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Fast motion estimation using bidirectional
gradient methods

Yosi Keller, Amir Averbuch,

Abstract— Gradient based motion estimation techniques
(GM) are considered to be in the heart of state-of-the-art
registration algorithms, being able to account for both pixel
and subpixel registration and to handle various motion mod-
els (translation, rotation, a¢ne, projective). These methods
estimate the motion between two images based on the lo-
cal changes in the image intensities while assuming image
smoothness. This paper o¤ers two main contributions: (i)
Enhancement of the GM technique by introducing two new
bidirectional formulations of the GM. This improves the
convergence properties for large motions. (ii) We present
an analytical convergence analysis of the GM and its prop-
erties. Experimental results demonstrate the applicability
of these algorithms to real images.
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I. Introduction

Image registration plays a vital role in many image pro-
cessing applications such as video compression [12], [15],
video enhancement [10] and scene representation [1], [4],
[11]. It has drawn a signi…cant research attention. A com-
prehensive comparative survey by Barron et. al. [2] found
the family of gradient-based motion estimation methods
(GM), originally proposed by Horn and Schunck [3], to per-
form especially well. The purpose of the GM algorithm is
to estimate the parameters vector p associated with the
parametric image registration problem: starting from pure
global translation, image plane rotation, 2D a¢ne, and
pseudo-projective (8-parameter ‡ow). These models have
been used extensively and are estimated directly from im-
age spatio-temporal derivatives using coarse-to-…ne estima-
tion via Gaussian pyramids (multiscale). These methods
search for the best parametric geometric transform that
minimizes the square of changes between image intensities
(SSD) over the whole image. Several formulations of the
gradient methods which di¤er on the way the motion pa-
rameters are updated, either by incrementing the motion
parameters [13] or incrementing the warp matrix [4]. An
updated comprehensive description of these methods was
given in [17].

Let I1 (x, y) and I2 (x, y) be the images, which have some
common overlap as described in Fig. 1. Then each pixel in
their common support satis…es:

I1 (x, y) = I2 (ex (x, y, p) ,ey (x, y, p))

where the structure of the parameters vector p depends on
the type of the estimated motion model. Gathering and
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Fig. 1. Image translation

solving all the equations associated with pixels in the mu-
tual support (p is assumed to be constant over the whole
mutual area), estimates the global motion between the im-
ages [4], thus gaining robustness due to very highly over-
constrained linear systems (each pixel contributes a lin-
ear constraint). Gathering the equations related to small
image patches estimates local motion [13]. Equation I is
solved using non-linear iterative optimization techniques
such as Gauss-Newton [6] and Levenberg-Marquardt (LM)
[4] described in section II. A critical implementation issue
concerning the GM is the convergence range and the rate
of convergence while estimating large image motions: as
the estimated motion becomes larger, the convergence rate
decreases and the GM may diverge to a local minima. A
possible solution is to bootstrap the motion estimation pro-
cess with a di¤erent motion estimation algorithm [14], [15]
which is robust to large motions. Further improvements
were achieved by using robust statistics such as iteratively
weighted least-squares [19], [20] and Total least-squares [21]
within the GM formulation.

In order to improve the convergence of the GM we an-
alyze it using optimization methodology in section III.
The analysis of the GM convergence leads to a new ro-
bust constructive algorithm that achieves faster conver-
gence through symmetric and non-symmetric bidirectional
formulation, presented in section IV. These properties are
experimentally veri…ed in section V.

II. Gradient method based motion estimation

GM methodology [17] estimates the motion parameters
p by minimizing the intensity discrepancies between the
images I1 (x, y) and I2 (x, y) described in Fig. 1:

p¤ = arg min
p
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and S is the set of coordinates of pixels that are common to
I1 and I2 in I1’s coordinates and p is the estimated param-
eter vector. Next we follow the formulation of [1], [4] by
solving Eq. 1 using non-linear iterative optimization tech-
niques such as Gauss-Newton [6] and Levenberg-Marquardt
(LM) [4], [6]. The basic GM formulation and the itera-
tive re…nement stage are described in sections II-A and II-
B, respectively. These are embedded in a multi-resolution
scheme described in section II-C.

A. Basic GM formulation

The non-linear optimization of Eq. 1, is conducted via a
linearization procedure, which is based on a pixel-wise …rst
order Taylor expansion of I1 in terms of I2 as a function of
the parameters vector p:
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By gathering the pixel-wise equations we formulate the

system
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Equation 5 is formulated using the chain rule. Equation
4 can be solved using regular least square [6]:

p =
¡
HT H

¢¡1
HT It (7)

where HT is the transpose of H. The expressions for
HT H and HT It can be derived analytically by direct cal-
culation:
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A.1 Algorithm ‡ow

The basic GM iteration, which is marked as “Single It-
eration” in Fig. 2, is as follows:
1. The matrix HT H and vector HT It are computed using
Eq. 8 and Eq. 9, respectively.
2. Eq. 7 is solved using singular value decomposition [6].
3. The GM returns p as its output (result).

Fig. 2. Block diagram of the basic and iterative GM formulations.
For n = 0, p0 is given as an initial guess and ¢P is the iterative
update after each iteration.

B. Iterative solution of the gradient methods

Denote:
p0- an initial estimated solution of Eq. 1 given as input,

such that Warp (I2, p0) ¼ I1

pn- the estimated solution after n = 1, . . . iterations
Then, the nth iteration of the motion estimation algo-

rithm becomes:
1. The input image I2 is wrapped towards I1 using the
current estimate pn and it is stored in eI2 n ¸ 0. For n = 0
p0 is given as input.
2. I1 and eI2 are used as input images to the procedure
described in section II-A.
3. The result of step 2 - ¢p, is used to update the solution:

pn+1 = ¢p + pn n ¸ 0

4. Go back to step 1 until one of the following stopping
criteria is met:
(a) At most Nmax iterations are performed
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or
(b) The process is stopped if the translation parame-

ters within the updated term ¢p reaches a predetermined
threshold.

C. Gradient methods with multiscale scheme

In order to improve the robustness and reduce the com-
plexity of the algorithm, the iterative process is embedded
in a coarse-to-…ne multiscale formulation. The robustness
analysis is given in section III-B. Next we describe the
coarse-to-…ne formulation. A thorough description can be
found in [1]:
1. The input images I1 and I2 are smoothed. Our experi-
ence shows that a separable averaging …lter is suitable for
this task.
2. The input images I1 and I2 are downsampled through
multiscale decomposition, until a minimal size of their mu-
tual area is reached. The minimal mutual area size depends
upon the estimated motion model, while the resolution step
depends upon the motion estimation accuracy at each res-
olution level.
3. Starting with the coarsest scale, the initial estimate p0

is used to bootstrap the iterative re…nement algorithm de-
scribed in section II-B.
4. The result of the iterative re…nement from coarse-to-…ne
(step 2) is recursively repeated until the original image size
is reached.

III. Convergence analysis of gradient methods

In order to analyze the convergence properties of the
GM algorithm, we examine the convergence properties of
the general Gauss-Newton algorithm in Appendix A. These
results are interpreted in the context of the GM algorithm
in section III-A.

A. General convergence analysis of the Gauss-Newton al-
gorithm

The analysis in Appendix A shows that the convergence
of the Gauss-Newton algorithm can be divided into two
distinct phases as it is described by Eq. 14 in Appendix A:

kεk+1k · C1 ¢ kεkk + C2 ¢ kεkk2 (1)

where:
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is the parameters estimation error after

iteration k

rn(xk)
is the error associated with the nth
equation at iteration k

A (xk) is the Jacobian matrix at iteration k.

By rearranging the GM formulations developed in sec-
tion II, we interpret these expressions in the context of the

GM formulation. C1 and C2 will be denoted CGM
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and the equation index n is identi…ed with the GM index
i, since we have one equation per common pixel. Thus,
A(xk) is identi…ed with the matrix H de…ned in Eq. 5 and

the second derivative ∂2rn(xk)
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The basic GM equation (Eq. 3) is solved by the Gauss-
Newton algorithm using the LS formulation given in Eq. 2.
The error associated with each equation is the truncation
error of the …rst order Taylor expansion [6]:
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where p¤ is the optimal solution of the optimization prob-
lem.

In the GM setup the sum of second partial derivatives
∂2I2(x

(2)
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i )

∂p2
j

does not strongly depend on the motion pa-

rameters vector p and the magnitude of CGM
1 is dominated

by kp¡p¤k, hence, for large motions kp¡p¤k À 0 and
CGM

1 À 0 and the error decay rate becomes linear rather
than quadratic. Therefore, the convergence of the GM al-
gorithm can be divided into two phases:
Initialization phase: In the …rst iterations we have
kp¡p¤k À 0 and CGM

1 À 0, therefore the convergence
rate is linear.
Convergence phase: near the solution kp¡p¤k ! 0 we have
CGM

1 ! 0, and the convergence rate is quadratic according
to CGM

2 , where CGM
2 is a function of the image properties.

This analysis was experimentally veri…ed by registering
the images which are shown in Fig. 3: the “Air…eld” im-
age and a 30± rotated version of it. The registration results
are presented in Fig. 4. We have two distinct convergence
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phases. We start with a low-rate convergence correspond-
ing to the linear convergence , after a cross-over point lo-
cated at n = 170, we encounter the quadratic convergence
phase. Using Eq. 18 we present the image alignment error
instead of the parameters’ error.
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Fig. 4. The convergence process is divided into two phases: the
…rst is related to large motion estimation characterized by a low
convergence rate m(C1), the second is related to small motion
having a high convergence rate m(C2). The cross-over region is
located after iteration n ¼ 170.

B. Multiresolution GM scheme

The relation between the pyramidal GM scheme and the
convergence properties of the GM was studied by Burt et-
al [18] in the frequency domain for pure translations. By
examining the error associated with the translation coef-
…cients, the multiscale scheme was proved to decrease the
error term in Eq. 7 and improve the convergence rate.
Denote by εtrans (s) - the error associated with the trans-
lation parameters (dxs, dys) at a resolution scale s:

εtrans (s) =

·
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s
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¸
(8)

where s is the image scaling factor, dx¤
s and dy¤
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optimal values of the translation parameters in scale s.
Then, by scaling down the images from scale s1 to scale
s2 (s2 > s1) we get:
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Hence, the error associated with the translation error is
decreased by a factor of s1

s2
< 1.

Inserting Eq. 10 into Eq. 7 we get:
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Therefore, by using a dyadic pyramid, the truncation er-
ror of the Taylor approximation, related to the translation
parameters (Eq. 11) is decreased by a factor of 4 in each
increase of the pyramid’s scale. While the approximation
error related to the motion parameters which are scale-
invariant, such as scale and shear, is not reduced since rel-
ative scale changes are invariant to identical scale changes
of both images. Hence, multiresolution schemes do not im-
prove the convergence properties when the motion is dom-
inated by scale and shear. This method can achieve higher
convergence rate if instead of dyadic division, we use bigger
scale factors.

C. Dominant motion locking

Burt et. al. [18] used a frequency analysis to show that
the coarse-to-…ne re…nement process allows the GM to lock
on a single dominant motion even when multiple motions
are present. This property is essential for most applica-
tions which are based on image registration [4], [10], [11].
We utilize the method presented in section III to provide
an optimization based analysis of this property by studying
the error associated with objects which perform dominant
and non-dominant motions. This analysis extends the re-
sults of [18] by being applicable to general motion models
- parametric and non-parametric.
Notation:

S
The set of pixels that are common to I1

and I2

SDom

A subset of S. This set of pixels that are
common to I1 and I2, whose motion
is the dominant motion, was de…ned
above

SNonD

A subset of S. This set of pixels that are
common to I1 and I2, whose motion is
not the dominant motion

By permuting the rows of Eq. 4 according to the ith
pixel’s relation to either SDom or SNonD we get:

eHp =

· eHDom

eHNonD

¸
p =

·
IDom
t

INonD
t

¸
=eIt (12)

where
eHDomp = IDom

t (13)
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(a) (b)

Fig. 3. Test of the Gauss-Newton convergence - (a) Original “Air…eld” image (b) The “Air…eld” image which was rotated by 30± using
bilinear interpolation. The red X marks the initial estimate of the motion given as translation.

are the equations related to dominant motion, and

eHNonDp = INonD
t (14)

are the equations related to non-dominant motion. As
the GM algorithm converges to the dominant motion, the
term INonD

t becomes the di¤erence of uncorrelated pix-
els. Therefore, INonD

t can be modelled as a uniformly
distributed random variable with zero mean

E
©
INonD
t

ª
= 0 (15)

This is a landslide type phenomenon: as the iterative
solution pn gets closer to the dominant motion’s true pa-
rameters pDom, the non-dominant pixels become more and
more uncorrelated. Inserting Eq. 15 into Eq. 7 we have
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Thus, the non-dominant outliers are automatically re-
jected. We conclude that the GM is a non-biased estimator
of the dominant motion parameters pDom, where the vari-
ance of the estimation V ar

¡
pDom

¢
depends on the ratio

between dominant and non-dominant pixels.

IV. Improved GM convergence using
bidirectional formulations

In order to improve the convergence properties of the
GM algorithm, we consider the registration of two one-
dimensional signals I1 (x) and I2 (x) using the translation
motion model:
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Similar to section II, Eq. 1 is solved by expanding I2 in
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as illustrated in Fig. 5(a). This point-wise expansion
causes an error which is estimated by Eq. 7:
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The error term is quadratic in ¢x, then by comparing
εSGM to the regular GM error εGM of Eq. 4 we get:
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(a) (b) (c)

Fig. 5. 1D illustration of various GM techniques: (a) Regular GM: pixels in I1 are approximate by pixels in I2 over the interval ¢x. (b)
Symmetric GM (SGM): pixels in the middle of the interval between I1 and I2 (¢X/2) are approximated by common pixels in I1 and I2.
(c) Bidirectional GM (BDGM): pixels in the interval between I1 and I2 are approximated by common pixels in I1 and I2. The equilibrium
point is chosen optimally to minimize the approximation error.
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The smaller the linearization error εSGM , the better is
the convergence rate. If εSGM = 0 Eq. 3 converges in a
single iteration.

In order to further decrease the linearization error we al-
low the interval [0 . . .¢x] to be partitioned optimally using
the following formulation that is based on Fig. 5(c):
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where the motion between I2and I1 is given by:

¢x = ¢x1 + ¢x2 (14)

and εBDGM is the error of the Bidirectional Gradient Meth-
ods.

As the solution of Eq. 13 minimizes εBDGM directly, a
superior convergence rate is achieved. Following the anal-
ysis presented in Eq. 10, we analyze the error term of Eq.
13:

2 ¢ εBDGM

³
x

(1)
i , x

(2)
i ,¢x1,¢x2

´
=

= 2
³
εGM

³
x

(2)
i ,¢x2

´
¡ εGM

³
x

(1)
i ,¢x1

´´

=
∂2I2

¡
ex(2)

¢

∂x2 ¢x2
2 ¡ ∂2I1

¡
ex(1)

¢

∂x2 ¢x2
1

=
∂2I2

¡
ex(2)

¢

∂x2 ¢x2
2+

∂2I1

¡
ex(1)

¢

∂x2 ¢x2
1

¡∂2I2

¡
ex(2)

¢

∂x2 ¢x2
1 +

∂2I2

¡
ex(2)

¢

∂x2 ¢x2
1

| {z }
=0

=
∂2I2

¡
ex(2)

¢

∂x2

¡
¢x2

2 ¡ ¢x2
1

¢
+¢x2

1

Ã
∂2I2

¡
ex(2)

¢

∂x2 ¡∂2I1

¡
ex(1)

¢

∂x2

!

=
∂2I2

¡
ex(2)

¢

∂x2 (¢x2 ¡ ¢x1) (¢x2 + ¢x1)+¢x2
1

µ
∂3I2(ex)

∂3x
¢x

¶

(15)

Substituting Eq. 14 into Eq. 15 we have

εBDGM

³
x

(1)
i , x

(2)
i ,¢x1,¢x2

´
=

¢x

2

Ã
∂2I2

¡
ex(2)

¢

∂x2 ¢ (¢x2 ¡ ¢x1) + ¢x2
1

∂3I2(ex)

∂x3

!
(16)

For the symmetric case where ¢x2 = ¢x1 = ¢x
2 , the …rst
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term of Eq. 16 vanishes and εBDGM identi…es with εSGM :

εBDGM

³
x

(1)
i , x

(2)
i ,¢x1,¢x2

´

= εSGM

³
x

(2)
i ,¢x

´
=

∂3I2(ex)

∂x3

¢x3

8
(17)

An extension to 2D with general motion models is given
in sections IV-A and IV-B for the SGM and BDGM algo-
rithms respectively.

A. Symmetric GM (SGM)

In the general 2D case, the SGM is formulated using the
motion parameters vector p (see Fig. 5(b)):

p¤ =

arg min
p

X

(x1,y1)2S

³
I2

³
x

(2)
i ,y

(2)
i , p/2

´
¡ I1

³
x

(1)
i ,y

(1)
i ,¡p/2

´´2

.

(18)

ri

³
x

(1)
i ,y

(1)
i , p

´
= I2

³
x

(2)
i ,y

(2)
i , p/2

´
¡ I1

³
x

(1)
i ,y

(1)
i ,¡p/2

´
.

(19)
From Eq. 19 we have

∂ri

³
x

(1)
i ,y

(1)
i , p

´

∂p
=

∂I2

³
x

(2)
i ,y

(2)
i , p/2

´

∂p
¡

∂I1

³
x

(1)
i ,y

(1)
i ,¡p/2

´

∂p
. (20)

Using the chain rule ∂I1(x
(1)
i ,y

(1)
i ,p/2)

∂p is expressed in terms

of ∂I1(x
(1)
i ,y

(1)
i ,p)

∂p :

∂I1

³
x

(1)
i ,y

(1)
i , p/2

´

∂p
=

∂I1

³
x

(1)
i ,y

(1)
i , p/2

´

∂ (p/2)
¢ ∂p/2

∂p

=
1

2
¢
∂I1

³
x

(1)
i ,y

(1)
i , p

´

∂p
. (21)

Therefore, we have

∂ri

³
x

(1)
i ,y

(1)
i , p/2

´

∂p
=

1

2

0
@

∂I2

³
x

(2)
i ,y

(2)
i , p/2

´

∂p
+

∂I1

³
x

(1)
i ,y

(1)
i , p/2

´

∂p

1
A . (22)

Assuming

∂I2

³
x

(2)
i ,y

(2)
i , p/2

´

∂p
¼

∂I1

³
x

(1)
i ,y

(1)
i , p/2

´

∂p
(23)

we get

∂ri

³
x

(1)
i ,y

(1)
i , p/2

´

∂p
¼

∂I2

³
x

(2)
i ,y

(2)
i , p/2

´

∂p
. (24)

Taking the second derivative and using Eq.23 we have

∂2ri

³
x

(1)
i ,y

(1)
i , p/2

´

∂p2
=

=
1

2

0
@1

2
¢
∂2I2

³
x

(2)
i ,y

(2)
i

´

∂p2
+

1

2
¢
∂2I1

³
x

(1)
i ,y

(1)
i

´

∂p2

1
A

¼ 1

2

∂2I2

³
x

(2)
i ,y

(2)
i

´

∂p2
(25)

Comparing Eq. 25 to Eqs. 1 and 5 we get:

CSGM
1 =

CGM
1

2
(26)

CSGM
2 = CGM

2 (27)

Therefore, the SGM is expected to outperform the regular
GM algorithm due to its reduced linearization error.

A.1 Algorithm ‡ow

The Symmetric-GM replaces only the single iteration
phase described in section II-A and Fig. 2. The iterative
re…nement and multiscale schemes described in sections
II-B and II-C respectively, are left unchanged.
1. The matrix

¡
HT H

¢
is calculated separately for I2 and

I1 according to Eq. 8:

¡
HT H

¢I1

k,j
=

X

i

∂I1

³
x

(1)
i , y

(1)
i

´

∂pk

∂I1

³
x

(1)
i , y

(1)
i

´

∂pj
(28)

¡
HT H

¢I2

k,j
=

X

i

∂I2

³
x

(2)
i , y

(2)
i

´

∂pk

∂I2

³
x

(2)
i , y

(2)
i

´

∂pj
(29)

2. We solve the equation

¡
HT H

¢SGM
pSGM = HT It (30)

where
¡
HT H

¢SGM
is given by:

¡
HT H

¢SGM

k,j
=

1

2

³¡
HT H

¢I1

k,j
+

¡
HT H

¢I2

k,j

´
(31)

and
¡
HT It

¢
is calculated according to Eq. 6.

3. The SGM returns pSGM as the result.

B. Bidirectional Gradient Methods (BDGM)

The BDGM uses a di¤erent formulation than the GM
and the SGM of Eq. 1 (see Fig. 5(c)):

p¤ = arg min
p

X

(x1,y1)2S

³
I2

³
x

(2)
i ,y

(2)
i , p2

´
¡ I1

³
x

(1)
i ,y

(1)
i ,¡p1

´´2

(32)
where p1and p2 have the same dimensions as the motion
parameters vector used in the GM and SGM formulations.
The overall motion is given by

p = p1 + p2. (33)



8

Let k,m 2 [0 . . . 1], k + m = 1, then:

p1 = k ¢ p
p2 = m ¢ p (34)

ri

³
x

(1)
i ,y

(1)
i , p

´
= I2

³
x

(1)
i ,y

(1)
i , p2

´
¡ I1

³
x

(2)
i ,y

(2)
i ,¡p1

´

= I2

³
x

(1)
i ,y

(1)
i , k ¢ p

´
¡ I1

³
x

(2)
i ,y

(2)
i ,¡m ¢ p

´
. (35)

∂ri

³
x

(1)
i ,y

(1)
i , p

´

∂p
=

=
∂I2

³
x

(2)
i ,y

(2)
i ,k ¢ p

´

∂p
¡

∂I1

³
x

(1)
i ,y

(1)
i , ¡ m ¢ p

´

∂p

= k
∂I2

³
x

(2)
i ,y

(2)
i

´

∂p
+ m

∂I1

³
x

(1)
i ,y

(1)
i

´

∂p
(36)

∂2ri

³
x

(1)
i ,y

(1)
i , p

´

∂p2
=

k2
∂2I2

³
x

(2)
i ,y

(2)
i

´

∂p2
+ m2

∂2I1

³
x

(1)
i ,y

(1)
i

´

∂p2
. (37)

By assuming symmetry in Eq. 23 we get

∂ri

³
x

(1)
i ,y

(1)
i , p

´

∂p
=(k + m)

∂I2

³
x

(2)
i ,y

(2)
i

´

∂p

=
∂I2

³
x

(2)
i ,y

(2)
i

´

∂p
(38)

∂2r
³
x

(1)
i ,y

(1)
i , p

´

∂p2
=

¡
k2 + m2

¢ ∂2I2

³
x

(2)
i ,y

(2)
i

´

∂p2

=
³
k2 + (k ¡ 1)2

´ ∂2I2

³
x

(2)
i ,y

(2)
i

´

∂p2

=
¡
2k2 ¡ 2k + 1

¢ ∂2I2

³
x

(2)
i ,y

(2)
i

´

∂p2
(39)

Similar to Eq. 27 we have:

CBDGM
2 = CGM

2 (40)

and the optimal partitioning of the interval [0 . . . p] , which

minimizes

¯̄
¯̄∂2r

³
x
(1)
i ,y

(1)
i ,p

´

∂p2

¯̄
¯̄, is the symmetric approach

¡
k = 1

2

¢
, which was described in section IV-A. Fur-

thermore, the partitioning used by the regular GM is
worse than any of the bidirectional formulation, since¯̄
¯̄∂2r

³
x
(1)
i ,y

(1)
i ,p

´

∂p2

¯̄
¯̄ is maximized for k = 0,m = 1 or k =

1,m = 0. Although it seems that the BDGM is inferior
to the SGM, experimental results show the opposite. The
reason is the violation of the symmetry assumption

I2

³
x

(2)
i ,y

(2)
i , p/2

´
6= I1

³
x

(1)
i ,y

(1)
i ,¡p/2

´
=)

∂I2

³
x

(2)
i ,y

(2)
i , p/2

´

∂p
6=

∂I1

³
x

(1)
i ,y

(1)
i ,¡p/2

´

∂p
. (41)

Then we get:

CBDGM
1 · CSGM

1 =
1

2
CGM

1 . (42)

B.1 Algorithm ‡ow

Similar to the SGM, the BDGM replaces only the single
iteration phase, as follows:
1. The matrix H is calculated separately for I2 and I1 ac-
cording to Eq.5:

HI1
i,j =

∂I1

³
x

(1)
i , y

(1)
i

´

∂pj
(43)

HI2
i,j =

∂I2

³
x

(2)
i , y

(2)
i

´

∂pj
(44)

2. HBDGM is formed by:

HBDGM =
£

HI1 HI2
¤

(45)

HBDGM is a matrix of dimensions (npixels £ 2 ¢ nparam),
where nparam is the number of motion parameters and
npixels is the number of pixels common to I2 and I1.
3. Denote by pBDGM the BDGM parameters vector, then

pBDGM =

·
p1

p2

¸
(46)

p1 and p2 are vectors of dimension (nparam £ 1).
4. We solve the equation

³¡
HBDGM

¢T
HBDGM

´
pBDGM =

¡
HBDGM

¢T
It (47)

where It is similar to the one used in section II-A.
5. After solving Eq. 47, the solution pBDGM is given by:

pBDGM = p1 + p2 (48)

V. Experimental Results

This section describes the performance of the proposed
new techniques. The numeric results are expressed in terms
of alignment error vs. the number of iterations needed for
convergence as the total computation time is linearly de-
pendent on the number of iterations. Each simulation was
conducted using a set of 50 initial estimates of the mo-
tion parameters, where the estimates were given as rela-
tive translation values and are displayed in the results …g-
ures as an overlay of red dots in both images. The mean
value of the initial motion parameters was recovered using
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phase-correlation [14] and the set of initial estimates was
constructed around it. Thus, the alignment error value
at each iteration are the average of all the simulations.
the Real and simulated image pairs were used. The same
implementations of the iterative re…nement (section II-B)
and multiscale embedding (section II-C) were used for the
SGM, BDGM and GM algorithms. Thus, the only di¤er-
ence was the single iteration module, which was replaced
by the algorithms described in sections IV-A and IV-B for
the SGM and BDGM, respectively. The resolution pyra-
mid was constructed using a three-tap …lter

£
1
3

1
3

1
3

¤

and the derivative was approximated using
£

1
2 0 ¡1

2

¤
.

Following [8], [9], other …lters were tested with no signi…-
cant improvements. The initial estimate was an estimate
of the translation parameters. The SGM and BDGM were
tested by estimating large and small motions using several
motion models: rotation, a¢ne and pseudo-projective.

A. Estimation of large and very large rotations

The image presented in Fig. 3 was rotated while the
background areas created by the rotation were padded with
zeros. The registration was calculated using a linearized
rotation model:

x1 = a ¢ x2 + b ¢ y2 + c
y1 = ¡b ¢ x2 + a ¢ y2 + d

(1)

Figure 7(a) shows the performance of registering an im-
age rotated by 10±, which is considered to be a large rota-
tion. The BDGM converged twice as fast in comparison to
the GM: 4 iterations compared to 7 iterations. The SGM
converged in 5 iterations but to a higher alignment error.
This instability of the SGM is more evident in the 30±

registration results, presented in Fig. 7(b): the SGM di-
verged while the BDGM signi…cantly outperforms the GM
by converging in 25 iterations compared to the GM’s 37
iterations. We attribute the instability of the SGM to the
violation of the symmetry assumption (Eq. 23) due to the
zero padding.

B. Estimation of small a¢ne motion

According to Eqs. 26 and 42 the BDGM and SGM, re-
spectively, are expected to perform similarly to the GM
when registering small motions. In order to verify it ex-
perimentally, we registered the images in Fig. 8 using the
a¢ne motion model:

x1 = a ¢ x2 + b ¢ y2 + c
y1 = d ¢ x2 + e ¢ y2 + f

(2)

The results presented in Fig. 9 show the improved con-
vergence achieved by the SGM and BDGM compared to
the regular GM algorithm. Since Fig. 9 shows the aver-
age alignment error, the …nal GM error is higher, as for
some of the initial estimates, the GM diverged. However,
the BDGM su¤ers from numerical instability which can be
attributed to a larger number of unknowns solved in each
iteration (12 unknowns used by the BDGM compared to 6
unknowns used by the SGM and the GM).
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Fig. 9. Registration results of small a¢ne motion.
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Fig. 11. Registration performance under poor illumination condi-
tions: The regular GM diverges, while the SGM and BDGM
converge. Due to the small motion, the SGM converges better
than the BDGM, which is unstable due to its larger number of
unknowns.

C. Registration of images with low contrast

Instability in the registration process can also be at-
tributed to images which have low contrast. In this type
of images the spatial derivatives are very small:

∂r
³
x

(1)
i ,y

(1)
i , p

´

∂p
¡! 0

∂2r
³
x

(1)
i ,y

(1)
i , p

´

∂p2
¡! 0 .

Therefore, according to Eqs. 5 and 6 the convergence
rate of the GM deteriorates. The images presented in Fig.
10 are real airborne images, which are registered using the
a¢ne motion model de…ned in Eq. 2.

The results, presented in Fig. 11, show that both the
BDGM and SGM were able to converge to the solution
while the GM completely diverged. However, the numer-
ical instability of the BDGM in proximity of the solution
is evident, similar to the result of section V-B. This phe-
nomenon could have been avoided, by switching from the
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(a) (b) (c)

Fig. 6. Test images for rotation registration. The red dots in image (a) are the initial estimates of the red X in image (b). X marks the
initial motion (a) original airport image. (b) airport image rotated by 10±. (c) airport image rotated by 30±.
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(b)

Fig. 7. Registration results of the rotated images: (a) 10± rotation (b) 30± rotation. In both case the BDGM and SGM converged faster
than the regular GM.

(a) (b)

Fig. 8. Test images for a¢ne registration with small motion. The red dots in image (a) are initial estimates of the red X in image (b) which
were used in the simulations.

BDGM to either the SGM or GM near the proximity of the
solution.

D. Estimation of large and very large panoramic motion

The registration of panoramic images is of special im-
portance, since it is the basis for most mosaic based ap-
plications discussed in section I. The motion model used
for panoramic image registration is the pseudo-projective

model [1], [4]

x1 = a¢x2+b¢y2+c
g¢x2+h¢y2+1

y1 = d¢x2+e¢y2+f
g¢x2+h¢y2+1

(3)

Due to large number of unknowns and the non-linear
nature of Eq. 3, the GM based registration becomes
slow and unstable. Two sets of images photographed
by a regular 35mm cameras were used to compare be-
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(a) (b)

Fig. 10. Images used to test the registration under poor illumination conditions. The red dots in image (a) are the initial estimates of the
red X in image (b) used in the simulations.

(a) (b)

Fig. 12. Panoramic images with large motion. The red dots in image (a) are the initial estimates of the red X in image (b) used in the
simulations.

5 10 15 20 25 30 35 40 45 50
10

15

20

25

30

35

40

Iteration No.

R
eg

is
tra

tio
n 

Er
ro

r

BDGM
SGM
GM

Fig. 13. Registration results for large panoramic motion: the SGM
and BDGM converge twice as fast as the regular GM. Due to
the large motion the symmetric assumption (Eq. 23) is violated
and the BDGM converges better than the SGM.

tween the performance of the registration algorithms: large
panoramic transformation is presented in Fig. 12 while
small panoramic motion is shown in Fig. 14.

The results shown in Fig. 13 demonstrate the superior
convergence of the BDGM (13 iterations) and SGM (17 it-

erations) compared to the GM algorithm (23 iterations).
Estimation of small projective motions is presented in …g-
ure 15. The results are similar to those obtained in section
V-B where the BDGM and SGM coincide and converge
twice as fast (5 iterations) as the GM (9 iterations).

VI. Conclusions and future work

In this paper we proposed two new formulations which
enhance the performance of gradient based image registra-
tion methods. These algorithms extend the current state-
of-the-art image registration algorithms and were proven to
possess superior convergence range and rate. By analyzing
the convergence properties using non-linear optimization
algorithms, we derived explicit expressions for the conver-
gence of the GM. The experimental results verify the the-
oretical analysis. Future work includes the application of
the BDGM and SGM to other GM based algorithms such
as direct estimation of 3D structure [16]. Furthermore, the
improved convergence rate of the BDGM and SGM is vi-
tal for advanced video compression standards such as the
MPEG4 [15], when implemented on low-power mobile de-
vices. In order to further reduce the computational com-
plexity, we intend to integrate the proposed algorithm with
the WarpFree formulation presented in [7].
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(a) (b)

Fig. 14. Panoramic images with small motion. The red dots in image (a) are the initial estimates of the red X in image (b) used in the
simulations.
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Fig. 15. Registration results for small panoramic motion: the SGM
and BDGM converge twice as fast as the regular GM. Due to
the small motion the symmetric assumption (Eq. 23) is valid
and the SGM and BDGM converge similarly.

VII. Appendix A:
Convergence properties of the

Gauss-Newton optimization algorithm

A. De…nitions

The general least square problem (LS) is de…ned as

x¤ = min
x

ff (x)g (1)

where f (x) is the sum of squares

f (x) =
mX

n=1

[rn (x)]2 = [r1 (x) . . . rm (x)]

2
6664

r1 (x)
r2 (x)

...
rm (x)

3
7775(2)

= RT (x) ¢ R (x) .

We start by calculating the …rst and second derivatives of
the objective function f (x)

∂f (x)

∂x
= 2

mX

n=1

∂rn (x)

∂x
rn (x) =

2

·
∂r1 (x)

∂x

∂r2 (x)

∂x
¢ ¢ ¢ ∂rm (x)

∂x

¸
¢R (x) = 2A (x)R (x)

(3)

∂2f (x)

∂x
(2)
i

= 2
mX

n=1

∂rn (x)

∂x

∂rT
n (x)

∂x
+ 2

mX

n=1

∂2rn (x)

∂x2 rn (x)

= 2A (x)AT (x) + 2
mX

n=1

∂2rn (x)

∂x2 rn (x) . (4)

The Gauss-Newton iterative optimization algorithm for the
LS problem [5] is

xk+1 = xk ¡
£
A (xk) AT (xk)

¤¡1
A (xk)R (xk) (5)

where xk is the parameters vector estimated at iteration k
and

εk = xk ¡ x¤ (6)

and εk is the estimation error at iteration k.

B. Convergence analysis

We approximate ∂f(~x)
∂x using a …rst order Taylor expan-

sion around x

∂f (~x)

∂x
¼ ∂f (x)

∂x
+

∂2f (x)

∂x2 ¢ (x̂ ¡ x)

+
1

2

∂3f (~x)

∂x3 ¢ (x̂ ¡ x)
2
, ~x 2 [x̂, x] . (7)
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Inserting Eqs. 3 and 4 into Eq. 7 we get

∂f (~x)

∂x
¼ 2A (x)R (x)+

(
2A (x)AT (x) + 2

mX

n=1

∂2rn (x)

∂x2 rn (x)

)
¢ (x̂ ¡ x)

+
f (3) (~x)

2
¢ (x̂ ¡ x)2 . (8)

Using Eq. 8 we estimate the gradient at the minimum point
x¤ using a Taylor approximation around xk:

A (x¤)R (x¤)= A (xk)R (xk)

¡
"
A (xk)AT (xk) +

mX

n=1

∂r2
n (x)

∂x2 rn (x)

#
¢ εk + O

¡
εk

T εk

¢
.

(9)

Rewriting Eq. 5 for εk we get:

εk+1 = εk ¡
£
A (xk)AT (xk)

¤¡1
A (xk) R (xk) . (10)

Since A (x¤) = 0 we get the identity:

εk =

£
A (xk) AT (xk)

¤¡1

2
4A (xk) AT (xk) ¢εk + A (x¤)R (x¤)| {z }

=0

3
5 .

(11)

inserting Eq. 11 into Eq. 10 we get

εk+1 =

=
£
A (xk)AT (xk)

¤¡1 £
A (xk)AT (xk) ¢εk + A (x¤)R (x¤)

¤

¡
£
A (xk)AT (xk)

¤¡1
A (xk)R (xk)

=
£
A (xk)AT (xk)

¤¡1¢
¢
£
A (xk)AT (xk) ¢εk + A (x¤)R (x¤) ¡ A (xk)R (xk)

¤
.

(12)

Inserting Eq. 9 into Eq. 12 we get

εk+1 = ¡
£
A (xk)AT (xk)

¤¡1

Ã
mX

n=1

∂r2
n (xk)

∂x2 rn (xk)

!
¢εk¡

£
A (xk)AT (xk)

¤¡1 ¢ O
¡
εk

T εk

¢
. (13)

Taking the norm on both sides and using the Cauchy-
Schwartz inequality we get

kεk+1k ·
°°°°°
£
A (xk)AT (xk)

¤¡1
mX

n=1

∂r2
n (xk)

∂x2 rn (xk)

°°°°°¢kεkk

+
°°°
£
A (xk)AT (xk)

¤¡1
°°° ¢ O

³
kεkk2

´
. (14)

In other words,

kεk+1k · C1 ¢ kεkk + C2 ¢ kεkk2
. (15)

C. Convergence analysis of the objective function

In the case of the motion estimation problem, thenatural
norm related to the problem is the L2 norm of the image in-
tensity alignment error, rather then the norm of the motion
parameters error. Therefore, we relate the convergence of
the estimated motion parameters to the convergence of the
objective function f (x). We approximate r (xk) by a …rst
order Taylor expansion around the minimum point x¤:

r (x¤) = r (xk) + A (xk) ¢ (x¤ ¡ xk) .

Then, by taking the L2 norm we get:

k¢rkk = kr (x¤) ¡ r (xk)k = A (xk) kεkk (16)

where εk is de…ned as in 6.
Rewriting Eq. 16 for k¢rk+1k :

k¢rk+1k = kr (x¤) ¡ r (xk+1)k = A (xk+1) kεk+1k (17)

and assuming a small re…nement step: A (xk+1) ¼ A (xk),
then

k¢rk+1k =
kεk+1k
kεkk ¢ k¢rkk (18)

We conclude that the parameters error εk and the objec-
tive function ¢rk have a similar convergence rate.

D. Conclusion

Using Eq. 14 the convergence of the Gauss-Newton algo-
rithm can be divided into linear and quadratic convergence
phases depending on the properties of the objective func-
tion f (x).
Linear convergence phase In this phase the convergence is
dominated by the linear convergence term C1 (Eq. 15).

kεk+1k · C1 ¢ kεkk (19)

Therefore we have C1ÀC2:

°°°°°
mX

k=1

∂r2
k (xk)

∂x2 rk(xk)

°°°°° À
°°°°°

mX

k=1

µ
∂rk (xk)

∂x

¶2
°°°°° (20)

and the observation error term rk(xk) satis…es

rk(xk) À 1 (21)

Equation 21 characterizes situations in which there is a sig-
ni…cant discrepancy in the minimization model de…ned in
Eq. 2 due to large deviations of the estimated parameters
xk from the true parameters x¤. For kC1k > 1 the process
diverges.
Close range phase

In regions in proximity of the solution rk (xk) ! 0 and
C1 ! 0. The second term C2 in Eq. 15 becomes dominant,
making the convergence rate quadratic.
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