoal nodes, while the value of 0 indicates

the failure of the goal or subgoals. When a leaf node has a state value of 1, it indicates that

the leaf node has received evidence. Otherwise, the leaf node has a value of 0.

When converting attack trees to a causal network, we can map “OR” nodes from an

attack tree directly to the causal network while keeping the “OR” logical relationship. As

“AND” nodes in an attack tree represent different attack steps to reach a goal (“OR” nodes

indicate different attack ways to achieve an attack goal), there always exists an implicit

dependent and sequential relationship between “AND” nodes in an attack tree. Therefore,

we should keep such “causal” order when constructing the causal network. For example, we

can define an attack tree for getting access to a server with the following attack steps which

have “AND” relationship, i.e., exploit vulnerability AND identify server OS AND identify

Firewall access control policy AND Identify Firewall IP address. In the causal network, we

can keep the implicit sequential order among the nodes, i.e., identify IP address, identify

firewall access control policy, identify server’s OS, exploit vulnerability in order of the

causal sequence.

When using a causal network (or Bayesian network) for inference, we need to set up

two types of parameters, i.e., prior probability of parent node’s states and CPT associated

with each child node.

69

The prior probability of parent node’s states (e.g., P (parent node state = 1)) used in

the inference engine is set based on the prior knowledge estimation of the possibility. We

used domain-specific knowledge based on prior experience and empirical studies to esti-

mate appropriate probability values. In particular, we computed the probability of parent

node’s states based on historical data.

In our approach, CPT values associated with each node are adaptive to new evidence

and therefore can be updated accordingly. We apply an adaptive algorithm originally pro-

posed by [4] as described in Section 4.3.2. The motivation of using an adaptive Bayesian

network is that we want to fine-tune the parameters of the model and adapt the model to

the evidence to fix the initial CPTs that may be pre-defined inappropriately. The intuition

of the algorithms proposed by [4] is that we want to adapt the new model by updating CPT

parameters to fit the new data cases while balancing the extent that we move away from the

current model.

8.3 Correlating Isolated Alert Sets

As discussed in Section 1.3, after processing raw alerts with alert aggregation, prioritiza-

tion and correlation, we can reduce the large volume of raw alerts and correlate some of

related alerts into different sets (or scenarios). However, it is possible that there exist some

isolated correlated alert sets after the raw alert correlation due to various reasons. For exam-

ple, for pattern-matching-based correlation approach, if the security sensors fail to detect

some intermediate attacks in a series of coordinated attacks, the missing alerts can result

in the un-match between observed alert sequences with known attack sequence patterns.

The result is a set of isolated attack scenarios that belong to the same attack sequences.

In addition, applying different correlation approaches together can also result in different

correlation results due to the difference between correlation techniques. In such a case, it

is also necessary to integrate correlation results output by different correlation engines and

further correlate isolated alert sets. Third, from the security analyst’s point of view, it is

70

necessary to combine the local or low-level correlation results, investigate and assess the

attack situation in order to make timely and appropriate response or prevention.

Given two individual isolated scenarios being studied, denoted as S1 and S2, where

S1 = {e1, e2, ..., ei, ..., em}, S2 = {e′1, e′2, ..., e′i, ..., e′n} and ei represents an alert (i.e.,

evidence), and given a set of attack plans, denoted as P , where P = {P1, P2, ..., Pk, ..., Pf},

and Pk is denoted as a specific attack plan that is represented by a causal network converted

from attack trees, the problem is to find the relationship between S1 and S2. Algorithm 2

shows the method of correlating two isolated scenarios.

Algorithm 2 Correlation of isolated attack scenarios
Let TPSet1 = {Predecessor nodes of S1 in Pk}.
Let TPSet2 = {Predecessor nodes of S2 in Pk}.
Let Pk be an attack plan represented by a causal network, where S1 ∈ Pk, and S2 ∈ Pk.
Let PSeti = {Predecessor nodes of ei in Pk}, where ei ∈ S1.
Let PSet′i = {Predecessor nodes of e′i in Pk}, where e′i ∈ S2.
if ∃ej ∈ S1 and ej.attackClassNode ∈ PSet′i and e′i.time < ej.time and {e′i.target =
ej.target or e′i.target = ej.source} then

S1 is a subgoal of S2; S1 and S2 are directly related.
else if ∃e′j ∈ S2 and e′j.attackClassNode ∈ PSeti and ei.time < e′j.time and
{ei.target = e′j.target or ei.target = ej.source} then

S2 is a subgoal of S1; S2 and S1 are directly related.
else if {TPSet1 ∩ TPSet2} 6= φ and they have the same target then

S1 and S2 have indirect relationship with the same goal.
end if
Group all scenarios that are related in Pk into one evidence set.

The intuition of the correlation algorithm is to find out the relationship between two

isolated attack scenarios. One relationship is that one scenario is a direct subgoal of another.

This is indicated by the fact that one attack step in one scenario is a predecessor node of

alerts of another scenario in the plan library. In such a case, a time constraint is applied

to ensure that subgoal attack happens after the prior attacks. Another relationship is that

two scenarios have an indirect relationship but have the same goal. For example, they both

target at a same victim.

71

DDoS_Saft_Client
 _to_Handler

RSERVICES_
rsh_root_Host_B

RPC_Sadmind_UDP_
overflow_Host_B

IP sweep on subnet

Telnet_access_to_
 Host_B

RPC_Sadmind_UDP_
 Ping_Host_B

RPC_portmap_request
 _Sadmind_Host_B

Scenario_1

Scenario_2

(a) Two correlated scenarios

Get_access_to_Host

Daemon_installment

 vulnerability
Exploit_Server Check_port_activeness

Check_host_activeness

(b) The corresponding attack plan

Figure 13: An example of correlation of two isolated scenarios

Figure 13(a) shows an example of how we correlate two isolated attack scenarios de-

rived from low-level alert correlation. Assuming that scenario1 includes alerts IP sweep,

RPC Portmap request Sadmind Host B and RPC Sadmind UDP Ping Host B. Scenario2

contains alerts RSERVICES rsh root Host B, Telnet access to Host B and DDoS Saft

Client to Handler. In this case, we assume the alert RPC Sadmind UDP Overflow Host B

is missed that results in the isolation of scenario1 and scenario2. According to the cor-

responding attack plan as shown in Figure 13(b), attacks in scenario1 have corresponding

attack class nodes Check host activeness and Check port activeness in Figure 13(b). Simi-

larly, the attacks in scenario2 have corresponding abstract attack class nodes Get access to

host and Daemon installment in Figure 13(b). From Figure 13(b), we can see scenario′2s

abstract class nodes are predecessors of scenario′1s. Therefore, scenario2 is actually a

goal of scenario1, i.e., the attacker gets ready to exploit the host vulnerability by launch-

ing attacks in scenario1 so that he can access the host and install the DDoS daemon (as

shown by attack steps in scenario2). Although the alert corresponding to Exploit host vul-

nerability is missed, we can hypothesize the existence of such alert and apply the scenario

correlation technique to correlate the two isolated scenarios, i.e., scenario1 and scenario2.

72

8.4 Probability Evaluation and Attack Plan Recognition

We apply probabilistic inference to the causal network (or Bayesian network) to compute

and evaluate the likelihood of goal and subgoals based on observed attack activities, and

predict the potential upcoming attacks.

8.4.1 Iterative Belief Propagation Concepts

The inference process of a Bayesian network can be conducted by a series of belief prop-

agations via message passing [65]. Specifically, in a tree-structured Bayesian network,

assuming a node X has a parent node U and m children nodes, V1, V2, ..., Vm, the belief

updating can be accomplished in three steps.

First X receives a prior or causal support message from its parent node U , denoted

as πX(u), where πX(u) = P (u). Node X also receives evidence or diagnostic support

message λV j(x), j = 1, 2, ..., m from each of its child nodes, where λV j(x) = P (vj|x). In

run-time, when a node X is activated, it first updates the belief Belief(x), i.e., the probability

of X’s states (P (X = x|evidence)), based on the evaluation values and the message πX(u)

communicated with its parent node and λV j(x) sent by its child nodes, as shown in Eq.(11).

This is called belief updating.

Belief(x) = αλ(x)π(x) (11)

where,

λ(x) =
∏

j

λV j(x) (12)

π(x) =
∑

u

P (x|u)πX(u) (13)

where α is a normalizing constant rendering
∑

x Belief(x) = 1.

73

Next, the node X computes its own λ message based on λ messages received from its

child nodes, then sends it to its parent node, as shown in Eq.(14). This phase is bottom-up

propagation.

λX(u) =
∑

x

λ(x)P (x|u) (14)

Finally, the node X computes its own π messages and sends them to each of its child

nodes, e.g., to its jth child node Vj , as shown in Eq.(15). The final step is top-down propa-

gation.

πV j(x) = απ(x)
∏

k 6=j

λV k(x) (15)

In practice, the local belief update on node X can be executed by these three steps in

any order. The belief propagation algorithm in polytrees starts from the evidence node and

propagates the changed belief along the graph edges by computing Belief(x), λX(u) and

πV j(x) at every visited node. More detailed information can be found in [65].

8.4.2 Link Matrix at “noisy-OR” and “noisy-AND” Causal Networks

In our work, we convert an attack tree to a causal network while keeping the logical “OR”

and “AND” relationship between attack steps. The corresponding causal network is usually

called “noisy-OR” and “noisy-AND” causal network [65].

In this section, we introduce the CPTs (Link Matrix) at a “noisy-OR” or a “noisy-AND”

causal network. The special characteristics of “noisy-AND” and “noisy-OR” structures

have made the computation of belief propagation more efficient. In our work, we assume

the causal network has a polytree structure.

8.4.2.1 “noisy-OR” Model

In a “noisy-OR” causal network, as in the case of the logical OR, an effect node X is

presumed to be false (i.e., P (X) = 0) if all the condition that cause E are false. However,

74

unlike a logical OR, if one of the causes of the event X is true, it does not necessarily imply

that X is definitely true. We can consider each cause node has an associated inhibitory

influence that is active with a probability q (q = P (X = 0|U = 1)), where U is the cause

of X . Therefore, if a cause node U is the only cause of X , then P (X = 1|U = 1) = 1− q.

Consider a “noisy-OR” causal network, assuming a node X has a set of parent nodes,

denoted as U = {U1, U2, ..., Un}, and a set of child nodes, denoted as V = {V1, V2, ..., Vm}.

Parent nodes have a logical “OR” relationship w.r.t. node X . Assuming each node (X and

Ui) has a binary state 0 or 1. Denote qi as a conditional probability, i.e., P (X = 0|Ui = 1),

and ci = 1 − qi (i.e., ci = P (X = 1|Ui = 1)), Tu = {i : Ui = 1}, we can have the

following [65]:

P (X = x|U) =

∏
i∈Tu

qi, if x = 0

1−∏
i∈Tu

qi, if x = 1

(16)

P (X|U) is named link matrix that actually represents the CPT associated with node X

in a “noisy-OR” polytree. The intuition of qi is that it acts as an inhibitory factor while ci is

the degree of belief that a cause node Ui can endorse the effect node of X . Having known

the link matrix P (X|U), we can follow the message propagation method as described

in Section 8.4.1 for belief update. In a “noisy-OR” model, belief of X (Belief(x)) can

computed using the following equations [65].

Belief(x) =

α
∏

j λV j(x)
∏

i∈Tu
(1− ciπX(ui)), if x = 0

α
∏

j λV j(x)[1−∏
i∈Tu

(1− ciπX(ui))], if x = 1

(17)

and α is a normalizing constant. Details of theoretic analysis can be referred to [65].

For example, considering a simple “noisy-OR” polytree structure as shown in Fig-

ure 14. Node X has two parent nodes U1 and U2 which have a logical OR relationship

with X . Assuming each node has two states, i.e., 0 or 1. Denote q1 = P (X = 0|U1 = 1)

and q2 = P (X = 0|U2 = 1).

75

U1 U2

X

OR

Figure 14: An example of a “noisy-OR” structure

Table 6: An example of CPT in a “noisy-OR” polytree

U1U2= 00 01 10 11
X = 0 1 q2 q1 q1q2

X = 1 0 1− q2 1-q1 1− q1q2

Table 6 shows the CPT entries associated with node X .

8.4.2.2 “noisy-AND” Model

Similarly, a “noisy-AND” causal network is a generalization of a logical And. As in the

case of a logical And, an effect node X is true (i.e., P (X = 1)) if all the conditions that

cause X are true. However, unlike the logical And, if one of the causes of node X are

false, it does not imply that X is definitely false. In other words, we can regard each cause

node of X as having an associated enabling influence that is active with a probability c

(c = P (X = 1|U = 0). Therefore, if a cause node U is the only cause of X and U is false

(i.e., U = 0), then X is false with a probability of P (X = 0|U = 0) = 1− c.

Assuming that node X has a set of parent nodes, denoted as U = {U1, U2, ..., Un}, and

a set of child nodes, denoted as V = {V1, V2, ..., Vm}. Keeping the prior definition of qi

and ci (i.e., qi = P (X = 0|Ui = 0), ci = P (X = 1|Ui = 0) and Fu = {i : Ui = 0}, for a

generic “noisy-AND” causal polytree, we can have the link matrix (or CPT associated with

node X) as follows.

P (X = x|U) =

1−∏
i∈Fu

ci, if x = 0

∏
i∈Fu

ci, if x = 1

(18)

In a “noisy-AND” model, denote Tu = {i : Ui = 1}, the belief of X (Belief(x)) can

be computed using the following equation [65].

76

U1 U2

X

AND

Figure 15: An example of a “noisy-AND” structure

Belief(x) =

α
∏

j λV j(x)(1−∏
i∈Tu

(1− ci(1− πX(ui)))), if x = 0

α
∏

j λV j(x)
∏

i∈Tu
(1− ci(1− πX(ui))), if x = 1

(19)

and α is a normalizing constant. Details of theoretic analysis can be referred to [65].

For example, considering a simple “noisy-AND” polytree structure as shown in Fig-

ure 15. Node X has two parent nodes U1 and U2 which have a logical “AND” relationship

with X . Assuming each node has two states, i.e., 0 or 1. Denote q1 = P (X = 0|U1 = 0),

c1 = 1− q1, q2 = P (X = 0|U2 = 0), c2 = 1− q2.

Table 7: An example of CPT in a “noisy-AND” polytree

U1U2= 00 01 10 11
X = 0 1− c1c2 1− c1 1− c2 0
X = 1 c1c2 c1 c2 1

Table 7 shows the CPT entries associated with node X . More details of theoretic anal-

ysis can be found in [65].

8.4.3 Attack Evaluation and Prediction

Given a stream of evidence (i.e., alerts), and a causal network (i.e., attack plan) P , the

inference through iterative belief updating is shown in Algorithm 2.

Intuitively, given a set of correlated alerts as observed evidence, we input the evidence

into the causal network so that we can make inference and compute the likelihood for each

non-leaf node, denoted as Zi, as shown in Algorithm 3. The computation result is used to

infer the likelihood that a node can be the attack goal or intention, i.e., P (Zi = 1|evidence).

77

Algorithm 3 Likelihood computation of attack goal and subgoal
Let P be a causal network and each node in the P has a binary state, {0,1}.
for all node Yi ∈ P that receives evidence ei do

Mark Yi as an observed node with value of 1
Let M be a collection nodes resulted from breath-first search starting from Yi

for all node X ∈ M do
Receive λ(v) from all X ′s child nodes, V .
Receive π(x) from all X ′s parent nodes, U .
Compute λX(u) for all X ′s parent nodes, U .
Compute πv(x) for all X ′s child nodes, V .

end for
end for
for all non-leaf node Zi ∈ P do

Compute P (Zi = 1|evidence) (i.e., the likelihood of Zi)
end for

Algorithm 4 Attack intention recognition
for all non-leaf nodes Zi ∈ P do

if P (Zi = 1|evidence) is the maximum or P (Zi = 1|evidence) > threshold then
select Zi as potential upcoming attack

end if
end for

As shown in Algorithm 4, in the final selection of possible attack goal(s) and intention(s),

we can either select the node(s) that has the maximum belief value or the one(s) whose

belief value is over a threshold.

78

CHAPTER IX

EXPERIMENTS AND PERFORMANCE EVALUATION

9.1 The Grand Challenge Problem (GCP)

To evaluate the effectiveness of our alert correlation mechanisms, we applied our correla-

tion algorithms to the data sets of the Grand Challenge Problem (GCP) version 3.1 provided

by DARPA’s Cyber Panel program [25, 36]. In this section, we describe and report our ex-

periment results.

GCP version 3.1 is an attack scenario simulator. It can simulate the behavior of se-

curity sensors and generate alert streams. GCP 3.1 includes two innovative worm attack

scenarios to specifically evaluate alert correlation techniques. In GCP, multiple heteroge-

neous security systems, e.g., network-based IDSs, host-based IDSs, firewalls, and network

management systems, are deployed in several network enclaves. Therefore, GCP alerts are

from both security systems and network management system. In addition to the compli-

cated attack scenarios, the GCP data sets also include many background alerts that make

alert correlation and attack strategy detection more challenging. GCP alerts are in the In-

trusion Detection Message Exchange Format (IDMEF) defined by IETF [35].

According to the GCP documents that include detailed configurations of protected net-

works and systems, we established a configuration database. Information on mission goals

enables us to identify the servers of interest and assign interest score to corresponding

alerts targeting at the important hosts. The alert priority is computed based on our model

described in Section 3.2.

To better understand the effectiveness of our correlation system, we have defined two

performance measures, true positive correlation rate and false positive correlation rate.

79

True positive correlation rate =
] of correctly correlated alert pairs

] of related alert pairs
(20)

and

False positive correlation rate =
] of incorrectly correlated alert pairs

] of correlated alert pairs
(21)

In Eq.(20), related alert pairs represents the alerts that have cause-effect relationship. In

Eq.(21), correlated alert pairs refer to the correlation result output by a correlation system.

True positive correlation rate examines the completeness of alert correlation tech-

niques. It measures the percentage of related alert pairs that an correlation system can

identify. It is analogous to true positive rate or detection rate commonly used in intrusion

detection.

False positive correlation rate measures the soundness of an alert correlation system. It

examines how correctly the alerts are correlated. It is analogous to false positive rate used

in intrusion detection.

In our experiments, we refer to the documents with the ground truth to determine the

correctness of the alert correlation. Scenario graph is constructed based on alerts that have

causal relationship identified by our correlation engines.

In formulating hyper alert time series, we set the unit time slot to 60 seconds. In the

GCP, the entire time range is 5 days. Therefore, each hyper alert A, its corresponding time

series variable Ã has a size of 7,200 instances, i.e., Ã = {ã0, ã1, ..., ˜a7,199}.

9.1.1 GCP Scenario I

In the GCP Scenario I, there are multiple network enclaves in which attacks are conducted

separately. The attack scenario in each network enclave is almost same. We select a net-

work enclave as an example to show the correlation process.

The procedure of alert correlation is shown as follows.

80

First, alert aggregation. We conducted raw alert aggregation and clustering in order

to have aggregated hyper alerts. In scenario I, there are a little more than 25,000 low-level

raw alerts output by heterogeneous security devices in all enclaves. After alert fusion and

clustering, we have around 2,300 hyper alerts. In our example network enclave, there are

370 hyper alerts after low-level alert aggregation.

Second, alert noise detection. We applied the Ljung-Box statistical test [54] with sig-

nificance level α = 0.05 to all hyper alerts in order to identify background alerts. In

scenario I, we identified 255 hyper alerts as background alerts using this mechanism. Most

of background alerts are “HTTP Cookie” and “HTTP Posts”. Therefore, we have 115 non-

noise hyper alerts for further analysis.

Third, alert prioritization. The next step is to select the alerts with high priority values

as the target alerts. The priority computation is described in Section 3.2. In this step, we

set the threshold β = 0.6. Alerts with priority scores above β were regarded as important

alerts and were selected as target alerts of which we had much interest. In this step, we

identified 15 hyper alerts whose priority values are above the threshold

Fourth, alert correlation. When applying correlation algorithms, we correlated each

target alert with all other non-background alerts (i.e., the background alerts identified by the

Ljung-Box test are excluded.). As described in Section 7.1, we have three steps in correlat-

ing alerts. First, we applied Bayesian-based correlation engine on hyper alerts and discover

the correlated alert pairs. Figure 16 shows the correlation results related to the hyper alerts

that we identified as most interested alerts. Second, we applied causal discovery-based

correlation engine to alerts that have not been identified to be correlated with others in the

first step. Third, we applied GCT-based correlation algorithm to further correlate alert pairs

which have not been correlated after prior two steps. Figure 17 shows the correlation results

after the three-step correlation process. The dotted line in Figure 16 and Figure 17 repre-

sent false positive correlation. The correlation probability or confidence of each alert-pair

is associated with the edge in the correlation graph. In Eq. (9), ω equals 0.3 and t equals

81

0.6.

Fifth, attack path analysis. As discussed in Section 7.4, for any two nodes in the

correlation graph that are connected on multiple paths, we can compute the probability of

attack transition along each path, then rank and select the one with highest overall value.

For example, from node DB FTP Globbing Attack to node DB NewClient in the graph

shown in Figure 17, there are 6 paths that connect these two nodes. Based on the probability

or confidence associated on the edge, we can compute the value of each path and rank the

order.

For example, the overall confidence for the attack path DB FTP Globbing Attack→
Loki→ DB NewClient is:

P (DB FTP Globbing Attack, Loki, DB NewClient)

= P (DB FTP Globbing Attack) ∗ P (Loki|DB FTP Globbing Attack)

∗ P (DB NewClient|Loki)

= P (DB FTP Globbing Attack) ∗ 0.7 ∗ 0.72

= P (DB FTP Globbing Attack) ∗ 0.5

Table 8 shows the ordered multi-paths according to the corresponding path values.

From the table, we can see that it is more confident to say that the attacker is more likely

to launch FTP Globbing Attack against the Database Server, then New Client attack from

the Database Server that denotes a suspicious connection to an external site (e.g., set up a

covert channel).

Sixth, attack strategy analysis. In this phase, we performed attack strategy analysis by

abstracting the scenario graphs. Instead of using hyper alerts representing each node, we

used the corresponding attack class (e.g., DoS and Access Violation) to abstractly present

attack strategies. While analyzing attack strategy, we focused on each target and abstracted

the attacks against the target. Figure 18(a) shows the high-level attack strategy on the Plan

Server extracted from attack scenario graphs shown in Figure 17. From Figure 18(a), we

can see that the attacker uses a covert channel (indicated by Connection Violation) to export

82

DB_FTP_Globbing_Attack

DB_NewClient

0.62

DB_IllegalFileAccess

0.73DB_NewClient_Target

0.67

Loki

0.710.62

Plan_RootShareMounted

Plan_IllegalFileAccess

0.73

Plan_NewClient

Plan_Loki

0.71

Mail_RootShareMounted

Mail_IllegalFileAccess

0.73

Mail_NewClient

0.62

WS1_NewClient

WS1_FileSystemIntegrity

0.65

HTTP_ActiveX

0.67

0.67

Figure 16: The GCP scenario I: The correlation graph discovered by Bayesian-based
approach.

data and import malicious code to root the Plan Server. The attacker accesses to the data

stored on the Plan Server (indicated by Access Violation) to steal the data, then export the

information. The activity of Surveillance has impacted the server on the performance (in-

dicated by Asset Distress). Figure 18(b) shows the attack strategy on the Database Server.

It is easy to see that the attacker launches an exploit attack against the Database Server

in order to get root access. Then the attacker sets up a covert channel, accesses data and

exports the data. The mutual loop pattern between attack classes Connection Violation, Ac-

cess Violation and Exfiltration indicates the attack continuously accesses file, exports data

and downloads the malicious code.

Table 8: Ranking of paths from node DB FTP Globbing Attack to node DB NewClient.
P = P (DB FTP Globbing Attack)

Order Nodes Along the Path Score
Path1 DB FTP Globbing Attack→DB NewClient P*0.62
Path2 DB FTP Globbing Attack→Loki→DB NewClient P*0.50
Path3 DB FTP Globbing Attack→DB NewClient Target→DB NewClient P*0.47
Path4 DB FTP Globbing Attack→DB IllegalFileAccess→DB NewClient P*0.45
Path5 DB FTP Globbing Attack→DB NewClient Target→Loki

→DB NewClient P*0.31
Path6 DB FTP Globbing Attack→DB NewClient Target→

DB IllegalFileAccess → DB NewClient P*0.23

83

DB_IllegalFileAccess

Loki

0.69

DB_NewClient

0.62

0.65

0.72

Mail_IllegalFileAccess

0.65 Mail_NewClient

0.72

WS1_NewClient

0.67

WS1_FileSystemIntegrity

0.65

0.7

0.71

DB_NewClient_Target

0.62

0.65

0.7

DB_FTP_Globbing_Attack

0.73

0.7

0.62

0.67

Plan_Loki

0.65

0.7

Plan_NewClient

0.72

Plan_IllegalFileAccess

0.63

Plan_RootShareMounted

0.67

0.69

0.69

0.71

0.65

0.69

Plan_HostStatus

0.7

0.73

Plan_NIC_Promiscuous

0.7

Mail_RootShareMounted

0.73

0.62

0.650.65

HTTP_ActiveX

0.67

0.67

0.67

HTTP_Java

0.65

0.65

Figure 17: The GCP scenario I: The correlation graph discovered by the integrated ap-
proach.

Exfiltration

Connection_Violation

Access_Violation

Super_Privilege_Violation Asset_Distress

Surveillance

(a) GCP scenario I: attack strategy on
Plan Server

Super_Privilege_Violation

Access_Violation

Connection_Violation

Exfiltration

(b) GCP scenario I: attack strategy
on Database Server

Figure 18: GCP I: Attack strategy graph

9.1.2 Discussion on GCP Scenario I

Applying our integrated correlation mechanism can discover more attack step relation-

ships than using a single approach. Figure 16 shows that when we apply Bayesian-based

approach alone, we can only discover partial attack step relationships. The reason is

that the Bayesian-based correlation engine relies on domain knowledge to correlate alerts.

84

Therefore, it is only capable of discovering the direct attack step transitions, e.g., attack

Mail RootShareMounted followed by attack Mail IllegalFileAccess. When the alert rela-

tionship is new or has not been encoded into the correlation engine, such relationship cannot

be detected. Figure 17 shows that we can discover more attack relationships after applying

causal discovery-based and GCT-based correlation methods. Using complementary corre-

lation engines enable us to link isolated correlation graphs output by Bayesian-correlation

engine. The reason is that our statistical and temporal-based correlation mechanisms cor-

relate attack steps based on the analysis of statistical and temporal patterns between attack

steps. For example, the loop pattern of attack transitions among attack DB NewClient,

DB IllegalFileAccess and Loki. This correlation engine does not rely on prior knowl-

edge. By incorporating the three correlation engines, in this experiment, we can improve

the true positive correlation rate from 95.06% (when using GCT-based correlation engine

alone [69]) to 97.53%. False positive correlation rate is decreased from 12.6% (when using

GCT-based correlation engine alone [69]) to 6.89%.

Our correlation approach can also correlate non-security alerts, e.g., alerts from network

management system (NMS), to detect attack strategy. Although NMS alerts cannot directly

tell us what attacks are unfolding or what damages have occurred, they can provide us some

useful information about the state of system and network health. So we can use them in de-

tecting attack strategy. In this scenario, NMS outputs alert Plan Host Status indicating that

the Plan Server’s CPU is overloaded. Applying our GCT-based and Bayesian-based cor-

relation algorithms, we can correlate the alert Plan HostStatus with alert Plan NewClient

(i.e., suspicious connection) and Plan NIC Promiscuous (i.e., traffic surveillance).

9.1.3 GCP Scenario II

In GCP scenario II, there are around 22,500 raw alerts. We went through the same process

steps as described in Section 9.1.1 to analyze and correlate alerts.

After alert aggregation and clustering, we got 1,800 hyper alerts. We also use the

85

same network enclave used in Section 9.1.1 as an example to show our results in the GCP

Scenario II.

In this network enclave, there are a total of 387 hyper alerts. Applying the Ljung-Box

test to the hyper alerts, we identify 273 hyper alerts as the background alerts. In calculating

the priority of hyper alerts, there are 9 hyper alerts whose priority values are above the

threshold β = 0.6, meaning that we have more interest in these alerts than others.

As described in Section 7.1, we apply three correlation engines sequentially to the alert

data to identify the alert relationship. For example, we select two alerts, Plan Service Status

Down and Plan Host Status Down, as target alerts, then apply the GCT algorithm to cor-

relating other alerts with them.

Table 9: Alert Correlation by the GCT on the GCP Scenario II: Target Alert: Plan Service
Status Down

Alerti Target Alert GCT Index
Plan Registry Modified Plan Service Status Down 20.18

HTTP Java Plan Service Status Down 17.35
HTTP Shells Plan Service Status Down 16.28

Table 10: Alert Correlation by the GCT on the GCP Scenario II: Target Alert: Plan Server
Status Down

Alerti Target Alert GCT Index
HTTP Java Plan Server Status Down 7.73

Plan Registry Modified Plan Server Status Down 7.63
Plan Service Status Down Plan Server Status Down 6.78

HTTP RobotsTxt Plan Server Status Down 1.67

Table 9 and Table 10 show the corresponding GCT correlation results. In the tables,

we list alerts whose GCI values have passed the F -test. The alerts Plan Host Status and

Plan Service Status are issued by a network management system deployed on the network.

Figure 19 shows the correlation graph of Plan Server. The solid lines indicate the

correct alert relationship while dotted lines represent false positive correlation. Figure 19

shows that Plan Registry Modified is causally related to alerts Plan Service Status Down

86

IIS_Buffer_Overflow

Plan_Registry_Modified

0.76

Plan_Service_Status_Down

0.8

Plan_Server_Status_Down

0.8

IIS_Unicode_Attack

0.73

0.8

HTTP_Java

0.78

0.78 HTTP_RobotsTxt

0.78

HTTP_Shell

0.78

Figure 19: The GCP Scenario II: Correlation graph of the plan server

and Plan Server Status Down. The GCP document verifies such relationship. The attacker

launched IIS Unicode Attack and IIS Buffer Overflow attack against the Plan Server in or-

der to traversal the root directory and access the plan server to install the malicious ex-

ecutable code. The Plan Server’s registry file is modified (alert Plan Registry Modified)

and the service is down (alert Plan Service Status) during the daemon installation. Alert

Plan Host Status Down indicates the “down” state of the plan server resulted from the re-

boot initiated by the malicious daemon. Plan server’s states are affected by the activities of

the malicious daemon installed on it. The ground truth described in the GCP document also

supports the causal relationships discovered by our approach. In this experiment, the true

positive correlation rate is 94.25% (vs. 93.15% using GCT-engine alone [69]) and false

positive correlation rate is 8.92% (vs. 13.92% using GCT-engine alone [69]).

Table 11: Ranking of paths from node IIS Buffer Overflow to node Plan Server Status
Down. P = P (IIS Buffer Overflow)

Order Nodes Along the Path Score
Path 1 IIS Buffer Overflow → Plan Registry Modified

→ Plan Server Status Down P* 0.61
Path 2 IIS Buffer Overflow → Plan Registry Modified

Plan Service Status Down P*0.49

For nodes with multiple paths in the correlation graph, we can also perform path anal-

ysis quantitatively. For example, there are two paths connecting node IIS Buffer Overflow

and node Plan Server Status Down as shown in Figure 19. We can rank these two paths

according to score of the overall likelihood, as shown in Table 11.

87

9.1.4 Discussion on GCP Scenario II

Similar to our analysis in GCP Scenario I, our integrated correlation engine enables us

to detect more cause-effect relationship between alerts. For example, in Figure 19, if us-

ing knowledge-based correlation engine, we can only detect the causal relationship be-

tween alerts IIS Buffer Overflow and Plan Registry Modified, as well as between alerts

IIS Unicode Attack and Plan Registry Modified. With complementary temporal-based GCT

alert correlation engine, we can detect other cause-effect relationship among alerts. For ex-

ample, GCT-based correlation engine detected causality between a security alert (e.g.,

Plan Registry Modified) and an alert output by the network management system (e.g.,

Plan Server Status Down). In practice, it is difficult to detect such causality between secu-

rity activity and network management fault using a knowledge-based correlation approach,

unless such knowledge has been priory incorporated to the knowledge base.

Compared with GCP Scenario I, GCP Scenario II is more challenging due to the nature

of the attack. Our correlation result in the GCP Scenario II is not comprehensive enough

to cover the complete attack scenarios. By comparing the alert streams with the GCP

document, we notice that many malicious activities in the GCP Scenario II are not detected

by the IDSs and other security sensors. Therefore, some intermediate attack steps are

missed, which is another challenge in GCP Scenario II.

Our approach depends on alert data for correlation and scenario analysis. When there

is a lack of alerts corresponding to the intermediate attack steps, we cannot construct the

complete attack scenario. In practice, IDSs or other security sensors can miss some attack

activities. One solution is to apply attack plan recognition techniques that can partially link

isolated attack correlation graphs resulted from missing alerts.

9.1.5 Attack Plan Recognition and Prediction

In the GCP Scenario I, there are multiple network enclaves in which attacks are conducted

separately. We select a network enclave as an example to show the process of scenario

88

DB_FTP_Globbing_Attack

DB_NewClient_Target

DB_Illegal_File_Access

DB_NewClient

Loki

(a) Two isolated scenarios

DB_FTP_Globbing_Attack

DB_NewClient_Target

DB_Illegal_File_Access

DB_NewClient

Loki

(b) Correlated scenarios

Figure 20: Correlation of isolated scenarios

correlation and attack prediction.

Figure 20(a) shows an example of two isolated attack scenarios derived from low-

level alert correlation, where DB FTP Globbing Attack represents an buffer over flow at-

tack against the database server, DB NewClient Target indicates an suspicious incoming

connection to the database server from another server, DB Illegal File Access represents

the illegal access (write or read) to the database server, DB NewClient indicates a sus-

picious outbound connection from database to an external host, and Loki means a suspi-

cious data export via covert channel. In this case, we use the attack plan as defined in

Figure 11. The corresponding causal network is shown in Figure 12. According to Fig-

ure 12, we can see that the alert sets {DB FTP Globbing Attack, DB NewClient Target,

DB Illegal File Access} are corresponding to the attack steps with goals to get access to

the server and get the data directly from the host, i.e., the attacker first applies buffer over

flow attack against the database server, then sets up a covert channel to the host and ex-

port malicious code that is used to access to the database server to get the data. Alert sets

{DB NewClient, Loki} are attack steps that aim to set up covert channel and export con-

fidential data to the outside. Figure 12 also shows that these two sets of alerts have an

indirect relationship but the same eventual goal that is to steal the data from the database

server and export it to the external. Therefore, applying the scenario correlation technique

as described in Section 8.3, we can correlate these two scenarios as one integrated scenario,

i.e., they are correlated with the same eventual goal, as shown in Figure 20(b), and group

89

them together as one evidence set.

The advantage of correlating isolated scenarios is that we can accumulate more com-

prehensive evidence that can be used for further analysis, e.g., likelihood evaluation of each

subgoal or final goal and attack prediction.

Table 12: Likelihood evaluation of sub-goals and final goal with different evidence. De-
note e1: DB FTP Globbing Attack, e2: DB NewClient Target, e3: DB Illegal File Access,
e4: DB NewClient, e5: Loki, subgoal1: Get confidential data, subgoal2: Export confidential
data, goal: Steal and export confidential data.

Evidence set P (subgoal1 = 1| P (subgoal2 = 1| P (goal = 1|
evidence) evidence) evidence)

e1 0.58 0.55 0.56
e1, e2 0.58 0.71 0.63

e1, e2, e3 0.78 0.71 0.74
e1, e2, e3, e4 0.78 0.81 0.77

e1, e2, e3, e4, e5 0.78 0.85 0.81

Also using database server as an example, based on the integrated evidence set, we

apply probabilistic inference to the causal network as shown in Figure 12 to compute the

likelihood of each subgoal and final goal. Table 12 shows the assessment of likelihood

of some subgoals and final goal based on the evidence set. In Table 12, we show the

probability result of two subgoals, i.e., Get confidential data and Export confidential data,

and the final goal, i.e., Steal and export confidential data. We can see that probabilities of

the success of subgoals and the final goal increases with the support of incoming evidence

corresponding to the attack steps aimed to get data from the database server and export data

to the external.

The likelihood of each node at causal network based on on-going evidence can also be

used to predict the attacks. For example, after getting the evidence of DB FTP Globbing Attack,

the probability of the subgoal Get data from Server directly (as shown in Figure 12) is in-

creased and equals 0.67. Therefore, we expect a future attack that enables the attacker to

access the file stored in the database server. For another example, when we get the evi-

dence of DB NewClient, the likelihood of Transfer data via covert channel (as shown in

90

Figure 12) is computed as 0.71 that means it is quite likely that we will see another at-

tack with which the attacker can export data via the covert channel in the future. In the

GCP Scenario I, the attacker did launch the attack to access the confidential data stored in

database server (indicated by the alert DB Illegal File Access) after getting the root access

to the database server, and also transferred the stolen data to the external (indicated by the

alert Loki) after setting up the covert channel (indicated by alert DB NewClient).

In our approach, one of the most important components is the library of attack plans

(defined as attack trees). It is the basis for automatically correlating isolated attack scenar-

ios at a higher level and conducting probabilistic inference for attack prediction. It is true

that there exists a limitation in this approach due to the (limited) library of attack plans.

If the attack strategies are beyond the definition of attack plans, we cannot automatically

correlate isolated scenarios or make an inference on the future attacks based on existing

attack plan library. Such a task requires the involvement of security experts. However, we

argue that, in practice, the plan library can be defined as comprehensively as possible by

security experts with their knowledge of attacks and attack strategies, as well as the under-

standing of networks and systems under protection and the mission goals. The attack plan

library can be expanded or re-defined with the new knowledge of attacks or attack scenar-

ios. Therefore, we believe that our approach is practical and has the potential to provide

security operators a way to automatically correlate isolated attack scenarios and predict

future attacks based on the observed evidence and networks under protection.

9.1.6 Discussion on Statistical and Temporal Correlation Engines

In our alert correlation system, we have designed three correlation engines. The Bayesian-

based correlation aims to discover alerts that have direct causal relationship by evaluat-

ing and checking the three properties of cause-effect alerts as described in Section 1.4.1.

Specifically, this correlation engine uses predicates to represent attack prerequisite and

consequence, applies probabilistic reasoning to evaluating the property of preparation-for

91

relationship between alerts. It applies time constraints to testing if the alert pair candidate

conforms to the property of sequential relationship, and uses the pre-defined probability

table of attack step transitions to evaluate the property of statistical one-way dependence

between alerts under correlation. Alert pairs that have matched these three properties are

identified as having direct causal relationship.

In order to discover alerts that have no known direct causal relationship, we have also

developed two statistical and temporal-based correlation models to discover novel and new

attack transition patterns. The development of these two correlation techniques is based

on the hypothesis that attack steps can still exhibit statistical dependency patterns (i.e., the

third property of cause-effect alerts) or temporal patterns even though they do not have an

obvious or known preparation-for relationship (i.e., the first property of cause-effect alerts).

Therefore, these two correlation engines aim to discover correlated alerts based on statis-

tical dependency analysis and temporal pattern analysis with sequential time constraints

(i.e., to ensure the conformity to the second property of cause-effect alerts). More for-

mally, these two engines actually perform correlation analysis instead of a direct causality

analysis because the preparation-for relationship between alerts are either indirect or un-

known.

In theory, causality is a subset of correlation [38], which means that a causally related

alert pair is also correlated, however, the reverse statement is not necessarily true. There-

fore, the correlation output is actually a super set of correlated alerts that can include the

causally related alert pairs as well as some correlated but non-causally related alerts. Our

goal is to apply these two correlation engines to identifying the correlated alerts that have

strong statistical dependencies and temporal patterns, and also conform to the sequential

time constraint property. We present these correlated alert candidates to the security ana-

lysts for further analysis.

As an extra experiment, we applied GCP data sets to causal discovery-based correla-

tion engine and GCT-based correlation engine only in order to test if the output of these two

92

correlation engines can include the causally related alert pairs identified by Bayesian-based

correlation engine. Our experiment results have shown that the correlated alerts identified

by causal discovery-based correlation engine and GCT-based correlation engine have in-

cluded those causally related alerts discovered by Bayesian-based correlation engine. In

practice, we still use Bayesian-based correlation engine to identify causally related alerts

in order to decrease the false positive correlation rate.

However, it does not necessarily mean that those two correlation engines (i.e., casual-

discovery and GCT-based engines) can discover all the correlated alerts that have strong

statistical and temporal patterns because of their limitations.

As described in Section 5.2, causal discovery-based correlation engine assumes that

causality between variables can be represented by a causal Bayesian network that has a

DAG structure. The statistical dependency between variables can be measured, for ex-

ample, by mutual information. As described in Algorithm 1, causality direction among

variables are identified by the assumption of causal Markov condition (i.e., a node X is

independent with other nodes (except its direct effect nodes) given X’s direct cause node)

and the properties of V-structure as described in Section 5.2.2.

Due to the assumptions and properties used by causal discovery theory, in the process

of alert correlation, the causal discovery-based correlation engine can result in cases that

the causality direction cannot be identified among dependent alerts.

For example, for three variables A, B and C, after applying mutual information mea-

sures, we have got a dependency structure as A − B − C, which means A and B, B and

C are mutually dependent respectively, A and C are mutually independent. If we apply

conditional mutual information measure to A, B and C and get the result that A and C

are conditionally independent given the variable B, then, without any other information,

the causal discovery-based correlation engine actually cannot identify the causality among

these three variables. In fact, with the above statistical dependency information, we can

have the following three different causality structures, i.e., A → B → C, A ← B ← C

93

and A ← B → C. These three causality structures have the same statistical dependency

properties if no other information has been provided or extra causality has been identified

(e.g., A or B or C has some dependency with another variable D, etc.). For the simplest

dependency structure, i.e., A − B, without any extra information, causal discovery-based

algorithm cannot identify the causality direction between A and B either.

By contrast, GCT-based correlation engine performs pairwise statistical dependency

analysis and identify corresponding pairwise dependency direction. However, GCT-based

correlation algorithm also incorporates the temporal information in the process of correla-

tion. In particular, the GCT-correlation engine has the limitation of identifying correlated

alert pairs whose time intervals have a loose temporal pattern (as defined in Definiton 2)

even though they may have a strong statistical dependency pattern.

In summary, considering the strength and limitations of causal discovery-based and

GCT-based correlation engines, from the perspective of statistical dependency and temporal

pattern analysis, we can have a good correlation performance in identifying alerts that have

a strong statistical dependency and strong temporal pattern because these two correlation

engines can complement and enhance each other in this correlation space. If alerts that

have a strong statistical dependency pattern but a loose temporal pattern, the correlation

performance may be weak because GCT-based correlation engine has limitations in the

loose temporal pattern space and causal discovery-based correlation engine also has its

own limitations in the causality identification.

9.2 Experiments on Backbone Data

To evaluate our alert correlation mechanisms, we applied our algorithms to the alert data

sets collected on our department backbone network. The backbone is an OC-48 (2Gbps)

link, and our span is a 1Gbps link. We normally get an average traffic at around 170Mbps-

200Mbps with bursts up to 400Mbps-500Mbps.

In practical security operations, there is no ground truth document that is usually only

94

available in a self-managed test environment or tests using simulation data sets. In order

to have more accurate evaluation, we chose the way to deploy various security sensors,

including network-based IDSs and host-based intrusion detection agents, to cross check and

verify alerts. Office of Information Technology (OIT) at Georgia Institute of Technology

have also helped us evaluate the validity of alerts by providing extra and more evidence of

malicious network activities. In the experiments, we also set up a few servers (e.g., a web

server) and desktops to which we have administration privilege and full access.

In the process of setting up our empirical ground truth, the main task is to filter out false

positive alerts and alerts that are non-relevant with the protected hosts or network (e.g., a

Microsoft IIS-related attack targeting at a Linux-based web server). In the step of filtering

false positive alerts, we applied evidence cross checking to identifying the false positive

alerts. In other words, we used alerts or evidence output by other security sensors to cross

check the validity of an alert. In particular, for an alert generated by a security sensor (e.g.,

an IDS), we checked if there were any similar alerts output by other security sensors or if

there were any alerts or evidence (e.g., audited data recorded at the victim machine) cor-

responding to the impact of the attack. For example, when a network-based IDS output a

buffer overflow alert targeting a specific process running on the target host, and if the host-

based IDS installed on the target machine also generated an alert representing an abnormal

running of that process or other abnormal activities (e.g., illegal file access) correspond-

ing to the evidence of the attack impact, then we could enforce the validity of that buffer

overflow alert. In the step of identifying non-relevant alerts, we compared reported alerts

with the configurations of target hosts to see if the corresponding vulnerabilities existed on

the victim machines. In our experiments, we had the knowledge of the configurations of

hosts in our network (e.g., OS, services running on the machine, etc.). We also had the

knowledge of the alerts (e.g., the vulnerabilities or OS that the corresponding attack aims

to compromise) with reference to the CVE (Common Vulnerabilities and Exposures) [24]

and documents of corresponding IDSs installed on our network and hosts. When the target

95

hosts did not have corresponding vulnerabilities of the reported attack, we regarded the

reported alert(s) as non-relevant. Using the above methods, we set up our empirical ground

truth and evaluated the performance of our algorithms.

In the experiments, we deployed Snort 2.3.3 [78] and 0.9 [5, 63], two open source

network IDSs, on the backbone to monitor the traffic and output alerts. Snort is a signature-

based network IDS using string pattern matching to identify intrusions. Bro analyzes and

filters network traffic into a series of events describing network activities, and executes

scripts that contain site-specific intrusion detection rules or security policies to identify

attacks. Bro also includes and uses attack signatures expressed as regular expressions to

detect known attacks or access to known vulnerabilities. Bro has the facility to store and

use the information of past activity to analyze new activity, and Bro’s specific language can

also allow it to understand the context of the signature. These capabilities have helped Bro

reduce the number of false positives.

We fine-tuned Snort and Bro using network traffic traces (including attack traffic) that

we have collected and analyzed before.

In addition to network-based IDS, we have also deployed Cisco Security Agent [17], a

host-based intrusion detection agent, on critical servers and some end-user desktops.

Knowledge of alerts is referred to Snort, Bro, Cisco Security Agent documents and

CVE (Common Vulnerabilities and Exposures) [24], a well known project to standardize

the names of publicly known vulnerabilities.

For performance evaluation, we use true positive correlation rate and False positive

correlation rate as defined in Eq.(20) and Eq.(21) respectively. In the experiment, we used

our empirical ground truth to determine if the correlation output made sense or not.

We analyzed alerts collected within a time window of 24 hours, and set a time slot as

1 minute that was used to aggregate raw alerts, generate input data set for alert time series

variables (as described in Section 6.5.1) and causal discovery-based alert correlation engine

(as described in Section 5.3).

96

The size of daily alert data varies depending on the traffic, in particular, attack traffic.

Table 13: An example of a weekly alert numbers

Day Total Alert Numbers
Day 1 640,553
Day 2 602,743
Day 3 637,127
Day 4 647,456
Day 4 621,837
Day 5 634,182
Day 6 587,831
Day 7 571,913

Table 13 shows an example of total alert numbers in a week. Among the attack cate-

gories, exploit attack is the majority. Web servers have attracted many malicious activities.

In this section, we present some results using one of our daily alert data set.

The procedure of alert correlation is shown as follows.

First, alert aggregation. In this data set, the IDS output 621,837 raw alerts. We con-

ducted raw alert aggregation and clustering in order to have aggregated hyper alerts. After

alert fusion and clustering, we had around 63,457 hyper alerts.

Second, alert noise detection. We applied the Ljung-Box statistical test [54] with sig-

nificance level α = 0.05 to all hyper alerts in order to identify background random alerts.

After this step, we identified around 14,300 hyper alerts as background random alerts.

Third, alert prioritization and focus identification. The next step is to select the

alerts with high priority values as the target alerts. The priority computation is described in

Section 3.2. In this step, we identified some “inland” network segments and some important

servers (e.g., web servers, ftp servers and mail servers, etc.) and self-managed desktops as

our focused protection network and targets. In computing the priority, we set the threshold

β = 0.6. Alerts with priority scores above β were regarded as important alerts and were

selected as target alerts of which we have much interest. In this step, we identified 24,130

hyper alerts whose priority values are above the threshold for further analysis.

97

Fourth, alert correlation. As described in Section 7.1, we first applied our domain

knowledge-based Bayesian correlation engine to discovering direct cause-effect relation-

ship between alert pairs, then applied causal discovery-based correlation mechanism and

finally used GCT-based correlation algorithm to further identify alert causal relationship

based on statistical and temporal analysis.

With alert correlation result, from a protection (or target) point of view, we can investi-

gate several specific scenarios that reflect various nature of attack situations. In particular,

(1) Attacks come from the same source to the same target with the same attack class. This

allows us to detect a scenario that an attacker is launching a series of attacks against a

specific service of a server. (2) Attacks come from the same source and target the same

destination. This situation is intended to detect the situation that an attacker launches series

of attacks against the various services available on the target machine. (3) Attacks with the

same class target at the same target. For example, a DDoS attack belongs to this situation.

(4) Attacks target at the same host. It can give us an overview attack situation on the target.

Figure 21 shows a correlation graph in which alerts are from an external host H1

to an internal host H2 that has some vulnerabilities. The correlation result is based on

the analysis of Bayesian-based correlation engine. In this figure, we can see the target

host H2 in our network got a series of attacks from an external host H1. The graph

shows the attack scenarios. The attacker first used the attack tool NMAP to scan and

get service information of the host H2, then attempted two major buffer overflow at-

tacks (i.e., RPC CMSD TCP Overflow and FTP Command Overflow) to get ac-

cess to H2. The buffer overflow attack activities were reported by network-based IDSs

and our security agent installed on the host H2 also reported alarms related to abnor-

mal process running. Figure 21 also shows two DDoS attack-related attempts launched

from H1 to H2, i.e., DDOS Trin00 Master to Daemon default password attempt

and DDOS mstream client to handler. These two alerts represent the communication

between the master and the handler (daemon or zombie) in a DDoS attack. The alerts imply

98

SCAN_nmap_XMAS

RPC_Portmapper

0.64

FTP_Command_Overflow

0.61SNMP_AgentX_tcp_request

0.63

RPC_CMSD_TCP_Overflow

0.67

FTP_Get_password

0.73

DDoS_mstream_client_to_handler

0.69

DDoS_Trin00_Mater_to_Daemon_default_password

0.690.710.71

MISC_xdmcp_info_query

0.60

NMAP_FIN_SCAN

0.640.63

SNMP_trap_tcp

0.63

Figure 21: An example of alert correlation graph constructed by Bayesian-based correla-
tion engine

that the host H2 was probably being used as a handler to participate in a DDoS attempt.

These two DDoS related client-handler control attack alerts were also found in other days.

It is quite likely that the attacker was trying to compromise and control our host and make

them as a DDoS handler.

Table 14 shows a snapshot of the correlation result at the web server. In particular,

we show the alert causal relationship identified by either causal discovery algorithm or

GCT-based correlation algorithm and corresponding correlation score output by the en-

gines. From the figure, we can see that various attacks had been launched targeting the

web server in order to get access to it, e.g., alert web php viewtopic php access, and tra-

verse the directory, e.g., alert web IIS directory transversal attempt. As described in

Section 1.3, the major difference between causal discovery algorithm and GCT-based cor-

relation algorithm is that GCT is more focused on temporal analysis while causal discovery

method depends on statistical analysis of attack dependence. In addition, according to our

observation, web server is a hot target of the daily attack traffic.

In our experiments, we used our empirical ground truth to evaluate the performance of

the correlation results. In the data set we presented in this paper, the true positive correla-

tion rate is 90.3% and the false positive correlation rate is 10.6%.

Fifth, scenario correlation. In this step, we correlated isolated scenarios using plan

recognition technique.

99

Table 14: An example of alert correlation at Web Server. CD: Causal Discovery-based
correlation engine; GCT: Granger-Causality-based correlation engine

Cause Alert Effect Alert Detected by
(correlation

score)
http php overflow WEB MISC weblogic tomcat CD

(0.68)
WEB MISC robots txt access WEB MISC Invalid HTTP GCT

Version String (0.71)
WEB ATTACKS perl execution WEB IIS Directory GCT

transversal (0.81)
WEB PHP viewtopic php access WEB MISC weblogic tomcat CD

(0.81)
WEB ATTACKS bin ls WEB CGI webplus directory CD
command attempt traversal (0.73)

WEB MISC Invalid HTTP String WEB CGI calendar access CD
(0.80)

WEB MISC Invalid HTTP String WEB CGI webplus directory CD
traversal (0.67)

http inspect OVERSIZE WEB MISC doc access GCT
REQUEST URI DIRECTORY (0.68)

WEB ATTACKS chmod WEB CGI webplus directory CD
command attempt traversal (0.86)

WEB CGI php cgi access WEB IIS Directory GCT
transversal (0.77)

WEB CGI webplus directory WEB IIS directory GCT
traversal listing (0.73)

SCAN_nmap_TCP

unknown_overflow_attack

SCAN_nmap_fingerprint SCNA_nmap_XMAS

DDoS_Trin00_Daemon_to_Master

RPC_portmap_overflow_attempt_to_hostB FTP_CWD_overflow_to_hostC DDoS_Trin00_Master_to_Daemon

Figure 22: An example of correlating isolated scenarios

Figure 22 shows an example of our approach to correlating isolated alerts (scenar-

ios). In Figure 22, nodes with solid lines represent the alerts output by the IDS. Specif-

ically, alerts SCAN nmap TCP, SCAN nmap fingerprint, SCAN nmap XMAS are attacks

100

against one of our hosts, denoted as H . Alerts RPC portmap oeverlow attempt to hostB

and FTP CWD overflow to hostC represent two outbound buffer overflow attacks from

host H to server B and server C respectively. Alert DDoS Trin00 Daemon to Master

represents an outbound communication between host H and an external host outside our

network. Those alerts are isolated because we have not been able to correlate them after

prior steps.

Alerts RPC protmap oeverlow attempt to hostB, FTP CWD overflow to hostC and

DDoS Trin00 Daemon to Master actually tell us that host H had been compromised be-

cause these attacks were initiated from host H . However, we do not have any alert evidence

showing the inbound attacks that have compromised H . In other words, the IDS may have

missed detecting the attack that compromise the host H due to some reasons (e.g., the at-

tack is a new attack and the IDS does not know the signature yet). Therefore, we have to

hypothesize that there were some intermediate attacks against the host H before it launched

those two buffer overflow attacks to host B and C. In addition, having the knowledge that a

Master-handler (daemon) communication of a DDoS attack relies on a prior buffer overflow

attack on the handler host, we can also hypothesize that there was an attack step that had

enabled the Master (a host intended to control a distributed set of servers) to install a ma-

licious daemon on the host H before H could further send communication with Master.

In Figure 22, we use a light grey node to represent the hypothesis attack steps. In practice,

such knowledge can be represented and incorporated into knowledge base (e.g., attack plan

library) so that we can apply attack plan recognition technique to correlating isolated sce-

narios (alerts) and identify the attack goal(s). In Figure 22, we use dotted lines to represent

the correlation between attack steps.

Predicting attack intention is a very challenging problem in practice. Our current ap-

proach relies on knowledge of attack scenarios (e.g., causal network model as shown in Fig-

ure 12) and the alert evidence provided by the IDS. In our experiments, we also performed

prediction on attacker intentions. For example, in Figure 22, having seen the evidence of

101

scanning alerts, the prediction confidence on further attacks, in particular, DDoS attack is

only 8%. When having alert DDoS Trni00 Daemon to Master, the prediction confidence

on DDoS attack is increased to 71%. In practice, we have observed there have been some

intensive outbound BAD-Traffic IP Proto attacks from host H .

In our experiments, we made analysis with incorporating alerts output from network-

based IDSs (Snort and Bro) that detects malicious activities observed on the network, and

host-based security agent to collect security information about local malicious activities on

victim hosts. Combining both network-based and host-based IDS alerts have improved and

enhanced the attack scenario analysis.

One open problem is the selection of correlation time window. Currently, we analyze

and correlate alerts with daily schedule. Theoretically, a large correlation window includes

more security alerts that can provide more helpful information for security analysts to iden-

tify attack strategies. However, a large correlation window can result in computation cost

and bring more noise that can affect the correlation accuracy. Currently, how to scientifi-

cally set up an optimum correlation window is still an open problem.

102

CHAPTER X

CONCLUSION AND FUTURE WORK

This dissertation has described a framework of an alert correlation system to analyze IN-

FOSEC alerts, detect novel attack strategies, recognize attack plans and predict forthcom-

ing attacks.

In this chapter, we summarize the thesis, review the thesis contributions and briefly

describe some areas that merit future research.

10.1 Research Summary

Numerous and various cyber attacks require a large scale of deployment of information se-

curity systems to ensure the security and reliability of IT infrastructures. The sheer number

of low-level or incomplete security alerts motivate the need for an alert correlation system

that can help security analysts effectively manage security alerts, identify attack strategies

and take a timely actions to avoid further attacks.

We provided a background introduction to intrusion detection and security alert cor-

relation. An examination of existing alert correlation techniques, including a variety of

knowledge-based correlation techniques, has revealed that current approaches cannot pro-

vide a comprehensive solution to detect attack strategies. Most notably, current knowledge-

based correlation techniques cannot meet the demands of detecting novel attack scenarios

because they cannot identify attack step transitions that are new or not yet incorporated in

the knowledge base.

To meet the needs of detecting novel attack strategies, we have developed an integrated

correlation system based on three complementary correlation techniques. Our correlation

techniques are developed based on three hypothesis of attack step transitions. (1) The first

103

hypothesis is that some attack steps have directly related connection, i.e., a prepare-for

relationship. For this type of attack steps, we have developed a Bayesian-based corre-

lation engine. It identifies alert causal relationship with a broad range of indicators of

attack impacts. This correlation engine can also relax the strict hard-coded pre- and post-

condition matching and handle the partial input evidence. (2) The second hypothesis is that

some attack steps have statistical dependence patterns. We have developed and presented

a statistical-based correlation engine based on causal discovery theory. (3) The third hy-

pothesis is that attack steps have temporal patterns in their time intervals. For this type of

attack relationship, we have built a correlation engine based on the Granger Causality Test.

The major benefit provided by statistical and temporal correlation engines is that they can

discover new attack transition patterns without relying on the domain knowledge.

We also described how to perform attack scenarios analysis by constructing correlation

graphs based on correlation results. A quantitative analysis of attack strategy is conducted

using the outputs of our integrated correlation engines. Attack strategies are analyzed using

correlation graphs.

We have also developed an approach to identifying attack plans and predicting upcom-

ing attacks. We have developed a graph-based technique to correlate isolated attack scenar-

ios derived from low-level alert correlation based on their relationship in attack plans. We

conducted probabilistic inference to evaluate the likelihood of attack goal(s) and predict

potential upcoming attacks based on causal network converted from attack trees.

Finally, we have validated our correlation approach using DARPA Grand Challenge

Problem (GCP) data set and alert data collected from a department backbone network on

a university campus. The results have shown that our approach can effectively discover

novel attack strategies with high accuracy.

10.2 Thesis Contribution

In summary, the contributions of this thesis are:

104

• Knowledge-based Probabilistic Correlation Model. In this research, we have de-

veloped a Bayesian-based correlation model to correlate attack steps that have direct

causal relationship (i.e., the problem space of {Alerts with direct causal relationship}
as shown in Figure 2). This correlation engine uses predicates to represent attack

prerequisite and consequence, and applies probabilistic reasoning to evaluating the

property of preparation-for relationship between alerts based on security states of

systems and networks. It applies time constraints to testing if the alert pair candidate

conforms to the property of sequential relationship, and uses the pre-defined prob-

ability table of attack step transitions to evaluate the property of statistical one-way

dependence between alerts under correlation. Alert pairs that have matched these

three properties are identified as having direct causal relationship. Our approach

does not rely on the strict pre- and post-condition matching and can also function on

the partial correlation evidence.

• Statistical and Temporal-based Alert Correlation Models. In addition to the

knowledge-based correlation model, in order to discover alerts that have no known

direct causal relationship, we have developed two statistical and temporal-based cor-

relation models to discover novel and new attack transition patterns. The devel-

opment of these two correlation techniques is based on the hypothesis that attack

steps can still exhibit statistical dependency patterns (i.e., the third property of cause-

effect alerts) or temporal patterns even though they do not have an obvious or known

preparation-for relationship (i.e., the first property of cause-effect alerts). Therefore,

these two correlation engines aim to discover correlated alerts based on statistical

dependency analysis and temporal pattern analysis with sequential time constraints

(i.e., to ensure the conformity of the second property of cause-effect alerts). More

formally, these two engines actually perform correlation analysis instead of a direct

causality analysis because the preparation-for relationship between alerts are either

105

indirect or unknown. These two correlation mechanisms do not rely on prior knowl-

edge of attack causal relationship.

– Causal Discovery Theory-based Alert Correlation Model. We have devel-

oped a causal discovery theory-based alert correlation engine. This correlation

engine discovers the strong statistical dependence (in particular, the non-loop

one-way dependence) among alerts. This correlation mechanism is based on

the assumption that the non-loop one-way dependence among alerts can be rep-

resented by a causal Bayesian network that is a directed acyclic graph (DAG).

Since this model only applies and depends on probability theory and compu-

tation to investigate and identify the statistical one-way dependence, and the

temporal pattern of time interval between alerts are not involved in the correla-

tion process, therefore, this correlation model covers the problem subspaces of

{Non-loop structured, Loose temporal relationship} and {Non-loop structured,

Strong temporal relationship} as shown in Figure 3.

– Granger-Causality-based Alert Correlation Model. We have studied and

developed another statistical and temporal-based correlation mechanisms us-

ing Granger-Causality Test. This correlation engine investigates and tests the

statistical dependency and temporal patterns of alert pairs to identify attack

step relationship. This correlation engine discovers the statistical dependency

among attack steps that has a loop structure (including mutual dependence and

one-way dependence that forms a dependency loop in the attack step depen-

dency graph), i.e., the problem subspace of {Loop structured, Strong temporal

relationship} as shown in Figure 3. In addition, since this correlation engine

performs pairwise correlation, it can also complement causal discovery-based

correlation engine in the problem subspace of {Non-loop structured, Strong

temporal relationship}, as shown in Figure 3, to identify the non-loop depen-

dency pattern missed by causal discovery-based correlation engine.

106

• System Integration and Attack Strategy Analysis. We integrate three complemen-

tary correlation engines to perform alert analysis and correlation. We construct attack

scenarios and conduct attack path analysis based on the output of three correlation

engines. We evaluate and rank the overall likelihood of various attack paths and

provide the security analysts the ones with higher probabilities.

• Attack Plan Recognition and Intention Prediction. We have developed techniques

applied to attack plan recognition and intention prediction. We have developed a

series of techniques to correlate isolated attack scenarios derived from low-level alert

correlation, to recognize the attacker’s attack plan and intentions as well as make

predictions of potential attack intentions based on current observations and analysis.

10.3 Future Work

There are several interesting and important future directions:

• Development of an extra correlation engine to effectively cover a problem subspace.

According to our problem space definition as shown in Figure 2 and Figure 3, we

have developed a Bayesian-based correlation engine to discover alert pairs that have

direct causal relationship. For alert pairs without direct causal relationship, we have

developed two correlation engines to cover the rest of the problem space. In par-

ticular, the correlation engine using causal discovery theory identifies alert pairs that

have strong statistical one-way dependence. GCT-based correlation engine discovers

alert pairs with strong temporal relationship. As discussed in Section 9.1.6, causal

discovery-based and GCT-based correlation engines have their own limitations in

various statistical and temporal pattern space. According to our problem space defi-

nition as shown in Figure 3, the existing three correlation engines do not effectively

cover the problem subspace of {Loop structured, Loose temporal relationship} as

shown in Figure 3. Therefore, it is desired to develop an extra correlation engine to

cover that problem subspace.

107

• Open Questions in Alert Correlation and Attack Plan Recognition. One open prob-

lem is the selection of correlation time window. Currently, we analyze and correlate

alerts with daily schedule. Theoretically, a large correlation window includes more

security alerts that can provide more helpful information for security analysts to iden-

tify attack strategies. However, a large correlation window can result in computation

cost and bring more noise that can affect the correlation accuracy. How to scientifi-

cally set up an optimum correlation window is still an open problem. In attack plan

recognition, one open problem is that how we effectively distinguish the deceptive

plan and the real goal of the attackers. That is, we need to develop a mechanism to

identify and avoid misleading by attackers.

• Early Warning and Attack Prediction. We have done some research on identifying

attacker’s intentions and early warning based on attack transition models and proba-

bilistic inference. The current approach relies on the domain knowledge and attack

evidence. Early warning and attack prediction in a broad scale is very important and

challenging, e.g., early warning of a worm spread in the Internet. Currently, early

warning of attacks (e.g., worm spread) still relies on human intelligence and inter-

vention (e.g., interaction with underground hacker world about new vulnerabilities

or new attack tools). It will be an interesting research area to study and develop new

techniques to provide early warning of intrusions, in particular, those zero-day at-

tacks. In addition, there are still much work to do to improve the accuracy of attack

predictions based on knowledge models.

• Anomaly Detection. Anomaly detection has been studied in intrusion detection com-

munity for many years. Although various techniques have been proposed, the biggest

challenge is still how to decrease the false positive rate. It involves the normal profile

construction and detection models. Among various anomaly detection fields, I have

an interest in application-level anomaly detection. Current approach to application

108

intrusion detection relies on checking application protocol compliance or using at-

tack signatures for pattern matching. How to effectively detect new attacks against

applications beyond the limitation of domain knowledge is a research of interest.

10.4 Conclusions

This dissertation has studied the challenges of alert management and novel attack strategy

detection. We have presented a framework of alert correlation to analyze and correlate

alerts. We have described three complementary correlation engines to discover attack tran-

sition patterns. These three correlation engines analyze attack step relationship from three

different perspectives, i.e., direct causal relationship between alerts, statistical dependence

and temporal relationship. We have also presented an approach to analyze attack scenarios

based on attack path analysis and correlation graphs. Our model of attack plan recogni-

tion and prediction enable attack security analysts to correlate isolated attack scenarios,

identify attack intentions and have an early warning to forthcoming intrusions. We have

examined the effectiveness of our approach using DARPA GCP data sets and live data from

our backbone network.

109

REFERENCES

[1] ALBRECHT, D. and NICHOLSON, A., “Bayesian models for keyhole plan recognition
in an adventure game,” User Modeling and User-Adapted Interaction, pp. 5–47, 1998.

[2] AMOROSO, E., Intrusion Detection: An Introduction to Internet Surveillance, Corre-
lation, Traps, Trace Back, and Response. Intrusion.Net Books, 1999.

[3] ANDERSON, J. P., “Computer security threat monitoring and surveillance,” tech. rep.,
James P. Anderson Company, Fort Washington, Pennsylvania, April 1980.

[4] BAUER, E., KOLLER, D., and SINGER, Y., “Update rules for parameter estimation
in Bayesian networks,” in Proceedings of the Thirteenth Conference on Uncertainty
in Artificial Intelligence (UAI), (Providence, RI), pp. 3–13, August 1997.

[5] BRO, “Bro intrusion detection system.” http://bro-ids.org, 2005.

[6] CABRERA, J. B. D., LEWIS, L., QIN, X., LEE, W., and MEHRA, R., “Proactive
intrusion detection and distributed denial of service attacks - a case study in security
management,” Journal of Network and Systems Management, vol. vol. 10, June 2002.

[7] CABRERA, J. B. D., LEWIS, L., QIN, X., LEE, W., PRASANTH, R. K., RAVICHAN-
DRAN, B., and MEHRA, R. K., “Proactive detection of distributed denial of service
attacks using mib traffic variables - a feasibility study,” in Proceedings of IFIP/IEEE
International Symposium on Integrated Network Management (IM 2001), May 2001.

[8] CABRERA, J. B. D. and MEHRA, R. K., “Extracting precursor rules from time series
- a classical statistical viewpoint,” in Proceedings of the Second SIAM International
Conference on Data Mining, (Arlington, VA, USA), pp. 213–228, April 2002.

[9] CAINES, P. E. and CHAN, C. W., “Feedback between stationary stastic process,”
IEEE Transactions on Automatic Control, vol. 20, pp. 495–508, 1975.

[10] CARBERRY, S., “Incorporating default inferences into plan recognition,” in Proceed-
ings of the Eighth National Conference on Artifici al Intelligence, (Boston, Mas-
sachusetts), pp. 471–478, 1990.

[11] CHARNIAK, E. and GOLDMAN, R. P., “A probabilistic model of plan recognition,” in
Proceedings of the Ninth National Conference on Artifici al Intelligence, (Anaheim,
California), pp. 160–165, 1991.

[12] CHARNIAK, E. and GOLDMAN, R. P., “A bayesian model of plan recognition,” Arti-
ficial Intelligence, vol. 64, pp. 53–79, Novemeber 1993.

[13] CHARNIAK, E. and MCDEMOTT, D., Introduction to Artificial Intelligence. Addison
Wesley, 1985.

110

[14] CHENG, J., GREINER, R., KELLY, J., BELL, D., and LIU, W., “Learning bayesian
networks from data: An information-theory based approach,” Artificial Intelligence,
vol. vol.137, pp. 43–90, 2002.

[15] CHEUNG, S., LINDQVIST, U., and FONG, M. W., “Modeling multistep cyber attacks
for scenario recognition,” in Proceedings of the Third DARPA Information Survivabil-
ity Conference and Exposition (DISCEX III), (Washington, D.C.), April 2003.

[16] CHITTURI, R. V., “Distribution of residual autocorrelations in multiple autoregres-
sive schemes,” Journal of American Statistician Association, vol. 69, pp. 928–934,
1974.

[17] CISCO SYSTEMS, “Cisco security agent.” http://www.cisco.com, 2005.

[18] COHEN, I., BRONSTEIN, A., and COZMAN, F. G., “Online learning of bayesian
network parameters,” Hewlett Packard Laboratories Technical Report, HPL-2001-
55(R.1), June 2001.

[19] COHEN, P. R., PERRAULT, C. R., and ALLEN, J. F., “Beyond question answer-
ing,” in Strategies for Natural Language Processing (LEHNERT, W. and RINGLE,
M., eds.), pp. 245–274, 1981.

[20] COOPER, G. F., “Probabilistic inference using belief networks is np-hard,” Tech. Rep.
KSL-87-27, Stanford University, 1988.

[21] COOPER, G. F. and HERSKOVITS, E., “A bayesian method for constructing bayesian
belief networks from databases,” in Proceedings of the Seventh Conference on Uncer-
tainty in Artificial Intelligence, 1991.

[22] COVER, T. and THOMAS, J., Elements of Information Theory. John Wiley, 1991.

[23] CUPPENS, F. and MIÈGE, A., “Alert correlation in a cooperative intrusion detection
framework,” in Proceedings of the 2002 IEEE Symposium on Security and Privacy,
(Oakland, CA), pp. 202–215, May 2002.

[24] CVE http://www.cve.mitre.org, 2005.

[25] DAPRA CYBER PANEL PROGRAM, “DARPA cyber panel program grand challenge
problem (GCP).” http://www.grandchallengeproblem.net/, 2003.

[26] DEAN, T. and WELLMAN, T., Planning and Control. Morgan Kaufmann, 1991.

[27] DEBAR, H. and WESPI, A., “The intrusion-detection console correlation mecha-
nism,” in 4th International Symposium on Recent Advances in Intrusion Detection
(RAID), October 2001.

[28] DENNING, D., “An intrusion detection model,” IEEE Transactions on Software En-
gineering, vol. 13, February 1987.

111

[29] DICKEY, D. A. and FULLER, W. A., “Distribution of the estimators for autore-
gressive time series with a unit root,” Journal of American Statistician Association,
vol. 74, pp. 427–431, 1979.

[30] FRIEDMAN, N., NACHMAN, I., and PEER, D., “Learning bayesian network structure
from massive datasets: The sparse candidate algorithm,” in Proceedings of the 15th
Conference on Uncertainty in Artificial Intelligence, 1999.

[31] GEIB, C. W. and GOLDMAN, R. P., “Plan recognition in intrusion detection system,”
in DARPA Information Survivability Conference and Exposition (DISCEX II), June
2001.

[32] GEVERS, M. R. and ANDERSON, B. D. O., “Representations of jointly stationary
stochastic feedback processes,” International Journal of Control, vol. 33, pp. 777–
809, 1981.

[33] GOLDMAN, R. P., HEIMERDINGER, W., and HARP, S. A., “Information modeling
for intrusion report aggregation,” in DARPA Information Survivability Conference and
Exposition (DISCEX II), June 2001.

[34] GRANGER, C. W. J., “Investigating causal relations by econometric methods and
cross-spectral methods,” Econometrica, vol. 34, pp. 424–428, 1969.

[35] GROUP, I. I. D. W., “Intrusion detection message exchange format.”
http://www.ietf.org/internet-drafts/draft-ietf-idwg-idmef-xml-09.txt, 2002.

[36] HAINES, J., RYDER, D. K., TINNEL, L., and TAYLOR, S., “Validation of sensor
alert correlators,” IEEE Security & Privacy Magazine, vol. January/February, 2003.

[37] HAMILTON, J., Time Series Analysis. Princeton University Press, 1994.

[38] HAYTER, A. J., Probability and Statistics for Engineers and Scientists. Duxbury
Press, 2002.

[39] HECKERMAN, D., MEEK, C., and COOPER, G. F., “A bayesian approach to causal
discovery,” in Book of Computation, Causation, and Discovery, C. Glymour and G.
Cooper, editors, MIT Press, 1999.

[40] HESSE, W., MOLLER, E., ARNOLD, M., WITTE, H., and SCHACK, B., “Investi-
gation of time-variant causal interactions between two eeg signals by means of the
adaptive granger causality,” Brain Topography, vol. 15, pp. 265–266, 2003.

[41] HOSKING, J. R. M., “Lagrange multiplier tests of multivariate time series models,”
Journal of The Royal Statistical Society Series B, vol. 43, pp. 219–230, 1981.

[42] ILGUN, K., KEMMERER, R. A., and PORRAS, P. A., “State transition analysis: A
rule-based intrusion detection approach,” IEEE Transactions on Software Engineer-
ing, vol. 21, pp. 181–199, March 1995.

112

[43] JAKOBSON, G. and WEISSMAN, M., “Real-time telecommunication network man-
agement: Extending event correlation with temporal constraints,” in Proceedings of
the Fourth IFIP/IEEE International Symposium on Integrated Network Management
(IM 1995), May 1995.

[44] JAKOBSON, G. and WEISSMAN, M. D., “Alarm correlation,” IEEE Network Maga-
zine, November 1993.

[45] JOHANSEN, S., “Statistical analysis of co-integration vectors,” Journal of Economic
Dynamics and Control, vol. 1, pp. 321–346, 1988.

[46] JULISCH, K. and DACIER, M., “Mining intrusion detection alarms for actionable
knowledge,” in The 8th ACM International Conference on Knowledge Discovery and
Data Mining, July 2002.

[47] KAMINSKI, M., DING, M., TRUCCOLO, W. A., and BRESSLER, S. L., “Evaluating
causal relations in neural systems: Granger causality, direct transfer function (dtf) and
statistical assessment of significance,” Biological Cybernetics, vol. 85, pp. 145–157,
2001.

[48] KAUFAMNN, R. K. and STERN, D. I., “Evidence for human influence on climate
from hemispheric temperature relations,” Nature, vol. 388, pp. 39–44, July 1997.

[49] KAUTZ, H. and ALLEN, J. F., “Generalized plan recognition,” in Proceedings of the
Fifth National Conference on Artificia l Intelligence, pp. 32–38, September 1986.

[50] KLIGER, S., YEMINI, S., YEMINI, Y., OSHIE, D., and STOLFO, S., “A coding
approach to event correlations,” in Proceedings of the 6th IFIP/IEEE International
Symposium on Integrated Network Management, May 1995.

[51] KRUGEL, C., TOTH, T., and KERER, C., “Decentralized event correlation for intru-
sion detection,” in Proceedings of the 4th International Conference on Information
Security and Cryptology, 2001.

[52] LEE, H., LIN, K. S., and WU, J., “Pitfalls in using granger causality tests to find an
engine of growth,” Applied Economics Letters, vol. 9, pp. 411–414, May 2002.

[53] LEWIS, L., “A case-based reasoning approach to the management of faults in com-
munication networks,” in Proceedings of the IEEE INFOCOM, 1993.

[54] LJUNG, G. M. and BOX, G. E. P., “On a measure of lack of fit in time series models,”
in Biometrika 65, pp. 297–303, 1978.

[55] LO, C. C. and CHEN, S.-H., “A scheduling-based event correlation scheme for
fault identification in communications network,” Computer Communications, vol. 22,
no. 5, pp. 432–438, 1999.

[56] LO, C. C., CHEN, S.-H., and LIN, B.-Y., “Coding-based schemes for fault iden-
tification in communication networks,” in Proceedings of Military Communications
International Symposium, (Atlantic City, NJ), Nov. 1999.

113

[57] MORIN, B. and DEBAR, H., “Correlation of intrusion symptoms: an application of
chronicles,” in Proceedings of the 6th International Symposium on Recent Advances
in Intrusion Detection (RAID 2003), (Pittsburgh, PA), September 2003.

[58] NING, P., CUI, Y., and REEVES, D. S., “Constructing attack scenarios through corre-
lation of intrusion alerts,” in 9th ACM Conference on Computer and Communications
Security, November 2002.

[59] NING, P. and XU, D., “Learnign attack strategies from intrusion alerts,” in Proceed-
ings of 10th ACM Conference on Computer and Communications Security (CCS’03),
October 2003.

[60] NING, P., XU, D., HEALEY, C., and AMANT, R. A., “Building attack scenarios
through integration of complementary alert correlation methods,” in Proceedings of
the 11th Annual Network and Distributed System Security Symposium (NDSS’04),
(San Diego, CA), February 2004.

[61] NYGATE, Y. A., “Event correlation using rule and object based techniques,” in Pro-
ceedings of the 6th IFIP/IEEE International Symposium on Integrated Network Man-
agement, May 1995.

[62] NYGATE, Y. A. and STERLING, L., “Aspen - designing complex knowledge based
systems,” in Proceedings of the 10th Israeli Symposium on Artificial Intelligence,
Computer Vision, and Neural Netowrk, December 1993.

[63] PAXSON, V., “Bro: A system for detecting network intruders in real-time,” in Pro-
ceedings of the 7th USENIX Security Symposium, (San Antonio, TX), 1998.

[64] PAXSON, V., “Experiences learned from bro,” ;login: The USENIX Association Mag-
azine, September 1999.

[65] PEARL, J., Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann Publishers, Inc, 1988.

[66] PEARL, J., Causality: Models, Reasoning, and Inference. Cambridge University
Press, 2000.

[67] PORRAS, P. A., FONG, M. W., and VALDES, A., “A Mission-Impact-Based approach
to INFOSEC alarm correlation,” in Proceedings of the 5th International Symposium
on Recent Advances in Intrusion Detection (RAID), October 2002.

[68] PORRAS, P. A. and NEUMANN, P. G., “EMERALD: Event monitoring enabling
responses to anomalous live disturbances,” in National Information Systems Security
Conference, (Baltimore MD), October 1997.

[69] QIN, X. and LEE, W., “Statistical causality analysis of INFOSEC alert data,” in
Proceedings of the 6th International Symposium on Recent Advances in Intrusion
Detection (RAID 2003), (Pittsburgh, PA), September 2003.

114

[70] QIN, X. and LEE, W., “Attack plan recognition and prediction using causal net-
works,” in Proceedings of the 20th Annual Computer Security Applications Confer-
ence (ACSAC 2004), (Tucson, AZ), December 2004.

[71] QIN, X. and LEE, W., “Discovering novel attack strategies from INFOSEC alerts,”
in Proceedings of the 9th European Symposium on Research in Computer Security,
(Sophia Antipolis, France), September 2004.

[72] QIN, X. and LEE, W., “Causal discovery-based alert correlation,” in submission to
the 21th Annual Computer Security Applications Conference (ACSAC 2005), (Tucson,
AZ), December 2005.

[73] ROSS, S. M., Introduction to Probability Models. Harcourt Academic Press, 7th ed.,
2000.

[74] SCHMIDT, C., SRIDHARAN, N., and GOODSON, J., “The plan recognition prob-
lem: an intersection of psychology and artificial intelligence,” Artificial Intelligence,
vol. 11, pp. 45–83, 1978.

[75] SCHNEIER, B., Secrets and Lies: Digital Security in a Networked World. John Wiley
& Sons, August 2000.

[76] SHAFER, G., A Mathematical Theory of Evidence. Princeton University Press, 1976.

[77] SHEYNER, O., HAINES, J., JHA, S., LIPPMANN, R., and WING, J. M., “Automated
generation and analysis of attack graphs,” in Proceedings of the 2002 IEEE Sympo-
sium on Security and Privacy, (Oakland, CA), May 2002.

[78] SNORT, “Snort–open source intrusion detectin system.” http://www.snort.org, 2005.

[79] SPIRTES, P., GLYMOUR, C., and SCHEINES, R., Causation, Prediction, and Search.
Springer-Verlag NY, Inc., 1993.

[80] STALLINGS, W., SNMP, SNMPv2, SNMPv3, and RMON 1 and 2. Addison-Wesley,
1999.

[81] SUNSOFT, SunSHIELD Basic Security Module Guide. SunSoft, Mountain View, CA,
1995.

[82] TEMPLETON, S. J. and LEVITT, K., “A requires/provides model for computer at-
tacks,” in Proceedings of New Security Paradigms Workshop, 2000.

[83] VALDES, A. and SKINNER, K., “Probabilistic alert correlation,” in Proceedings of
the 4th International Symposium on Recent Advances in Intrusion Detection (RAID),
October 2001.

[84] WILENSKY, R., Planning and Understanding. Addison Wesley, 1983.

115

VITA

Xinzhou Qin was born in Beijing, China. In 1996, Xinzhou received his Bachelor of En-

gineering degree in Electrical Engineering and graduated with honors from Beijing Uni-

versity of Technology in Beijing, China. Subsequently, he was awarded his Masters of

Science in Electrical Engineering degree from North Carolina State University in Raleigh,

NC in 1998. In 2001, Xinzhou was awarded North Carolina Network Initiatives Fellow-

ship. Xinzhou joined College of Computing at the Georgia Institute of Technology in 2001.

During his study at Georgia Tech, Xinzhou was an award winner of Cisco Systems Infor-

mation Assurance Scholarship in 2003.

Xinzhou’s research efforts and interests include network and system security, in partic-

ular, intrusion detection, alert correlation and security management.

116

