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I. ACETYLCHOLINE RECEPTORS

Acetylcholine receptors (AChRs), like many other
ligand-activated neurotransmitter receptors, consist of
two major subtypes: the metabotropic muscarinic recep-
tors and the ionotropic nicotinic receptors. Both share the
property of being activated by the endogenous neuro-
transmitter acetylcholine (ACh), and they are expressed
by both neuronal and nonneuronal cells throughout the
body (8, 113, 142, 184). The metabotropic receptors are
second messenger, G protein-coupled seven-transmem-
brane proteins. They are classically defined as being ac-
tivated by muscarine, a toxin from the mushroom Aman-

ita muscaria, and inhibited by atropine, a toxin from
Atropa belladonna, a member of the nightshade family.
Both toxins cross the blood-brain barrier poorly and were
discovered primarily from their influences on postgangli-
onic parasympathetic nervous system functions. Activa-
tion of muscarinic AChRs is relatively slow (milliseconds
to seconds) and, depending on the subtypes present (M1-
M5), they directly alter cellular homeostasis of phospho-
lipase C, inositol trisphosphate, cAMP, and free calcium.
A recent review of these receptors is recommended (142).

The other subtype of AChR is the fast ionotropic
cationic nicotinic receptor channel (nAChR). These re-
ceptors are sensitive to activation by nicotine and have
ion channels whose activity is induced in the micro- to
submicrosecond range. Our knowledge about nAChRs
originated through the combination of two natural oddi-
ties (see Refs. 8, 229, 276, 342, 343, 382 for extensive
reviews). The first was the finding that the electric organ
of a fish that produces an electric pulse to stun its prey,
such as Torpedo, expresses nAChRs at densities that ap-
proach a crystalline array (245, 438). This provided an
unprecedented source of starting material for receptor
purification since nAChRs comprise �40% of the protein
from this organ. The second was the discovery of �-bun-
garotoxin (�-BGT), a component of krait snake venom
that binds muscle-type nAChRs with near covalent affinity
to inhibit their function and promote debilitating paralysis
at the neuromuscular junction (6, 50, 149, 264). The inte-
gration of these diverse findings resulted in the use of
�-BGT affinity columns to separate nAChRs from other
proteins in detergent-solubilized electric organs (re-
viewed in Ref. 125). The NH2-terminal protein sequence
was obtained from the purified nAChR protein, and the
newly emerging methods of reverse genetics led to the
identification, cloning, and sequencing of genes responsi-
ble for encoding these receptors. Studies that combined
genetic, protein, immunological, microscopic, and func-
tional assays have provided a consensus view of the mus-
cle nAChR as a heteropentamer consisting of four related,
but genetically and immunologically distinct, subunits or-
ganized around a central pore in the membrane in the
stoichiometry of two � subunits and one each of �, �, and

� (Fig. 1). The subsequent use of these subunits as probes
for low-stringency screening of brain cDNA libraries led
to the discovery of a diverse family of distinct nAChR
subunits. Collectively, these subunits interact in defined
ways to produce a spectrum of nAChRs that are ex-
pressed by various cell types extending from muscle to
other nonneuronal cells in skin, pancreas, and lung to
neurons in the central and peripheral nervous systems.
The unique functional properties of distinct nAChR sub-
types also customize their role in regulating physiological
processes ranging from maintenance of metabolic tone, to
control of inflammatory processes, to their widely studied
influence over inhibitory and excitatory transmissions in
the nervous system.

II. NICOTINIC RECEPTOR SUBUNIT

STRUCTURE AND DIVERSITY AND

RECEPTOR SPECIALIZATION

The significance of nAChRs to modulate biological
function rests in their ability to translate the binding of an
endogenous agonist, such as ACh, to receptor motion that
will gate the channel to favor ion flow and induce a
cellular response. From the time of its discovery in 1914
by Henry H. Dale (109) and Otto Loewi (283) (the two
shared the Nobel Prize in Physiology and Medicine in
1936) as an agent that decreases heart rate, ACh was
recognized as an endogenous signaling compound, syn-
thesized from choline and acetyl-CoA, through the action
of choline acetyltransferase, that alters cell function. No-
tably, preceding this discovery was the seminal report
from Claude Bernard that skeletal muscle contraction
could not be produced by stimulation of nerves in cura-
rized frogs (56). His historical finding was followed by the
initial description of the neuromuscular synapse in the
early 1860s by his former student W. F. Kühne (1837–
1900) and by W. Krause (1833–1910) (251). Finally, in
1905, John Langley reported that a plant alkaloid, nico-
tine, produced effects consistent with the requirement of
a receptor-mediated response on the nerve endings in the
autonomic system (259). One of the lasting contributions
from Langley’s studies was his proposal that the pharma-
cological agents being tested worked through receptors.
Although this concept was immediately grasped and ex-
tended by the immunologist Paul Ehrlich, we now know
this insight was a pivotal intellectual jump in how a ligand
could initiate and modulate a physiological process (see
Ref. 54 for an extensive and insightful discussion).

The fundamental functional studies of Sir Bernard
Katz, Sir John C. Eccles, and Stephen Kuffler laid the
groundwork for much of our current knowledge of cho-
linergic synaptic transmission at the neuromuscular junc-
tion (137, 138, 230, 231). Earlier seminal contributions
to the field of synaptic transmission were the discovery
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of the quantal nature of acetylcholine release while study-
ing the neuromuscular transmission (103, 117, 307). Follow-
ing the initial extensive and elegant work on the transmitter
release process, Katz and colleagues (116, 144, 230–232)
turned their attention to the postsynaptic mechanism by
which ACh activates its receptors. Notably, in the mid 1950s,
del Castillo and Katz (116) reported that receptor activation
and receptor occupation were separate steps. Indeed, Katz
and Thesleff (232) and Fatt (144) demonstrated that the rate

of development of desensitization increases markedly with
drug concentration. The use of microiontophoresis, first de-
veloped and used by Nastuk (338), enabled Katz and
Thesleff (232) to measure with more reliability the fast
events, revealing the kinetics of the process, assuming that
the receptor molecules can change from an “effective” to a
“refractory” state, and showing that the dose-effect relation-
ship, when agonist is applied iontophoretically, has an S-
shape, rather than a linear, start (232).

FIG. 1. Basic structure of nicotinic acetylcholine receptors (nAChRs). A: the basic linear sequence of all nAChR subunits appears as a large
extracellular domain, four transmembrane domains, and a cytoplasmic domain of variable size that resides between TM3 and TM4. This produces
the classic “3�1” designation that describes this structure. Also characterizing the superfamily of receptor to which nAChRs belong is the Cys-loop
that is composed of two disulfide-linked cystines separated by 13 amino acids that are highly conserved. Subunits that have the Cys-Cys pair are
designated as � subunits (see text). Amino acids conserved in most nAChRs are identified using the Torpedo � subunit numbering system (476).
Residues in green are important to the � subunit contribution to the agonist-binding pocket and orange residues are important to the � or negative
face of the agonist-binding site. Orange residues with black dots are required for gating the channel. Amino acids in TM2 important to establishing
the channel gate are in gray, and those important to relieving the gate are in blue. Residues lining the pore (green) are important to determine ion
selectivity and conductance such as E241 that in part determines the permeability to Ca2�. The lone cysteine418 in TM4 contributes to measuring
the response of nAChRs dependent on the lipid environment. The blue “Y” are N-linked glycosylation sites whose relative locations (except near
the Cys-loop) vary among subunits. B: the EM structure of the Torpedo nAChR is from Unwin (476), and images were generated using the
UCSF-chimera program with coordinates obtained from the Protein Data Bank ID 1OED.pdb. The approximate dimensions of the intact Torpedo

receptor are given. An � subunit is shown where ribbons designate the secondary structures of the primary sequence. The extracellular domain is
largely �-sheets and all TMs are �-helices. Note that the TM domains are believed to extend �10 Å beyond the membrane. The cytoplasmic domain
is depicted as a large �-helix, although this is likely to vary in size and complexity of structure between subunits (see text). This is an � subunit as
designated by the C-loop harboring the Cys-Cys pair that projects from the extracellular domain core-� structure to surround an agonist ligand. The
Cys-loop position near the extracellular end is noted. The entire receptor complex with a solid surface is shown to the right. Note the cone shape
of the receptor and that the subunits are tilted relative to the 90° plane of the membrane. Also, the projection of the C-loop towards the adjacent
subunit in the counterclockwise direction is apparent. C: looking down on the receptor from the extracellular side reveals the arrangement of 5
subunits around the central pore, which is lined by the TM2 from each subunit. Note that the agonist-binding site is contained in a pocket between
the � and adjacent non-� subunit defined on its outer face by the Cys-Cys pair. One � subunit is removed from the complex and ribbons are added
to the structure to designate secondary structure as in B. The arrangement of � strands in a barrel-like portion directly over the TM domains is seen.
Also, the extension of the C-loop around ligand is evident. D: similar to B, the receptor surface is added to show the relative positioning of each
subunit (as labeled) and to look directly down the pore. The extracellular domains form the mouth of the pore, which is strongly constricted by a
residue in TM2 that forms the gate and reduces the diameter of the non-ligand bound receptor to �3 Å.
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All ligand-activated ion channels share a similar ar-
chitecture and function. First, the constituent proteins
are, by necessity, transmembrane to create a hydrated
receptor channel that is also permeable to selected ions.
This basic structural plan subjects the protein to meeting
the regulatory demands placed on it by the extracellular,
intracellular, and transmembrane compartments that si-
multaneously impact upon receptor expression and func-
tion. Second, ion-channel receptors reside in a constant
equilibrium between open and closed states. Therefore,
these receptors must contain primary structural compo-
nents that are responsive to and regulated by the presence
of external compounds such as activators (agonists), in-
hibitors (antagonists), or compounds that modify the ef-
ficacy of these agents. Furthermore, modifications of the
cytoplasmic domain by phosphorylation, membrane flu-
idity, or redox state ensure proper receptor placement
and magnitude of signaling consistent with the cellular
demands. Understanding the molecular mechanisms con-
tributing to these fundamental aspects of nAChR biology
has proceeded rapidly in the last several years as reflected
by the dynamic growth in our knowledge of how they
work and how they participate in normal as well as ab-
normal physiology (see Ref. 83).

A. Receptor Structure Overview

The cloning explosion of the mid 1980s revealed that
the Torpedo nAChR subunits are closely related to an
extended family of cDNAs that in mammals encode 16
structurally homologous subunits with primary structural
identity (Table 1). As shown in Figure 1A, all subunits

have the following: 1) a conserved extracellular large
NH2-terminal domain of �200 amino acids; 2) prominent
and conserved, three transmembrane (TM) domains; 3) a
cytoplasmic loop of variable size and amino acid se-
quence; and 4) a fourth TM domain with a relatively short
and variable extracellular COOH-terminal sequence. This
arrangement forms the basis for the classic designation of
a 3�1 configuration based on the location of TM domains
relative to each other. Also common to all subunits of this
extended family of ligand-gated ion channels is the occur-
rence in the first extracellular domain of a cysteine-loop
(Cys-loop) defined by two cysteines (Cys) that in the
mammalian subunits are separated by 13 intervening
amino acids. Subunits are next classified into �- and
non-� subunits based on the presence of a Cys-Cys pair
(residues 191–192 in Torpedo �1) near the entrance to
TM1. The Cys-Cys pair is required for agonist binding
(229) and its presence designates the subunit as an �-sub-
type (287). Based on their major site of expression,
nAChRs are subdivided into muscle or neuronal subtypes.

Muscle nAChRs consist of five subunits: �1 and 4
non-� subunits named �1, �, �, and �. Only two receptors
are constructed from this complex subunit pool; one of
the subunit composition �1, �1, �, and � or �1, �1, �, and
�, each in the stoichiometry of 2:1:1:1. The relative level of
expression of these receptors is based on muscle inner-
vation (below). Neuronal nAChRs can be homopentamers
or heteropentamers. To date, seven �-like subunits,
termed �2, �3, �4, �5, �6, �7, �9, and �10 (�8 was
identified from avian libraries and has not been found in
mammals; Refs. 113, 184, 215) and 3 non-� subunits
(termed �2, �3, and �4) have been cloned from neuronal
tissues. These receptor subunits were so named because
they were cloned from neuronal-like cells such as the
pheochromocytoma cell line, PC12, or brain-derived
cDNA libraries. While most are indeed expressed by neu-
rons of the central and peripheral nervous systems, such
a designation can be misleading. There is now ample
evidence that many of these nAChR subunits are ex-
pressed by many nonneuronal cell types throughout the
body (95, 168, 234, 255, 426). In fact, some receptors (such
as �7, �9, and �10) have highly specialized functions
including those pertaining to regulation of signaling
mechanisms used by sensory epithelia and other nonneu-
ronal cell types (see below).

The early studies of the Torpedo nAChR established
the first structural definitions that are very much relevant
to all subsequently identified nAChR subunits. All func-
tional members of the Cys-loop family of ligand-gated
channels are formed from a pentameric arrangement of
subunits to create a central pore. Because nAChR sub-
units exhibit a high degree of evolutionary conservation,
studies of high-resolution X-ray crystallographic and elec-
tron microscopic analyses of proteins related to nAChRs
have provided considerable insight into how structure

TABLE 1. Chromosomal location and genetic features

that distinguish human nicotinic ACh receptor

subunits

Receptor NCBI
Name/Subunit

Chromosome
Number/Band Gene, kb

Exons
(Coding)

mRNA
(Coding bp)

Protein
(Amino Acid)

CHRNA1 2q31.1 16.64 9 1816 482
CHRNA2 8p21.2 18.51 0 2684 529
CHRNA3 15q25.1 28.24 6 2321 622
CHRNA4 20q13.33 14.75 6 2206 627
CHRNA5 15q25.1 29.71 6 3578 515
CHRNA6 8p11.21 15.93 6 2164 494
CHRNA7 15q13.2 142.25 10 6162 534
CHRNA9 4p14 19.63 5 2015 479
CHRNA10 11p15.4 5.8 5 1945 450
CHRNB1 17p13.1 12.65 11 2557 501
CHRNB2 1q21.3 12.25 6 5866 502
CHRNB3 8p11.21 39.99 6 2293 458
CHRNB4 15q25.1 17.48 6 2972 498
CHRND 2q37.1 10.48 12 2941 517
CHRNG 2q37.1 6.6 12 2187 517
CHRNE 17p13.2 5.3 12 3030 496

Characteristics for the human neuronal nicotinic ACh receptor
family are given.
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imparts functional similarities and differences among all
nAChRs. Such studies led to the detailed characterization
of the 4.6-Å electron microscopic structure of the Torpedo

nAChR (Fig. 1) and of the high-resolution X-ray crystallo-
graphic structures of the ACh-binding proteins (AChBP)
from the snail Lymnaea stagnalis (2.7 Å; Refs. 67, 434),
the sea snail Aplysia californica (1.96–3.4 Å; Refs. 205,
474), and freshwater snail Bulinus truncatus (2.0 Å; Ref.
79). These AChBP are secreted as homopentamers that
resemble nAChR-like complexes but lack the transmem-
brane and cytoplasmic domains. For this review we have
omitted differences in the detailed structures of these
models, which are described in detail in the original stud-
ies, to focus on receptor features that are in general
applicable to most subunits.

The Torpedo nAChR, as shown in Figure 1B, appears
as a conelike structure that traverses the lipid bilayer. The
prominent extracellular domain is composed of �-strands
that align in a configuration termed a �-barrel. The four
TM domains are �-helices neatly packed around the cen-
tral hydrophilic ion pore. TM helix 2 lines the pore (Fig.
1C). TM4 is away from the pore and mostly interactive
with the lipid bilayer. TM helices 1 and 3 complete this
helix bundle by positioning opposite to each other and
rotated by 90° relative to TM2 and TM4. As suggested by
their name, the TM helices traverse the membrane com-
pletely (Fig. 1B), although �25% of the helix of each TM
segment extends beyond the extracellular membrane sur-
face (475, 476). The largest intracellular domain, which is
located between TM3 and TM4, is depicted as a single
large �-helix in the Torpedo nAChR subunits (Fig. 1B and
Ref. 476). However, this is not as likely to be generalized
to the structure of other nAChR cytoplasmic domains.
Rather, a mix of �-helical and �-strand structures is ex-
pected. The exact folding pattern of the large cytoplasmic
domain reflects both the novelty of the primary structure
of specific subunits and the demands placed on the do-
main for providing its specific cellular function. The
COOH-terminal domain of varied length follows TM4 on
the extracellular surface.

When looking down the receptor from the outside
towards the pore (Fig. 1C), the overall “�-barrel” config-
uration of the extracellular domain is evident. Also visible
is the extended �-loop that contains the Cys-Cys pair of
the agonist-binding site. This extended loop appears to
partially “wrap” around the outside of the adjacent sub-
unit in the counterclockwise position. This loop and a
cleft formed at the interface between the neighboring
subunits create the agonist-binding region and are essen-
tial to the agonist-induced receptor motion that gates the
ion channel, as returned to below. The highly conserved
Cys-loop is located adjacent to the membrane where it
forms a modified loop structure whose distal amino acids
are positioned in close proximity with the extracellular
membrane surface and extended portions of TM helices 1

and 3 (Fig. 1). The second TM domain lines the hydrated
pore. The outward face of the fourth TM domain is mostly
in contact with the lipid bilayer where it forms a receptor-
lipid interface (Fig. 1, B and C). When the protein surface
is added to the nAChR model (Fig. 1D), the pore itself is
relatively large at the mouth of the receptor consisting of
the circled extracellular domains, and it becomes strongly
constricted by the TM2 ring. This produces the ion gate in
the closed receptor. Also evident is that, as with most
proteins, the location of the Cys-loop and Cys-Cys pair in
the primary structure (Fig. 1A) is not predictive of their
relative location in the three-dimensional structure of the
nAChR � subunits, nor does it predict easily how these
highly conserved amino acids participate in receptor ac-
tivation and function.

B. Ligand-Binding Site

Ligand-binding and functional assays in combination
with site-directed mutagenesis, Cys-replacement scanning
mutagenesis, and chemical modification were the first
approaches used to define how ligand bound to the re-
ceptor and transmitted a signal for channel activation or
gating (59, 84, 228, 229). More recently, these methods
have been complemented and extended by advancements
in defining receptor structure at atomic resolution
through the high-resolution electron microscopy visual-
ization of the Torpedo receptor by the Unwin group (476)
and X-ray studies of the crystallized AChBP from mol-
lusks as noted above. Basically, when a ligand such as
nicotine binds, it does so in a pocket formed at the
interface between the � subunit and “back” face of the
adjacent subunit (Fig. 2A). This produces a rotational
force in the �-barrel that produces torque on TM2 to
rotate it from a hydrophobic-based, channel closed con-
figuration to a more open hydrophilic channel that favors
the ion passage. How this is accomplished is a master-
piece of structure and motion (Fig. 2B).

The agonist-binding site is a hydrophobic pocket
formed at the interface between adjacent subunits (Fig.
2A). In all cases, the “front” or “positive” side of the
binding site is produced by an � subunit (�1, �2, �3, �4,
�6, �7, or �9) where the Cys-Cys pair is required. The
“back” or “negative” face of the agonist-binding site is
composed by at least three amino acids of each the �10,
�2, �4, �, �, or � subunit. The �5, �1, and �3 subunits
assemble in the receptor complex in the fifth subunit
position; they do not directly participate in the formation
of the agonist-binding site. The �5 and �10 subunits do
not bind agonists despite their definition as � subunits,
because key residues (see below) required for agonist
binding are not conserved in these � subunits.

The majority of the binding pocket (“positive” face) is
contributed by a loop in the � subunit (termed the C-loop;
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see Figs. 1B and 2A) that at its apex contains the Cys-Cys
pair (Torpedo � subunit residues 191–192). This loop
extends like an interlocking finger around the face of the
adjacent subunit. In addition to the Cys-Cys pair, other
residues required for ligand binding are predominantly
hydrophobic aromatic amino acids, including �Tyr 93,
�Trp 149, �Tyr 190, and �Tyr 198 (80, 229, 431). Notably,
the inability of �5 to bind nicotinic agonists is due to the
substitution of an aspartic acid for the Tyr198 residue. On
the “negative” face, the major residues that contribute to

ligand binding are L112, M114, and Trp53 (also Torpedo

numbering). In general, the identity of the positive-side
hydrophobic residues determines ligand affinity, whereas
the residues contributed by the negative face determine
ligand selectivity. Analysis of the nAChR structure also
reveals that the ligand is well buried in this pocket where
it becomes nearly engulfed by the surrounding protein
structure of the subunit interface (Fig. 2A). Because of
this tight interaction, the identity of amino acids tolerated
in this region is limited and often imparts highly local

FIG. 2. The ligand binding site and the proposed mechanism for gating the ion pore. A: in this depiction, an agonist-binding � subunit (dark blue)
and a structural � subunit (in light blue) are shown with a solid surface looking from the extracellular side with the subunit pair slightly tipped away
from the pore. When agonist is bound (as shown for nicotine, red), the � C-loop is moved towards the structural subunit to cap the agonist-binding
site and effectively encase the ligand in the deep cleft formed between the subunits. The � Cys-Cys pair (187–188) is in yellow. Other residues
interacting with the ligand from the � subunit are colored green and from the � subunit are colored in orange. The circled region is enlarged and
the surface removed to reveal in B the amino acids within the agonist-binding site that interact with nicotine. The same color scheme is used, and
the residues interacting to form the agonist-binding site are named and numbered. The arrows indicate �-strand structure. The weak lines interacting
with nicotine (whose electrostatic surface is in light red) are hydrogen bonds. Certain key residues include tryptophan 143 (W143) from the �
subunit which contributes to forming the base of the agonist-binding site and �-tyrosine 185 (Y185), which is important to stabilize the ligand within
the pocket upon entry. In the �5 nAChR subunit, this residue is an aspartic acid that introduces a potentially negatively charged group into the
pocket to inhibit ligand binding. As indicated by the extent of the molecular surface of nicotine (shown in transparent red), these hydrophobic
residues from both subunit faces further stabilize the ligand in the pocket through van der Waals interactions, and other residues not shown
(including D85, located near W143) also contribute to ligand binding through stabilizing the position of pocket residues. [Adapted from the 2.7-Å
resolution X-ray structure of the AChBP (Protein Data Bank ID 1I9B.pdb) and the images generated in UCSF Chimera by Pettersen et al. (375).]
B: upon binding of agonist and capping of the ligand-binding site (1), rotational motion in the �-strands is transmitted through the subunit (2) to
residues that are near the TM domain-membrane interface. At this point, the rotational motion imparts two important interactions. The first is to
move the loop between �-strands �1 and �2 towards the linking sequence of TM2 and TM3. This positions an invariant valine (V44) into the
hydrophobic pocket that is created by the proximity of proline-272 (P272) and serine-269 (S269). These amino acids, or conservative changes, are
present in most nAChRs. At the same time, the �10 strand moves counterclockwise to position arginine-209 (R209) towards glutamic acid-45 (E45;
also �1 strand) to form an ionic (salt) bond. These interactions result in the rotation of TM4 �15° to move the hydrophobic gating residues [valines
(V255) and (V259) and leucine (L251)] away from the pore and the polar S248 and S252 toward the widened channel. The relief of the gate allows
the channel to completely hydrate and conduct ions (5). Residues at the extracellular and intracellular faces (e.g., E241) ring the channel. These
residues vary among subunits and receptors as polar and/or charged and contribute to determining the relative ion current through the pore. Also,
highly charged rings of amino acids such as E241 enhance certain ion permeability such as by Ca2�. [Model shown is based on the original study
of Unwin (475) taken from electron microscopy studies of channel gating from the Torpedo nAChR (Protein Data Bank code 2BG9) and from
high-resolution studies of the AChBPs (see text for details).]
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physical constraints on the protein movement or agonist
binding.

C. Channel Gating

Ligand binding is converted by the receptor structure
into channel opening within microseconds, suggesting
that the entire protein structure is well tuned to convey
(or at least accommodate) rapid conformational change.
This also explains the need to conserve the sequences in
these portions of the receptor, and the failure to do so is
now linked to several diseases including inherited myas-
thenia syndromes and some forms of epilepsy (143, 214,
300, 446, 447). Before three-dimensional structural mod-
els produced a more unified picture of the nAChRs, early
mutagenesis studies placed residues important to the gat-
ing motion of the receptor throughout the extracellular
domain (84, 99, 348). These studies and those noted pre-
viously also defined that going from ligand binding to
channel gating is a process requiring several distinct
changes in the protein structure. Now we can rationalize
how seemingly small deviations in sequence play an im-
portant role in receptor specialization as reflected in
channel gating.

How ligand binding is converted into motion to open
the nAChR channel has been suggested largely through
methods of computer simulation. The emerging model
(Fig. 2B) indicates that when ACh or nicotine binds to the
nAChR, there is a significant rearrangement of hydrogen
bonds among invariant amino acids near the binding
pocket, including aspartic acid-85, polar groups of the
main chain, and even a trapped water molecule (65, 171,
204). In particular, there is a convergence of side chains of
invariant aromatic residues towards the ligand from both
the � subunit (positive) and negative subunit faces which
interact through hydrophobic (van der Waal) interactions.
Finally, the C-loop moves a considerable distance (�11 Å)
towards the receptor core, allowing the Cys-Cys pair to
interact with the ligand and residues in the “F-loop” of the
negative subunit face. This in effect caps the ligand bind-
ing site to trap the ligand deep inside as seen in Figure 2A

(65, 171, 205). When this occurs at both ligand binding
sites, sufficient torque is generated through the receptor,
via alterations in the relative position of the �-barrel-like
loops, to rotate the extracellular surface of the pentamer
and, in turn, influence the relative position of residues
near the extracellular segment of TM2 and relocate resi-
dues critical to channel gating.

The ion pore created by TM2 is critical to establishing
the ion gate, selectivity, and channel conductivity. There-
fore, the means by which this is mechanically accom-
plished provides considerable insight into how subunit-
specific nAChR function is imparted (Fig. 2B). Because
TM2 lines the pore, it also harbors amino acids that

contribute to the channel gate. In the non-ligand-bound
receptor, the TM2 helices from the five subunits form a
barrier to ion flow due to placement of hydrophobic res-
idues near the midpoint to slightly off-center towards the
cytoplasmic side of the channel. They project into the
putative channel pore to form a narrow (�3 Å) constric-
tion (Fig. 1D). The importance of maintaining the fidelity
of these amino acids is demonstrated when more hydro-
philic amino acids are substituted either by mutagenic
methods or in certain epilepsies. These mutations pro-
duce a partial relief of the gate and increase channel
permeability nonspecifically (254, 269). To open the chan-
nel to ion flow, ligand binding induces rotation of the
extracellular domain, and this is translated into rotation
of the TM2 helices. Basically, this has three important
consequences, including the transient removal of hydro-
phobic barrier residues from the pore, an increase in the
pore diameter to �8 Å, and movement of hydrophilic
residues into the channel to support ion flow (Fig. 2B).

In the Unwin model (476), the rotational torque being
generated in the extracellular domain from ligand binding
is transferred to TM2 through interactions between resi-
dues of the extracellular domain, including the Cys-loop
and the linker region between TM2 and TM3 (Fig. 2B). In
early models, the Cys-loop was largely thought to perform
the gating function. While it does lie within 5 Å of the
“gating complex” near the TM2-TM3 linker, it now ap-
pears that the Cys-loop facilitates rapid movement (Fig.
2B) through interaction with conserved amino acids of
this linker region. In particular, the interaction of residues
from the Cys-loop with the TM2-TM3 linker acts as a fixed
pivot around which TM2 rotates. In this model, the rota-
tion of the extracellular domain moves the valine-44 in the
turn linking the �1 and �2 strands towards the TM2-TM3
linker sequence where this residue fits into a hydrophobic
pocket formed by proline-272 and serine-269. Notably, the
proline residue is required in this position since its ability
to isomerize into the cis-conformation appears to facili-
tate the TM2 rotation into the open channel conformation.
Also, as revealed in structures of greater resolution, a
second interaction occurs when a salt bridge between
glutamate-45 and arginine-209 at the end of the �10 strand
moves into proximity. The importance of this salt bridge
has also been confirmed through site-directed mutagene-
sis, where disrupting its formation interferes with recep-
tor gating (265). This salt bridge is conserved in all Cys-
loop family members, and valine-44 is present in the
pocket between TM2-TM3 in most nAChR subunits. Al-
though the proposal that a kink in TM2 is a component of
the gating mechanism, evidence currently available from
direct measurement and computer simulation suggests
that the predominant gating motion is the 15° clockwise
rotation of TM2. There appears to be no major alteration
in secondary structure such as alteration of the �-helical
TM structure (107, 209, 261, 325, 467). The rigidity of the
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Cys-loop appears to be a critical determinant of how far
and how fast TM2 rotates in response to ligand-induced
motion (196). In studies of chimeras between the Cys-
loop of human glycine receptors and chicken �7 nAChRs
(195), the Cys-loop was observed to be required for cou-
pling the allosteric effect of binding to channel opening
via accelerating the rate of gating. This detailed study
demonstrated that the Cys-loop plays a central role in
fine-tuning the speed of the signal transduction and is
required for accelerating nAChR activation kinetics.
Therefore, subunit-specific differences in the Cys-loop
and interacting sequences impart slightly distinct kinetics
to the ligand-binding response.

Finally, in simulations of the receptor motion during
gating (261), TM4 undergoes the greatest structural
change relative to the other TMs during relief of the gate,
including the significant outward bending of the helix at
the extracellular face. This movement is in part due to the
location of TM4 in the lipid environment where it has
relatively few contacts with the protein relative to other
TMs. This movement may be of additional functional
significance, since TM4 contains a highly conserved cys-
teine residue that projects into the bilayer near the mem-
brane-water interface (52). This conserved cysteine resi-
due appears to be involved in receptor aggregation (in-
cluding �7 nAChRs into so-called membrane lipid rafts;
Refs. 72, 525) and interaction with cholesterol and other
lipid-related molecules such as sterols (51, 304, 305). Con-
sequently, manipulation of the membrane lipid content or
the degree of receptor aggregation has the potential to
modify the gating mechanism.

D. Importance of Subunit Diversity

and Expression

The diversity of nAChR subunits is a major determi-
nant of the specialized properties and functions of the
mature receptors. For example, the subunit composition
imparts a remarkable array of customized pharmacology
and functions (e.g., Table 2). Receptor pentamers can be
constructed from various combinations of �, �, and other
structural subunits that do not participate in ligand bind-
ing. The mammalian high-affinity nicotine-binding recep-
tor consists of at least �4 and �2 nAChR subunits (150,
311). The increased expression of this receptor (termed
upregulation, see below) accounts for the majority of new
binding sites following nicotine administration (150).
However, this generalization is complicated by the fact
that receptor stoichiometry can impact on the regulation
of this receptor subtype function and upregulation. For
instance, �4�2-containing nAChRs can be constructed to
the final stoichiometry of (�4)2(�2)3, (�4)3(�2)2, and
(�4)2(�2)2(�5) (339, 524). While all of these nAChRs bind
nicotine with high affinity, it is the (�4)2(�2)3 nAChR that T
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is most sensitive to upregulation by nicotine as measured
by differences in conductivity and desensitization. The
assembly of nAChRs of different stoichiometry adds to
the potential receptor diversity as evidenced by the find-
ing that interneurons of the hippocampus versus those of
the thalamus appear to express either mixed or predom-
inantly subtypes of one stoichiometry (185, 339). Further-
more, these differences in stoichiometry appear to also
impart specificity of pharmacological agents (530) and
even sensitivity to modulation by zinc (331). Modifica-
tions to the properties of this basic receptor subtype are
also facilitated by the inclusion of the �5 subunit into
�4�2 complexes. The inclusion of this subunit appears to
enhance receptor assembly and expression, reduce the
relative magnitude of ligand-mediated upregulation, and
facilitate receptor channel closure (298, 388). Of note are
recent findings showing that proinflammatory cytokines
such as tumor necrosis factor (TNF)-� and interleukin-1�
modify nAChR assembly in HEK293 cells transfected with
cDNAs expressing various nAChR subunit combinations
(161). Furthermore, TNF-� strongly promotes ligand-me-
diated upregulation of �4�2-nAChRs through a mecha-
nism that requires p38 mitogen-activated protein kinase
(MAPK) signaling (163). Consequently, the importance of
assembly and interaction between inflammatory and cho-
linergic systems appears to be more complicated than
previously expected.

In some brain regions, additional subunits participate
in formation of high-affinity nAChRs. In the basal ganglia,
including the ventral tegmental area (VTA) and substantia
nigra, the �6 and possibly the �3 nAChR subunits are
included in �4�2 nAChR complexes to generate high-
affinity receptors. At present, this is the only brain area
identified where �6 and �3 are coexpressed with �4 and
�2 nAChR subunits. This finding is highly relevant for
Parkinson’s disease (385, 386). The outcome of express-
ing these subunits in different brain regions or subjecting
them to different conditions, such as prolonged exposure
to nicotine, can vary significantly and could account in
part for the specific role these receptors play in the pro-
gression of this disease.

Receptor assembly from different subunits contrib-
utes to differences in other significant aspects of nAChR
properties such as ion permeability and desensitization.
Receptors composed of �7 subunits are known to desen-
sitize rapidly and to have a high Ca2�:Na� permeability
ratio that exceeds that of the glutamate NMDA receptor,
and the 3-4:1 ratio of most other nAChRs (8, 68, 78, 387).
As a result, quite distinctly from other nAChRs and even
other ligand-activated ion channels, the opening of �7
nAChR channels can impact on several Ca2�-dependent
mechanisms, including activation of second messenger
pathways (328, 456).

The means by which specific nAChR subunits deter-
mine the relative permeability to Ca2� can be rationalized

in recent structural models. Ion selectivity of the pore is
in part determined by amino acids that line the ends of
TM2 to form either a cytoplasmic ring and/or an extracel-
lular ring (e.g., Fig. 2B). These residues are always hydro-
philic, and their charges determine which ions pass
through the pore. When polar, uncharged residues com-
prise this ring, as in the muscle nAChRs and nAChRs
harboring �3 subunits, the Ca2� permeability relative to
Na� is low. In homomeric �7 nAChRs, on the other hand,
this ring is composed of glutamic acid residues (e.g.,
shown as E241 in the Fig. 2B diagram) that impart the
remarkably high Ca2� permeability to this channel. This
was demonstrated when alteration of these residues to
other hydrophilic amino acids reduced the Ca2� perme-
ability to levels expected of other nAChRs (100). Of note
is that a ring of glutamates in the extracellular milieu is
likely to be mostly protonated, whereas the same residues
lining the intracellular face are more likely to be ionized
to various extents depending on the metabolic state of the
cell (1, 408). The selection filter also determines which
ions pass through the receptor. For example, when resi-
dues lining the GABAA receptor channel are substituted
for those in the nAChR, the resulting channel conducts
anions rather than cations (170).

Coexpression and assembly of �7 nAChR subunits
with other nAChR subunits influence the ion permeability
of the resulting receptors. For example, nAChRs made up
of �7 and �2 nAChR subunits have pharmacological prop-
erties distinct from those of homomeric �7 nAChRs (240).
Coassembly of �7 with �5 nAChR subunits results in
receptors with distinct desensitization properties and ion
permeability relative to the homomeric �7 nAChR (see
Refs. 179, 515). This is also true of other nAChR subtypes.
The channel kinetics of nAChRs made up of �5, �3, and
�2 nAChR subunits are slightly different from those of
�3�2 nAChRs (488, 491). More dramatic changes in
nAChR channel kinetics are observed when the �5 nAChR
subunit incorporates into receptors with the �3 and �4
nAChR subunits; the burst duration of �3�5�2 nAChR
channels is almost threefold longer than that of �3�4
nAChRs (488, 491). Notably, the �3�4 nAChR is already
very different in function from �3�2 receptors. Although
these are only a few of the increasing examples of impact
of subunit heterogeneity on functional and pharmacolog-
ical properties of mature nAChRs, the important message
is that local regulation of subunit assembly dictates the
properties of the mature channel.

E. Antiquity of nAChRs and Coevolution

of Predator-Prey Relationships

The antiquity of a biological system and its impor-
tance to survival can in part be assessed by how many
predators use it as a target for capturing prey or as a
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means for protection against predation. The nAChR sys-
tem is an excellent target for toxins because it plays a
central role in regulating functions important to life and
escape from predation (e.g., muscle contraction and au-
tonomic nervous system function). Furthermore, the ba-
sic structure of the ligand binding site of nAChRs has
been retained with remarkably little variability through-
out evolution, making it an excellent structural target for
a toxin. This also means that toxins can function as either
potent agonists or antagonists. There are abundant exam-
ples (e.g., see Fig. 3) of compounds that target nAChRs
and are used both as predatory weapons and defensive
measures against predation (110).

Probably the most notable nAChR-targeted toxin,
nicotine, is produced by plants as a defense to predation
(Fig. 3). While we know nicotine as the active ingredient
in tobacco, its evolutionary origin was as a potent natural
pesticide produced by the tobacco plant to ward off pred-
atory insects. This role is so effective that it found use as
a pesticide throughout the world (including the United
States) until the mid 1960s when it was sprayed on agri-
cultural as well as ornamental plants. One insect has
escaped the ill effects of nicotine, Manduca sextans or the
tobacco horn worm. While nicotine binds the nAChR to acti-
vate and subsequently desensitize it, this insect eats the
tobacco plant without ill effects. Manduca exhibits two
adaptations to tolerate the effects of nicotine. The first is
altered nAChR amino acid sequences that limit the affinity
of nicotine for the nAChR (136). The second is the devel-
opment of the functional equivalent to a blood-brain bar-
rier. In this case, astrocytes that wrap neurons also ex-
press nicotine-binding proteins that function to scavenger
nicotine and release it back into the surrounding hemo-
lymph away from the neurons (48).

Like insects, humans have several adaptations that
allow the use of nicotine to be tolerated. The most prev-
alent neuronal nAChR is �50-fold more sensitive to nic-
otine than is the muscle nAChR. This differential potency
allows nicotine to stimulate neuronal nAChRs preferen-
tially and ensures the success of the tobacco industry in
general. Metabolic degradation of nicotine and rapid
clearance is a mechanism that protects neurons from
greater nicotine concentrations, since nicotine readily
crosses the mammalian blood-brain barrier and accumu-
lates in the lipophilic brain environment to concentra-
tions that may exceed plasma concentrations by one or-
der of magnitude. Nevertheless, neurotoxicity to nicotine
is not uncommon, as attested to by the recent increase in
hospital emergency room visits by smokers who concur-
rently use the transdermal nicotine patch (503).

Toxins that target nAChRs do so with considerable
receptor subtype selectivity, and they are produced by an
extensive range of plants, bacteria, fungi, and animals.
For the most part, there is a recurring convergent strategy
to produce toxins that bind nAChRs at the agonist-binding
pocket to modify receptor function (Fig. 3). The most
valuable of these toxins to researchers proved to be
�-BGT from the snake Bungarus multicinctus. Because
this toxin binds to the muscle nAChR with great specific-
ity and a near-covalent affinity, it was an invaluable tool in
the purification of the first nAChRs (discussed above).
Additional examples of snake toxins include �-cobratoxin
(Fig. 3), which binds to the agonist binding site of the
receptor and blocks receptor activation. Such toxins are
not limited to the muscle receptor as seen in the Taiwan-
ese krate snake. This snake produces “neuronal bungaro-
toxin” (also referred to as 3.1 toxin or �-bungarotoxin;
Ref. 286), which preferentially binds to and inactivates

FIG. 3. Toxins that have coevolved to interact with
nAChRs can be agonists or antagonists. A strong force in
driving evolutionary success is the interrelationship be-
tween predator-prey strategies. Because the origin of
nAChR dates to the earliest of organisms, and these recep-
tors have acquired important roles in animal motility and
nervous system function, they are excellent targets both
for predation and defense. Shown above are structural
models of binding between nAChRs and a variety of tox-
ins. Toxins are in red, the � subunit is in dark blue, and the
structural � subunit is in light blue. For �-cobratoxin, the
protein surface was added to show the very tight fit be-
tween the toxin and the nAChR binding site. Several points
are made. 1) The toxins come in a variety of forms. This
includes the elaborate proteins produced in snake venoms
to the simple molecules of plants used for defense against
predation. 2) The toxins can function as either agonists or
antagonists. 3) Note the interaction between toxin and
receptor that is in general centered at the ligand binding
site (note the yellow Cys-Cys pair that usually wraps the
toxin at the site of ligand interaction). The exquisite re-
finement of toxin structure to bind the nAChR also indi-
cates that this site in the nAChR has remained relatively
invariant through its evolutionary history.
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neuronal nAChRs that contain the �3 and �4 subunits. In
this case, the specificity of the toxin appears to in part be
controlled by the subtype of � nAChR subunit; �2-con-
taining nAChRs are less sensitive than �4-containing
nAChRs to inhibition by neuronal BGT.

Other nAChRs of diverse subunit composition can be
targeted by the conotoxins that are present in extracts
derived from poisonous cone snails from the south Pacific
(351). The origin of the conotoxins extends at least to the
Eocene period �60 million years ago (351). Conotoxins
comprise an extensive family of related, but distinct, pep-
tides and proteins that produce paralysis when injected
into their prey. Not unlike snake toxins, conotoxins can
disrupt multiple components of neurotransmission in-
cluding voltage-gated Na� and K� channels in addition to
nAChRs (132, 351). �-Conotoxins include snail toxins that
target muscle nAChRs and others that favor neuronal
nAChRs (reviewed in Ref. 314). All �-conotoxins share a
common structure of a fold comprising a short helix that
is stabilized by a disulfide bond harboring a highly con-
served proline important to ligand-binding site recogni-
tion. Other surrounding sequences in these toxins are
highly divergent and impart specificity towards key recep-
tor subtypes such as those composed of the �7 or the
�3/�6 nAChR subunits. These toxins are now being
widely examined for their therapeutic usefulness and as
markers to identify the various nAChR subtypes.

In addition to nicotine, an nAChR agonist of consid-
erable commercial importance is anatoxin-a (Fig. 3). This
toxin is a product of the blue-green algae, Anabaena, and
can reach high concentrations during algal blooms com-
mon to ponds that serve as the summer water source of
livestock. While this toxin exerts much of its effect
through targeting muscle nAChRs, it was recognized over
two decades ago to also interact with nAChRs expressed
by ganglionic receptors (38). Its ability to activate in
central nervous system (CNS) neurons nicotinic currents
sensitive to �-BGT was among the first indicators that
functional �7 nAChRs could be distinguished from other
nAChRs in neurons of the mammalian brain (38).

More recently, epibatidine, an alkaloid from the skin
of the Ecuadorain tree frog Epipedobates tricolor, re-
vealed another example of how a nicotinic agonist can
produce toxic effects (111, 130). In addition to being a
potent analgesic, when injected into mice at a relatively
low dose (0.4 �g/mouse), this compound produced straub
tail reaction. The major target of epibatidine is the �4�2
high-affinity nAChR, although other nAChRs are targeted
with various affinities (e.g., Ref. 507). Derivatives of this
toxin are now under investigation as a new class of phar-
maceutical agents for treatment of numerous diseases,
including Alzheimer’s disease (AD) (135).

Finally, the alkaloid methyllycaconitine (MLA) emerged
as a potent and specific competitive antagonist that inhib-
its muscle, �7-, �6-, and �3-containing nAChRs (30, 326,

445). The alkaloid is derived from the larkspur (genus
Delphinium), which is of great economic interest since
estimates of its cost to ranchers in poisoned livestock
exceeds many millions of dollars annually. Similar to
most nAChR poisons, MLA binds to the receptor agonist-
binding site (Fig. 3) in a manner similar to that of �-BGT
to block agonist binding and receptor activation.

III. REGULATING NICOTINIC

RECEPTOR EXPRESSION

A. Transcriptional Regulation

The first level of regulating the regional specificity of
nAChR expression is through transcriptional control of
subunit expression. Cell-specific regulation of nAChR
transcription was observed in early studies of cultured
cells including muscle cell lines and others such as the
bovine chromaffin cell line PC12 (62–64, 118, 397) whose
respective nAChR subunit composition (and correspond-
ing functional and pharmacological properties) differed
both qualitatively as well as quantitatively during in vitro
development. Similar observations were made on tissues
at various states of differentiation in vivo (e.g., Refs. 250,
500). However, the advent of cloning of individual nAChR
subunit cDNAs coupled with methods of in situ hybrid-
ization provided the necessary components to map
nAChR subunit expression in the mammalian nervous
system.

The autonomic nervous system is characterized by
abundant expression of �3 and �4 nAChR transcripts,
whereas �4 and �2 nAChR subunit expression dominates
in the CNS. Some brain regions, including the medial
habenula and the hippocampus, express multiple tran-
scripts where many subunits (�3, �4, �5, �2, and excep-
tionally abundant �4) are colocalized. Other brain regions
(e.g., VTA) exhibit highly restricted expression of certain
subunits such as �6 and �3. Depending on the nAChR
subunits coexpressed in different neuronal types, such as
hippocampal excitatory versus inhibitory interneurons
(below), the resulting receptors can assume distinct (and
what may appear to be contradictory) modulatory roles
within the same circuits (8, 15, 184, 501).

The coordinate expression of key subunits is strongly
regulated in the brain during development (271, 398) and
in injury models (238, 272). For instance, the �3 nAChR
transcript generally dominates in the prenatal brain or in
injured neurons, whereas its expression tends to be
downregulated in the adult or healthy neuron, and �4
transcription is increased. Exogenous agents and trophic
factors can also influence the relative expression of cer-
tain nAChR transcripts to alter the pattern of receptor
expression and assembly. Therefore, understanding the
regulation of nAChR subunit transcription has important
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implications to both developmental and regional differ-
ences in cholinergic functions in the mammalian brain.

Gene duplication and the resulting clustering of cer-
tain subunits in closely linked genomic regions has been
an important contributor to the evolution of diversity in
nAChRs (returned to in detail below). Therefore, it is not
surprising that some of these transcripts are retained in
functional units whose regulation is highly coordinated.
This is particularly true of the highly conserved gene
cluster consisting of the �3, �5, and �4 subunits that
together form the dominant nAChR subtype in the periph-
eral nervous system (93, 94), and whose coordinate tran-
scriptional regulation has been examined in detail by
several groups (66, 217, 317, 510). In cell lines, this inter-
action of trans-activating components is also under the
regulation of the Ras-dependent MAPK and pathways re-
lated to phosphoinositide-3-kinase (PI3K) and MEK acti-
vation whose response to trophic factors such as nerve
growth factor (NGF) contributes to regulating transcript
initiation. Subsequent studies have revealed that the DNA-
binding Sp-1 transcriptional factor interacts in response
to NGF with the c-Jun coactivator (317) to increase �4
transcription. Also central to restricting (or at least limit-
ing) the expression of these transcripts to predominantly
neuronal-like cell lines (Neuro2A and NGF-treated PC12)
are interactions among other factors including SCIP/Tst-
1/Oct-6 and transactivation by Sox10 (66, 268, 317, 513).
These factors are absent in fibroblast and muscle cells
and are only active at very low levels in PC12 cells not
treated with NGF. Notably, in PC12 cells, these transcrip-
tion initiation pathways may actually differ due to culture
conditions or the origin of the PC12 line. For example, in
the original PC12 line (194), NGF is a potent inducer of �4
transcription (217), but in PC12 lines that are defective in
the expression of functional �7 nAChRs, NGF decreases
�4 nAChR subunit transcription (60, 397). Consequently,
in addition to the direct regulation of promoter activation
through identified factors, the cell status or possibly the
coincident expression of other nAChR subtypes may be
important components in determining the outcome of
signaling cascades and the individuality of a cell’s tran-
scriptional response.

The transcriptional regulation of the �3/�5/�4 gene
cluster has been examined in studies using artificial chro-
mosomes. These studies revealed long-range effects of
promoter elements on coordinating expression of nAChR
transcripts (510). Transgenic animals were constructed
harboring a 132-kb artificial chromosome (PAC) that was
isolated from a rat genomic library because it included the
�3/�5/�4 gene cluster. In addition to the cluster, this PAC
had a 26-kb sequence upstream of the �4 gene and a 38-kb
sequence upstream of the �5 gene. A particular advantage
of this approach is that regulation of expression could be
measured within the normal context of the mouse, which
includes components of the endrocrine and neuronal en-

vironments. Several E26 transformation-specific sequence
(ETS) factor binding sites were identified that upon dele-
tion led to substantially diminished expression of both �3
and �4, and to direct transgene expression of the reporter
gene, LacZ, to major sites of gene cluster expression in
multiple brain regions, ganglia, and peripheral systems.
Thus these transcripts form a functional unit whose ex-
pression is in part regulated through the activation of
long-range ETS binding sites. The likelihood of finding
such master control elements for other nAChRs seems
likely because gene groups referred to as “locus control
regions” have been shown to regulate at a distance the
expression of mammalian gene clusters in a cell- and
tissue-specific manner during normal development (274).

B. Receptor Assembly

The assembly of a pentameric structure, unlike that
of an even-numbered structure such as a tetramer, re-
quires multiple mechanisms to overcome issues pertain-
ing to assembly fidelity. Of utmost importance are mech-
anisms that screen for imprecise assembly or do not allow
the number of functional receptors at the cell surface to
exceed optimal numbers. While the most obvious method
the cell uses to ensure correct subunit association is
related to limiting the expression of individual subunits
(returned to below), other signals must also be present in
the receptors themselves to direct assembly when the
expressed mixture of subunits is more complex. This
problem is particularly relevant to the nAChR family
where subunits expressed in heterologous systems such
as Xenopus oocytes or HEK293 cells can interact in al-
most unlimited combinations to form functional recep-
tors. For example, while the �7 nAChR is primarily a
homomeric receptor in neurons (127), combinations of �7
nAChR subunits with �5, �2, or �3 nAChR subunits have
been reported to form functional heteromeric receptors
in some systems (240, 360, 515). If indeed all subunits can
interact to form functional receptors and assembly
through stochastic mechanisms dominates, the substan-
tial number of possible receptors does not match the
relatively few subtypes found and the consistency of the
native subunit combinations across species. Therefore,
consistent with pressures of natural selection acting to
ensure the nervous systems maintain precise control over
the components regulating neurotransmission, rules lim-
iting assembly and expression of nAChRs are likely to be
operative and tightly regulated.

Understanding the rules that govern assembly of
nAChR subunits into functional receptors is at its infancy.
What is clear is that cells employ multiple mechanisms to
ensure nAChR assembly fidelity as is evident in the mus-
cle nAChR system. First, the number of possible subunit
combinations is limited by the regional and cell-type spe-
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cific expression of subunit transcripts (250, 500). In the
muscle, for example, despite the coexpression of as many
as five distinct subunits, only receptors of well-defined
stoichiometries are expressed: (�1)2�1�� in noninner-
vated muscle and (�1)2�1�� at mature neuromuscular
synapses. Several mechanisms including regulation of
transcript expression and intrinsic properties of the pri-
mary structure converge to ensure this proper stoichiom-
etry, and developmental regulation is achieved. In the
immature muscle �1, �1, � and � nAChR subunit tran-
scripts are made and receptors from these subunits are
synthesized and transported to the cell surface. In recep-
tors harboring the � subunit, agonist-induced receptor
activation results in a long-lasting open channel time. The
large agonist-induced current in turn leads to local inter-
mittent depolarization and adjustments to protein-protein
interactions that favor receptor clustering. As the depo-
larization increases, transcription of the � subunit is in-
creased dramatically (183). The � subunit protein out-
competes the � subunit for assembly into the receptor.
The receptors assembled with the � subunit are more
stable to degradation, aggregate at the neuromuscular
junction to greater density and exhibit a more rapid re-
sponse to agonist (96, 275, 324). This elegant coordination
of regulatory mechanisms between transcription and as-
sembly that is responsive to changes in the external en-
vironment appears to be a common feature of nAChR
biology as will be returned to below.

Appropriate nAChR assembly requires the correct
number of subunits to combine in the correct order.
Studies of muscle nAChR assembly are the most com-
plete, and these lead to two possible models. Green and
colleagues (191, 365, 485) report that nAChR assembly
proceeds in the endoplasmic reticulum where specific
subunits are added sequentially to the receptor complex
according to the conformations the complex assumes. In
this model, nAChR subunits are synthesized, and initial
polypeptide folding favors the rapid recognition and in-
teraction between �-�-� subunits to produce trimers that
in turn form a structure favorable to the addition of the �
subunit and finally the second � subunit. In another
model, a somewhat different route to assembly is pro-
posed (59, 435, 493). In this scenario, dimers between �-�
and �-� subunits are formed before these paired subunits
subsequently interact with the � subunit to assemble the
mature pentamer. Although these differences may be as-
cribed to the poorly defined impact of detergent solubili-
zation on membrane multimeric proteins (485), these
studies do share findings that are relevant to all nAChR
assembly.

In addition to the extracellular NH2-terminal domain,
the variable and large cytoplasmic domain between TM3
and TM4 contributes to defining the more subtle and
conditional features that determine receptor expression
and function. As described below, this intracellular do-

main, in addition to contributing to protein-protein inter-
actions involved in nAChR assembly, subcellular localiza-
tion, and stability, regulates nAChR desensitization (247).
No less than 12 distinct functional binding motifs are
present in the large intracellular domain of the � nAChR
subunit, and each has the potential to regulate assembly
and expression of nAChRs at the neuromuscular junction
(252).

A similar level of fidelity in nAChR assembly is
achieved by cells of the brain. For example, the �4, �7,
and �2 nAChR interact with each other to form functional
receptors in heterologous systems such as oocytes. How-
ever, in hippocampal neurons expressing the �7, �4, and
�2 nAChR subunits, the vast majority of functional
nAChRs are pharmacologically identified as being dis-
tinctly �4�2 and �7 nAChRs (12). This is also true of �3,
�4, �2, and �4 nAChR subunits, which can freely interact
to form receptors but appear to exhibit considerable pref-
erence in the brain as well as ganglia to form mostly
receptors of �3�4 and �4�2 subunit composition (150,
471). Nevertheless, considerable subunit promiscuity is
possible as demonstrated in mice lacking the �2 subunit.
When this major subunit is absent, a multitude of novel
nAChR subtypes appears, suggesting much greater pro-
miscuity when a major subunit is absent (527). While it is
possible that the absence of the dominating �2 nAChR
subunit unveils these minor activities, it seems more
likely that subunit assembly into functional receptors fol-
lows favored pathways. Therefore, the control of subunit
assembly into distinct receptor subtypes is likely to follow
a diverse set of rules whose importance will vary accord-
ing to the cell type and the combination of subunit ex-
pression.

Among the earliest indications that nAChRs are sub-
ject to significant cell-specific regulation of expression
emerged from studies of different sublines of PC12 cells
(60, 217, 397). As was noted above, in different laborato-
ries, these cells were reported to regulate nAChR mRNA
expression differently in response to nerve growth factor,
and to exhibit dramatically different expression of �7
nAChRs. Careful comparative studies indicated that each
of these PC12 lines differed in their ability to fundamen-
tally assemble and express these nAChRs (60). This result
has been extended substantially to suggest a more gener-
alized importance of this mechanism to regulation of
nAChR expression. Even though HEK293 cells are an
overall excellent host for the transient and stable expres-
sion of most transfected nAChR subunit pairs (507, 508),
functional expression of �7 nAChRs is not easily achieved
in these cells (128). Upon transfection of the cDNA en-
coding �7 nAChR subunits, HEK293 cells reportedly ex-
press the corresponding transcripts and even make con-
siderable protein. Yet, the number of functional receptors
expressed on the cell surface was low and could vary by
three orders of magnitude. These and other mechanisms
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are operative in a variety of cell subtypes and apply to
different receptors to varying degrees. For example, Lor-
ing and colleagues (458) compared the relative expres-
sion of �4�2 versus �7 nAChRs transfected into five dif-
ferent cell lines (GH4C1, SH-EP1, CV1, SN-56, and CHO-
CAR). Each cell line expressed appropriate mRNAs
(indicating successful transfection); however, the relative
levels of expression of each receptor subtype varied sig-
nificantly among the various cell lines. Only two of these
cell lines expressed �7 nAChRs: GH4C1 cells expressed
substantially greater numbers of surface receptors than
did SH-EP1 cells, which exhibited poor assembly effi-
ciency. All cell lines appeared to produce �4�2 nAChRs,
although at considerably variable levels relative to each
other. Therefore, cell and receptor identity combine to
collectively determine the efficiency of nAChR expression
on the cell surface.

C. Posttranslational Regulation

Posttranslational modifications that control the sub-
cellular localization of the mature nAChR and its expres-
sion on the cell surface are of particular importance to
regulating receptor function. Several subcellular check-
points are in place to ensure only properly assembled
receptors are expressed. One of these is that nAChR
subunits harbor unique primary structures that ensure
proper folding and preferential interactions between sub-
units. Studies of recombinant chimeric subunits contain-
ing sequences of the NH2-terminal domains of the �7 and
the �3 (M1-S232) nAChR subunits indicated that a 23-
amino acid region (glycine-23 to asparagine-46) contained
residues required for correct association of the �7 subunit
into a homopentameric receptor. Not surprisingly, the
Cys-loop is required for proper domain folding and recep-
tor expression (131, 485). This might also be conditional,
since reducing agents such as dithiothreitol (176) can
disrupt the role of this structure in receptor assembly and
expression. Although the extracellular domain of the
nAChR subunits harbors many of the key signals for
receptor assembly, other regions of the proteins are also
important. This includes sequences in the TM domains
that if deleted from assembly mixtures reduce or abolish
much of the assembly into mature receptors (493). Also,
chimeric subunits that are constructed from the � subunit
NH2-terminal domain fused to the rest of the � subunit
can substitute for the �, but not the � subunits during
AChR assembly. This suggests that regions within the
COOH-terminal half of the chimera are required for com-
plete assembly (140, 141).

Another significant assembly checkpoint to ensure
only correctly assembled nAChRs are transported to the
cell surface is the endoplasmic reticulum. Most nAChRs
are not constitutively sent to lysosomes. Instead, they are

retained in intracellular pools that range from �65 to 85%
of the total receptor number in a cell (147, 359, 397, 496).
At least a portion of the intracellularly retained nAChRs
can be transported to the surface if conditions permit
(221). Protein degradation seems to be an important con-
tributor to regulating concentrations of assembling recep-
tor pools. This level of control is also necessary due to
inefficient receptor assembly and transport. In fact, 80% of
the synthesized subunits appear to improperly assemble
or never leave the endoplasmic reticulum where they are
then degraded (485). The process of retaining subunits
and possibly fully assembled receptors and then degrad-
ing them may be an important component of regulating
receptor number. For instance, decreasing the degrada-
tion of precursor subunits in the endoplasmic reticulum
results in increased nAChR expression at the cell mem-
brane (88). Also, the continuous exposure of cells to
nicotine increases nAChR surface expression by reducing
degradation of the intracellular pool of receptors (367,
394). This is an attractive mechanism for nicotine-induced
receptor upregulation, even though there is no evidence
that nAChRs once internalized can recycle back to the
membrane (69, 70). Thus inhibitors of proteasome func-
tion block endoplasmic reticulum-associated degradation
of unassembled AChR subunits, which in turn increases
the availability of subunits for assembly into mature re-
ceptors that are trafficked to the cell surface.

Additional posttranslational modifications differen-
tially influence the expression of nAChRs as revealed by
studies conducted using heterologous transfection sys-
tems where receptor complexity can be controlled, in
part, by the use of the desired cRNAs or cDNAs. When
cRNAs encoding specific nAChR subunits are introduced
into Xenopus oocytes, simple (�3�4) as well as more
complex (muscle �1�1��) heteromeric receptors are as-
sembled and expressed on the cell surface (341). In Xe-

nopus oocytes, these heteromeric nAChRs are assembled
and expressed with almost equivalent efficiencies as the
homomeric 5HT3A receptor (341). However, when cRNAs
coding the �7 nAChR subunit are introduced into oocytes,
a variety of assembly intermediates ranging from mono-
mers to nonproductive aggregates develop in the endo-
plasmic reticulum, and relatively few functional homo-
meric pentamers are transported to the surface (341).
This dramatic difference in receptor assembly and ex-
pression indicates that different nAChRs are subject to
mechanisms of regulation independent of receptor sub-
unit complexity. Instead, receptor expression appears to
be regulated by a combination of intrinsic structural fea-
tures of the respective receptor and the ability of the cell
to recognize and modify the structural sequence in a
manner favorable to subsequent receptor expression at
the surface.

Part of this regulation is achieved through the effi-
cient N-linked glycosylation, and subsequent modification
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and trimming of these carbohydrate trees are well-recog-
nized mechanisms regulating protein expression (59, 341,
486, 487). Multiple sites in the NH2-terminal domain of
nAChR subunits are glycosylated. Some of these sites,
including adjacent to the second Cys residue of the Cys-
loop structure, are highly conserved among different
nAChR subunits. In general, studies of the muscle nAChR
show that glycosylation is not required for subunit asso-
ciation, receptor assembly, association with calnexin, or
formation and function of the Cys-loop (193). However,
once the receptors leave the endoplasmic reticulum,
proper glycosylation is required for their subsequent in-
sertion into the plasma membrane (175, 455). Further-
more, glycosylation influences correct disulfide formation
and participates in favoring proline isomerization of the
Cys-loop structure (395).

The evidence also suggests that signals regulating
nAChR expression are intrinsic to the receptor. One of
these studies of �7 expression has shown that signals
regulating expression are contained in portions of the
receptor subsequent to the first extracellular domain. In
these experiments genetic chimeras were constructed be-
tween cDNA regions encoding the large extracellular do-
main of the �7 nAChR subunit with the transmembrane
and intracellular domains of the 5HT3A receptor subunit.
Expression of the chimeras in heterologous systems re-
vealed high-efficiency surface expression of a receptor
that had most pharmacological properties of the �7
nAChR, including �-BGT binding (101). One mechanism
to explain cell-specific expression of �7 nAChRs is now
known. An elegant and detailed study revealed that pal-
mitoylation of the �7 nAChR subunit is involved. Palmi-
toylation is a reversible, posttranslational process that
takes place in the endoplasmic reticulum where palmitate
is covalently attached to Cys residues to regulate the
transport and function of many proteins (399). How this
process is regulated remains to be clearly determined.
However, it is likely to be dictated at least in part by local
primary or secondary structures of the modifiable protein,
since the �7:5HT3A chimera is ubiquitously and efficiently
palmitoylated, while palmitoylation of �7 homomeric pro-
teins can be rather variable and possibly related to local
oxidation state. The extent to which this posttranslational
system is operative on nAChRs in general is not yet
experimentally determined. These considerations urge
caution when nAChR expression is inferred from meth-
ods that rely solely on RNA detection or measurements of
total protein levels.

Another mechanism emerging as an important mod-
ulator of nAChR expression involves association with
chaperone proteins that transport receptors away from
the endoplasmic reticulum. Among the chaperones shown
to associate with nAChRs are calnexin, rapsyn, ERp75
and Bip (muscle or muscle-like receptors; Ref. 219), 14-3-3
�-protein (222), and RIC-3 (260). These chaperones asso-

ciate with nAChR precursor subunits to enhance and
favor the subunits’ folding into complete complexes as
well as monitor the glycosylated state. Certain amines
that have for many years been reported to enhance recep-
tor expression, particularly nicotine, may also act as chap-
erones (102, 477). When compounds such as nicotine
reach the endoplasmic reticulum, they are thought to
interact with assembling receptor subunits to limit con-
formational changes (possibly through locking them into
the desensitized state) and favor assembly. Finally, the
idea that slowing assembly increases nAChR expression
is also found to be true when cultured cells that express
nAChRs are placed at 30°C (97).

Additional functional attributes can be assigned to
the large cytoplasmic domain of nAChR subunits. First,
this domain is important for regulating receptor assembly.
In the early days of molecular manipulation (348), differ-
ent studies demonstrated that while nAChRs could as-
semble from subunits where the cytoplasmic domain was
largely deleted, efficiency of assembly was extremely
poor. More recent reports indicate that assembly tolerates
substantial deletions of the cytoplasmic domain because
other sequences play key roles in receptor assembly. In
one study (253), the assembly of �4�2 nAChRs was con-
ducted in the presence of extensive sequence substitu-
tions and/or chimeric protein construction. That study
revealed that functional expression of �4�2 nAChRs de-
pends on proximal, but not nested, sequences in the cy-
toplasmic domain and on specific sequences in TM3 and
TM4. Pharmacological and functional properties of the
�4�2 nAChRs were also modified by mutations of the
large intracellular domain of the �2 subunit; the chimera
and mutated nAChRs had altered sensitivity to agonists
and antagonists and increased rates desensitization com-
pared with the wild-type receptors. Highly conserved hy-
drophobic residues (leucines) within the cytoplasmic do-
main of the �4 and the �2 nAChR subunits have been
identified as critical determinants of endoplasmic reticu-
lum export and surface receptor expression (392). Phos-
phorylation of specific residues within the cytoplasmic
domain of different nAChR subunits is another mecha-
nism that regulates the efficiency of receptor assembly,
expression, and function (192, 201).

The large cytoplasmic domain of the nAChR subunits
also harbors sequences important to the distribution of re-
ceptors on the cell surface. For instance, sequences in the
major cytoplasmic loop of the �3 subunit target �3-contain-
ing nAChRs to the synapse of the chicken ciliary ganglion. In
contrast, sequences within the cytoplasmic domain of the �7
nAChR subunits exclude �7-containing nAChRs from the
synapse and favor their perisynaptic localization (465). Non-
synaptic localization of �7 nAChRs in the chick ciliary gan-
glion has been shown to contribute to ectopic neurotrans-
mission (90). In addition, colocalization of �7 nAChRs with
so-called “lipid rafts” may have specialized signaling impli-
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cations related to regulating nonneurotransmitter systems
(355, 525). In PC12 cells, for instance, lipid rafts are essential
for the colocalization of �7 nAChRs and adenylyl cyclase
within the plasma membrane and for regulation of activities
via Ca2� influx through the �7 nAChRs (355).

Although nAChRs are known to interact with postsyn-
aptic PDZ complexes, specific sequences that facilitate this
interaction have not yet been reported. Nevertheless, sub-
unit specificity in these interactions is suggested by nu-
merous findings. Postsynaptic density (PSD)-95 was
shown to associate with �3- and �5-containing nAChRs,
but not �4�2, �7, or muscle nAChRs. In contrast, PSD-93a
associates with most neuronal, but not muscle, nAChRs.
The soluble N-ethylmaleimide-sensitive factor (NSF) at-
tachment receptor (SNARE) complex, generally assigned
to the trafficking of glutamate receptors, also interacts
with �7 nAChRs to enhance clustering of this receptor
subtype (282). The cell-specific expression of dominant
transport signals may account for the differential expres-
sion of a given nAChR subtype on the cell surface in the
various brain regions. It could explain why in most CNS
neurons �4 nAChR subunits are strongly present on ax-
ons, whereas in hippocampal inhibitory interneurons
when present these subunits are mostly expressed on
dendrites (165, 167). Consequently, nAChRs are likely to
be localized to defined compartments on the cell surface
based on a combination of their subunit composition and
the presence of intracellular proteins that localize them to
their final destination.

D. Upregulation

One of the earliest nAChR characteristics to be discov-
ered was the rather curious property of these receptors to
increase their expression (termed “upregulation”) when ex-
posed chronically to nicotine (55, 373). In the smoker’s
brain, upregulation can increase high-affinity nicotine bind-
ing by nearly fourfold relative to age- and gender-matched
controls that have not been exposed to nicotine (373, 421).
The mechanism by which nicotine increases the total num-
ber of high-affinity nAChRs, though poorly defined, is highly
conserved among species.

The receptor that exhibits the greatest upregulation
when exposed to nicotine is the �4�2 nAChR. Receptors
assembled from this subunit combination form the high-
affinity nicotine binding site (151, 215) and account for the
vast majority of upregulated sites in the brain of smokers
(55). As will be returned to below, it is also the first nAChR
subtype to exhibit measurable decline in expression in the
aged mammalian brain and especially in neurodegenerative
disorders such as AD (236, 374). Genetic deletion of the �4
or the �2 nAChR subunit abolishes essentially all high-affin-
ity nicotine binding to brain tissue and upregulation in re-
sponse to chronic exposure to nicotine (151, 311). Further-

more, transfection of cells with the �4 and �2 nAChR sub-
units or expression of these in Xenopus oocytes leads to
high-affinity nicotine-binding receptors that upregulate in
response to prolonged exposure to nicotine (113, 184, 215).

Not all nAChRs upregulate in response to nicotine, or
they do so to varying degrees. Measurements of the ef-
fects of nicotine on the expression of nAChRs assembled
from defined, but varied, subunit combinations stably
transfected into HEK293 cells revealed a dramatic contri-
bution of both � and � receptor subunits to upregulation
(508). For instance, prolonged exposure of HEK293 cells
to saturating nicotine concentrations increased by 6- and
1.5-fold, respectively, the expression of �3�2 and �3�4
nAChRs. Similarly, while �4�2 nAChRs upregulate
strongly, �4�4 nAChRs upregulate poorly in response to
continuous exposure to nicotine. The systematic con-
struction of chimeric �2/�4 nAChR subunits that con-
tained divergent sequences of the opposite subunit and
retained function revealed two regions in the extracellu-
lar domain that modulate nicotine-induced upregulation
(403). Most notably, when the amino acid sequences 74-89
and 106-115 of the �2 nAChR were substituted in the �4
nAChR subunit, �4-containing nAChRs became highly
sensitive to upregulation by nicotine.

Some nAChR subtypes may even be downregulated
when exposed to nicotine. Prolonged treatment of ro-
dents and monkeys with nicotine downregulates the ex-
pression of �6�3-containing nAChRs in the brain (257,
311, 332). However, in heterologous culture systems, nic-
otine appears to upregulate the expression of receptors
assembled from �4/�6/�2/�3 input cDNA (363), and this
may depend on numerous factors including ligand con-
centrations (483). Differences in relative subunit associa-
tion and final receptor assembly have been proposed to
explain these apparently conflicting results. The experi-
mental resolution of the roles played by the �6 and the �3
nAChR subunits will shed light onto novel mechanisms
that regulate nAChR assembly, transport, surface expres-
sion, and upregulation (or downregulation) by nicotine.

IV. FUNCTIONAL NICOTINIC

RECEPTORS IN THE BRAIN:

ELECTROPHYSIOLOGICAL STUDIES

Electrophysiological recordings from brain neurons
provided a wealth of knowledge regarding the existence
of multiple subtypes of functional nAChRs on the neuro-
nal surface. Patch-clamp studies, in particular, contrib-
uted to understanding the properties of native neuronal
nAChRs and led to the introduction of pharmacological
tools for their identification (see Table 2). Furthermore,
such studies assisted in the localization of native nAChRs
on discrete neuronal compartments and enhanced our
understanding of the role of various nAChRs in mediating
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or modulating synaptic transmission. Evidence from a
multitude of studies converge to the conclusion that nAChRs
are located at one of five primary locations: the cell soma,
dendrites, preterminal axon regions, axon terminals, and
myelinated axons on the neurons (e.g., Figs. 4 and 5 and
Refs. 8, 15, 186, 214, 288, 502).

A. Somatodendritic nAChRs

Even though the psychological effects of nicotine
have been recognized for centuries, it was not until the
late 1980s that the existence of functional nAChRs in
various brain regions was demonstrated (38, 335, 389).
The development of drug-delivery devices that allowed
fast delivery and removal of agonists was essential for
accurate and reliable recording of nicotinic responses
from CNS neurons, because most neuronal nAChRs, par-
ticularly those bearing the �7 subunits, quickly desensi-
tize when exposed to nicotinic agonists. These devices
include focal pressure ejection from patch pipettes filled
with agonist, using a combination of gravity-driven ago-
nist flow and a micro-solenoid computer-driven system
regulating the performance of the U-tube, particularly if
the aperture is less than 50 �m. The U-tube was used by
Kristal et al. (248, 249) to study proton-activated conduc-
tance and also by Fenwick et al. (148) to study chromaffin
cells, and was adapted by Albuquerque to study the �7
nAChR function (11–13, 320) with the inclusion of special
ejection and uptake valves. The U-tube system has several
advantages over other systems in studying various nAChR
currents in CNS neurons (5, 7, 11–13, 319). First, it allows
for fast exchange of solutions in the cells’ surroundings.
Second, it prevents leak of agonists onto the nAChR-
expressing cells. Third, it enables controlled application
of agonists to a large field including and surrounding the
cells under study. For even faster exchanges one can use
a dual U-tube system (for further details, see Ref. 320).
Also critical for the studies of neuronal nAChRs in their
natural environment was the recognition, following clon-
ing and expression studies, that most neuronal nAChR
subtypes are not sensitive to blockade by �-BGT.

The first evidence that functional, native �7 nAChRs
are expressed in cultured hippocampal neurons was pro-
vided in a study in which the nicotinic ligand anatoxin-a
(see above) induced �-cobratoxin-sensitive, fast-inactivat-
ing whole cell currents (11). These currents resembled
pharmacologically and kinetically the response induced
by activation of chicken �7 nAChRs expressed artificially
in Xenopus oocytes (104). Subsequent studies confirmed
that rat hippocampal neurons in culture respond to nico-
tinic agonists with currents that are sensitive to inhibition
by the �7 nAChR antagonists �-BGT, MLA, and �-cono-
toxin-ImI (368); these currents have been popularly re-
ferred to as type IA currents and cannot be detected in

mice with a null mutation in the gene that encodes the �7
nAChR subunit (Table 2 and Fig. 4A) (12, 13, 25, 30, 352,
529).

The biophysical properties of the �7 nAChRs that
mediate type IA currents in CNS neurons are rather
unique compared with those of other nAChR subtypes.
Thus, like heterologously expressed homomeric �7
nAChRs, native �7 nAChR channels have a brief open
time (�100 �s), a large conductance (ranging from 71 to
105 pS; Refs. 9, 77, 78), a high permeability to Ca2�

relative to Na� (78), and low affinity for agonists (12, 77,
78). In addition, native �7 nAChRs, similarly to ectopically
expressed �7 nAChRs, are activated with full efficacy by
the ACh metabolite and precursor choline (27, 319, 361).

Although ACh and choline activate �7 nAChR chan-
nels with similar single-channel open time and conduc-
tance, choline dissociates from the receptor more rapidly
and, consequently, induces a less stable state of desensi-
tization than ACh does (319). These findings led to the
suggestion that a well-regulated balance between the two
closely related endogenous agonists is essential to main-
tain the functionality of �7 nAChRs. There is evidence in
the literature that cholinesterase inhibitors have differen-
tial effects on nicotinic cholinergic transmission depend-
ing on whether the transmission is mediated by fast-
inactivating �7 nAChRs or slowly inactivating non-�7
nAChRs. Thus nicotinic synaptic currents have been re-
corded from chick ciliary ganglion neurons in response to
stimulation of the presynaptic oculomotor nerve root
with a suction electrode. The fast component of these
synaptic currents is subserved by �7 nAChRs, whereas
the slow component is mediated by non-�7 nAChRs (522).
The cholinesterase inhibitor phospholine increased the
amplitude and prolonged the decay-time constant of the
slowly decaying component while having no significant
effect on the rapidly decaying current (522). It appears
that the termination of synaptic �7 nAChR activity is
dictated by the kinetics of receptor desensitization rather
than by the hydrolysis of ACh. One could then speculate
that upon high-frequency stimulation of cholinergic in-
puts, accumulation of choline in the synaptic cleft would
prevent ACh from inducing a more stable desensitization
of �7 nAChRs.

It is yet to be determined whether under any circum-
stances choline rather than ACh serves as the endogenous
neurotransmitter to activate �7 nAChRs. It is tempting to
speculate, however, that during maturation of the nervous
system choline acts as the primary endogenous �7 nAChR
agonist, because expression of the ACh-synthesizing en-
zyme choline acetyltransferase lags behind the appear-
ance of nAChRs in developing neurons (45, 87, 511).
There is also the possibility that primitive organisms may
use choline as the neurotransmitter given that �7 nAChRs
are the oldest member of the nAChR family (262).
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The location of functional �7 nAChRs on the somata
of hippocampal neurons is supported by evidence from
electrophysiological studies of outside-out somatic patch
membranes (77, 319). The dendritic localization of these
receptors, on the other hand, was demonstrated in direct
and indirect experiments. For example, when the den-
drites of cultured hippocampal neurons were reduced in
length and number by treating the cultures with the mi-
crotubule-destabilizing agent colchicine, the peak ampli-
tude of type IA currents decreased to 10% of the level
found in control cultures (20). Furthermore, focal ACh
application to small dendritic segments of hippocampal
neurons in culture elicited type IA currents of variable

amplitude that could be recorded from the cell body (20).
Recently, activation of dendritic patches of nAChRs via
caged carbachol photolysis demonstrated the presence of
dendritic nAChRs in interneurons of rat hippocampal
slices (239). In addition, expression of epitope-tagged
subunits confirmed that �7 nAChRs are targeted to den-
drites in cultured hippocampal neurons (509). Of interest,
proteins that are ubiquitously distributed such as CD4 and
interleukin-2 receptor � subunit (IL2RA), when fused to
the M3-M4 intracellular loop from the �7 nAChR subunit,
had their expression confined to dendrites of cultured
hippocampal neurons (509).

In the mid 1990s, an explosion of research findings on
native brain nAChRs followed initial scanty reports, most
using brain slice preparations. Several laboratories con-
firmed the presence of �7 nAChR-subserved currents
(type IA currents) in CA1 interneurons of the rat hip-
pocampus (26, 28, 155, 225, 239, 316), and in midbrain
dopaminergic and nondopaminergic neurons (379, 504).
At nanomolar concentrations, the �7 nAChR-selective an-
tagonists MLA (1–10 nM) and �-BGT (50–100 nM) were
shown to inhibit agonist-evoked type IA currents re-
corded from interneurons of hippocampal slices (Fig. 4A)
obtained from mice (31), rats (25, 28, 29), and human
cerebral cortex (21).

The functional and pharmacological properties of
nAChRs have been studied largely in the brains of short-
gestation rodents, specifically mice and rats. In short-
gestation species, the brain is very immature at birth, and
the perinatal period, particularly encompassing the first
three postnatal weeks, represents a critical time window
during which the cholinergic system develops (263). Elec-
trophysiological studies have demonstrated that the peak

FIG. 4. Nicotinic receptor modulation of hippocampal inhibitory circuitry. A: choline (10 mM) induces type IA currents in hippocampal
interneurons of different species of animals and in human cortical interneurons. Type IA current results from activation of �7 nAChRs because it
is sensitive to blockade by nanomolar concentrations of methyllycaconitine (MLA) or �-bungarotoxin (�-BGT). Type IA current is not blocked by
bupropion (1 �M) or nicotine (100 nM), but is partially inhibited by DH�E (10 �M) or choline (50 �M). Nicotinic responses with these characteristics
are not detected in neurons of mice with a null mutation in the gene that encodes the �7 nAChR subunit. In the presence of MLA (10 nM), ACh but
not choline induces type II current in the interneurons. The poor efficacy of cytisine to induce type II current and the blockade of this current by
DH�E (10 �M) indicate that it results from activation of �4�2 nAChRs. A low degree of activation of these nAChRs by ACh (10 �M) fails to induce
action potentials; however, it triggers GABAergic PSCs in the interneurons, suggesting that the nAChRs are located on preterminal regions. Type
II current is not sensitive to blockade by �-BGT (100 nM) or choline (100 �M) but is partially inhibited by bupropion (1 �M) or nicotine (100 nM).
In the presence of MLA (10 nM), nicotinic agonists induce type III responses (AMPA EPSCs at �68 mV and NMDA EPSCs at �40 mV); the order
of agonist efficacy is cytisine � ACh � choline. At 1 �M, mecamylamine inhibits type III nAChR responses. Furthermore, type III responses are
blocked by nicotine (100 nM), bupropion (1 �M), or choline (30 �M). The pharmacological profile of type III responses suggests that they result from
activation of �3�4/�2 nAChRs. B: choline-induced type IA current results in action potentials in interneurons and IPSCs in pyramidal neurons. As
expected, MLA and tetrodotoxin blocked both types of events. C: concentration-response relationships for choline- and nicotine-induced inhibition
of type IA, II, and III responses recorded from CA1 SR interneurons in rat hippocampal slices (16). D: a diagram of the major neurons in the CA1
field of the hippocampus and how the different nAChR subtypes modulate various aspects of inhibitory circuitry. In the pyramidal layer (py) there
are the excitatory pyramidal neurons that are glutamatergic (GLU; green) and pyramidal associated interneurons that are GABAergic (GABA; dark
blue). These interneurons extend dendrites both in the direction of the stratum radiatum (SR) where they interact with Schaffer collaterals (Schaf.
Col.) and terminate in the stratum lacunosum moleculare (SLM) to interact with perforant path fibers. The majority of nAChRs on these neurons
are of the type I (�7) subtype, which can also be located on some principal excitatory neurons. Axons, which also express type II (�4�2) nAChRs,
extend from interneurons to interact with many excitatory neurons and other interneurons. In some cases, they can extend to other hippocampal
fields via the alveus (alv). Other inhibitory interneurons expressing nAChRs (light blue) are located in the SR and stratum oriens (SO). The SR
interneurons often express nAChRs of the types I and II. Type III (�3�4�2) nAChRs are present on glutamate axons innervating SR interneurons
and possibly other interneurons. To the right, immunolocalization of nAChR expression in a coronal section of the mouse hippocampus CA1 that
is matched approximately to the diagram is also shown. Colored arrows identify examples of the interneurons diagrammed in their respective region.

FIG. 5. A diagram of nAChR control of dopamine neurotransmis-
sion of the basal ganglia system. This diagram shows the complex
regulation of dopamine release by excitatory (Glu), inhibitory (GABA),
and cholinergic (ACh) neurons. A complex variety of nAChRs partici-
pate in regulating these circuits as indicated by their differential subunit
composition and location on neurons of different types. While subunit
composition is indicated, this is not strictly defined and additional
subtypes, especially those incorporating �5, are likely to participate in
modulating this circuit. [Adapted from Gotti and Clementi (184) and
Wonnacott (502).]
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amplitude and net charge of type IA currents recorded
from CA1 stratum radiatum (SR) interneurons in the rat
hippocampus increases in an age-dependent manner dur-
ing postnatal days 5–60, suggesting an increase in the
density of functional �7 nAChRs from early postnatal ages
to adulthood (32). In long-gestation species, including
humans, non-human primates, and guinea pigs, the brain
has a high degree of neurological maturity at birth (393).
Hence, it may not be valid to extrapolate data from the
cholinergic system of rats and mice to all mammals. A
recent study carried out in hippocampal slices from
guinea pigs revealed the presence of functional nAChRs
in CA1 SR interneurons (23). The amplitude of type IA
currents recorded from these interneurons increased with
the age of the guinea pigs from postnatal day 8 to post-
natal day 25 (23). At the end of the third postnatal week,
the mean peak amplitude of type IA currents recorded
from hippocampal CA1 SR interneurons was observed to
be in the following order: mice � rats � guinea pigs (see
typical recordings in Fig. 4A). It is, therefore, tempting to
speculate that CA1 SR interneurons in the human hip-
pocampus may be enriched with high density of func-
tional �7 nAChRs. It remains to be determined whether
the difference in the magnitude of type IA currents re-
corded from neurons of different species of animals rep-
resents variations in �7 nAChR density or in dendritic
length. The observation that neurons in hippocampal
slices from guinea pigs compared with rats and mice have
more extensive dendritic branches (23) supports the sec-
ond possibility.

Application of the �7 nAChR agonist choline to CA1
SR interneurons in rat hippocampal slices triggers suffi-
cient depolarization at the soma and dendrites of these
neurons to recruit Na� channels and initiate action po-
tentials (28). Choline-triggered action potentials result
from direct activation of somatodendritic �7 nAChRs in
the interneurons because they can be effectively inhibited
by nanomolar concentrations of �-BGT and MLA and
occur when glutamatergic transmission is inhibited by
glutamate receptor antagonists (28). Accordingly, appli-
cation of ACh or choline to the CA1 field of rat hippocam-
pal slices triggers tetrodotoxin-, MLA-, and �-BGT-sensi-
tive inhibitory postsynaptic currents (IPSCs) that can be
recorded from CA1 pyramidal neurons (Fig. 4B; Refs. 14,
223). �7 nAChR-mediated fast synaptic currents have
been successfully recorded from CA1 SR interneurons of
the rat hippocampus (22, 154). Therefore, cholinergic
stimuli, by solely activating synaptic �7 nAChRs in CA1
SR interneurons, can decrease the excitability of CA1
pyramidal neurons, thereby creating a third pathway of
inhibition in addition to the known feed-forward and feed-
back glutamate-dependent inhibition (see scheme in Fig.
4D). The finding that �-BGT decreases GABAergic synap-
tic activity impinging onto CA1 pyramidal neurons in the

kynurenine aminotransferase II knockout mice (31) lends
further support to this concept.

In most brain regions, including the hippocampus,
somatodendritic �7 nAChRs are not confined to cholin-
ergic synapses. In general, they are in extrasynaptic sites.
The rapid and pronounced desensitization of �7 nAChRs
and their low affinity for agonists, including ACh and
choline (27), raised the question as to whether ambient
levels of the endogenous agonists could maintain any
physiologically relevant degree of tonic �7 nAChR activ-
ity. The use of �7 nAChR-selective antagonists provided
the initial evidence that, indeed, in rat hippocampal slices
GABAergic synaptic activity is tightly regulated by a tonic
degree of �7 nAChR activity (28). Thus perfusion of rat
hippocampal slices with physiological solution containing
�-BGT results in an increase of the frequency of IPSCs
impinging onto CA1 SR interneurons. Analyses of the
concentration dependence of �7 nAChR activation and
desensitization in cultured hippocampal neurons revealed
that desensitization was proportional to channel opening
at low, but not high, agonist concentrations (above 100
�M ACh and 600 �M choline). At the high agonist con-
centrations, desensitization was more pronounced than
expected for the probability of channel opening (319).
Considering the cumulative charge carried through the �7
nAChR channel, the relative efficacy of ACh or choline
was higher at concentrations below the EC50 estimated
from the peak of the agonist-evoked currents (319). These
findings can explain how agonist concentrations that trig-
ger small, but long-lasting, responses can sustain a phys-
iologically significant degree of �7 nAChR activation that
may be particularly important for the regulation of Ca2�-
mediated responses in �7 nAChR-expressing neurons.

In the early 1990s, investigators using patch-clamp
analysis revealed the existence of functional non-�7
nAChRs on the somatodendritic regions of neurons lo-
cated in the medial habenula (MHb) and interpeduncular
system (267, 270, 333, 335) and in the hypophysial inter-
mediate lobe cells (523). The initial studies in primary
neuronal cultures were pivotal for the elaboration of pro-
files that facilitated the subsequent pharmacological iden-
tification of nAChR subtypes subserving responses re-
corded from neurons in brain slices.

Two pharmacologically distinct, slowly inactivating
nicotinic responses were first characterized in an electro-
physiological study of cultured hippocampal neurons
(12). One of these responses, referred to as type II, could
be recorded from �10% of the neurons exposed to nico-
tinic agonists in culture. Type II nicotinic currents have
the pharmacological profile of responses mediated by
�4�2 nAChRs ectopically expressed in different systems.
Thus these receptors 1) are sensitive to inhibition by
nanomolar to low micromolar concentrations of dihydro-
�-erythroidine (DH�E); 2) are insensitive to inhibition by
nanomolar concentrations of �-BGT or MLA; 3) recognize
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ACh, nicotine, and other nicotinic agonists with high af-
finity; 4) cannot be activated by choline; and 5) are par-
tially activated by cytisine (5, 12). The other response,
recorded from no more than 2% of the neurons in culture,
was referred to as type III. The pharmacological profile of
type III responses resembled that of nicotinic responses
arising from activation of �3�4 nAChRs heterologously
expressed in Xenopus oocytes or mammalian cell lines.
These receptors are 1) fully blocked by low micromolar
concentrations of mecamylamine, 2) insensitive to inhibi-
tion by �-BGT, and 3) partially activated by choline (27,
361). This receptor classification was subsequently ex-
panded to include a fourth nAChR type (527), the type IV
representing either �4�4 or �2�4 nAChRs that were iden-
tified in neurons of the MHb and interpeduncular nucleus.

Several groups have now confirmed the presence of
somatodendritic �4�2 nAChRs in CA1 interneurons in
hippocampal slices from rats and mice (15, 28, 316, 453).
Accordingly, U-tube application of ACh to these neurons
induces a whole cell current that 1) is inhibited by 10 �M
DH�E, but not by 10 nM MLA; 2) cannot be evoked by
choline; and 3) is weakly activated by cytisine (Fig. 4A).
The finding that �4�2 nAChRs can be effectively activated
by low micromolar concentrations of ACh (1–10 �M) (Fig.
4A; see also Ref. 16) suggests that these receptors are
tonically activated by an ambient levels of ACh in the
brain. This has been demonstrated experimentally by the
application of desensitizing concentrations of nicotine in
dopaminergic neurons in midbrain slices (380). For ex-
ample, the long-lasting decrease in the sIPSC frequency in
dopaminergic neurons is consistent with nicotine desen-
sitizing cholinergic afferents that particularly drive the
GABAergic activity in the slices. Dopaminergic neurons in
the midbrain slices express �7, �4�2, and to some extent
�6(�4)�2 nAChR subtypes on the soma membrane (81).

B. Axon Terminal nAChRs

The presence of �7 nAChRs at neuronal axon termi-
nals was demonstrated by the finding that in neurons of
hippocampal slices or in olfactory bulb cultures continu-
ously perfused with physiological solution containing te-
trodotoxin, a nicotinic agonist is able to increase the
frequency of miniature excitatory postsynaptic currents
(mEPSCs) in an �-BGT-sensitive manner (33, 190, 312).
Activation of terminal (also referred to as presynaptic) �7
nAChRs results in enhancement of field stimulation-
evoked glutamatergic transmission and forms the basis
for the involvement of these nAChRs in synaptic plasticity
in different brain regions (190, 296). In the immature rat
hippocampus, activation of presynaptic �7 nAChRs stim-
ulates silent glutamate synapses impinging onto CA1 py-
ramidal neurons (292).

Numerous reports have also provided evidence that
�7 nAChRs are present on glutamatergic terminals in the

human neocortex (299) and in the rat olfactory bulb (33),
striatum (299), VTA (224, 297, 412), MHb (180), and fron-
tal cortex (400). Finally, functional �7 nAChRs have been
detected in axon terminals of dopaminergic neurons in
the rat striatum (439). In general, activation of these
receptors facilitates transmitter release via a Ca2�-depen-
dent, tetrodotoxin-insensitive, and �-BGT-sensitive mech-
anism.

Other nAChR subtypes are also reported to be ex-
pressed in axon terminals of various neurons in different
brain areas, whereby their activation increases the tetro-
dotoxin-insensitive release of neurotransmitter. For in-
stance, �6 nAChRs present at the dopaminergic striatal
nerve terminals contribute to 50% of the synaptosomal
dopamine release (81). In mouse striatal synaptosomes,
nicotinic agonists acting via two major classes of nAChRs
trigger dopamine release. One class consists of �-cono-
toxin MII-sensitive nAChRs that are likely �6�3�2 and/or
�6�4�3�2. The other class includes �-conotoxin MII-re-
sistant nAChRs that are probably �4�2 and/or �4�5�2
(404). Other pharmacological profiles compatible with
that of �4�2 nAChRs are present on cholinergic terminals
in the human neocortex (299). Activation of these auto-
receptors has been shown to facilitate ACh release from
human neocortical synaptosomes (299).

C. Preterminal nAChRs

In addition to being expressed on the somatoden-
dritic and presynaptic terminals of various neurons
throughout the brain, different nAChR subtypes are ex-
pressed on axonal preterminal regions. Activation of
these receptors facilitates action potential-dependent, te-
trodotoxin-sensitive release of neurotransmitters. For in-
stance, application of nicotinic agonists to neurons that
were acutely dissociated from the interpeduncular nu-
cleus and retained synaptophysin-stained terminals trig-
gered IPSCs that could not be observed in the presence
of tetrodotoxin (267). Likewise, tetrodotoxin-sensitive
IPSCs can be triggered by application of nicotinic agonists
to chick lateral spiriform nucleus (315), rat hippocampal
neurons in culture(10), and CA1 interneurons in rat hip-
pocampal slices (28).

Pharmacological tools were pivotal for the identifi-
cation of the nAChR subtypes that regulate action poten-
tial-dependent transmitter release in different brain re-
gions. For instance, the finding that focal application of
ACh, but not choline, to the somatodendritic region
of CA1 SR interneurons triggered tetrodotoxin-sensitive
IPSCs supported the notion that nAChRs located on pre-
terminal regions of GABAergic axons regulate GABAergic
transmission in the CA1 field of hippocampal slices. Given
that this response was blocked by DH�E, while being
insensitive to blockade by MLA or �-BGT, indicated that it
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was subserved by �4�2 (type II) nAChRs. The activation
of these receptors by low concentrations of ACh depolar-
izes preterminal axonal segments and causes GABA re-
lease at the synapses without causing a generalized firing
of interneurons. This mechanism helps implement seg-
mental inhibition rather than generalized inhibition at all
innervated sites. Although the functional significance of
preterminal nAChRs is currently not clear, it is likely that
a sequential activation of different nAChR subtypes may
converge to a desired action at the neurons (Fig. 4D).

Preterminal nAChRs are critical regulators of a num-
ber of neurotransmitter systems in different areas of the
brain. For instance, receptors with pharmacological prop-
erties compatible with those of �3�2 nAChRs have been
shown to regulate norepinephrine release from rat hip-
pocampal slices (424). As reported in that study, applica-
tion of nicotinic agonists, including nicotine, dimethyl-
phenylpiperazinium, anatoxin-a, epibatidine, and lobeline,
[3H]norepinephrine-preloaded hippocampal slices trig-
gered the tetrodotoxin-sensitive release of norepineph-
rine. It was suggested that nicotinic agonists, acting on
nAChRs at the preterminal area of noradrenergic neurons,
caused local depolarization and subsequent generation of
action potentials that subsequently triggered the release
of norepinephrine. However, the possibility could not be
ruled out that these nAChRs were located on an interneu-
ronal circuitry that regulated the activity of noradrenergic
neurons rather than directly on the noradrenergic termi-
nals. Likewise, action potential-dependent glutamatergic
transmission impinging onto CA1 interneurons is regu-
lated by preterminal nAChRs on glutamatergic axons (17,
24). Application of nicotinic agonists to CA1 interneurons
in rat hippocampal slices evokes tetrodotoxin-sensitive
AMPA and NMDA EPSCs. Compared with ACh, choline is
a weak agonist, whereas cytisine is a strong agonist to
induce this nicotinic response (Fig. 4A). Nicotinic agonist-
evoked AMPA and NMDA EPSCs recorded from CA1
interneurons, similarly to type III nicotinic responses re-
corded from cultured hippocampal neurons, are potently
blocked by mecamylamine and bupropion (16). The phar-
macological profile of these responses is comparable to
that of nicotinic responses resulting from activation of
�3�4 nAChRs ectopically expressed in heterologous sys-
tems. However, the findings that agonist-evoked EPSCs
are exquisitely sensitive to the desensitizing action of
nicotine and choline (Fig. 4C; Refs. 16, 18) suggest that
type III nAChRs could be composed of �3�4�2 subunits.
The glutamatergic activity impinging onto CA1 interneu-
rons is effectively regulated by functional type III nAChRs
present on glutamate axons/neurons during the first post-
natal week, when choline uptake mechanisms are not
fully developed (246). Thus, considering the sensitivity of
type III nAChRs to desensitization by choline, it can be
speculated that the degree to which tonic �3�4�2 nAChR

activity regulates glutamatergic synaptic transmission in
the rat hippocampus changes along with age.

Nicotinic regulation of action potential-dependent
glutamatergic transmission is not confined to the hip-
pocampus. There are reports that ACh and nicotine trig-
ger tetrodotoxin-sensitive glutamate release as measured
by an increase in the frequency of spontaneous EPSCs
recorded from layer V pyramidal neurons of prefrontal
cortical slices (258). It was suggested that ACh- and nic-
otine-triggered glutamate release resulted from activation
of preterminal �2-containing nAChRs on thalamocortical
axons that synapse onto the cerebral cortical neurons
(258).

D. Myelinated Axon nAChRs

The demonstration, in the early 1960s, that ACh can
depolarize nonmyelinated vagus nerves in rabbits led to
the suggestion that axons express receptors that directly
regulate axonal excitability (41). Histological studies from
the 1980s revealed that nAChRs expressed in the retinal
ganglion cells of rodents are transported along the optic
nerve (457). At the time it was unclear whether these
receptors were simply destined for insertion in nerve
terminals or were indeed inserted in the membrane along
the axonal length. In the 1990s, a report that nicotine
induces Ca2� influx in axonal segments of the developing
frog optic tectum strongly indicated that nAChRs are
indeed expressed in myelinated axons (139). A later study
of rat and mouse optic nerves isolated from synaptic
elements and the ganglion cell bodies demonstrated the
presence of nAChRs on the axon proper and suggested
that these receptors play a role in regulation of axonal
guidance, branching, and excitability (520).

Positron emission tomography studies in humans re-
vealed that nAChRs are also present in the white matter of
sensory thalamocortical pathways (124). In vitro and
in vivo studies of the effects of nicotinic agonists on the
excitability of thalamocortical axons and of nicotinic an-
tagonists on sound-evoked cortical responses in vivo sup-
ported the contention that nAChRs are expressed in my-
elinated thalamocortical axons (233). Thus application of
nicotine to thalamocortical slices in vitro enhanced and
synchronized action potential discharges along thalamo-
cortical axons. In vivo, blockade of endogenous nAChRs
by thalamic microinjections of DH�E reduced sound-
evoked cortical responses. Altogether, the results of
Kawai et al. (233) demonstrated that �4�2 nAChRs in
thalamocortical axons modulate neurotransmission in the
brain via changes in axon excitability.

Recent studies have shown that some nAChR sub-
types do have motifs that target them to be expressed on
myelinated axons. For instance, transfection of primary
hippocampal cultures with hemagglutinin- or green fluo-
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rescent protein-tagged nAChR subunits revealed that
�4�2 nAChRs are targeted to both dendrites and axons of
hippocampal neurons (509). The axonal targeting se-
quence was identified as a 25-residue leucine motif lo-
cated in the M3-M4 loop of the �4 nAChR subunits (509).
It remains an intriguing possibility that the preterminal
nAChRs are the same entity as the myelinated axon
nAChRs.

E. Presence of Diverse Functional nAChR

Subtypes: A Redundant Function or a Specific

Functional Design?

There is strong evidence indicating that a single
nAChR subtype is present at multiple locations in a neu-
ron or that more than one nAChR subtype is found at a
single neuronal domain. For example, functional �7 and
�4�2 nAChRs have been found to be differentially ex-
pressed on the somata, dendrites, and preterminal axonal
regions of different CA1 interneurons (Fig. 4D). �7
nAChRs present on the somatodendritic region of hip-
pocampal interneurons can subserve both synaptic and
nonsynaptic functions. When activated by synaptically
released ACh, somatodendritic �7 nAChRs can induce a
short-lasting depolarization of the interneurons that is of
sufficient magnitude to induce action potential and trans-
mit inhibition or disinhibition to the pyramidal neurons,
depending on the interneuron that expresses the �7
nAChRs. Likewise, activation of somatodendritic �4�2
nAChRs by synaptic ACh can induce a long-lasting exci-
tation of the interneurons resulting in prolonged inhibi-
tion of the pyramidal neurons. Diffusing or ambient levels
of ACh or choline can trigger a small, though long-lasting
activation of �7 nAChRs at the interneurons that is suffi-
cient to trigger a cascade of Ca2�-dependent events, in-
cluding induction of gene transcription. In the CA1 inter-
neurons, activation of preterminal �4�2 nAChRs by dif-
fusing ACh can impart segmental inhibition at the
pyramidal neurons.

As mentioned in the section above, in the developed
hippocampus nAChRs are primarily, though not exclu-
sively, expressed on interneurons in the various strata.
These neurons are heterogeneous in type, location, den-
dritic placement, and axonal termination zone, and, de-
pending on the stratum they are in, they express different
levels of specific nAChRs (Fig. 4D). Considering that the
anatomical diversity of the CA1 interneurons in the hip-
pocampus provides a lamina-specific control of the activ-
ity of CA1 pyramidal neurons (158), it has been proposed
that nAChRs can alter the function of CA1 pyramidal
neurons in at least three distinct ways. First, activation in
the interneurons of either somatodendritic nAChRs or
presynaptic/preterminal may facilitate GABAergic trans-
mission to pyramidal neurons and, thereby, exert an in-

hibitory effect during cholinergic neuron firing. Nicotinic
cholinergic inhibition has the potential to suppress weak
excitatory signals arriving at the pyramidal neuron den-
drites and allow propagation of only strong signals. This
could be a mechanism by which nicotinic agonists filter
extraneous signals (364) and increase attention (449). On
the basis of the differential level of expression of nAChRs
by the CA1 interneurons synapsing directly onto pyrami-
dal neurons, �4�2 nAChRs would have a greater role than
�7 nAChRs in this process (14). Second, nAChR-mediated
GABA release may disinhibit CA1 pyramidal neurons via
inhibition of the interneurons. When �7 nAChRs are acti-
vated, stratum lacunosum moleculare (SLM) interneurons
are inhibited more than other interneurons, resulting in a
selective disinhibition of the dendritic segments of pyra-
midal neurons innervated by SLM axon terminals (Fig.
4D). On the other hand, when �4�2 nAChRs are activated,
both SR and SLM interneurons are inhibited, resulting in
disinhibition of dendritic areas innervated by both neuron
types. Disinhibition would be less prominent in dendritic
compartments innervated by stratum oriens (SO) and
stratum pyramidale (SP) interneurons, because these in-
terneurons receive the least GABAergic input from
nAChR-expressing interneurons (14). Thus nAChRs ap-
pear to disinhibit feed-forward inhibitory zones (i.e., SR
and SLM interneuron target zones) more than feedback
inhibitory zones (i.e., SO and SP interneuron target zones)
at the pyramidal neuron dendrites (Fig. 4D). Third,
nAChR-mediated GABA release can cause neuronal hy-
perpolarization, which in turn affects neuronal function
via several mechanisms, including removal of inactivation
of inward currents (89). It is noteworthy that, via such
mechanisms, �7 nAChR activation could trigger rebound
burst firing in SLM interneurons even in the absence of
excitation (256). Burst firing in SLM interneurons sup-
presses spikes in pyramidal neurons evoked by stimula-
tion of Schaffer collaterals (134), and, thereby allows
selective activation of the pyramidal cells via the per-
forant pathway. Such selective regulation of intrinsic
(e.g., Schaffer collateral) and extrinsic (e.g., perforant
path) afferent inputs is considered important in switching
between encoding and retrieval modes of associative
memory systems (208, 364, 482).

In CA1 and CA3 pyramidal neurons of the developed
hippocampus, �7 nAChRs are expressed primarily on
axon terminals whereby their activation modulates the
efficacy of glutamate synaptic transmission. Glutamater-
gic axons/neurons that innervate CA1 interneurons have
been shown to express functional �3�4�2 nAChRs, and
activation of these receptors by diffusing and/or ambient
levels of ACh releases glutamate which in turn activates
AMPA/NMDA receptors in the interneurons (16, 24). Be-
cause some of the CA1 SR interneurons contain both
somatodendritic �7 and �4�2 nAChRs and are innervated
by glutamate axons carrying �3�4/�2 nAChRs and
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GABAergic axons carrying �4�2 nAChRs (15), it is likely
that one or more of the following interactions could occur
in these neurons (Fig. 6). For example, during a low
degree of activation of �7 and �3�4 nAChRs, Ca2� can
enter the cells through nAChRs or NMDA receptors and
favor activation (i.e., phosphorylation) of the transcrip-
tion factor CREB, which in turn modifies gene expression
(82). If there is intense stimulation of all three nAChRs,
the resulting depolarization can trigger activation of volt-
age-gated Ca2� channels (VGCC), which in turn would
activate the calcineurin pathway and prevent CREB acti-
vation. A concurrent activation of preterminal �4�2
nAChRs would hyperpolarize the neuron via GABAergic
inhibition and prevent activation of the VGCC. Such a
sequential interplay between nicotinic and GABAergic
signaling has been shown to guide neuronal development
in the hippocampus and other regions (281). It is interest-
ing to note that a single neurotransmitter, in this case
ACh, uses the diversity of the nAChR pathways to regu-
late a specific function in different neurons.

In numerous other areas of the brain, a single neuron
expresses various nAChR subtypes at multiple sites and that
the apparent redundancy of the system within a single cell
leads to a convergent action among the AChRs. In the basal
ganglia, for instance, dopaminergic transmission is ultimately
regulated by the activity of specific nAChR subtypes in differ-

ent neurons and neuronal compartments (Fig. 5). Thus evi-
dence exists that in the VTA, �6- and �4-containing nAChRs are
mainly located on dopaminergic nerve terminals, whereas �7
nAChRs are primarily expressed on the soma of dopaminergic
neurons (Fig. 5). Activation of somatodendritic �7 nAChRs
increases the action potential-dependent release of dopamine,
while activation of presynaptic �6 and/or �4 nAChRs increases
action potential-independent dopamine release. Other levels of
regulation of dopaminergic transmission arise from �7 nAChRs
located on cortical glutamatergic terminals; activation of these
receptors increases glutamate release onto dopaminergic neu-
rons in the VTA and, consequently, increases the their firing
(344). Activation of �4�2 nAChRs on GABAergic interneurons
in the VTA relieves the inhibitory control they exert on dopa-
minergic neurons (295, 380). Considering the relevance of the
dopaminergic rewarding systems to drug addiction, studies of
mice with null mutations in the genes that code for specific
nAChR subunits have shed light onto the contribution of the
different nAChRs to nicotine addiction (discussed in the next
section).

V. EMERGING VIEWS OF NICOTINIC

RECEPTOR FUNCTION

Neuronal nAChRs are not expressed exclusively in
neurons. Instead, they are expressed by multiple cell

FIG. 6. Schematic representation of in-
tracellular signaling resulting from activa-
tion of nAChRs, glutamate ionotropic recep-
tors, and GABAA receptors. In the CA1 field
of the hippocampus, a single interneuron
can express somatodendritic �7 and �4�2
nAChRs and receive �3�4/�2 nAChR-regu-
lated glutamatergic inputs. Thus there is the
potential that intracellular signaling is regu-
lated by the cross-talk of the various trans-
mitter systems. During a low degree of acti-
vation of �7 nAChRs and �3�4�2 nAChRs,
for instance, Ca2� may enter the cells
through nAChRs or NMDA receptors and fa-
vor phosphorylation of the transcription fac-
tor CREB, which in turn modifies gene ex-
pression (82). If there is intense stimulation
of all three nAChRs, the resulting depolariza-
tion can trigger activation of VGCC, which in
turn would activate the calcineurin pathway
and prevent CREB activation. A concurrent ac-
tivation of preterminal �4�2 nAChRs would
hyperpolarize the neuron via GABAergic inhi-
bition and prevent activation of the VGCC.
Such a sequential interplay between nico-
tinic and GABAergic signaling has been
shown to guide neuronal development in the
hippocampus and other regions (281).
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types of diverse origins and functions including glia (165,
167, 425), keratinocytes (44, 86, 95, 426), endothelial cells
(290, 495), and multiple cell types of the digestive system,
lungs, and immune system (e.g., Refs. 95, 309, 492, 495).
Many of these cells synthesize and release acetylcholine,
which in nonneuronal cells of the periphery is often re-
ferred to as a “cytotransmitter” (323). Unique functional
and pharmacological properties of the nAChRs are likely
to contribute to highly specific local and often tissue-
specific responses to circulating levels of nicotinic ligands
in the non-blood-brain barrier-buffered peripheral envi-
ronment. In turn, the chronic use of a nonselective nAChR
agent such as nicotine can imbalance these systems and
establish less desirable physiological setpoints. Some of
these emerging areas of brain-peripheral nAChR function
and interaction are discussed in this section, which will
also explore the more unconventional “metabotropic”
functions of the nAChRs and the less traditional ligands
that modify nAChR activity as they are becoming increas-
ingly more relevant for the development of therapeutic
strategies for neurological disorders in which nAChR ac-
tivity and/or expression is known to be altered.

A. Nontraditional Ligands

There are several ligands that interact with nAChRs
at sites other than the agonist-binding domains, yielding
either potentiation or depression of receptor activity. This
section will focus on studies of exogenous nAChR mod-
ulators that found their way to the clinics and on studies
of endogenous ligands that physiologically regulate the
activity of specific nAChR subtypes.

At the neuromuscular junction, nicotinic function is
enhanced by inhibition of acetylcholinesterase (AChE),
the enzyme that metabolizes the endogenous neurotrans-
mitter ACh. However, unlike muscle nAChRs, some neu-
ronal nAChRs, particularly the �7 nAChRs, recognize
both ACh and its metabolite choline as full agonists (371).
Therefore, AChE inhibition may not necessarily enhance
functions mediated by these nAChRs. In fact, as described
above, AChE inhibitors do not affect �7 nAChR-mediated
synaptic transmission evoked by low-frequency stimula-
tion of cholinergic fibers in chick ciliary ganglia (522).

An alternative means to increase nicotinic functions
in the brain is to sensitize the nAChRs to activation by the
endogenous agonist(s) using the so-called nicotinic allo-
steric potentiating ligands (APLs), which include drugs
such as physostigmine and galantamine, a drug currently
approved for the treatment of AD. Studies from the early
1980s provided evidence that the cholinesterase (ChE)
inhibitor physostigmine could interact directly with
nAChRs at the frog neuromuscular junction and induce
nicotinic single-channel currents (428, 429). In the early
1990s, galantamine, an alkaloid originally extracted from

the bulbs and flowers of the wild Caucasian snowdrop
Galanthus nivalis and other related Amaryllidacea spe-
cies, was found to act like physostigmine on muscle and
neuronal nAChRs (370, 372). Surprisingly, however, acti-
vation of nAChRs by galantamine or physostigmine was
insensitive to blockade by competitive nAChR antago-
nists, was detected even when the receptors were desen-
sitized by high agonist concentrations, and was inhibited
by the monoclonal antibody FK1 (350, 370, 372, 413, 428,
429). The agonistic activity of physostigmine and galan-
tamine, initially referred to as noncompetitive agonists
(NCAs; Ref. 450), was found to result from their binding
to a site close to, but distinct from, the ACh-binding site
on nAChR � subunits (4, 369, 372, 413). The region flank-
ing the amino acid Lys-125 on the nAChR � subunits
contains essential elements of the physostigmine site and
is highly conserved across species (372, 413, 415).

The nicotinic NCA action is not common to all ChE
inhibitors, since, for example, the ChE inhibitor pyri-
dostigmine is unable to induce nicotinic single-channel
currents by directly interacting with nAChRs (39). Con-
versely, a drug does not have to be a ChE inhibitor to be
a nicotinic NCA. For instance, studies carried out in PC12
cells demonstrated that codeine, a drug with no signifi-
cant effect on ChE, can activate nicotinic single-channel
currents and that this nicotinic agonist effect is sensitive
to inhibition by FK1 while unaffected by classical nAChR
antagonists (450).

Even though NCAs induce opening of nAChR single
channels in numerous neuronal and nonneuronal prepa-
rations, the probability of channel openings by these com-
pounds is so low that the single-channel currents they
activate do not give rise to macroscopic responses (4, 370,
414, 450). In different systems, however, NCAs have been
shown to potentiate the activation of most nAChRs by
subsaturating concentrations of classical nAChR agonists.
The nicotinic potentiating action of these drugs is also
sensitive to inhibition by the FK1 antibody, and, thereby,
likely to result from their interactions with the physostig-
mine-binding site on nAChRs (414). A recent study performed
in HEK293 cells stably expressing muscle nAChRs, how-
ever, revealed that galantamine acts as a nicotinic NCA
but not as a nicotinic APL (4). Thus the possibility cannot
be ruled out that the NCA and the APL sites share some
common elements, but are in fact distinct from one an-
other in the nAChRs. As described below, a recent study
using the AChBP isolated from the mollusk Aplysia cali-

fornica shed some light onto this puzzle.
As mentioned in section I, the AChBP is a soluble

homopentamer that resembles the extracellular domain
of the nAChRs and has the ligand-binding elements that
make up the sites for classical agonists and competitive
antagonists (206). Crystallographic analysis of the AChBP-
galantamine complex revealed that galantamine associ-
ates with elements present at the interface between two
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AChBPs (207). As expected from the pharmacological
studies described above, no significant interaction was
observed between galantamine and the vicinal cysteine
residues that are essential for binding of classical nico-
tinic agonists and competitive antagonists (207; see also
Fig. 7). Elements that appear essential for binding of
galantamine to the AChBP include the tryptophan resi-
dues 147 and 149, the tyrosine residue 55 or 93, and to a
lesser extent the tyrosine residue 195. It has also been
proposed that the dipole between the carbonyl group of
the tryptophan residues and the protonated nitrogen of
galantamine may be strengthened by the anionic side
chain of the residue aspartate-89 (207). These findings are
in agreement with our earlier suggestion that the region
including and surrounding the residue Lys-125 on the
nAChR � subunits, which spans the nAChR epitope
against which the antibody FK1 was raised, contains ele-
ments that are essential for the binding of galantamine to
the nAChRs (372, 413). However, the crystallographic
study of the AChBP-galantamine complex also revealed
that some of the residues that contact galantamine in the
complex are conserved among non-� nAChR subunits,
suggesting that galantamine may bind to both �- and
non-� interfaces (207). Therefore, it is tempting to spec-
ulate that, depending on the subunit composition of the
nAChRs, differential interactions of galantamine with �- or
non-� interfaces can favor its action as an NCA or an APL.

The exact mechanism by which nicotinic APLs sen-
sitize nAChRs to activation by classical agonists is still
poorly understood. There are reports that nicotinic APLs
increase the probability of nAChR channel openings in-

duced by ACh in outside-out patches from PC12 cells and
enhance the apparent potency, but not the efficacy of
nicotinic agonists in activating different nAChR subtypes
(406, 450). These results support the notion that APLs
enhance the binding affinity of agonists and/or the fre-
quency of channel openings for a given level of receptor
occupancy as long as receptor activation is still submaximal.

The nicotinic APL action is not common to all ChE
inhibitors; for instance, donepezil and rivastigmine are
devoid of this action (405). To date, all compounds char-
acterized as nicotinic APLs have a nitrogen that is cationic
at physiological pH and is located at a fixed distance from
a phenolic group (372, 450). The few drugs identified so
far as nicotinic APLs increase with similar potencies the
activity of different nAChR subtypes and have a bimodal
effect on these receptors (406). Therefore, it has so far not
been possible to pinpoint the pharmacophore that will
make a compound to act exclusively as a nicotinic APL in
a given nAChR subtype.

The discovery of galantamine as a nonconventional
nicotinic ligand of exogenous origin led to the suggestion
that an endogenous galantamine-like ligand might exist.
Initial attempts to identify such endogenous compound(s)
were focused on the concept that a given substance can
control synaptic activity in the brain by acting as the
primary agonist in one neurotransmitter system and as a
modulator in another system. Glycine is a classical exam-
ple of such an endogenous substance. Whereas in glycin-
ergic synapses glycine activates glycine-gated channels, in
the glutamatergic system glycine acts as a coagonist at the
NMDA-receptor channels. Since some studies have indi-

FIG. 7. Regulation of nAChRs by nontraditional ligands. In this illustration, an agonist-binding � subunit (light blue) and a structural � subunit
(dark blue) are shown with a solid surface looking from the extracellular side with either nicotine alone (left) or nicotine and galantamine (right).
Photoaffinity labeling studies carried out using [3H]physostigmine and mapping of the epitope of the monoclonal antibody FK1 revealed that the
region flanking the amino acid Lys-125 on the nAChR � subunit contains essential elements of the physostigmine-binding site and is highly conserved
among different � subunits and across species (372, 413, 415). The galantamine-binding region is close to, but distinct from, the classical
agonist-binding region. The galantamine-binding region is highly hydrophobic. As described in the text, elements that appear essential for binding
of galantamine to the AChBP include the tryptophan residues 147 and 149, the tyrosine residue 93 or 55, and to a lesser extent the tyrosine residue
195. It has also been proposed that the dipole between the carbonyl group of the tryptophan residues and the protonated nitrogen of galantamine
may be strengthened by the anionic side chain of the residue aspartate 89 (207). The crystallographic study of the AChBP-galantamine complex also
revealed that some of the residues that contact galantamine in the complex are conserved among non-� nAChR subunits, suggesting that
galantamine may bind to both �- and non-� interfaces (207).
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cated that indolamines can interact with the ChEs found
in the plaques of patients with AD (505), and since some
ChE inhibitors, including galantamine, act as nicotinic
APLs, the neurotransmitter serotonin (5-HT) was tested
for its ability to modulate ACh-evoked nicotinic currents
in PC12 cells (414). As consistently reported in other
systems (e.g., Refs. 172, 218), 5-HT at micromolar concen-
trations was also found to inhibit agonist-induced nAChR
activity in PC12 cells (414). However, at submicromolar
concentrations, 5-HT sensitized the nAChRs to classical
agonists, an effect that could be blocked by FK1 (414).
Thus the possibility exists that 5-HT acts as an endoge-
nous nicotinic APL.

It remains unclear whether under normal physiolog-
ical conditions, endogenous galantamine-like modulators
of nAChR activity would be stored together with ACh in
the cholinergic terminals or would have a paracrine ac-
tion. Considering that in many CNS areas, tryptaminergic
and cholinergic synapses are colocalized (327), it is
tempting to speculate that 5-HT released from its terminal
could diffuse away and act as a nicotinic APL on closely
located nAChRs. The finding that submicromolar concen-
trations of 5-HT are sufficient to potentiate nicotinic re-
sponses is in agreement with a paracrine action of 5-HT
on nAChRs. It also lends support to the concept that brain
functions are regulated by complex neuronal and chemi-
cal networks.

Reduced nAChR function/expression in the brain has
been associated with the pathophysiology of catastrophic
disorders, including AD and schizophrenia (discussed in
later sections, and see Refs. 277, 432). In particular, the
association of the �7 nAChR gene with a sensory gating
deficit that is similar to attention deficits in patients with
schizophrenia (157), and the degree of �4�2 nAChR loss
and altered �7 expresson correlate well with the magni-
tude of progressive cognitive decline in mild-to-moderate
AD patients (46). The nicotinic APL action of galantamine
appears to be an important determinant of its clinical
effectiveness (reviewed in Refs. 98, 291, 371). Acting pri-
marily as a nicotinic APL, galantamine improves synaptic
transmission and decreases neurodegeneration, two ef-
fects essential for its cognitive-enhancing properties (40,
108, 241, 409, 521). Of note is that in both of these cata-
strophic disorders, reduced nAChR activity/expression is
accompanied by increased levels of kynurenic acid
(KYNA), a tryptophan metabolite that in the brain is pri-
marily produced and released by astrocytes (244, 419).
The neuroactive properties of KYNA have long been
attributed to the inhibition of NMDA receptors (329).
Electrophysiological studies, however, have demon-
strated that physiologically relevant concentrations of
KYNA block �7 nAChR activity noncompetitively and
voltage independently (210).

Biosynthesis and disposition of KYNA in the mam-
malian brain have been extensively investigated. KYNA is

formed enzymatically by the irreversible transamination
of L-kynurenine, a major peripheral tryptophan metabolite
with ready access to the brain. Immunohistochemical and
lesion studies demonstrated that cerebral KYNA synthesis
takes place almost exclusively in astrocytes (129, 187,
199). Newly formed KYNA is rapidly liberated into the
extracellular compartment for possible interaction with
neurotransmitter receptors, including the �7 nAChRs and
NMDA receptors (472). Because of the absence of re-
uptake or degradation mechanisms, subsequent KYNA
removal is accomplished exclusively by probenecid-sen-
sitive brain efflux (330, 473). Interestingly, astrocytic
KYNA production is regulated by neuronal activity (187)
and cellular energy metabolism (213). This dependence of
extracellular KYNA concentrations on the functional in-
terplay between neurons and astrocytes is in line with the
postulated neuromodulatory role of KYNA (418) and adds
to the complexity of the neurochemical networks in the
brain. In the normal brain, �70% of KYNA formation is
catalyzed by KAT II, one of the three cerebral KATs (199,
200). Systemic treatment of rats and mice with kynure-
nine leads to an elevation of brain levels of several neu-
roactive intermediates, including KYNA, the free radical
generator 3-hydroxykynurenine, and the excitotoxic quino-
linic acid (419).

Because the overall effects of �7 nAChR and NMDA
receptor antagonists on neuronal plasticity and viability
are similar and resemble those of KYNA, a review of the
neuroactive properties of KYNA in vivo and in vitro does
not adequately resolve the question of whether the me-
tabolite acts in vivo through �7 nAChRs or NMDA recep-
tors. Mice with a null mutation in the gene that encodes
KAT II became a unique tool to resolve this issue (31, 410,
516). Low levels of KYNA in these mutant mice lead to �7
nAChR disinhibition in hippocampal CA1 SR interneu-
rons, thereby increasing the activity of GABAergic inter-
neurons impinging onto CA1 pyramidal neurons (31). It is
noteworthy that NMDA receptor activity in CA1 SR inter-
neurons in hippocampal slices of mKat-2�/� mice is not
significantly different from that recorded from wild-type
interneurons (31). This constituted the first evidence that
in the hippocampus endogenous levels of KYNA are suf-
ficient to directly modulate the activity of �7 nAChRs, but
not that of NMDA receptors (31). Potential developmental
and age-dependent adaptations to the elimination of KAT
II, however, limit the usefulness of the mKat-2�/� mice to
the understanding of the pathological effects of KYNA in
the mature brain. Thus brain levels of KYNA in 60-day-old
mKat-2�/� mice become comparable to those of age-
matched wild-type mice, and no phenotypic differences in
hippocampal �7 nAChR activity or GABAergic transmis-
sion exist in these older animals (31). Changes in the
mechanisms that regulate the expression of KATs other
than KAT-2 in the brain could represent adaptative re-
sponses to the elimination of the mKat-2 gene (517).
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Therefore, a better understanding of how abnormal levels
of brain KYNA contribute to the pathophysiology of dis-
orders such as AD and schizophrenia will depend on
pharmacological manipulations that induce selective fluc-
tuations in brain KYNA levels at specific ages.

Acting as an endogenous regulator of the �7 nAChR
activity, astrocyte-derived KYNA can modulate synaptic
transmission, synaptic plasticity, neuronal viability, and
neuronal connectivity in different areas of the brain (Fig. 8).
Activation of �7 nAChRs in somatodendritic and preter-
minal/terminal areas of interneurons in various strata of
the CA1 region and in the dentate gyrus facilitates spon-
taneous quantal release of GABA (14, 25). Glutamate re-
lease from mossy fibers onto CA3 pyramidal neurons is
also modulated by �7 nAChRs present in the mossy fiber
terminals (190). Furthermore, �7 nAChRs have been im-

plicated in “inhibitory” and “disinhibitory” circuits in the
CA1 field of the hippocampus (19, 26, 28, 223; see also Fig.
4D). As mentioned above, under normal physiological
conditions, endogenous levels of KYNA are sufficient to
maintain a degree of inhibition of �7 nAChRs in CA1 SR
interneurons that tunes down the intensity of the
GABAergic transmission impinging onto CA1 glutamater-
gic neurons (15).

Activation of �7 nAChRs is known to contribute to
the regulation of extracellular dopamine levels in the rat
striatum (81). Application via microdialysis of KYNA or
�-BGT to the rat striatum significantly reduces the extra-
cellular levels of dopamine, and the magnitude of the
effect of either antagonist alone is comparable to that of
both antagonists together (285). In contrast, the NMDA
receptor antagonist 7-chloro-KYNA has no significant ef-

FIG. 8. Role of astrocyte-derived kynurenic acid (KYNA) in regulating the activity of dopaminergic neurons in the ventral tegmental area. This
simplified scheme illustrates the role of astrocyte-derived KYNA in modulating synaptic transmission between a cortical glutamatergic axon and a
dopaminergic neuron in the ventral tegmental area (VTA). The VTA supplies dopaminergic inputs to several nuclei in the so-called reward circuit.
This circuit, which is centered around the nucleus accumbens and is critical for animals to display goal-directed behaviors, has been shown to be
strategically positioned to relay information about motivation, drive, and affective state to motor systems. Dopaminergic activity in the nucleus
accumbens has an essential role in the functioning of this circuit. The reinforcing properties of drugs of abuse, including nicotine, are associated
with increased dopaminergic activity in the nucleus accumbens, which receives dopaminergic inputs from the VTA. The nucleus accumbens receives
input from several limbic structures, including the amygdala, the hippocampus, and the medial prefrontal cortex and innervates the ventral pallidum,
subpallidal area, and substantia nigra, which provide inputs to motor structures. The dopaminergic activity in the nucleus accumbens is, thus,
regulated by local integration of various neurotransmitter systems originating in different areas of the brain. However, it is also controlled by the
cortical glutamatergic input to the dopaminergic neurons in the VTA. Local infusion in the rat striatum of a kynurenine hydroxylase inhibitor has
been shown to increase extracellular levels of dopamine, which were decreased by the addition of KYNA to the perfusate (390, 391). The association
between low levels of KYNA and increased levels of dopamine has also been observed in mice with a null mutation in the gene that encodes the
KATII enzyme (516). Thus it is tempting to speculate that dopaminergic transmission in the striatum is regulated by astrocyte-derived KYNA. VTA
dopaminergic neurons are known to express somatodendritic �7 nAChRs and to receive excitatory inputs from cortical glutamatergic terminals that
express �7 nAChRs. Activation of these receptors stimulates dopamine release into the nucleus accumbens within the striatum. It is plausible to
hypothesize that endogenous KYNA released from astrocytes may inhibit tonically active �7 nAChRs and, thereby, decrease dopamine levels in the
striatum. This emphasizes the concept of tripartite synapses in the brain, whereby synaptic activity is tuned by astrocyte-derived regulatory signals
(480).
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fect on the extracellular levels of dopamine in the rat
striatum (391). As illustrated in Figure 8, KYNA-induced
reduction of extracellular dopamine levels can be ex-
plained by the inhibition of tonically active �7 nAChRs in
the dopaminergic neurons within the VTA and/or in cor-
tical glutamatergic terminals that synapse onto striatal
neurons. VTA dopaminergic neurons represent the major
dopaminergic input to the nucleus accumbens.

Disruption of reciprocal glia-neuron signaling mech-
anisms involving KYNA and nAChRs may be causally
related to diseases such as AD and schizophrenia.
Chronic �7 nAChR inhibition in the hippocampus by ele-
vated levels of KYNA can contribute to auditory gating
deficits, which appear to be associated with the develop-
ment of schizophrenia (156). It is also feasible that KYNA-
induced inhibition of �7 nAChRs contributes to the cog-
nitive impairment observed in patients with AD and
schizophrenia (273). Finally, the finding that KYNA, acting
via �7 nAChRs, regulates striatal dopamine levels (Fig. 8;
Refs. 285, 391) suggests that the interplay between astro-
cyte-derived KYNA and synaptic transmission can modify
reward mechanisms implicated in the pathophysiology of
drug abuse and neuropsychological disorders such as
schizophrenia. Detailed knowledge of how KYNA, acting
via �7 nAChRs, regulates synaptic transmission through-
out the brain at different ages is essential for the under-
standing of the involvement of KYNA and �7 nAChRs in
specific disease states.

The exact amino acids required for binding of KYNA
to �7 nAChRs are yet to be identified. However, recent
electrophysiological experiments have demonstrated a
competitive interaction of galantamine and KYNA with
�7 nAChRs in hippocampal neurons (285). The finding
suggested that KYNA-induced inhibition of �7 nAChRs
is dependent on the interactions of the metabolite with
the region on nAChRs that binds galantamine. Two
questions were then raised: 1) Why are the actions of
KYNA and galantamine on �7 nAChRs opposite? 2) Why
does KYNA inhibit �7 nAChRs selectively, while galan-
tamine acts more promiscuously as an APL on most
nAChRs?

Superimposition of the lowest energy conformers of
galantamine and KYNA shed some light on structural
differences that could explain the opposite actions that
result from the interactions of the two compounds with
the APL-binding region on �7 nAChRs. Like galantamine,
KYNA has an aromatic ring with a phenolic hydroxyl
group. This group, which bears the same spatial orienta-
tion as the phenol group in galantamine, is located at a
fixed distance from a pyridinic nitrogen. However, this
nitrogen is largely unionized at physiological pH and is at
a shorter distance from the phenolic group than the ter-
tiary nitrogen is from the corresponding phenolic group in
galantamine. The previous report that 7-chloro-KYNA
does not inhibit �7 nAChRs (210) suggests that the car-

boxyl group contributes to interactions of KYNA with
specific residues in the APL-binding region. The introduc-
tion of the electron-withdrawing chlorine in position 7 of
the phenolic ring creates a dipole in the molecule that can
weaken its potential interactions with positively charged
residues in the APL region. The nAChR �7 subunit is the
only mammalian nAChR � subunit that has a positively
charged residue within the segment �118-140 of the pu-
tative APL-binding region. It is, therefore, tempting to
speculate that the selectivity of KYNA for �7 nAChRs is
encoded in the carboxyl group in position 2 of the pyri-
dine ring.

Drugs currently approved to treat mild-to-moderate
AD, including galantamine, donepezil, and rivastigmine, all
inhibit AChE, the enzyme that hydrolyzes ACh (462). As
mentioned above, galantamine is unique in that it also
acts as a nicotinic APL. Recently, these drugs have been
evaluated as adjuvant therapies to decrease the cognitive
impairment and negative symptoms of patients with
schizophrenia. Data are still sparse and so far derived
from small samples in open uncontrolled studies. How-
ever, a small randomized, double-blind trial showed pos-
itive outcomes when galantamine was administered as an
add-on therapy to antipsychotics (417). To date, no simi-
larly promising clinical effects have been observed with
donepezil or rivastigmine (310, 427). Since KYNA levels
are significantly elevated in the brain of individuals with
AD (49) and schizophrenia (420), it is possible that the
antagonism of KYNA-induced inhibition of �7 nAChRs
may be causally related to the effectiveness of galan-
tamine in these catastrophic disorders.

Other endogenous ligands that impact on the activity
of nAChRs noncompetitively and voltage independently
include the amyloid � peptide 1-42 (A�1-42; Refs. 123,
376) and the canabinoid anandamide (356, 442). The
A�1-42 peptide is one of the breakdown products of the
proteolytic cleavage of the amyloid precursor protein by
�- and �-secretases. In biopsy samples of human brain
tissue obtained from AD patients and in ectopic systems
overexpressing either �7 nAChRs or APP, A�1-42 coim-
munoprecipitates with �7 nAChRs (490). The A�1-42 pep-
tide also displaces binding of [3H]MLA from �7 nAChRs in
cerebral cortical and hippocampal synaptosomes (490).
More functional studies reported that while at picomolar
concentrations A�1-42 activates �7 nAChRs ectopically
expressed in Xenopus oocytes (123, 126), at nanomolar
concentrations it inhibits �7 nAChRs present in different
preparations (278, 376). The �7 nAChR inhibition by
A�1-42 is noncompetitive with respect to the agonist, is
voltage independent, and is therefore likely to be medi-
ated by the interaction of the peptide with a site different
from that for ACh on the nAChRs. Other studies have
reported that �4�2 nAChRs are more sensitive than �7
nAChRs to inhibition by nanomolar concentrations of
A�1-42 (506). Factors that confer A� sensitivity to
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nAChRs include, but are not restricted to, nAChR subunit
composition and stoichiometry, regional distribution of
specific nAChR subtypes, neuronal compartmentalization
of different nAChR subtypes, as well as neuronal and
nonneuronal nAChR expression (122). It is noteworthy
that the �7 nAChR activity increases intracellular accu-
mulation of A� in neurons (336), and A� peptides, in
addition to modulating nAChR activity, downregulate the
expression of nAChRs (197). Though poorly understood,
reciprocal relationships might exist in vivo between en-
dogenous levels of A� peptides and nAChR activity that
are essential to the pathophysiology of AD.

Anandamide, a compound originally isolated from
porcine brain extracts, is known to interact with canabi-
noid receptors 1 and 2 in the brain (120, 159). However,
anandamide interacts with numerous other receptors, in-
cluding voltage-gated Ca2� channels (357), voltage-gated
K� channels (293), 5-HT3 receptors (358), kainate recep-
tors (3), and nAChRs (356). At nanomolar concentrations,
anandamine blocks noncompetitively and voltage inde-
pendently the activation of �7 nAChRs ectopically ex-
pressed in Xenopus oocytes (356). It also inhibits the
activity of �4�2 nAChRs expressed in SH-EP1 cells (443).
There is evidence that anandamide is produced by
postsynaptic neurons in response to elevated intracellular
Ca2� levels. For instance, concomitant activation of �7
nAChRs and NMDA receptors triggers the production of
anandamine in postsynaptic neurons (448). Anandamine,
then, functions as a retrograde messenger and regulates
synaptic transmission by interacting with specific recep-
tors in the presynaptic neurons/terminals (498). It has
been suggested that nAChRs may serve as potential tar-
gets for modulation of synaptic transmission by anand-
amide (356). The mutual interactions between the endo-
cannabinoid system and the nAChRs have led to the re-
cent discovery of �7 nAChRs as potential targets for
development of medical therapies for the treatment of
cannabis addiction (440).

Finally, bupropion (16, 294, 433) and UCI-30002 (514)
are examples of synthetic compounds that act as noncom-
petitive inhibitors of different nAChRs, including those
made up of the subunits �7, �4�2, or �3�4. Both com-
pounds effectively decrease nicotine self-administration
in rats (280, 514). Bupropion is presently approved as an
adjunct therapy for smoking cessation. The sites that
contribute to the inhibitory actions of these compounds
are completely unknown.

B. Receptor Signaling

It has long been recognized that nAChR activation in
mammalian sympathetic neurons induces the opening of
a nonselective cation channel that leads to Na� influx,
membrane depolarization, and consequently activation of

voltage-gated Ca2� channels (92, 119). Long before the
identification of the high Ca2� permeability of �7 nAChR
channels, different studies reported significant Ca2� in-
flux through nAChRs in muscle, parasympathetic neu-
rons, pheochromocytoma cells, and human neuroblas-
toma cells (115, 321, 347, 407, 411, 459, 468). Subsequent
studies also reported significant Ca2� influx through
nAChRs in neurons isolated from the CNS (78, 334) and
oocytes transfected with different nAChR subunits (423,
479). It was then recognized that Ca2� flux directly
through nAChR channels or indirectly via voltage-gated
Ca2� channels is relevant for nicotinic modulation of
transmitter release, synaptic plasticity, as well as neuro-
nal viability, differentiation, and migration.

An ever-growing body of evidence indicates that in
CNS and parasympathetic nervous system neurons and in
heterologous systems expressing specific nAChR sub-
types, nicotine stimulates several Ca2�-dependent ki-
nases, including PI3K, protein kinase C (PKC), protein
kinase A (PKA), calmodulin-dependent protein kinase II
(CAM kinase II), and extracellular signal-regulated ki-
nases (ERKs; Refs. 108, 112, 146, 318, 469). Downstream
from the nicotine-stimulated kinases, a number of tran-
scription factors have been shown to be activated. Among
these factors are the cAMP response element binding
protein (CREB) and the activating transcription factor 2
(ATF-2) in PC12 cells (211, 337, 460), the Ets-like tran-
scription factor Elk-1 in the rat hippocampus (349), and
the signal transducer and activator of transcription
(STAT3) in macrophages and skin cells (114, 354). Recent
studies have supported a role for ERK and CREB activity
in neural plasticity associated with nicotine addiction (71,
381, 484). It has also been proposed that the ERK and
JAK-2/STAT-3 signaling pathways contribute to the toxic
effects of nicotine in skin cells (42), and other pathways
contribute to the effects of nicotine and other nicotinic
ligands on inflammatory responses as described below. It
appears that the placement of relatively small numbers of
nAChRs at key regulatory sites can lead to multiple out-
comes in terms of normal cell performance and suscep-
tibility to exogenous challenges or participation in pro-
cesses ranging from neurodegeneration to inflammation.

C. Nicotine Effects in Peripheral Systems

and Inflammation

While the effects of nicotine in the CNS, including its
addictive effects, remain a central focus of nAChR stud-
ies, as Langley and colleagues demonstrated over 100
years ago (259), the alkaloid has dramatic effects on
peripheral systems. This includes the ability of high nic-
otine concentrations to act on muscle receptors as well as
to impart often more subtle effects through preganglionic
receptors of the autonomic nervous system. Recent stud-
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ies have identified nAChRs present in numerous nonneu-
ronal cell types outside the nervous systems and investi-
gated how these receptors participate in modifying a
range of physiological processes. In fact, the relationship
between tobacco abuse (including smokeless) and diffi-
culty in healing, increased susceptibility to infection (es-
pecially oral), enhanced expression of indicators of skin
aging, and increased cancer risk are all well-documented
(383, 452). The recognition of the expression of nAChRs
in adipose tissue (36, 37) provides a mechanistic rational-
ization for the long-standing observation that on average
smokers appear thinner, and, yet, more prone to meta-
bolic syndromes such as type II diabetes.

Probably the first written report of an interaction
between nicotine and inflammation emerged over 150
years ago when the German physician Rudolph Virchow
recognized that smoking could in some cases provide
acute, and even long-term therapeutic relief to the symp-
toms of severe asthma. Modulation by nicotine of inflam-
matory responses in the intestines is much better re-
ported. Early studies found that patients with ulcerative
colitis who stopped smoking tobacco developed the dis-
ease or exhibited more severe disease progression, which
was ameliorated by either returning to smoking (58, 401,
466), or, in some cases, administering nicotine through
transdermal patches (313). In contrast, patients with
Crohn’s disease experience much more severe disease
when smoking (401). Complicating this finding is that not
all human subjects respond in this way. Recent studies of
mice suggest that this may in part be related to specific
nAChRs and their interactions with distinct inflammatory
pathways (353, 366, 489), which in turn are subject to
individual genetics. Notably, mice with a null mutation in
the gene that encodes the �5 nAChR subunit exhibit
enhanced sensitivity to induction of inflammatory bowel
disease relative to controls (353). Despite increased sen-
sitivity to disease initiation, administration of transdermal
nicotine remains effective in attenuating the disease pro-
cess. Therefore, again nicotine appears to impact on in-
flammatory processes with considerable specificity and
tissue dependency. Understanding how these interactions
proceed to pathology will require a much greater and
detailed examination of the interaction between specific
nAChR subtypes and inflammatory cytokines in different
cell types, within the context of individual genetics.

There is current evidence that nAChRs present in
skin cells modulate the responses triggered by inflamma-
tory stimuli applied to the skin (354). Smoking is a well-
defined risk factor in delayed wound healing and possibly
the development of premature facial wrinkling (226). Dis-
tinct nAChRs are expressed in diverse cells that compose
the skin (95, 189, 255, 323, 354, 526). For example, epithe-
lial keratinocytes express functional nAChRs and, impor-
tantly, they also are capable of synthesizing the so-called
cytotransmitter ACh (526). Mechanistically, nicotine, act-

ing through nAChRs, decreases keratinocyte migration
(188, 189) and modifies the activity of PI3K/Akt, ERK,
MEK, and JAK signaling pathways. Furthermore, pharma-
cological dissection of nicotine’s influence on cell cycle
progression, apoptosis, and differentiation (43) indicate
that �7 nAChRs expressed in keratynocytes are impor-
tant. Other receptors are clearly involved in this process,
since atropine, a muscarinic and sometimes nAChR inhib-
itor (531, 532), reduces cell adhesion through decreasing
desmoligein expression.

A relationship also exists between nAChRs and the
normal physiology of adipose tissue. It has long been
known that smokers tend to be leaner, and yet approxi-
mately four times more likely to become insulin resistant
and develop type I diabetes (497), a condition that is more
commonly observed in obese patients. This correlation is
of general biological relevance, because it also extends to
certain mouse strains. For example, weight loss is ob-
served when C57BL/6 and AKR mice, but not A/J, SJL, and
NZW mice are exposed to cigarette smoking for 6 mo
(198). There is a genetic predisposition that may be linked
to variable expression of nAChRs and individualizes the
effect of nicotine on body weight. Although nAChRs are
expressed in adipose tissue, their role in normal metabo-
lism is not presently understood. Notably, nicotine pre-
treatment of rat adipocytes (279) reduces the release of
TNF-� as well as free fatty acids and the adipokine adi-
ponectin (whose function is not known, although its lev-
els change in metabolic syndrome). It remains to be de-
termined whether the effects of nicotine on metabolism
result from its direct interactions with specific nAChR
subtypes in adipocytes controlling levels of proinflamma-
tory cytokines and adipokines.

D. Genetic Influences on nAChR Expression

Mice have been extensively used to identify the in-
fluences of genetic background on the responsiveness to
nicotine (105). Mice are particularly well-defined for their
strain-specific complex genetic traits related to the effects
of nicotine (105, 302) and morphological variations in the
brain (e.g., Refs. 166, 167, 169). As noted above, because
each nAChR subunit is expressed in unique, but overlap-
ping cell and tissue-specific patterns, this can impart re-
markable specialization of their function. However, as
demonstrated by the extensive studies of the Collins
group (105, 302), the responses of mice to nicotine de-
pends on still ill-defined components of the genetic back-
ground.

Mouse strains exhibit differences in their respective
level of nAChR expression and the morphological context
of the neuronal circuitries in which they are expressed.
For instance, substantial strain-specific variability in
nAChR expression has been observed in the striatum (34),
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retina (227), cerebellum (471), and dorsal hippocampus
(164, 165, 167, 169) of mice. It is noteworthy that isogenic
mouse strains differ in gross measures of hippocampal
architecture including volume, shape, and neuronal num-
ber that are nevertheless determined genetically (169,
499). The dorsal hippocampus shows exquisitely different
morphological features among isogenic mouse strains. In
addition, within the dorsal hippocampus, immunostaining
for the �4 nAChR subunit varies dramatically between
CA1 inhibitory interneurons and astrocytes of adult mice
of differing strains (169). For example, the expression of
nAChRs by inhibitory CA1 interneurons in the hippocam-
pus of C3H mice outnumbers that observed in astrocytes
by �3:1, whereas these values are reversed in C57BL/6
(B6) mice (165, 169). Taking into account that basic hip-
pocampal architecture and nAChR expression in hip-
pocampal neurons and astrocytes differ among mouse
strains, it remains to be elucidated whether nontraditional
nicotinic modulators that are produced and released by
astrocytes contribute to the strain-specific responses of
mice to nicotine administration.

Strain-dependent variations in nAChR density in re-
gions of the rat brain have also been reported. For in-
stance, numbers of �-BGT- and cytisine-binding sites,
which represent primarily �7 and �4�2 nAChRs, respec-
tively, are significantly higher in specific regions of the
brains of Wistar normotensive rats compared with spon-
taneously hypertensive rats (174). It has been suggested
that the poorer cognitive performance of spontaneously
hypertensive compared with Wistar normotensive rats
relates to their differential expression of nAChRs in the
brain (174). A more recent study reported that �3�4
nAChR activity/expression is higher in the hippocampus
of August Copenhagen Irish (ACI) than in the hippocam-
pus of Sprague-Dawley (SD) rats (29). The ACI rat, an
inbred strain, is well-known for its higher propensity to
develop estrogen-dependent mammary and prostate can-
cers compared with the outbred SD rat (220, 430, 441).
The brain of ACI rats is also highly sensitive to the actions
of estradiol (444), a sex hormone that appears to have a
neuroprotective function in schizophrenia (202, 422) and
to prevent disruption of prepulse inhibition (PPI) in lab-
oratory animals and healthy women subjected to different
treatments (182, 478). The question is, therefore, posed as
to whether the differential expression/function of �3�4
nAChRs in the hippocampus of ACI and SD rats contrib-
utes to differences in neurocognitive functions in these
animals. Studies aimed at addressing this question could
prove extremely relevant for the understanding of the
contribution of specific nAChRs and differences in ge-
netic background to the diverse susceptibility and pen-
etrance of neuropathological disorders inclusive of disor-
ders such as schizophrenia (see next section).

VI. NICOTINIC RECEPTORS AND DISEASE

A. Changes in nAChRs With Age

and Alzheimer’s Disease

One measure of normal age-related decline in the
CNS is the diminishment and eventual dysfunction of the
limbic cholinergic system that, in its most severe form,
contributes to the neuropathologies of dementias includ-
ing AD. AD is the most common form of dementia in the
elderly population. The histopathology of this disease is
well known to have at least four components: 1) loss of
cholinergic neurotransmission, 2) deposition of extracel-
lular A� peptides into plaques, 3) hyperphosphorylation
of the � protein that leads to excessive formation of
neurofibrillar tangles, and 4) increased local inflamma-
tion. Studies that examine the state of cholinergic neuro-
transmission in aging and dementia often focus on mus-
carinic receptor expression. However, loss of brain
nAChRs precedes that of muscarinic receptors during
normal aging, and it is often much more extensive in
human brains afflicted with AD relative to age-matched
controls (236, 308, 373, 374, 416, 519). In fact, �4 nAChR
expression can decrease by �80% in the AD brain (306,
374).

The importance of retaining the high-affinity nicotine
binding sites to brain integrity has been demonstrated in
studies of mice with a null mutation in the gene that
encodes the �2 nAChR subunit, a structural subunit of the
high-affinity nicotine binding site (150, 184, 215, 311);
these mice experience early onset neurodegeneration
(528). Therefore, arresting or slowing age-related decline
in nAChRs is predicted to have therapeutic benefit. The
simplest of these interventions with suggested efficacy to
slow down age-related losses of nAChRs is the long-term
use of nicotine (160, 177, 340, 345, 377, 519). In human
trials, nicotine showed little efficacy in ameliorating AD
symptoms (437). However, treatment was initiated after
diagnosis of symptoms, and there is both epidemiological
data and direct evidence from animal models that this is
too late (106, 346, 396).

To identify the age- and strain-dependent effects of
long-term or acute exposure to nicotine on nAChR sub-
unit expression in the mouse brain, levels of �4, �5, �7,
�2, and �4 nAChR subunits were measured in the dorsal
hippocampus of both adult (10–14 mo) and aged (22–26
mo) CBA/J or B6 mice (164, 165, 396). First, age-related
nAChR subunit expression decline was observed in both
strains, and this was dominated by diminished �4 nAChR
expression. Second, long-term (12 mo) oral nicotine failed
to reduce the age-related decline in the number of neu-
rons expressing �4 nAChR subunits, although the neurons
that remained exhibited larger processes with more vari-
cosities than age-matched controls (165, 396). Acute nic-
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otine treatment (�6 wk of oral nicotine) of aged mice had
no measurable influence on nAChR expression, neuronal
viability, or dendritic complexity (e.g., Ref. 396). Third,
CBA/J mice exhibited greater overall neuronal loss of �4
relative to �6 nAChR subunit expression. Fourth, a signif-
icant component underlying the relative severity of strain-
specific diminished nAChR expression in the dorsal hip-
pocampus appears related to differences in cytoarchitec-
ture between these strains (165, 169). Coincident with
neuronal loss of �4 nAChR subunit expression, astrocyte
expression of this subunit increased substantially in aged
CBA mice relative to adults (�10–12 mo old), but to a
much lesser extent between adult and aged B6 mice (166).
It is noteworthy that nAChR expression by astrocytes in
brains afflicted with AD is increased (463, 518), and as-
trocytes in general have been reported to be more plen-
tiful in the hippocampus of some rat strains with age (35,
284). Fifth, possible impacts of selective nAChR loss on
the aging brain were provided by evidence that in primary
cultures �4-containing nAChRs protect neurons against
toxic fragments of the amyloid � peptides while �7
nAChRs protect against excitotoxic challenges (e.g.,
NMDA) (162, 242, 243, 278, 519). However, this appealing
scenario is complicated by recent findings that �-amyloid
peptides directly modify �7 nAChR function (242, 278).

Mouse strains, like humans, also exhibit a striking
age-related decline in nAChR expression. For instance, in
the hippocampus of aged CBA and B6 mice, expression of
�4 and �7 nAChR subunits decreases with age (166).
However, while �4 nAChR loss is more severe in aged B6
mice, �7 nAChR loss is more prominent in aged CBA/J
(166). Coincident with the loss of neuronal �4 nAChR
expression in the hippocampus of CBA/J strain is a sig-
nificant age-related increase in �7 nAChR staining of as-
trocytes, which has also been reported in cases with AD
(463). These results suggest that mouse strains of differ-
ent genetic backgrounds undergo dissimilar age-related
changes in the expression of nAChR subunits. They also
imply that the responses of aging animals to any given
toxic insult will be largely dependent on their genetic
backgrounds. This leads to the speculation that the loss of
�4-containing nAChRs could significantly increase sus-
ceptibility to age-associated insults by �-amyloid pep-
tides, while loss of �7 nAChRs would enhance suscepti-
bility to excitotoxic challenges such as those associated
with ischemic damage or the presence of TNF-� (75, 76).
One could infer that early genetic predispositions are
important determinants of the life-long dynamics of
nAChR function and that therapeutic interventions will
have widely differing effects consistent with the individ-
ual genetic backgrounds of the patients.

Also of relevance are recent studies of an interaction
in mice between nAChRs and long-term use of anti-inflam-
matories such as nonsteroidal anti-inflammatory drugs
(NSAIDs). These drugs may impart therapeutic benefit in

neurodegenerative diseases of aging, including reduced
risk of age-related dementia (2, 173, 178, 216, 289, 454,
470). NSAIDs [e.g., drugs such as ibuprofen and NS398
(celecoxib or Celebrex)] antagonize to varying degrees
two related cyclooxygenase (Cox) enzymes, Cox1 and
Cox2 (also termed, prostaglandin-endoperoxide synthase
2), that are rate-limiting in converting arachidonic acid to
prostaglandin H2, a precursor to many additional prosta-
glandins (for review, see Ref. 436). The two Cox forms are
known to be differentially regulated; Cox1 is often ex-
pressed constitutively while Cox2 expression is induced
by proinflammatory conditions. In the brain, however,
Cox2 is constitutively expressed by neurons (212, 512),
participates in modulating synaptic plasticity (53, 464),
and conditionally can either inhibit or promote cell death
(74, 85, 237, 322, 451). A link between �4 nAChRs and
Cox2 was suggested by the observation that interneurons
in the hippocampus coexpress both proteins (165). A
mechanistic connection was inferred when long-term
treatment of aged animals with NS398 promoted retention
of �4 nAChR expression in the brain, an effect that was
antagonized by the coadministration of nicotine. It was
then proposed that NSAIDs could impart age-related ther-
apeutic benefit in the nAChR system, although how this
effect was imparted and antagonized by nicotine remains
unclear. There is the possibility that a compensatory
mechanism changes nAChR expression among interneu-
ron classes in animals given NS398, but does so in a way
that maintains the appearance of the adult phenotype
(164–166, 169). These relationships are particularly in-
triguing in light of the interaction between the nAChR and
proinflammatory cytokine systems noted above. In fact,
the nAChR interaction with inflammatory regulation may
prove to have a more generalized contribution in pathol-
ogies.

B. Nicotine Effects on Parkinson’s Disease

Parkinson’s disease (PD) is characterized by selec-
tive damage to dopaminergic nigrostriatal neurons and is
clinically revealed by motor deficits, including rigidity,
tremor, and bradykinesia. Dopamine replacement therapy
(usually with L-dopa) is the most common treatment,
although this drug loses efficacy over time. The etiology
of this disease remains unclear. However, epidemiologi-
cal studies have reported that heavy smokers are less
likely to experience PD (see reviews in Refs. 384, 385).
Furthermore, like AD, it is apparent that this protection is
real and not related to selective diminishment of the
smoking population through early death related to other
side effects of smoking. More direct evidence of the pro-
tective effects of nicotine in this disease process comes
from studies in primates, where oral nicotine reduces the
nigrostriatal neuronal loss observed in chemically in-
duced PD (384, 385).
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As in AD, clinical studies using nicotine therapies
such as the patch to treat PD have provided inconsistent
results (266). In particular, the need to start nicotine
therapy before neuronal loss is not practical in the design
of these studies, and the use of the nicotine patch for
delivery of drug may also be inefficient for therapeutic
value. However, in rodent and nonprimate animal models,
nicotine has been shown to enhance striatal dopamine
release and to prevent toxin-induced degeneration of do-
paminergic neurons (384, 385). It has also been proposed
that, as in other diseases, in PD nicotine favorably influ-
ences otherwise neurodegenerative influences of astro-
cytes and inflammatory processes (362). A key future
direction in this field of research is to examine the timing
of drug administration towards optimizing therapeutic
efficacy and to develop drugs that, unlike nicotine, spe-
cifically target receptors that play a more critical role in
regulating dopamine release in the striatum, such as those
harboring �6 subunits (see above).

C. Addiction

Nicotine is perhaps the most addictive drug that is
widely used; 95% or more of its users with a strong desire
to stop using it relapse within 1 yr (47, 203). Chronic
nicotine use and the phenotypes of addiction are closely
associated in humans and other animals with concurrent
physiological changes in nAChR function and expression.
In particular, repeated self-administration produces the
upregulation of high-affinity (�4�2) nAChR expression,
reduces receptor function due to desensitization and, in
most cases, imparts developmental tolerance. Additional
changes imposed by nicotine abuse range from reinforce-
ment to physical discomfort associated with withdrawal
including craving, anxiety, and a multitude of other less
than desirable sensations of autonomic dysfunction when
use is stopped. In some rarer cases, the cessation of
nicotine use can have more curious physiological conse-
quences such as promoting the onset of “flares” in certain
inflammatory diseases such as ulcerative colitis as noted
above. Consequently, because addiction to nicotine and
the physiological consequences of long-term self-admin-
istration vary greatly among individuals, the interaction
and signaling of nicotine through nAChRs must be highly
influenced, and possibly determined by the genetic back-
ground (91).

The mouse is particularly amenable to well-defined
genetic and pharmacological experimental manipulations.
This animal model has successfully been used to reveal
key nAChRs that contribute to specific effects of nicotine.
For example, the measurement of acute and chronic in-
fluence of nicotine administration on at least 19 mouse
strains has established a remarkable database that quan-
titatively describes the genetic influence on multiple

acute and chronic physiological and behavioral effects of
treatments with nicotine. A principle component of ge-
netic analysis of the contribution of �7 and �4�2 nAChRs
to the effects of nicotine was reported 15 years ago. The
number of �-BGT binding sites (presumably �7 nAChRs)
was shown to be highly correlated with sensitivity to
nicotinic-induced seizures (105, 301, 303). In contrast, the
effect of nicotine on physiologically diverse behaviors
such as altering body temperature or performance in
Y-maze was more closely related to the high-affinity nic-
otine binding sites related to �4�2 nAChRs (105). Recent
genetic manipulations of the expression of nAChR sub-
units in mice in conjunction with pharmacological, mor-
phological, and functional studies of neuronal functions
in the brains of these mice are paving the way for a better
understanding of the complex trait of nicotine addiction.

Targeted genetic manipulation of mouse models is
offering considerable insights into the role of specific
nAChRs in behaviors related to nicotine administration
such as reinforcement, upregulation, and tolerance. Mice
with a null mutation in the gene that encodes the �2
nAChR subunit were among the first to be employed. The
concept that �2-containing nAChRs are involved in the
reinforcing effects of nicotine was supported by the find-
ings that these mice lacked the high-affinity nicotine bind-
ing site, exhibited poor nicotine self-administration, and
failed to develop behaviors related to reinforcement
(378). The demonstration that these mice developed
symptoms of the nicotine withdrawal syndrome similar to
those observed in wild-type mice led to the conclusion
that �2-containing nAChRs do not contribute to the phys-
ical dependence on nicotine (57). With the use of numer-
ous genetic approaches, subsequent studies examined the
role of different nAChR � subunits in nicotine addiction.

Direct evidence of the participation of �4 nAChR
subunits in several components of nicotine addiction
came from elegant experiments where the sensitivity of
this subunit to nicotine was increased through genetic
manipulation (461). In these experiments, a knock-in
mouse was generated through directed homologous re-
combination that exchanged a highly conserved leucine in
TM2 with an alanine in the �4 nAChR subunit. The mutant
subunit reduced the concentration of nicotine required to
gate the receptor (mostly �4�2 nAChRs). Mice with this
mutation were also susceptible to epilepsy and other
neurological disorders that required the subunit expres-
sion to be reduced through genetic means to ensure ani-
mal viability (152, 461). Extensive measurements of these
animals revealed that the �4(L:A) nAChR subunit muta-
tion and enhanced receptor activation alone can account
for nicotine reinforcement, sensitization, and the devel-
opment of tolerance (461).

There has been a long-standing suspicion that nAChR
upregulation and tolerance are closely related in estab-
lishing mechanisms contributing to nicotine addiction

106 ALBUQUERQUE ET AL.

Physiol Rev • VOL 89 • JANUARY 2009 • www.prv.org



susceptibility (55, 73, 373). However, discrepancies in this
correlation have also been experimentally tested through
the use of genetically modified mice. Among the earliest
findings that upregulation and the development of toler-
ance could be genetically separated was seen in C3H
mice, where chronic nicotine administration robustly up-
regulated high-affinity nicotine binding sites but failed to
induce tolerance (105, 301). Several possibilities exist for
the identity of the nAChR important to tolerance devel-
opment. The strong positive correlation between �-BGT
site number and sensitivity to nicotine-induced seizures
among multiple mouse strains led to the suggestion that
�7 nAChRs are critical to limit oral nicotine self-adminis-
tration in mice (105, 301). However, mice with a null
mutation in the gene that codes the �7 nAChR subunit
remain sensitive to nicotine-induced seizures and limit
their nicotine intake as much as wild-type mice do (153),
suggesting that more complex genetic traits underlie
these effects. While development of tolerance does not
seem to be regulated by �7 nAChRs, a recent study of �7
nAChR-null mice indicates that these receptors control
the severity of the nicotine withdrawal syndrome (402).
Other nAChRs that appear as good candidates to underlie
the ability of nicotine to induce tolerance are those bear-
ing the �3 and/or �4 subunits. First, the expression of the
�3 nAChR subunit is highly restricted in the brain, and
null mutants of this subunit appear relatively normal ex-
cept for decreased anxiety-like behavior (61, 494). While
the �4 nAChR subunit has also been proposed to be
strongly restricted in its expression in the CNS (133),
more recent studies suggest a broader distribution (121,
167, 481). For example, more sensitive methods of in situ
hybridization and PCR have revealed �4 expression in
many brain regions and cell types, including subpopula-
tions of hippocampal inhibitory interneurons, not previ-
ously observed to express this subunit. The �4 nAChR-
null mouse is coincidently less sensitive to nicotine-in-
duced seizure (235), which, as noted above, correlates
with limiting nicotine consumption. Furthermore, the
possibility that �3�4 nAChRs or other �4-containing re-
ceptors contributes to nicotine reward has been reported
(181). In summary, while nicotine-induced upregulation
requires at least the �2 nAChR subunit, development of
tolerance to nicotine requires neither the �2 nor the �7
nAChR subunit; instead, it appears to be modulated by a
�4-containing nAChR and to require an �4-containing
nAChR.

Studies using mice with specific mutations in se-
lected nAChR subunits have accurately complemented
pharmacological and functional studies, helped to clarify
key issues related to nicotinic cholinergic functions in
neuronal and nonneuronal tissues, and added consider-
able linkage between the gene and both physiological and
behavioral components of nicotine biology. More impor-
tantly, they have offered compelling evidence that possi-

bly minor nAChRs are important to significant aspects of
the biology of nicotine and the effectiveness of nicotinic-
based therapies, opening novel avenues for examining
underlying mechanisms of nAChR regulation of cell func-
tion and viability. There is no doubt that the development
of conditional nAChR knockout and knock-in mice will be
essential for the understanding of the differential roles of
specific nAChR subtypes in neuronal and nonneuronal
functions throughout life.

VII. FUTURE PERSPECTIVES

Though the past 20 years have experienced a signif-
icant growth on nicotinic research, we are still facing a
number of challenges. For instance, it is imperative to
answer the question of why there are two natural agonists
(ACh and choline) for �7 nAChRs and to identify the
conditions under which each agonist would play a major
role. Is this a way by which selective activation or inac-
tivation of a particular nAChR subtype is achieved? Or is
it a way by which �7 nAChR signaling can change its
frequency by using different endogenous agonists? Cross-
talk among various nAChRs and between nAChRs and
other receptors needs to be investigated in detail. It is
crucial to identify how specific nAChR subtypes are com-
partmentalized on the cell surface and how such segrega-
tion targets their signaling to given intracellular mecha-
nisms. Likewise, development of new pharmacological
tools will be necessary to better identify the native nAChR
subtypes expressed in neuronal and nonneuronal cells
throughout life. Revealing how glia-neuron interactions
shape nAChR functions, and vice versa, in the brain will
be essential for the understanding of the involvement of
specific nAChR subtypes in normal physiology and in
disease states. Determining how AChE inhibitors and nic-
otinic APLs affect the activity of different nAChRs in vivo,
and, accordingly, developing ligands that selectively en-
hance the activity of a given nAChR subtype will be a
crucial step for future drug development to treat a num-
ber of catastrophic disorders. Mapping how the genetic
background, sex, and age shape the responses to nicotinic
ligands has to be prioritized should these ligands receive
recommendation for treatment of diseases that afflict chil-
dren and the elderly. As important will be understanding
the role that nAChRs play in regulating immunological
responses within and outside the CNS under normal phys-
iological conditions and in numerous diseases. Develop-
ing conditional knockout and knock-in mice for individual
nAChR subunits will be a sine-qua-non step to identify
how neuronal and nonneuronal functions are regulated by
specific nAChR subtypes at various ages. These are only a
few of the many, highly exciting challenges for future
research in this field.
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