
A Stratification-based Approach for
Inconsistency Handling in Description Logics

Guilin Qi1, Jeff Z. Pan2

1 Institute AIFB
Universität Karlsruhe

D-76128 Karlsruhe, Germany
gqi@aifb.uni-karlsruhe.de

2 Department of Computing Science, The University of Aberdeen
Aberdeen AB24 3FX
jpan@csd.abdn.ac.uk

Abstract. Inconsistency handling is a central problem in many knowl-
edge representation fields, such as belief revision, belief merging. Many
approaches have been proposed to handle inconsistency in ontologies. In
this paper, we propose a stratification-based approach for inconsistency
handling in description logics (DLs), a family of ontology languages. This
approach consists of two steps. In the first step, we obtain a preference
relation on the axioms in the DL knowledge base using an algorithm.
Then two existing approaches in first-order logic are adapted to resolve
conflicting information in the stratified DL knowledge base.

1 Introduction

Ontologies play a crucial role for the success of the Semantic Web [12]. There
are many representation languages for ontologies, such as description logics (or
DLs for short) [4]. Inconsistency may occur because of several reasons, such
as modelling errors, migration or merging ontologies, and ontology evolution.
Current DL reasoners, such as RACER [14], can detect logical inconsistency.
But they only provide lists of unsatisfiable classes and the process of resolving
inconsistency is left to the user or ontology engineers. The need to improve DL
reasoners to reasoning with inconsistency is becoming urgent to make them more
applicable. Many approaches were proposed to handle inconsistency in ontologies
based on existing techniques for inconsistency management in traditional logics,
such as propositional logic and nonmonotonic logics [24, 21, 18].

It is well-known that priority or preference plays an important role in in-
consistency handling [2, 7, 20]. In [2], the authors introduced priority to default
terminological logic such that more specific defaults are preferred to more gen-
eral ones. When conflicts occur in reasoning with defaults, defaults which are
more specific should be applied before more general ones. In [20], an algorithm,
called refined conjunctive maxi-adjustment (RCMA for short) was proposed to
weaken conflicting information in a stratified DL knowledge base and some con-
sistent DL knowledge bases were obtained. To weaken a terminological axiom,



they introduced a DL expression, called cardinality restrictions on concepts [3].
In [26], a revision-based approach was given to resolve inconsistency in a strat-
ified DL knowledge base. Instead of using cardinality restrictions on concepts,
this approach weakens DL axioms (both terminological axioms and assertional
axioms) by removing those instances which are responsible for inconsistency.

In this paper, we propose a stratification-based approach for inconsistency
handling in DLs. First, we give an algorithm to obtain a preference relation on
the axioms of an inconsistent DL knowledge base. The knowledge base associated
with this preference relation is a stratified DL knowledge base. We then apply two
existing approaches in first-order logic to resolve conflicting information in the
stratified DL knowledge bases. The first approach is called a possibilistic logic
approach and the second approach is called a lexicographic-based approach. We
analyze the pros and cons of both approaches.

This paper is organized as follows. Section 2 gives a brief review of description
logics. In Section 3, we provide background knowledge on stratified knowledge
bases and two inconsistency handling approaches. An algorithm to stratify a DL
knowledge base is proposed in Section 4. We then adapt the existing inconsis-
tency handling approaches to DLs in Section 5. Before conclusion, we have a
brief discussion on related work.

2 Description logics

In this section, we introduce some basic notions of Description Logics (DLs),
a family of well-known knowledge representation formalisms [4]. We consider
ALC [25], which is a simple yet relatively expressive DL. Let NC and NR be
pairwise disjoint and countably infinite sets of concept names and role names
respectively. We use the letters A and B for concept names, the letter R for
role names, and the letters C and D for concepts. The set of ALC concepts is
the smallest set such that: (1) every concept name is a concept; (2) if C and D
are concepts, R is a role name, then the following expressions are also concepts:
¬C (full negation), CuD (concept conjunction), CtD (concept disjunction),
∀R.C (value restriction on role names) and ∃R.C (existential restriction on role
names). An interpretation I = (∆I , ·I) consists of a set ∆I , called the domain
of I, and a function ·I which maps every concept C to a subset CI of ∆I and
every role R to a subset RI of ∆I ×∆I such that, for all concepts C, D, role
R, the following properties are satisfied:

(1) (¬C)I =∆I \ CI ,
(2) (CuD)I=CI∩DI , (CtD)I=CI∪DI ,
(3) (∃R.C)I={x|∃ ys.t.(x, y)∈RI and y∈CI},
(4) (∀R.C)I={x|∀y(x, y)∈RI implies y∈CI}.
A DL knowledge base consists of two components, the terminological box

(TBox) T and the assertional box (ABox) A. A TBox is a finite set of termino-
logical axioms of the form CvD (general concept inclusion or GCI for short) or
C≡D (equalities), where C and D are two (possibly complex) ALC concepts.
An interpretation I satisfies a GCI CvD iff CI⊆DI , and it satisfies an equality



C≡D iff CI = DI . It is clear that C≡D can be seen as an abbreviation for the
two GCIs CvD and DvC. Therefore, we take a TBox to contain only GCIs. We
can also formulate statements about individuals. We denote individual names as
a, b, c. A concept (role) assertion axiom has the form C(a) (R(a, b)), where C is
a concept description, R is a role name, and a, b are individual names. To give a
semantics to ABoxs, we need to extend interpretations to individual names. For
each individual name a, ·I maps it to an element aI ∈ ∆I . An interpretation
I satisfies a concept axiom C(a) iff aI∈CI , it satisfies a role axiom R(a, b) iff
(aI , bI)∈RI . An ABox contains a finite set of concept and role axioms. A DL
knowledge base K consists of a TBox and an ABox, i.e. it is a set of GCIs and
assertion axioms. An interpretation I is a model of a DL (TBox or ABox) axiom
iff it satisfies this axiom, and it is a model of a DL knowledge base K if it satisfies
every axiom in K. In the following, we use M(φ) (or M(K)) to denote the set of
models of an axiom φ (or DL knowledge base K). K is consistent iff M(K)6=∅.
Let K be an inconsistent DL knowledge base. A set K ′⊆K is a conflict 1 of K
if K ′ is inconsistent, and any sub-knowledge base K ′′⊂K ′ is consistent. Given a
DL knowledge base K and a DL axiom φ, we say K entails φ, denoted as K |= φ,
iff M(K)⊆M(φ).

3 Stratified Knowledge Bases

In this section, we first provide some background knowledge on stratified knowl-
edge bases. Then some inconsistency handling approaches in classical logic are
introduced.

3.1 Stratified knowledge base

We consider a first order language L determined by a set of variable symbols and
a set of predicate and function symbols. 0-ary functions are constants. We use
uppercase letters like P and R for predicate symbols, lowercase letters like a, b, c
for constant symbols, and x, y for variable symbols. The classical consequence
relation is denoted as `. We denote formulae in L by φ, ψ, γ,... A classical knowl-
edge base K is a finite set of first-order formulae. K is inconsistent iff K ` φ and
K ` ¬φ for some formula φ.

A stratified knowledge base, sometimes also called prioritized knowledge base
[5], is a set K of (finite) propositional formulas together with a total preorder ≤
on K (a preorder is a transitive and reflexive relation, and ≤ is a total preorder
if either φ≤ψ or ψ ≤ φ holds for any φ, ψ∈K)2. Intuitively, if φ ≤ ψ, then φ is
considered to be at least less or equally important than ψ. K can be equivalently
defined as a sequence K = (S1, ..., Sn), such that formulas in Si have the same
1 The notion of conflict is different from the notion of minimal unsatisfiability-

preserving sub-TBox of a DL knowledge base defined in [24] in that it concerns
inconsistency instead of incoherence.

2 For simplicity, we use K to denote a stratified knowledge base and ignore the total
preorder ≤.



level of priority and have higher priority than the ones in Sj where j < i. Each
subset Si is called a stratum of K and i the priority level of each formula of Si.
Therefore, the higher the stratum, the higher the priority level of a formula in
it. A subbase A of K is also stratified, that is, A = (A1, ..., An) such that Ai⊆Si,
i = 1, ..., n.

3.2 Reasoning with inconsistent stratified knowledge bases

Many approaches have been introduced to reasoning with inconsistent stratified
knowledge bases [5, 7–9]. We consider two approaches, one is the possibilistic
logic approach [9] and the other is the adapted lexicographic-based approach
[7].

Possibilistic logic approach Possibilistic logic inference [9] is based on a suit-
able consistent stratified subbase of K. Suppose K = {S1, ..., Sn}. Let Inc(K) =
max{i : Si ∪ ... ∪ Sn is inconsistent} be the inconsistency degree of K. There
are two possibilistic consequence relations.

Definition 1. Let K = {S1, ..., Sn} be a stratified knowledge base. A formula φ
is said to be a possibilistic consequence of K, denoted by K `π φ if and only if
SInc(K)+1 ∪ ... ∪ Sn ` φ.

A formula φ is a possibilistic consequence ofK if and only if it can inferred by the
set of formulas whose priority levels are greater than Inc(K), the inconsistency
degree of K.

Definition 2. Let K = {S1, ..., Sn} be a stratified knowledge base. A formula φ
is said to be a i-consequence of K, denoted by K `i φ if and only if the following
conditions are satisfied:

(1) i>Inc(K)
(2) Si ∪ ... ∪ Sn ` φ
(3) for any j > i, Sj ∪ ... ∪ Sn 6`φ.

In Definition 2, Condition (1) ensures that the i-consequence is not trivial. Con-
dition (2) says that φ can be inferred from the set of formulas whose priority
levels are greater than i and Condition (3) means that i is the highest priority
level which can be attached to φ.

To check whether a formula φ is a possibilistic consequence or an i-consequence
of K, we first need to compute the inconsistency degree of K, which is a hard
task.

Proposition 1. [19] Computing Inc(K) requires dlog2ne satisfiability checks,
where n is the number of different strata of K.

According to Proposition 1, it requires dlog2ne+1 satisfiability checks to decide
whether a formula φ is a possibilistic consequence of K or not.



Adapted lexicographic-based approach In [7], a stratified first-order logic
approach for handling inconsistency was proposed to adapt the lexicographic-
based approach in propositional logic [5]. When a formula of the form ∀xφ(x)
is involved in a conflict, then it is simply deleted by the lexicographic-based
approach to restore consistency. In contrast, the adapted lexicographic-based
approach weakens the conflicting formula by dropping only instances of this
formula which are responsible of a conflict. For example, if a formula of the
form ∀xφ(x) is conflicting for x = a, then this formula is weakened as ∀x¬(x =
a)→φ(x). Let us explain the approach in more detail.

Let φ be a formula which is universally quantified with a set of variable
X = {x1, ..., xn}. Let I = {i1, ..., in} be such that ik (k = 1, ..., n) are in-
stances of xk respectively. Let us denote the formula ¬(

∧
k=1,...,n(xk = ik)) as

Different(I,X). The following definitions can be found in [7].

Definition 3. Let φ be a first-order formula which is universally quantified with
a set of variable X = {x1, ..., xn} where n is finite. φweak is called a weakened
formula of φ if it has the form: A→φ, where A = {Different(Ij , X) : j =
1, ...,m} (or A can be seen as the conjunction of formulas in it). The degree
of a weakened formula φweak is defined as degree(φweak) = |A|, i.e., it is the
cardinality of A.

The degree of a weakened formula is used to count the number of instances that
cannot be applied, i.e. instances that are ignored.

The weakened base of a first-order knowledge base is defined as follows.

Definition 4. Let K = {S1, ..., Sn} be a stratified knowledge base, where Sn

contains formulas that are completely certain (that is, they cannot be deleted
or weakened if they are involved in a conflict). A first-order knowledge base
K ′ = {S′1, ..., S′n} is said to be a weakened base of K if 1) K ′ is consistent, and
2) K ′ is only obtained by replacing some formula φ of {S1, ..., Sn−1} by their
weakened counterpart φweak.

The degree of a stratum S′i of a weakened base K ′ is defined as: degree(S′i) =
Σφweak∈S′

i
degree(φweak). We then can define the ranking between weakened

bases as follows.

Definition 5. Let K ′ and K ′′ be two weakened bases of K. K ′ is said to be
lexicographically preferred to K ′′, denoted by K ′ >lex K ′′, if ∃i, 1≤i≤n such
that i) degree(S′i) < degree(S′′i ), and ii) ∀j > i, degree(S′j) = degree(S′′j ).
K ′ is said to be lexicographically preferred weakened base of K if there is no
consistent weakened base K ′′ such that K ′′>lexK

′. A formula ψ is said to be a lex
conclusion of K, denoted K `lex ψ, if ψ is a consequence of all lexicographically
preferred weakened bases of K.

4 Stratification of DL Knowledge Bases

In this section, we define an algorithm transform an inconsistent DL knowledge
base into a stratified DL knowledge base, i.e. each element of the base is as-
signed a rank, based on the weakening-based revision operator. More precisely,



a stratified DL knowledge base is of the form K = S1∪...∪Sn, where for each
i∈{1, ..., n}, Si is a finite multi-set of DL sentences. Sentences in each stratum
Si have the same rank or reliability, while sentences contained in Sj such that
j > i are seen as more reliable.

There are many ways to obtain a stratified DL knowledge base. For example,
the stratification can be given by an expert or by ontology learning [15]. The
stratification can also be computed automatically. In this section, we propose an
algorithm to stratify a DL knowledge base. We assume that a TBox T consists
of two adjoint subsets: a set of completely sure terminology axioms Tc, i.e., ax-
ioms which will not be involved in any conflict, and a set of default terminology
axioms Td. We also assume that the information in an ABox is completely sure.
The knowledge base is called a default DL knowledge base. That is, a default DL
knowledge base K is already stratified as K = {Td, A∪Tc}, where Tc contains
completely sure terminology axioms, A contains assertion axioms, and Td con-
tains default terminology axioms. This assumption is often adopted in default
theories [1, 7, 23]. In default theories, specificity is a commonly used criterion for
ranking a set of default rules [22, 23, 2]. Many methods have been proposed to
compute specificity in default theories. In [22], Pearl gives a method to rank
a set of default rules such that a more specific default is preferred to a more
general one. This method is then revised and applied to stratify a knowledge
base consisting of a set of default and hard rules in [6]. In this section, we pro-
pose a stratification algorithm based on the stratification method in [6]. Given
a set of terminology axioms T = Tc ∪ Td, where Tc contains completely sure
terminology axioms, and Td contains default terminology axioms, we say that a
default terminology axiom C1vD1 is more specific than another one C2 v D2

iff T |= C1vC2 but T 6|= C2 v C1. Note that the ordering relation defined by
specificity is not necessarily a total preorder.
Stratification Algorithm
Input: Default terminology axioms base Td, completely sure terminology axioms
base Tc

Output: Stratified default terminology axiom base Ts

begin
m=1;
while Td 6= ∅ do
begin
Sm = {CivDi|Ci v Di∈Td, and Tc ∪ Td ∪ {Ci(a)} is consistent, a is a

new instance};
If Sm = ∅ then stop (inconsistent terminology axioms).
Td = Td \ Sm; m = m+ 1;

end begin
end while
Return Ts = {S1, S2, ..., Sm}.

end
In the stratification algorithm, when there exists m such that Sm is empty,

then we say that Td is inconsistent with Tc and we end the algorithm (because all



the other element in Td are blocked to be stratified). In the following, we assume
that Tc is always consistent with Td. Given a default DL knowledge base K =
{Td, A∪Tc}, suppose Td is stratified as Ts = {S1, ..., Sm} using the stratification
algorithm, we get a stratified DL knowledge base K ′ = {S1, ..., Sm+1}, where
Sm+1 = A∪Tc.

Let us look at an example.

Example 1. Let K = {Td, A∪Tc}, where Td = {birdvflies, penguinv¬flies},
Tc = {penguinvbird} and A = {penguin(Cheeky)}. We now apply the strat-
ification algorithm to stratify Td. First, since Td∪Tc ∪ {bird(a)} is consistent
and Td ∪ Tc ∪ {penguin(a)} is inconsistent, where a is an arbitrary bird name,
we have S1 = {birdvflies}. There is only one element left in Td, so S2 =
{penguinv¬flies}. That is, Td is stratified as Ts = {S1, S2}. Note that penguin
v¬flies is more specific than birdvflies because we have penguinvbird in Tc.
K is then further stratified as K ′ = {S1, S2, A∪Tc}.

In Example 1, the ranking obtained by the stratification algorithm agrees with
the notion of specificity. More generally, suppose CivDi is a terminology axiom
in Td such that Td∪Tc∪{Ci(a)} is inconsistent. Then the assertion Ci(a) triggers
a more general default terminology axiom in Td which is responsible for the
inconsistency. Therefore, the higher the rank is, the more specific the default
terminology axiom is.

5 Inconsistency Handling in Stratified DL Knowledge
Bases

5.1 Possibilistic logic approach

We apply the possibilistic logic approach to deal with inconsistency in a stratified
DL knowledge base K. We have the following two definitions.

Definition 6. Let K = {S1, ..., Sn} be a stratified DL knowledge base. Let
Inc(K) = max{i : Si ∪ ... ∪ Sn is inconsistent} be the inconsistency degree
of K. For any DL statement φ, φ is a possibilistic consequence of K, denoted
K |=π φ, if and only if, SInc(K)+1 ∪ ... ∪ Sn |=π φ.

Definition 7. Let K = {S1, ..., Sn} be a stratified DL knowledge base. Let
Inc(K) be the inconsistency degree of K. For any DL statement φ, φ is a i-
consequence of K, denoted K |=i φ, if and only if the following conditions are
satisfied:

(1) i>Inc(K)
(2) Si ∪ ... ∪ Sn |= φ

(3) for any j > i, Sj ∪ ... ∪ Sn 6|=φ.



By Definition 6 and Definition 7, both the possibilistic consequence and the i-
consequence relation are independent of DL reasoners, i.e., we can treat the DL
reasoner as a black box and use it to check knowledge base consistency. Another
advantage of the possibilistic approaches is that they are independent of DL
languages, although we restrict our discussion to DL ALC in this paper.

The main task of possibilistic inferences defined above is to compute the
inconsistency degree of K, which requires dlog2ne DL consistency checks, where
n is the number of different strata of K.

Let us go back to Example 1.

Example 2. (Continuing Example 1) Suppose thatK is stratified asK ′ = {S1, S2,
S3}, where S1 = {birdvflies}, S2 = {penguinv¬flies} and S3 = {penguin
(Cheeky), penguinvbird}. Let us check if Cheeky can fly. First, we compute the
inconsistency degree of K ′. Since ∪3

i=1Si is inconsistent and S2∪S3 is consistent,
Inc(K ′) = 1. It is clear that S2∪S3 |=π ¬flies(Cheeky). So we can conclude that
Cheeky cannot fly. Furthermore, we can conclude that K ′ |=2 ¬flies(Cheeky),
that is, the priority level of the proposition that Cheeky cannot fly is two.

Possibilistic logic approach simply blocks a default terminology axiom if it
is responsible for the conflict and its priority level is not larger than the in-
consistency degree. This may result in unnecessary loss of information. Let us
continue to consider Example 3. Suppose we are told that Kelly is a bird. We
add bird(Kelly) to S3, that is, S3 = {penguin(Cheeky), bird(Kelly), penguin
vbird}. Since S2 ∪ S3 6|= flies(Kelly). So we cannot conclude that Kelly can
fly. This is because birdvflies is blocked and cannot be used to infer that
flies(Kelly).

5.2 Lexicographic-based approach

In this section, we apply the adapted lexicographic-based approach to the de-
scription logic setting. To do this, we need to extend the logic ALC with cardinal-
ity restrictions on concepts, which was proposed in [3]. Cardinality restrictions
on a concept C are of the form ≥ m C and ≤ n C, which express that the
concept C has at least m elements and at most n elements respectively. We only
consider cardinality restriction of the form ≤ n C. An interpretation I is said to
satisfy ≤ n C iff |CI |≤n. Each GCI CvD can be equivalently transformed into
a cardinality restriction of the form ≤ 0 Cu¬D, which says that the concept
Cu¬D is empty.

When a GCI is debugged to be erroneous, it is generally deleted to restore
consistency in current methods [18, 21, 24]. However, as we can see from Example
1, this can result in unnecessary loss of information. In [20], a method is proposed
to weaken a conflicting GCI rather than delete it. The idea is that we first
transform every GCI CvD into an equivalent cardinality restriction ≤ 0 Cu¬D.
For a cardinality restriction which is involved in conflict, we simply weaken it as
≤ n Cu¬D, where n≥1. We adopt this method to weaken a GCI.



Definition 8. Let CvD be a GCI. A weakening (CvD)weak of CvD has the
form ≤ n Cu¬D, where n≥0. We use d((CvD)weak) = n to denote the degree
of (CvD)weak.

It is clear that d((CvD)weak) = 0 if (CvD)weak =≤ 0 Cu¬D.
We now consider the weakening of a stratified DL knowledge base.

Definition 9. Let K = {S1, ..., Sn} be a stratified DL knowledge base, where Sn

contains completely sure terminology axioms and assertion axioms. A stratified
DL knowledge base K ′ = {S′1, ..., S′n} is said to be a weakened base of K if it
satisfies the following conditions:

– K ′ is consistent,
– There is a bijection from S1 ∪ ...∪Sn−1 to S′1 ∪ ... ∪ S′n−1 such that for each
φ∈K, f(φ) is a weakening of φ,

– S′n = Sn.

The degree of a stratum S′i of a weakened base K ′ is defined as: degree(S′i) =
Σφweak∈S′

i
degree(φweak).

The ranking between weakened bases is defined as follows.

Definition 10. Let K be a stratified DL knowledge base. Let K ′ = {S′1, ..., S′n}
and K ′′ = {S′′1 , ..., S′′n} be two weakened bases of K. K ′ is said to be lex-
preferred to K ′′, denoted by K ′ >lex K

′′, if ∃i, 1≤i≤n such that 1) degree(S′i) <
degree(S′′i ), and 2) ∀j > i, degree(S′j) = degree(S′′j ).

Similar to the adapted lexicographic-based approach, we can define the fol-
lowing inference.

Definition 11. Let K ′ be a weakened base of K. K ′ is a lex-preferred weakened
base of K if there is no consistent weakened base K ′′ of K such that K ′′>lexK

′.
A formula ψ is said to be a lexicographic conclusion of K, denoted K |=lex ψ, if
ψ is a consequence of all lex-preferred weakened bases of K.

We illustrate the lexicographic-based approach by the following example.

Example 3. (Continuing Example 2) K ′ has three weakened bases: K1 = {S11,
S12, S13}, where S11 = {≤ 1 birdu¬flies}, S12 = S2 and S13 = S3; K2 =
{S21, S22, S23}, where S21 = S1, S22 = {≤ 1 penguinu¬flies} and S23 = S3;
K3 = {S31, S32, S33}, where S31 = S1, S32 = S2 and S33 = {penguin(Cheeky),≤
1 penguinu¬bird}. It is easy to check that K1 is the only lex-preferred weakened
base of K. Since K1 |= bird(Kelly), we have K |=lex bird(Kelly).

Next, we consider the semantic computation of the lexicographic-based ap-
proach.

Definition 12. Let W be a non-empty set of interpretations and I ∈ W, φ a
terminology axiom of the form CvD, and K be a DL knowledge base (K is not
stratified here). The number of φ-exceptions for I is:

eφ(I) =
{
|CI∩(¬DI)| if CI∩(¬DI) is finite

∞ otherwise. (1)



The number of K-exceptions for I is eK(I) = Σφ∈Ke
φ(I). The ordering �K on

W is: I �K I ′ iff eK(I)≤eK(I ′), for I ′ ∈ W. I ≡K I ′ denotes I �K I ′ and
I ′ �K I

The definition of φ-exception originates from Definition 6 in [20]. However, in
[20], it is used to define an ordering �π

K on a set of interpretations with the same
pre-interpretation π = (∆π, dπ), where ∆π is a domain and dπ is a denotation
function which maps every individual name a to a different element in ∆π.

We define the lexicographical preference ordering as follows.

Definition 13. Let K = (S1, ..., Sn) be a stratified DL knowledge base, where
Sn contains completely sure terminology axioms and assertion axioms, and Ω be
the set of models of Sn. The lexicographical preference ordering �lex,K is defined
as I�lex,KI ′ iff ∀i∈{1, ..., n− 1}, I≡Si

I ′ or ∃i such that I ≺Si
I ′, and I≡Sj

I ′
for all n > j > i. The set of minimal models of K w.r.t �lex,K is denoted as
min(Ω,�lex,K).

The following results give semantic interpretation of the lexicographic-based
inference. We first prove a lemma.

Definition 14. Let K and K ′ be two consistent DL knowledge bases (K and
K ′ are not stratified), where K consists of terminology axioms. A DL knowledge
base Kweak,K′ is a weakened knowledge base of K w.r.t K ′ if it satisfies:

– Kweak,K′ ∪K ′ is consistent, and
– There is a bijection f from K to Kweak,K′ such that for each φ∈K, f(φ) is

a weakening of φ.

The set of all weakened bases of K w.r.t K ′ is denoted by WeakK′(K).

Lemma 1. Let K and K ′ be two consistent DL knowledge bases, where K con-
sists of terminology axioms, and I be an interpretation such that I |= K ′. Let
l = min(d(Kweak,K′) : Kweak,K′∈WeakK′(K), I |= Kweak,K′). Then eK(I) = l.

Proof. Suppose Kweak,K′ ∈ WeakK′(K) such that d(Kweak,K′) = l and I |=
Kweak,K′ . Let φ = CvD ∈ K and φweak∈Kweak,K′ . Suppose d(φweak) = n,
that is, φweak =≤n Cu¬D. Since I |= Kweak,K′ , I |= φweak. Moreover, for
any other weakening φ′weak of φ, if d(φ′weak) < n, then I 6|= φ′weak (because
otherwise, we find another weakening K ′

weak,K′ = (Kweak,K′ \{φweak})∪{φ′weak}
such that d(K ′

weak,K′) < d(Kweak,K′) and I |= K ′
weak,K′). So |CI∩¬DI |≤n.

We further have |CI∩¬DI |≥n. Otherwise, suppose |CI∩¬DI |<n. Then there
exists φweak of φ such that d(φ′weak) < n, this is a contradiction. Therefore,
eφ(I) = |CI∩¬DI | = n = d(φweak). That is, eK(I) = l.

Proposition 2. Let K = (S1, ..., Sn) be a stratified DL knowledge base, where
Sn contains completely sure terminology axioms and assertion axioms. φ is a
DL statement and Ω is the set of models of Sn. Then K |=lex φ iff I |= φ, for
all I ∈ min(Ω,�lex,K).



Proof. Suppose K contains all the lex-preferred weakened bases of K. We need
to prove that for every interpretation I, I |= K iff I ∈ min(Ω,�lex,K), where
I |= K iff I |= Ki for all Ki ∈ K.

“Only if part”
Suppose I |= K and I6∈min(Ω,�lex,K). Then ∃I ′ such that I ′≺lex,KI. That

is, there exists some i such that I ′≺Si
I and I ′≡Sj

I for all n > j > i. Suppose
K ′ = {S′1, ..., S′n} ∈ K, then I |= K ′. Since I ′≡SjI for all n > j > i, by Lemma
1, there exists a weakened base S′′j of Sj such that I ′ |= S′′j and degree(S′j) =
degree(S′′j ). This can be proved by induction over priority level k of K.

For k = n−1. Since I ′≡Sn−1I, we have eSn−1(I) = eSn−1(I ′). By Lemma 1,
we have degree(S′n−1) = eSn−1(I). Moreover, there exists a weakened base S′′n−1

of Sn−1 such that degree(S′′n−1) = eSn−1(I ′). So degree(S′n−1) = degree(S′′n−1).
Suppose for all k≥l, where l>i+1, there exists a weakened base S′′k of Sk such

that degree(S′′k ) = degree(S′k) and I ′ |= Sk. Since k− 1>i, we have I ≡Sk−1 I ′.
That is, eSk−1(I) = eSk−1(I ′). Similarly, by Lemma 1, there exists a weakened
base S′′k−1 of Sk−1 such that I ′ |= S′′k−1 and degree(S′′k−1) = degree(S′k−1).

Since I ′≺Si
I, we have eSi(I ′)<eSi(I). By Lemma 1, there exists a weakened

base S′′i of Si such that I ′ |= S′′i and degree(S′′i ) < degree(S′i). This is a contra-
diction because we then can find a weakened base K ′′ = {S′′1 , ..., S′′n} such that
K ′′ >lex K

′. Therefore, if I |= K, then I∈min(Ω,�lex,K).
“If part”
Suppose I∈min(Ω,�lex,K). Let us assume that I 6|= K. Suppose K ′ is a

weakened base of K such that I |= K ′, and for there does not exist a weak-
ened base K ′′ of K such that I |= K ′′ and K ′′ >lex K ′. Since I 6|= K, we
have degree(K ′′) < degree(K ′) for all K ′′∈K. Let K ′′∈K and there exists an
interpretation I ′ such that I ′ |= K ′′. By Definition 10, there exists i such that
degree(S′′i ) < degree(S′i) and for all n > j > i, degree(S′′j ) = degree(S′j).
By Lemma 1, it is easy to show that eSj (I ′) = eSj (I) for all n > j > i and
eSi(I ′) < eSi(I). So I ′≺lex,KI, which is a contradiction.

This completes the proof.

According to Proposition 2, we can define the lexicographic-based inference
in a semantic way.

Definition 15. Let K = (S1, ..., Sn) be a stratified DL knowledge base. φ is a
DL statement. Then K lexicographically entails φ, denoted K |=lex φ, iff ω |= φ,
for all ω ∈ min(Ω,�lex,K).

Compared with possibilistic approaches, the lexicographic-based approach is
more fine-grained and can keep more original information. However, it is based
on cardinality restrictions on concepts, so it cannot be used to deal with inconsis-
tency in DLs which disallow cardinality restrictions on concepts. Furthermore, to
implement the lexicographic-based approach, we need to pinpoint the instances
which are responsible for the inconsistency, which is usually a hard task.



6 Related Work

A lot of work has been done on handling inconsistency in DLs [1, 2, 21, 16, 24, 18,
20]. In [1], Reiter’s default logic is embedded into terminological representation
formalisms. In their paper, conflicting information is treated as exceptions. To
deal with conflicting default rules, they instantiated each rule using individuals
appearing in the ABox and applied two existing default reasoning methods to
compute all extensions. Then, in [2], priorities were introduced to default ter-
minological logic such that more specific defaults are preferred to more general
ones. In our stratification algorithm, we also give priority to a more specific de-
fault terminology. However, when handling inconsistency, we do not need the
instantiation step. Furthermore, in [1, 2], the resolution of conflicting ABox as-
sertions was not considered. Recently, some methods for repairing inconsistencies
[24, 21] or reasoning with inconsistent ontologies [16, 18] have been proposed. A
common problem with these methods is that they do not take advantage of DL
expressions. If a terminological axiom is detected to be erroneous (that is, it is
involved in a conflict), then it is simply deleted. In contrast, we introduce an
important DL expression, i.e. cardinality restrictions, to deal with an erroneous
terminological axiom. Our lexicographical-based approach is closely related to
the adaptive lexicographic-based approach in [8]. However, our approach is more
general than the adaptive lexicographic-based approach. The later can only deal
with inconsistencies arising due to instances (or individual names in DLs) ex-
plicitly introduced in the facts (or ABox assertions), while our approach is also
applicable when inconsistencies result from TBox axioms. In [20], the authors
proposed an algorithm, called refined conjunctive maxi-adjustment (RCMA),
for inconsistency handling in a stratified knowledge base based on cardinality
restrictions. Our second inconsistency handling method is also based on car-
dinality restrictions. However, our method differs from RCMA method in that
we only weaken those GCIs which are involved in conflict and RCMA method
weakens not only conflicting GCIs but also GCIs not involved in conflict. This
work is also related to some other approaches to extend DLs with nonmonotonic
theories, such as defeasible description logics [13, 17, 27] and belief change in DLs
[10, 11]. Defeasible description logics combines defeasible logic and description
logics by adding a layer of rules from defeasible logic on top of ontologies in
description logics. As in defeasible logic, an acyclic relation on the set of rules
is assumed to deal with conflicting rules. This preference relation may not be
a total preorder as we have assumed in the paper. The default terminology ax-
ioms are similar to the defeasible rules in defeasible description logics. However,
rules are not terminology axioms. In [10, 11], AGM’s theory of belief change has
been applied to description logics. However, they only studied the feasibility of
applying the generalized AGM postulates for belief change to DLs. No explicit
belief change operators were proposed in their papers.



7 Conclusions

In this paper, we first proposed an approach to stratifying a DL knowledge base
such that a more specific conflicting terminology axiom is preferred to a more
general one. Then two inconsistency handling approaches first-order logic are
adapted to deal with inconsistency in a stratified DL knowledge base. The first
approach is the possibilistic logic approach, which drops formulas whose priority
level is not larger than the inconsistency degree. The deficiency of this approach
is that it suffers form the drowning problem and it will result in undesirable con-
clusions. In contrast, the second approach weakens the conflicting terminology
axioms instead of deleting them. The semantics of the approach is also discussed.

Our weakening method is based on cardinality restrictions. However, from the
implementation point of view, the cardinality restriction is not very promising as
no main-stream DL reasoners supports it yet. In a future work, we will explore
other DL constructors such as nominals to weaken terminology axioms. Finally,
to implement our approaches, an important problem is to detect GCIs and and
assertions which are responsible for the conflict. Some existing techniques on
debugging of unsatisfiable classes, such as debugging methods in [24, 21], may
be adapted to pinpoint the conflicting axioms in a stratified DL knowledge base.
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