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Abstract
FXIII (Factor XIII) is a Ca2 + -dependent enzyme which forms covalent ε-(γ -glutamyl)lysine cross-links between the
γ -carboxy-amine group of a glutamine residue and the ε-amino group of a lysine residue. FXIII was originally
identified as a protein involved in fibrin clot stabilization; however, additional extracellular and intracellular roles for
FXIII have been identified which influence thrombus resolution and tissue repair. The present review discusses the
substrates of FXIIIa (activated FXIII) involved in thrombosis and wound healing with a particular focus on: (i) the
influence of plasma FXIIIa on the formation of stable fibrin clots able to withstand mechanical and enzymatic
breakdown through fibrin–fibrin cross-linking and cross-linking of fibrinolysis inhibitors, in particular α2-antiplasmin;
(ii) the role of intracellular FXIIIa in clot retraction through cross-linking of platelet cytoskeleton proteins, including
actin, myosin, filamin and vinculin; (iii) the role of intracellular FXIIIa in cross-linking the cytoplasmic tails of
monocyte AT1Rs (angiotensin type 1 receptors) and potential effects on the development of atherosclerosis; and (iv)
the role of FXIIIa on matrix deposition and tissue repair, including cross-linking of extracellular matrix proteins, such
as fibronectin, collagen and von Willebrand factor, and the effects on matrix deposition and cell–matrix interactions.
The review highlights the central role of FXIIIa in the regulation of thrombus stability, thrombus regulation, cell–matrix
interactions and wound healing, which is supported by observations in FXIII-deficient humans and animals.
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INTRODUCTION

FXIII (Factor XIII) structure and mechanism of
action
FXIII is a transglutaminase which catalyses the formation of co-
valent ε-(γ -glutamyl)lysine cross-links between the γ -carboxy-
amine group of a glutamine (amine acceptor) and the ε-amino
group of a lysine (amine donor) residue. Plasma FXIII has a het-
erotetrameric structure composed of pairs of A subunits (83 kDa)
and B subunits (80 kDa) held together by non-covalent inter-
actions (FXIII-A2B2) [1,2], whereas cFXIII-A (cellular FXIII)
exists as an A subunit homodimer [1,3]. The FXIII-A sub-
unit contains the active site of the enzyme and is predomin-
antly synthesised by cells of the monocyte/macrophage, megaka-
ryocyte/platelet, chondrocyte and osteoblast/osteocyte lineages.
[2,4]. However hepatocytes have also been reported to express
low levels of the enzyme [5,6]. The FXIII-B subunit acts as a
carrier protein in plasma for the hydrophobic A subunit and is
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activatable fibrinolysis inhibitor; TAFIa, activated TAFI; TG2, tissue transglutaminase 2; t-PA, tissue-type PA; u-PA, urokinase-type PA; vWF, von Willebrand factor.
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synthesized and secreted by hepatocytes [7]. The cellular origin of
plasma FXIII-A is unclear. Inbal et al. [8] proposed that platelets
were the source of plasma FXIII-A; however, in two independent
transgenic mouse models of thrombocytopenia, plasma levels of
FXIII-A were normal, suggesting that, instead of platelets, cells
of the monocyte lineage may be the source of plasma FXIII-A
[9].

Activation of plasma FXIII-A2B2 is initiated upon the cleav-
age of the peptide bond between Arg37 and Gly38 of FXIII-A by
thrombin and the release of the 37-amino-acid activation peptide
[10]. Binding of FXIII-A2B2 via FXIII-B to non-cross-linked
fibrin polymers allows the optimal orientation for FXIII-A cleav-
age of the activation peptide [11]. In the presence of Ca2 + and
fibrin [12], thrombin-cleaved FXIII-A undergoes several con-
formational changes; initially FXIII-B dissociates from FXIII-A
and then re-orientation of FXIII-A leads to exposure of the act-
ive site, forming FXIIIa (activated FXIII) [13] (Figure 1). Once
cross-linking of the fibrin γ -chains occurs, the effect of fibrin
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Figure 1 Mechanism of FXIII activation
(A) Activation of plasma FXIII-A2B2. In the presence of thrombin and Ca2 + , the activation peptide is cleaved off, followed
by dissociation of the B chains yielding FXIII-A2/FXIIIa. (B) Activation of cellular FXIII-A. In the presence of Ca2 + , cFXIII-A2
undergoes a conformational change yielding activated cFXIII-A.

on FXIII-A activation is lost, suggesting that fibrin cross-linking
down-regulates FXIII-A activation [14]. Activation of cFXIII-A
occurs in the presence of Ca2 + alone, with intracellular Ca2 +

concentrations above 2 mM required for activation [15].
The active site of FXIII-A contains a catalytic triad made up of

Cys314, which is required for the catalytic activity, and His373 and
Asp396, which are hydrogen-bonded to Cys314 [16,17]. FXIIIa
uses a double displacement mechanism for cross-linking pro-
teins, which has been described in detail previously [18]. In the
initial stage of cross-link formation, Cys314 attacks the glutamine
γ -carboxyamide group of a glutamine acceptor protein, displa-
cing a molecule of ammonia to form a thioester intermediate. In
the second stage, the reactive thioester intermediate is attacked
by the lysine ε-amino group of the amine donor protein, displa-
cing Cys314 and resulting in the formation of an isopeptide bond
between the two substrate proteins and the release of FXIIIa (Fig-
ure 2). In the absence of lysine residues, water reacts with the
thioester intermediate converting glutamine into glutamic acid
[18].

A variety of methods have been employed to identify and
characterize the substrates for FXIIIa. Potential glutamine sites in
proteins have been identified by FXIIIa-catalysed incorporation
of primary amines, such as putrescine [19–25], dansylcadaverine
[21,22,26–28] and 5-(biotinamido)pentylamine [29,30]. Altern-
atively, labelled synthetic peptides have been designed to incor-
porate into the lysine residues of FXIIIa substrates [26]. In several
cases, reactive glutamine and lysine residues have been charac-
terized by MS and Edman sequencing analysis [19,29–31], as
summarized in Figure 2. Recombinant proteins containing muta-
tions in the glutamine [29,32] and lysine sites have also been used
to confirm the importance of these residues in the cross-linking
reaction.

The following sections provide an overview of the identifica-
tion and characterization of key substrates for FXIIIa (summar-
ized in Table 1), focusing on those substrates with known or po-
tential roles in thrombosis and wound healing to provide insights
into the potentially diverse roles of FXIIIa in the pathophysiology
of cardiovascular disease.

SUBSTRATES OF FXIII INFLUENCING THE
COMPONENTS OF THE COAGULATION
CASCADE

The coagulation cascade is activated upon vascular damage,
resulting in the sequential cleavage and activation of coagula-
tion factors and culminating in thrombin generation and fibrin
formation. FXIIIa-dependent cross-linking of fibrin results in the
formation of a stable fibrin meshwork that is able to withstand me-
chanical pressures and enzymatic breakdown (Figure 3) [33].

Inter-molecular fibrin chain cross-linking
Fibrin is formed by thrombin-mediated cleavage of fibrinogen
(2Aα, 2Bβ and 2γ ) in the final stages of activation of the coagula-
tion cascade. Thrombin sequentially cleaves the short N-terminal
fibrinopeptides A and B from the fibrinogen Aα and Bβ chains
respectively, to initiate fibrin protofibril formation, lateral aggreg-
ation and formation of trimolecular and tetramolecular branch
points, which ultimately lead to the formation of a complex fibrin
network [34,35]. The fibrin clot is stabilized by FXIIIa-induced
cross-linking between fibrin γ chains and fibrin α chains [33,36],
which increase the stiffness and reduce the stretch of the fibrin
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Figure 2 Methodology for the identification of FXIII-A substrates
FXIIIa forms an isopeptide bond between a glutamine-containing protein and a lysine-containing protein. Alternatively,
the lysine- and glutamine-containing proteins can be replaced by synthetic peptides in the cross-linking reaction. FXIII-A
substrates have been identified by MS and sequence information obtained by Edman sequencing.

network [37], thus providing the important structural framework
of a thrombus.

FXIIIa rapidly forms cross-links between γ chains of fibrin
molecules to form γ -dimers [38,39]. Cross-link formation oc-
curs between Lys406 on one γ chain and either Gln399 or Gln398

on the neighbouring γ chain; however, FXIIIa shows increased
specificity for Gln398 over Gln399 [40]. There has been much de-
bate regarding the orientation of γ chain cross-links [41,42], with
several studies suggesting that cross-linked γ chains are longit-
udinal with isopeptide bonds forming end-to-end between fibrin
molecules [43,44], whereas others suggest that isopeptide bonds
are aligned between fibrin protofibrils in the transverse orienta-
tion [45]. Definitive experiments to clarify the orientation are yet
to be reported.

The fibrin α chain is cross-linked by FXIIIa to form α-
polymers, albeit at a much slower rate compared with γ –γ

cross-links [39]. Reactive glutamine residues of the α chain have
been located at positions Gln221, Gln237, Gln328 and Gln366 using
primary amines [46,47]. A number of lysine donor sites in the
α chain have been identified by their ability to incorporate an
N-terminal peptide of α2-antiplasmin, including Lys556, Lys539,
Lys508, Lys580, Lys418, Lys448, Lys601, Lys606, Lys427, Lys429,
Lys208, Lys224 and Lys219 [47,48]. Cross-link formation occurs
between Gln223 and either Lys508 or Lys539, between Gln237 and
Lys418, Lys508, Lys539 or Lys556, between Gln366 and Lys539,
and between Gln563 and either Lys539 or Lys601 [49]. The multiple
lysine donor sites identified in the α chain provide the opportun-
ity for the formation of a complex fibrin polymer while retaining
the possibility of cross-linking numerous other plasma proteins
to fibrin [47,48].

Studies measuring the elastic modulus of fibrin clots suggest
that α chain cross-linking increases clot stability and rigidity
[50,51] by promoting protofibril aggregation and the formation
of thicker fibres [52]. Clot rigidity is also dependent on the form-
ation of γ chain cross-links. Site-directed mutagenesis of Lys406,
Gln399 and Gln398 within the γ chain has demonstrated that γ -
dimers produce maximal clot stiffness, whereas γ –α heteropoly-
mers produce minimal increases in the strength of the fibrin fibres
[38]. Fibrin is degraded by plasmin within the coiled-coil loc-
ated between regions D and E. Resistance of the fibrin clot to
plasmin-mediated fibrinolysis was found to be independent of
γ -dimer formation [38,53], whereas the formation of γ -
multimers or highly complex α polymers conferred increased
resistance to fibrinolysis [53].

Cross-linking of FV (Factor V)
FV is a single-chain glycoprotein found in plasma and platelet
α-granules. During activation of the coagulation cascade, FV
is proteolytically activated by thrombin, resulting in the release
of two activation peptides (M r = 150 000 and 71 000) and the
formation of FVa (activated FV). FVa binds to FXa (activated
Factor X) and is a co-factor for the FXa-mediated cleavage of
pro-thrombin, leading to thrombin generation and fibrin forma-
tion. FVa is inactivated by cleavage by the natural anticoagulant
activated protein C, leading to down-regulation of thrombin gen-
eration [54].

Activated and zymogen FV form high-molecular-mass poly-
mers in the presence of FXIIIa, with cross-linking occurring
between the large activation peptide and FVa [22], suggest-
ing that FV contributes both glutamine and lysine residues in
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Table 1 Summary of the reactive glutamine and lysine cross-linking sites of FXIIIa substrates and the systems in which
the cross-linking reactions were performed
HEK, human embryonic kidney; HUVEC, human umbilical vein endothelial cell.

Cross-linking Type of Purified/plasma/cell

Protein Cross-linking sites substrate transglutaminase system

Fibrin α chain [39,46–49] Gln221, Gln237, Gln328 Gln366,
Lys556, Lys539, Lys508,
Lys580, Lys583, Lys418,
Lys448, Lys601, Lys606,
Lys427, Lys446, Lys429,
Lys208, Lys224 and Lys219

Fibrin α chain and fibrin
γ chain

FXIII-A and TG2 Purified fibrin, plasma and
thrombi

Fibrin γ chain [38–40] Gln399, Gln398 and Lys406 Fibrin γ chain and fibrin
α chain

FXIII-A and TG2 Purified fibrin, plasma and
thrombi

FV [22,55] − FV FXIII-A Purified FV

Thrombospondin-1
[24,25,57]

− Thrombospondin-1 and
fibrin α chain

FXIII-A Purified thrombospondin-1 and
plasma

α2-Antiplasmin
[27,29–31,60,141]

Gln2, Gln21, Gln419 and Gln447 Fibrin α chain Lys303 FXIII-A and TG2 Purified α2-antiplasmin and
plasma

TAFI [26,65,66] Gln2, Gln5 and Gln292 TAFI and fibrin α chain
Lys77, Lys79 and
Lys212

FXIII-A and TG2 Purified TAFI and plasma

Vitronectin [19,20] Gln93, Gln73, Gln84 and Gln86 Vitronectin FXIII-A and TG2 Purified vitronectin

α2-Macroglobulin [21,28] Gln670 and Gln669 Unknown FXIII-A and TG2 Purified α2-macroglobulin

Actin [72] Gln41 Fibrin α chain cFXIII-A Purified actin

Myosin [71] − Myosin cFXIII-A Purified myosin

Vinculin [73] − Unknown cFXIII-A Immunoblotting of platelet
lysate

Filamin [73] − Unknown cFXIII-A Immunoblotting of platelet
lysate

AT1R [108] Gln315 AT1R cFXIII-A Immunoblotting in HEK cells
and patient monocytes

Fibronectin
[23,32,83,84,111]

Gln3, Gln4 and Gln16 Fibrin α chain and
collagen

FXIII-A and TG2 Purified fibronectin,
immunohistochemistry in
pre-osteoblasts, platelet
aggregation under flow and
fibroblast and
megakaryocyte spreading

Type I, II, III and V collagen
[90–92,111]

− Fibronectin and vWF FXIII-A Purified collagen,
immunohistochemistry in
pre-osteoblasts and
megakaryocyte spreading

vWF [95–97] Gln313 and Gln560 Fibrin α chain, collagen
and laminin

FXIII-A Purified vWF, plasma and
in vitro cross-linking to
purified collagen and
laminin

Plasminogen [99,100] Lys298 and Gln322 Plasminogen,
fibronectin and
endothelial cells

FXIII-A and TG2 Purified plasminogen and
HUVECs

PAI-2 [102,104-106] Gln83, Gln84 and Gln86 Fibrin α chain Lys148,
Lys176, Lys230 and
Lys413

FXIII-A and TG2 Purified PAI-2 and extracts of
arterial/venous thrombi

Osteopontin [115–117] Gln34 and Gln36 Osteopontin FXIII-A and TG2 Purified osteopontin

Glu-tubulin [119] − Unknown cFXIII-A Immunofluoresence staining
in pre-osteoblasts

the cross-linking reaction [55]. Putrescine and dansylcadaver-
ine can be incorporated into the large activation peptide of FV
by FXIIIa, as determined by SDS/PAGE and fluorography [22],
suggesting the activation peptide contains glutamine residues
for the transamidation reaction; however, the specific reactive

glutamine and lysine residues of FV have yet to be identi-
fied. Cross-linking between FV and other plasma proteins has
not been identified and the physiological role of FV cross-
linking is unknown; however, cross-linking of either putrescine
or dansylcadaverine did not prevent thrombin cleavage of FV,
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Figure 3 Role of cross-lining in thrombus consolidation and extracellular matrix attachment
Following tissue damage, the coagulation cascade is activated to generate thrombin. Thrombin cleaves fibrinogen to form
fibrin and activates platelets and plasma FXIII-A. Activated platelets undergo conformational changes due to the cross-link-
ing of cytoskeleton proteins by cFXIII-A and some form COAT platelets, thus aiding pro-thrombinase activity. Plasma FXIII-A
cross-links fibrin to produce the structural framework of a thrombus, whereas cross-linking of the fibrinolysis inhibitors dur-
ing fibrin formation is essential in protecting the forming clot from plasmin-mediated lysis. Cross-linking of matrix proteins
fibronectin, collagen and vWF may be important in cell–matrix interactions and cross-linking of PAI-2 and plasminogen to
matrix components suggests a role in localized regulation of plasmin generation and matrix metalloproteinase activation.

suggesting the site for thrombin cleavage is accessible following
cross-linking [22].

Cross-linking of thrombospondin-1
Thrombospondin-1 is a glycoprotein released by α-granules
of activated platelets and plays a role in platelet aggrega-
tion [56]. Thrombospondin-1 covalently incorporates putres-
cine in the presence of FXIIIa and forms intermolecular cross-
links to itself by assembling as homopolymers, suggesting
that thrombospondin-1 can provide both glutamine and lysine
residues in the cross-linking reaction [24,25], although the spe-
cific residues are currently unknown. Thrombospondin-1 par-
tially digested by thrombin incorporated a larger quantity of pu-
trescine compared with the native protein, suggesting that throm-
bin digestion exposes additional glutamine sites for cross-linking
[24]. Radioactively labelled thrombospondin-1 is incorporated
into purified and plasma clots, with greater incorporation oc-
curring in the presence of FXIIIa [57], due to the formation of
cross-links between thrombospondin-1 and the fibrin α chain
[24,25]. Cross-linking of thrombospondin-1 into fibrin clots was
found to increase the density of the fibrin clot in a concentration-
dependent manner [57], although the effects on fibrin function
have not yet been investigated.

In summary, FXIIIa plays a major role in coagulation through
the cross-linking of fibrin to produce the structural framework
of a thrombus, which is able to withstand mechanical break-
down. The role of FV and thrombospondin-1 cross-linking in
thrombus formation remains unclear; however, evidence sug-
gests the function of FV is unaffected by cross-linking, whereas
thrombospondin-1 cross-linking influences clot structure and
therefore potentially fibrin function.

SUBSTRATES OF FXIII INFLUENCING THE
FIBRINOLYTIC SYSTEM

Fibrinolysis is mediated by the serine protease plasmin. Plas-
min is produced from the inactive zymogen plasminogen by
the PAs (plasminogen activators), u-PA (urokinase-type PA) and
t-PA (tissue-type PA). Upon activation, plasmin breaks down fib-
rin into fibrin degradation products. Regulation of fibrinolysis
occurs via several mechanisms, including modulation of plas-
minogen binding, plasminogen activation and plasmin inhibition.
Many of these effects are influenced by FXIIIa-dependent cross-
linking reactions, as outlined below and in Figure 3.

Cross-linking of α2-antiplasmin
The serine protease inhibitor α2-antiplasmin is a glycoprotein
that forms a covalent bond with the active-site serine residue of
plasmin, inhibiting plasmin activity and thus plasmin-induced
breakdown of fibrin. In plasma there are two N-terminal forms of
circulating α2-antiplasmin: Met-α2-antiplasmin (464 residues)
and Asn-α2-antiplasmin (452 residues). Met-α2-antiplasmin is
proteolytically cleaved by APCE (antiplasmin-cleaving enzyme)
between Pro12 and Asn13, resulting in Asn-α2-antiplasmin.
α2-Antiplasmin is cross-linked to the fibrin α chain and this reac-
tion occurs 13 times faster for Asn-α2-antiplasmin than Met-α2-
antiplasmin and, as a direct consequence, inhibition of fibrinolysis
is more effective upon cross-linking of Asn-α2-antiplasmin [58].
Gln2 within Asn-α2-antiplasmin is specifically cross-linked to
Lys303 of the fibrin α chain [31]. Gln2 was found to be the
primary residue susceptible to FXIIIa cross-linking as it read-
ily incorporated [14C]histamine [59], and a synthetic peptide
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comprising residues 1–12 of Asn-α2-antiplasmin was found to
compete with wild-type α2-antiplasmin for FXIIIa cross-linking
both in a purified [60] and plasma-based [61] system. Mutant
Asn-α2-antiplasmin, formed by replacing Gln2 with alanine,
incorporated 5-(biotinamido)pentylamine into three alternative
sites, including Gln21, Gln419 and Gln447, in the presence of
FXIIIa, suggesting that FXIIIa has the potential to cross-link
a number of sites; however, incorporation at these sites was
markedly less efficient compared with Gln2 [29,30].

Clots produced from plasma deficient in α2-antiplasmin
lyse readily, even after suspension into plasma containing
physiological concentrations of α2-antiplasmin, whereas clots
formed using α2-antiplasmin-deficient plasma supplemented
with α2-antiplasmin prior to clotting prevented fibrinolysis in
a concentration-dependent manner [62]. Thrombi deficient in
either FXIII-A or α2-antiplasmin lyse at significantly faster
rates compared with thrombi containing both FXIII-A and
α2-antiplasmin [63], and incorporation of the synthetic Asn-
α2-antiplasmin residues 1–12 peptide competed with native α2-
antiplasmin for cross-linking and accelerated fibrinolysis [61].
These findings highlight the importance of cross-linking of α2-
antiplasmin to fibrin during clot formation to provide protection
from plasmin-mediated lysis.

Cross-linking of thrombin activatable fibrinolysis
inhibitor
During fibrinolysis, plasmin cleaves fibrin exposing C-terminal
lysine and arginine residues which act as cofactors for plas-
minogen binding and tPA-mediated plasmin generation. The
pro-carboxypeptidase TAFI (thrombin activatable fibrinolysis in-
hibitor) undergoes proteolysis by the thrombin–thrombomodulin
complex to form the carboxypeptidase TAFIa (activated TAFI),
which inhibits plasminogen activation and therefore fibrinolysis
[64]. TAFIa removes the C-terminal lysine and arginine
residues preventing plasminogen binding and plasmin genera-
tion. Physiological concentrations (70–250 nM) of TAFIa also
inhibit plasmin directly to further inhibit fibrinolysis [64].

TAFI incorporates both dansylcadaverine and dansyl-
PGGQQIV in the presence of FXIIIa and TG2 (tissue trans-
glutaminase 2) forming homopolymers, indicating it contains
amine acceptor and donor sites. The reactive glutamine sites have
been identified as Gln2, Gln5 and Gln292 [26]; however, currently
the reactive lysine sites are unknown. TAFI is also cross-linked
to fibrin by FXIIIa and TG2 as determined by SDS/PAGE [26],
and Gln2 and Gln5 within the activation peptide of TAFI are
capable of cross-linking to Lys212, Lys77 and Lys79 of the fibrin
α chain [65]. In plasma and whole-blood thrombi, neutralization
of TAFIa by a carboxypeptidase inhibitor conferred an increase in
lysis rates [66], suggesting TAFIa remains functional after cross-
linking. FXIIIa-mediated cross-linking of TAFI may therefore
serve to localize TAFI to sites of thrombus formation.

Cross-linking of vitronectin
Vitronectin is a plasma glycoprotein present in megakaryocytes
and platelet α-granules. Vitronectin is involved in the regulation
of coagulation, fibrinolysis, complement and cell adhesion, and
is a carrier protein for PAI (PA inhibitor)-1 [67]. Putrescine is

readily incorporated into vitronectin in the presence of FXIIIa,
as determined by MS analysis, and Edman sequencing of the
tryptic peptides indicated the predominant incorporation of pu-
trescine at Gln93, with minor incorporation at Gln73, Gln84 and
Gln86 [19]. In the presence of FXIIIa, vitronectin forms homod-
imers, suggesting that vitronectin contains reactive glutamine
and lysine residues [20]; however, the lysine residues have not
been identified. Although vitronectin is incorporated into fibrin
clots, this was found to be independent of FXIIIa, suggesting that
vitronectin binds rather than is cross-linked to fibrin [67]. Fibrin-
bound vitronectin is important for PAI-1 binding to fibrin and
PAI-1-mediated inhibition of t-PA, suggesting that vitronectin
plays an essential role in preventing fibrinolysis [68]. Whether
vitronectin is incorporated into other proteins is currently unclear.

Cross-linking of α2-macroglobulin
α2-Macroglobulin is a plasma glycoprotein which inhibits
several proteolytic enzymes, such as thrombin and plasmin.
α2-Macroglobulin binds and forms a complex with plasmin
and, although the rate of complex formation is slower than that
of α2-antiplasmin and plasmin, complex formation begins before
α2-antiplasmin saturation, supporting a role of α2-macroglobulin
as a secondary inhibitor of fibrinolysis with physiological relev-
ance [69]. α2-Macroglobulin is a substrate for FXIIIa as it readily
incorporates dansylcadaverine [21,28] and putrescine [21] into a
major site at Gln670 and a minor site at Gln669 [21]. Although α2-
macroglobulin contains reactive glutamine sites, the substrate(s)
to which α2-macroglobulin is cross-linked has not been identified
to date. Unlike α2-antiplasmin, α2-macroglobulin is not cross-
linked to fibrin [28], suggesting that α2-macroglobulin may be
important for the protection of other clot or matrix proteins from
proteolytic cleavage.

In summary, FXIIIa-dependent cross-linking of the fib-
rinolysis inhibitors during fibrin formation is essential in protect-
ing the forming clot from plasmin-mediated lysis. In particular,
cross-linking of α2-antiplasmin to fibrin appears to be the primary
mechanism for FXIIIa-dependent prolongation of fibrinolysis
[63]. Cross-linking of TAFI, vitronectin and α2-macroglobulin
may play a secondary more localized role in the modulation of
fibrinolysis and/or proteolysis of extracellular matrix proteins.

SUBSTRATES OF FXIII INFLUENCING
CELLULAR FUNCTION AND EXTRACELLULAR
MATRIX FORMATION AND STABILITY

A number of cell types contain cFXIII-A, which appears to be
located primarily in the cytosol; however, in macrophages the
association of cFXIII-A with other compartments, including
the nucleus and plasma membrane, has also been described [70].
A previous study found that cFXIII-A is enriched in plasma-
membrane-associated structures resembling cell adhesions that
also contain certain Golgi proteins [9], suggesting a possible path-
way for externalization of cFXIII-A, which may contribute to the
plasma pool. As outlined below, cFXIII-A and plasma FXIII-A
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contribute to both intracellular and extracellular processes to
modulate cell/protein interactions (Figure 3).

Cross-linking of the platelet cytoskeleton
The platelet cytoskeleton is made up of actin filaments which
provide support to the plasma membrane allowing it to change
from a discoidal shape in a resting platelet to a sphere with filo-
podia in an activated platelet ready for clot retraction. Some of
the first cytoskeletal proteins to be identified as FXIIIa substrates
were myosin and actin [71,72]. Fluorescence analysis of dansyl-
cadaverine incorporation into myosin by SDS/PAGE suggested
that most of the incorporation occurred in the myosin heavy
chain; however, a small amount of incorporation was also ob-
served within the myosin light chain. The myosin heavy chain
has been shown to form highly cross-linked polymers in the
presence of FXIIIa, suggesting the presence of both FXIIIa-
reactive glutamine and lysine residues [71]. Dansylcadaverine
cross-linking to platelet actin occurs at a slow rate, with incuba-
tion times of 8 h and high FXIIIa/actin ratios required [72]. Actin
subunits also form intermolecular cross-links in the presence
of FXIIIa, suggesting this protein also contains FXIIIa-reactive
glutamine and lysine residues [72]. A more recent study failed to
demonstrate cross-linking of platelet actin in activated platelets;
however, platelet activation was essential for binding of cFXIII-A
to actin, allowing it to be translocated to the platelet periphery
upon actin polymerization [73]. The translocation of cFXIII-A
to the platelet periphery may be essential for the cross-linking
of cytoskeleton proteins such as vinculin, which is also redis-
tributed to the platelet periphery during platelet activation [74].
Both vinculin and filamin are cross-linked in activated platelets,
as demonstrated by the formation of high-molecular-mass com-
plexes; however, platelet aggregation was required for vinculin
cross-linking [73]. In platelets deficient in cFXIII-A, binding of
fibrinogen is reduced upon thrombin receptor agonist peptide
stimulation and platelet spreading is delayed [75]. These findings
suggest a role for cFXIII-A in stabilizing and strengthening the
platelet cytoskeleton prior to clot retraction. A role for cFXIII-A
in clot retraction is supported by studies in FXIII-A-knockout
mice in which clot retraction does not occur [76]. Clot retrac-
tion following supplementation with plasma FXIII-A was only
partially restored, suggesting both extracellular and intracellular
FXIII play a role in clot retraction in mice.

Cross-linking in COAT (collagen- and thrombin-
activated) platelet formation
COAT platelets are a subset of thrombin and type I and
V collagen-activated platelets characterized by the presence
of high surface concentrations of α-granule proteins, includ-
ing FV, fibrinogen, vWF (von Willebrand factor), fibronectin,
α2-antiplasmin and thrombospondin. The presence of pro-
thrombotic proteins on the surface of COAT platelets make
them highly likely to contribute to thrombosis compared with
non-COAT platelets. As highlighted above, these proteins are
also known FXIIIa substrates, suggesting that FXIIIa-dependent
cross-linking may be important in formation of COAT plate-
lets. To confirm this, Dale et al. [77] monitored COAT
platelet formation following incubations with dansycadaverine,

S4732 (an FXIIIa active-site inhibitor) and antibodies inhibiting
FXIII-A activation and activity. By preventing FXIIIa activity
the appearance of protein complexes on COAT platelets was sig-
nificantly reduced, even though protein was still released from
α-granules. That study showed further that cross-link formation
occurred between released α-granule proteins and serotonin [77].
Szasz and Dale [78] found that proteins cross-linked to serotonin
bound to a currently unknown serotonin-binding site on fibrino-
gen and thrombospondin and proposed a model for COAT plate-
let formation whereby fibrinogen and FV initially bind to their
respective receptors on platelets [GP (glycoprotein) IIb/IIIa and
phosphatidylserine], followed by binding of thrombospondin and
other proteins cross-linked to serotonin to fibrinogen and throm-
bospondin via the serotonin-binding sites to form a complex
network of proteins [78]. As COAT platelet formation does not
occur on all platelets, it suggests that α-granule secretion, FXIII-
A activity, phosphatidyl exposure and GPIIb/IIIa activation all
need to coincide. The importance COAT platelets and, in particu-
lar, serotonin cross-linking in thrombus formation is highlighted
in patients undergoing treatment with fluoxetine (which decreases
platelet serotonin levels) where a tendency for mild bleeding is
observed [79].

Cross-linking of fibronectin
Fibronectin is a glycoprotein which plays important roles in cell
adhesion, migration and tissue repair due to its ability to bind
molecules such as cell-surface integrins, fibrin, collagen and hep-
arin [80,81]. Fibronectin exists in two forms. Plasma fibronectin is
a disulfide-bonded dimer produced by hepatocytes, which plays a
major role in extracellular matrix formation. Cellular fibronectin
is synthesized locally in tissues by a variety of cells, includ-
ing fibroblasts, myoblasts, macrophages, epithelial cells, smooth
muscle cells, hepatocytes, chondrocytes, osteoblasts, Schwann
cells and astroglial cells, as dimers and multimers and is more
important in mediating cell–matrix interactions rather than mat-
rix formation [82].

Fibronectin is cross-linked to the fibrin α chain by FXIIIa [83],
initially forming heterodimers, which upon further cross-linking
form high-molecular-mass polymers as observed by SDS/PAGE
[84]. Early studies of bovine fibronectin demonstrated cross-
linking of putrescine to Gln3 [23]. Corbett et al. [32] subsequently
demonstrated that Gln3, Gln4 and Gln16 were potential cross-
linking sites in human fibronectin, as recombinant fibronectin
containing mutations at Gln3 and Gln4 resulted in a 65 % reduc-
tion in cross-linking compared with wild-type fibronectin, and
additional mutation at Gln16 resulted in a complete loss of cross-
linking [32]. To date, the lysine residues which participate in
fibrin to fibronectin cross-linking have not been determined.

Several studies have investigated the role of fibronectin
cross-linking on clot formation. Cross-linking of fibronectin
to fibrin produces significantly more dense clots with smaller
pores; however, clot rigidity was unaffected by fibronectin at
physiological concentrations [84–87]. Perfusion of platelets over
a matrix containing either fibrin or fibronectin alone or cross-
linked fibronectin–fibrin in a parallel plate flow chamber indic-
ated increased platelet adhesion and aggregation to cross-linked
fibronectin–fibrin compared with fibrin or fibronectin alone [88].
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The extent of platelet thrombus formation was also shown to be
dependent on the concentration of fibronectin cross-linked to fib-
rin [88]. Cross-linking of fibronectin to fibrin is also required for
fibroblast adhesion and spreading on fibronectin, suggesting that
covalent interactions may induce structural changes within the
protein which provide access to the adhesive domain [32]. Cross-
linking by FXIIIa is also required for megakaryocyte spreading
and fibronectin matrix assembly on spread megakaryocytes in-
cubated on type I collagen [89]. These findings suggest diverse
roles for FXIIIa-dependent cross-linking of fibronectin in throm-
bosis and wound healing, including extracellular matrix assembly,
platelet thrombus formation and cell–matrix interactions.

Cross-linking of collagen
Collagen forms a major component of the extracellular matrix and
exposure of collagen to flowing blood initiates thrombus form-
ation. Type I, II, III and V collagens are cross-linked by FXIIIa
to fibronectin [90,91]. During the cross-link reaction collagen
provides the lysine residues, whereas fibronectin provides the
glutamine residues [92]. Although the reactive lysine residue(s)
of collagen is currently unknown, type I collagen competitively
inhibits the cross-linking of fibronectin to fibrin, suggesting that
Gln3, Gln4 or Gln16 of fibronectin are probable sites for cross-
linking to collagen [90]. Cross-linking of fibronectin to collagen
may play an important physiological role in extracellular matrix
formation and wound healing.

Cross-linking of vWF
vWF is a plasma glycoprotein composed of 250 kDa subunits
held together by disulfide links to form large multimers, which
are important for vWF–platelet interactions. vWF is present in
platelet α-granules and endothelial cell Weibel–Palade bodies,
and plays an essential role in the initial adhesion of platelets
to subendothelial collagen at sites of vascular injury and as a
carrier of FVIII (Factor VIII), providing protection from proteo-
lytic degradation in plasma [93]. Multimeric vWF molecules are
not cross-linked to each other by FXIIIa, but can incorporate
putrescine, suggesting that only glutamine residues are avail-
able for cross-linking [94]. Studies of bovine vWF have shown
that Gln313, Gln509, Gln560 and Gln634 are susceptible to FXIIIa
cross-linking as dansylcadaverine is readily incorporated at these
residues [95]; however, only Gln313 and Gln560 are conserved in
human vWF, suggesting these may be the residues involved
in cross-linking vWF.

In a purified system, multimeric vWF was found to covalently
cross-link to the fibrin α chain as both vWF–α chain heterodimers
and high-molecular-mass polymers were observed. vWF was also
found to incorporate into fibrin in a plasma-based system; how-
ever, clotting times of 3 h were required [94]. In the presence
of FXIIIa, vWF is also covalently cross-linked to components of
the basement membrane, such as type I and III collagen [96]
and laminin [97]. Subendothelial vWF plays an essential role in
primary haemostasis by binding to platelet GPIb–IX–V receptors
to promote platelet adhesion and thrombus formation at sites of
vascular damage; however, the specific role of vWF cross-linking
to extracellular matrix components remains unclear.

Cross-linking of plasminogen
Plasminogen is produced by the liver as an inactive precursor,
which is converted into the serine protease plasmin upon cleavage
by u-PA or t-PA. Plasmin is responsible for fibrinolysis and also
the activation of matrix metalloproteinases, which play important
roles in tissue repair [98]. Plasminogen incorporates dansylcada-
verine and dansyl-PGGQQIV in the presence of FXIIIa, indicat-
ing the presence of both reactive glutamine and lysine residues
[99]. The incorporation sites were identified as Lys298 and Gln322

by Edman sequencing analysis [100]. Plasminogen molecules
become cross-linked to each other within 5 min of incubation
with FXIIIa, and plasminogen is also cross-linked to fibronectin
by FXIIIa and TG2, forming heteropolymers [99]. Plasminogen
cross-linking occurs extensively on endothelial cell surfaces and
remains activatable by t-PA to form plasmin [99]. This suggests a
localized role of plasminogen at the cell surface and extracellular
matrix in generating plasmin to limit thrombus formation and
in the activation of matrix metalloproteinases involved in matrix
remodelling and angiogenesis [101].

Cross-linking of PAI-2
PAI-1 and PAI-2 form complexes with free PA, preventing plas-
min generation and therefore fibrinolysis and proteolysis [102].
PAI-2 is predominantly an intracellular protein expressed in
monocytes, endothelial cells, fibroblasts and smooth muscle cells
and, as a result, is localized to the extracellular matrix. Although
secreted as a 60 kDa glycoprotein, the plasma levels are extremely
low [103], suggesting PAI-2 influences tissue repair by modulat-
ing proteolysis at sites of vascular injury. PAI-2 has been shown
to be cross-linked to fibrin and contains three glutamine residues
susceptible to cross-linking: Gln83, Gln84 and Gln86, which are
located away from the PAI-2 active site in a 33-amino-acid ex-
tended loop region between helices C and D [104]. Recombinant
peptides of PAI-2 residues 80–90, mutated at either Gln83 or
Gln86 demonstrated reduced competition with wild-type PAI-2
for FXIIIa cross-linking [102]. MS analysis of a tryptic peptide
containing the three glutamine residues showed that only one
putrescine unit is attached to PAI-2 at any one time, suggesting
that these sites are not cross-linked simultaneously [104]; how-
ever, the preferred site of incorporation has yet to be defined.
PAI-2 is cross-linked to the fibrin α chain [105,106] at positions
Lys148 and Lys176 in the coiled-coil region and Lys230 and Lys413

located in the flexible C-terminal domain [106]. Fibrin α chain
cross-linking was unaffected by the presence of PAI-2 [105], and
PAI-2 cross-linked to fibrin remained functional as both u-PA
[102] and t-PA [106] were inhibited in a dose-dependent manner
thus preventing fibrinolysis. Although PAI-2 is predominantly an
intracellular protein, secreted PAI-2 cross-linked to fibrin may
provide localized inhibition of fibrinolysis at the site of vascular
damage [102]. Whether PAI-2 is cross-linked to other extracell-
ular matrix proteins is currently unknown.

Cross-linking of AT1R (angiotensin type 1 receptor)
AT1R is a G-protein-coupled receptor activated by binding of
its ligand AngII (angiotensin II), which is formed during ac-
tivation of the RAS (renin–angiotensin system) [107]. Activa-
tion of monocyte AT1R results in increased cell activation and
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Figure 4 Role of FXIII in cells of a bone lineage
In osteoblasts, FXIII-A aids osteoblast differentiation. cFXIII-A promotes secretion of type I collagen and fibronectin due to
cross-linking of glu-tubulin, thus aiding matrix formation. In monocytes, cFXIII-A cross-links the cytoplasmin tails of AT1Rs
following AngII binding, resulting in downstream signalling leading to monocyte activation and adhesion to the endothelium.
In megakaryocytes, FXIII-A stabilizes the megakaryocyte–type I collagen interaction through fibronectin fibrillogenesis, a
process that inhibits pro-platelet formation.

adhesion to the endothelium, a process thought to contribute to the
increased risk of atherosclerosis seen in hypertensive individuals
[107]. Intriguingly AT1R signalling is increased in the mono-
cytes of these individuals by the formation of substantial num-
bers of covalently stabilized AT1R homodimers [108] (Figure 4).
Upon ligand-induced receptor dimerization, monocyte cFXIII-
A was shown to cross-link Gln315 to a currently unknown lysine
residue in the cytoplasmic tail domains of the receptor [108]. This
cross-linking required both AngII (to promote receptor activa-
tion and dimerization) and increased cytosolic Ca2 + (to promote
cFXIII-A activation) and was absent from the monocytes of
FXIII-A-deficient patients.

Although monocytes from hypertensive individuals have a
greater proportion of AT1R molecules present in cross-linked di-
mers compared with those from healthy controls, lowering AngII
levels by treatment with an ACEI [ACE (angiotensin-converting
enzyme) inhibitor] significantly reduced receptor cross-linking.
Furthermore, inhibition of ACE or of cFXIII-A reduced the devel-

opment of atherosclerosis in ApoE (apolipoprotein E)-deficient
mice, linking in vivo FXIII-A activity to this process [108].

Cross-linking in cartilage and bone
The potential for FXIII-A to modulate extracellular matrix form-
ation and function is supported by studies of bone and cartilage
formation (Figure 4). FXIII-A and TG2 are the principle trans-
glutaminases expressed in cartilage and bone, being synthesized
and secreted into the extracellular matrix by chondrocytes and
osteoblasts in respective tissues [109–111]. Increased expres-
sion of both enzymes has been linked to the maturation of both
chondrocytes and osteoblasts [112,113]. In chondrocytes, extra-
cellular FXIII-A has been reported as a ligand of α1β1 integ-
rin, promoting externalization of TG2 [114]. FXIII-A-mediated
cross-linking activity has been demonstrated within chondrocytes
and in the cartilage and bone matrix, with potential extracellular
substrates including, fibronectin and osteopontin [110,112,115–
117]. Elevation of FXIII-A expression has also been linked to
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the differentiation of pre-osteoblasts to osteoblasts [118] pro-
moted by type 1 collagen [111]. cFXIII-A activity has also been
shown to enhance the secretion of type I collagen and fibronectin
from osteoblasts by stabilization of the microtubule system via
glu-tubulin cross-linking, suggesting a role in matrix formation
[111,119]. Several studies have also suggested that this cross-
linking is required for proper bone matrix deposition and miner-
alization, as determined by the use of transglutaminase inhibitors
[113,119]. No obvious abnormal skeletal phenotypes have been
reported for FXIII-A− / − or TG2− / − mice, suggesting a com-
pensatory role of the other transglutaminases in skeletal develop-
ment [120]. For example, TG2− / − mice have been found to ex-
press higher levels of FXIII-A and TGF-β (transforming growth
factor-β) [121]. The synergistic effect of FXIII-A and TG2 has
also been observed in chondrocyte differentiation [122], suggest-
ing that cross-link formation is important for bone and cartilage
growth and maintenance; however, these actions can occur via
FXIII-A and/or TG2.

FXIIIa-mediated fibronectin cross-linking has also been
demonstrated to play a role in megakarocyte function in the bone
marrow [89] (Figure 4). Malara et al. [89] found that FXIII-A is
the predominant transglutaminase expressed in megakaryocytes
and that, in culture, these cells demonstrate constitutive trans-
glutaminase activity both in the cytoplasm and on the plasma
membrane where FXIII-A and fibronectin were found to co-
localize. They concluded from these observations, and the ef-
fect of small-molecule transglutaminase inhibitors, that FXIIIa
is required for stabilization of the megakaryocyte–type I colla-
gen interaction through fibronectin fibrillogenesis, a process that
inhibits pro-platelet formation [89] and links bone function to
haemostasis.

In summary, cFXIII-A can be found in several cell types, in-
cluding platelets, monocytes/macrophages, chondrocytes and os-
teoblast/osteocytes. Although there is increasing evidence to sug-
gest cFXIII-A cross-linking plays a role in platelet cytoskeleton
remodelling following platelet activation, the downstream sig-
nalling of monocyte AT1Rs and bone matrix deposition and min-
eralization, the intracellular functions of FXIII-A remain largely
unexplored and require further investigation. FXIIIa-dependent
cross-linking of matrix proteins including fibronectin, collagen
and vWF may be important in cell–matrix interactions and cross-
linking of PAI-2 and plasminogen to matrix components at sites
of vascular injury suggests a role in localization and regulation
of plasmin generation and matrix metalloproteinase activation to
support an important role in wound healing.

THE SPECIFICITY OF FXIII FOR ITS
SUBSTRATES

The transglutaminase family contains a group of structurally re-
lated enzymes that catalyse the formation of cross-links. To study
the role of the transglutaminase active site in defining substrate
specificity Hettasch et al. [123] produced a recombinant chimaera
of FXIII-A by exchanging exon 7 of FXIII-A, which codes for the
active site, with that of TG2 and evaluated the fibrin cross-link

pattern. The chimaera produced fibrin α–γ cross-links, a cross-
link pattern similar to that of TG2; however, the efficiency was
lower than both wild-type enzymes [123]. Although the findings
suggests that the primary amino acid residues which make up the
active site play a central role in substrate recognition and cata-
lytic activity, this chimaera did not contain the complete catalytic
triad of FXIIIa, which could possibly account for the reduced
efficiency of the chimaera compared with the wild-type enzyme.

FXIIIa substrates have been studied to determine consensus
sequences that confer FXIII specificity. For example, the γ chain
of fibrin and β-casein are both known to be good substrates
for FXIIIa; however, they do not contain any common sequence
which would suggest specificity of FXIIIa for a particular sub-
strate, suggesting substrate recognition residues are also loc-
ated away from the reactive glutamine residue [40]. Sugimura
et al. [124] screened a phage-displayed peptide library for cross-
linking of dansylcadaverine and putrescine by FXIIIa to determ-
ine common amino acid sequences which aid recognition of react-
ive glutamine residues. The FXIIIa-preferred substrate sequence
was determined to be QxxØxWP, where x is a non-conserved
amino acid and Ø is a hydrophobic amino acid [124]. However,
this sequence does not correspond to major plasma substrates
of FXIIIa such as fibrin, suggesting the importance of substrate
protein structure in modulating interactions with FXIIIa.

As no consensus sequence has been identified, studies have
focused on the interactions between FXIII-A and its substrates
using nuclear magnetic resonance spectroscopy. Marinescu et al.
[125] found that residues located C-terminally from the reactive
glutamine within α2-antiplasmin interact directly with the active
site first by the attachment of the glutamine and neighbouring
amino acids to the catalytic triad and secondly by the cluster-
ing of hydrophobic amino acid side chains at a secondary site.
The possibility of a secondary site was also confirmed by Pénzes
et al. [126] as the serial cleavage of residues 7–12 of the Asn-
α2-antiplasmin peptide (residues 1–12) resulted in the gradual
loss of catalytic activity. Within this region hydrophobic residues
Leu10 and Lys12 were found to promote α2-antiplasmin bind-
ing to FXIII-A [126]. These findings suggest that the glutamine
and surrounding hydrophobic residues are important in substrate
recognition and binding.

Consequences of FXIII deficiency in vivo
The importance of FXIII-A in thrombosis and wound healing is
emphasized in FXIII deficiency, which is characterized by bleed-
ing, abnormal wound healing and spontaneous miscarriage in
females, and occurs as a result of defects in the FXIII-A and
FXIII-B subunit genes [127,128]. In FXIII-A-knockout mice,
tail-tip bleeding times are doubled and clot stability, assessed
by thromboelastography, was impaired compared with wild-type
mice [129]. Equally, the rate of clot retraction is significantly
reduced [76]. Impaired tissue repair was observed in the left
ventricles of FXIII-A-knockout mice after myocardial infarction.
Furthermore, molecular imaging of cross-linking within the in-
farct of wild-type mice confirmed high FXIII-A activity [130].
In male FXIII-A-knockout mice, fibrosis of the myocardium was
observed with deposition of the haemorrhage marker haemosid-
erin at the site of fibrosis [131]. Wound closure after 11 days
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was reduced 27 % in FXIII-A-knockout mice compared with
wild-type mice, with necrotized fissure formation and delayed
re-epithelialization [132]. In FXIII-deficient patients, bleeding is
delayed to between 12–36 h following injury [127], with subcu-
taneous bleeding the common clinical manifestation of severe
FXIII deficiency, where FXIII activity levels are below 5 % of
normal [128]. Analysis of whole blood and platelet-free plasma
thrombi from an FXIII-A-deficient patient (FXIII-A activity 8 %
of normal) under flow, revealed that lysis occurred 4.4- and 5.6-
fold faster respectively, compared with thrombi from healthy con-
trols, with only the formation of γ -dimers apparent after 30 min
in the FXIII-A-deficient patient [133]. This increase in lysis rate
in FXIII-A-deficient patients may be accounted for by the lack of
α2-antiplasmin cross-linking, as plasma depleted in either FXIII-
A and/or α2-antiplasmin prolong lysis 9-fold [63]. Impaired
wound healing also coincided with reduced FXIII levels in three
patients following a myocardial infarction with recurrent myocar-
dial rupture within 7 days [134]. Prophylaxis with FXIII has been
shown to be effective at correcting the clinical manifestations of
FXIII deficiency in both FXIII-knockout mice [76,129,132] and
FXIII-deficient patients [127,128,133], supporting the import-
ance of plasma FXIII in thrombus formation and wound healing.

FUTURE DIRECTIONS

In the future, proteomic technologies should be used to extens-
ively catalogue the plasma and cellular substrates of FXIII-A
[124] if we are to fully appreciate the influence of FXIII-A in
thrombosis and wound healing. A recent study analysing per-
fused solubilized ex vivo plasma clots from FXIII-A-deficient
plasma and pooled plasma from healthy individuals identified
proteins involved in inflammation as potentially novel FXIIIa
substrates, suggesting FXIIIa-dependent cross-linking influences
numerous biological processes [135]. Previous strategies used
to identify substrates of TG2 in a protein mixture and an epi-
thelial cell line [136,137] could be adapted to identify novel
substrates of FXIII-A in both cells and plasma; however, the
dynamic range of proteins in plasma may require targeted de-
pletion of more abundant proteins to reveal substrates of lower
concentrations.

Future diagnostic applications for FXIII-A may include the
detection of acute thrombosis using molecular probes, such as
a near-IR fluorescent contrast agents [138] and gadolinium-
chelating magnetic resonance probes [139], which can be cross-
linked to fibrin by FXIIIa and indicate ongoing thrombin genera-
tion and thrombus formation. This technology may be important
in the future for determining FXIII-deficient individuals and those
with acute thrombosis for targeted therapy. Alternatively, FXIII
itself may be analysed as a potential marker for acute throm-
bosis, as a study has been able to monitor the FXIIIa peptide by
ELISA in healthy subjects [140]. The role of FXIII-A in throm-
bosis makes it a highly desirable target for future antithrombotic
agents; however, future agents need to be highly specific and
targeted to prevent uncontrolled bleeding.

CONCLUSIONS

FXIII is a Ca2 + -dependent pro-transglutaminase which forms
covalent ε-(γ -glutamyl)lysine cross-links between fibrin fibres
and numerous other plasma and intracellular proteins. FXIIIa-
mediated cross-linking is vital for normal clot structure and func-
tion, promoting stabilization by preventing enzymatic and mech-
anical breakdown, supporting extracellular matrix attachment
and influencing clot retraction. During wound healing, FXIIIa-
dependent cross-linking is vital to extracellular matrix assembly
and cell–matrix interactions. In some cases, the role of substrate
cross-linking on clot properties and wound healing has not been
studied. FXIIIa is a potentially attractive therapeutic target for
the development of novel antithrombotic agents; however, de-
tailed understanding of the role of FXIII in wound healing may
be required to gain a clearer understanding of potential adverse
effects of FXIII-A inhibition.
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