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Whether the job is waking the brain after a peaceful sleep,
initiating gastric secretion when dinner is served or orches-
trating the elements of inflammation after a mosquito bite,
histamine has been a known biological messenger for decades
(Green, 1964; Eichler and Farah, 1966). At the end of the
twentieth century, in the midst of the genomics and bioinfor-
matics revolution, researchers in this field knew of the exis-
tence of only three histamine receptors (H1, H2, and H3). But
histamine receptors are catching up! Not only have multiple
forms of the H3 receptor recently been described but also a
new histamine receptor, H4, has now been identified.

The presently-known histamine receptors (H1, H2, and H3)
are all G protein-coupled molecules and they transduce ex-
tracellular signals via Gq, Gs, and Gi/o, respectively (Hill et
al., 1997; Lovenberg et al., 1999). Not surprisingly, classic
pharmacology studies (Ash and Schild, 1966; Black et al.,
1972; Arrang et al., 1983) argued for their existence decades
before they were cloned (Gantz et al., 1991; Yamashita et al.,
1991; Lovenberg et al., 1999). Likewise, heterogeneity among
H3 receptors had long been suspected based on agonist ki-
netics (West et al., 1990), radioligand binding characteristics
(Cumming et al., 1991; Alves-Rodrigues et al., 1996), periph-
eral versus central nervous system pharmacology (Leurs et
al., 1996; Harper et al., 1999), and other functional studies
(Schlicker et al., 1992; Schworer et al., 1994), but the absence
of subtype-selective compounds prevented firm classification.

Although the H1 and H2 receptors were cloned nearly a
decade ago (Gantz et al., 1991; Yamashita et al., 1991), the
H3 receptor was not cloned until 1999 (Lovenberg et al.,
1999). However, this elucidation of the H3 receptor structure
in man and other species (Lovenberg et al., 1999, 2000;
Tardivel-Lacombe et al., 2000; Drutel et al., 2001) quickly led
to discoveries of the H3 receptor subtypes and the closely
related H4 receptor, which are discussed presently. Recent
molecular studies have shown that a single form of the H3

gene can give rise to multiple mRNA isoforms, named H3A,

H3B, and H3C in the rat (Drutel et al., 2001), and H3L and H3S

in the guinea pig (Tardivel-Lacombe et al., 2000). The vari-
ants all are known to differ in the structure of their third
cytoplasmic loops, although the relevant splicing mecha-
nisms remain uncertain (Tardivel-Lacombe et al., 2000; Dru-
tel et al., 2001). Thus far, similar variants in human samples
have not been identified (Liu et al., 2000), although the
existence of multiple, somewhat different H3 isoforms in
humans was reported recently (Wellendorf et al., 2000). The
H3 receptor isoform that seems to be most predominant in
human brain corresponds to the rat H3A and the guinea pig
H3L. In the January 2001 issue of this journal, pharmacolog-
ical differences in the H3 receptor subtypes, as well as evi-
dence for a differential distribution of the subtypes in rat
brain, were presented (Drutel et al., 2001). Considering the
current interest in the H3 autoreceptor (Morisset et al.,
2000), the ability of the H3 heteroreceptor to regulate the
activity of many brain transmitters (Hill et al., 1997; Hough,
1999) and the potential for developing new H3 pharmacother-
apies [e.g., in attention deficit/hyperactivity disorder, Alzhei-
mer’s disease, obesity, and others (Leurs et al., 1998; Ted-
ford, 1998)], the characterization of the H3 receptor subtypes
is of considerable significance.

Phylogenetic (Leurs et al., 2000) and homology analysis
(Lovenberg et al., 1999) of the H3 receptor showed it to be
surprisingly different from the previously cloned H1 and H2

receptors, a likely explanation for the delay in its discovery.
Indeed, at the time of the H3 receptor cloning, its homology to
any other known G protein-coupled receptor was only 31%
(Leurs et al., 2000). Because of this, the search for new
receptors in a family more closely related to the H3 receptor
seemed promising. As described in the accompanying articles
(Liu et al., 2001; Nguyen et al., 2001; Zhu et al., 2001) and in
other recent (Oda et al., 2000) and concurrent (Morse et al.,
2001) articles, screening of libraries and public databases for
H3-like fragments succeeded and led to the cloning and pre-
liminary characterization of what is now referred to as the H4

receptor. This receptor is a 390-amino-acid, 7-transmem-
brane G protein-coupled receptor, with a 37 to 43% homology
to the H3 (58% in transmembrane regions). All of the current
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studies report identical amino acid sequences for the receptor
(Liu et al., 2001; Morse et al., 2001; Nguyen et al., 2001; Zhu
et al., 2001); this sequence varies slightly from that of the
original H4 report (Oda et al., 2000). The human H3 and H4

receptors possess very similar genomic structures; both have
two introns and three exons (Liu et al., 2001; Zhu et al.,
2001), although the receptors are localized on different chro-
mosomes (20 and 18, respectively). In addition, like the H3

receptor, the H4 receptor seems to couple to Gi/o [and possi-
bly to other pathways (Oda et al., 2000)], thereby inhibiting
forskolin-activated cAMP formation (Zhu et al., 2001). Evi-
dence for a plasma membrane localization and agonist-stim-
ulated internalization of H4 has also been presented (Nguyen
et al., 2001). Notably, the distribution of the H4 receptor is
quite different from that of the H3 receptor. In contrast to a
nearly exclusive brain localization for the H3 receptor, the H4

receptor shows highest levels in bone marrow and leukocytes
(particularly eosinophils and neutrophils), with moderate
levels in spleen and small intestine. Mast cells may also
contain the H4 receptor (Zhu et al., 2001). Northern analyses
and other preliminary expression studies reported the ab-
sence of the H4 receptor in the central nervous system (Oda
et al., 2000; Morse et al., 2001; Nguyen et al., 2001). How-
ever, in situ hybridization studies in mouse (Zhu et al., 2001)
and RNase protection assays in human samples (Liu et al.,
2001) yielded evidence for a brain localization.

In general, the H4 studies show excellent agreement on the
preliminary pharmacology of the new receptor. Reported po-
tencies of histaminergic compounds in competing against
[3H]histamine binding to the various H4 clones are highly
correlated across four laboratories (Fig. 1). However, results
with [3H]pyrilamine binding on another H4 clone are discrep-
ant (Fig. 1). These results, along with the lack of activity of
pyrilamine on the H4 receptor reported by other labs (Table
1), raise a question regarding the suitability of pyrilamine as
radioligand for studying the H4 receptor. Although the rea-
sons for this discrepancy are not clear, it should be noted that
[3H]pyrilamine (also known as mepyramine) has been used
as a radioligand for the H1 receptor, but was later shown to
also bind specifically to certain cytochrome isozymes, thus
yielding false positives for the H1 assay (Leurs et al., 1989;
Liu et al., 1994).

Given the structural similarities of the receptor, it is not
surprising that the pharmacologies of the H3 and H4 recep-
tors overlap (Table 1; Fig. 2). The high-affinity H3 agonists
also have H4 agonist activity, but with a reduced potency.
Most notable is (R)-a-methylhistamine, which shows several
hundred-fold weaker activity at H4 versus H3 receptors.
Thioperamide, the prototypical H3 antagonist, also has ap-
preciable H4 antagonist activity (Table 1; Fig. 2). Some data
(Liu et al., 2001) even suggest that this drug may be an
inverse agonist at H4 receptors, similar to recent results
showing this effect on H3 receptors (Morisset et al., 2000).
Most of the results suggest that thioperamide has a 5- to
10-fold lower potency at the H4 receptor than at the H3

receptor (Table 1; Fig. 2). The H3 antagonists clobenpropit
and burimamide also have a lower affinity for the H4 recep-
tor, but these compounds show partial agonist activity at the
new receptor. Most promising for pharmaceutical develop-
ment are data showing the existence of potent, non-imidazole
H3 antagonists (e.g., compound 17 in Table 1 and Fig. 2) that
lack activity at the H4 receptor (Table 1). Taken together,
these results suggest that H4 responses are activated by low
doses of histamine, but not by (R)-a-methylhistamine, and
are blocked by large doses of thioperamide (an imidazole) but
not by non–imidazole-containing H3 antagonists. Although
compounds capable of selectively acting at the new receptor
have not yet been described, the atypical antipsychotic drug
clozapine (discussed further below) shows moderate H4 and
no H3 activity (Fig. 2), and thus may be a lead in this direc-
tion.

The above characteristics suggest that the H4 receptor has
been with us longer than we realized. Raible et al. (1994)
reported a histamine-activated increase in cytosolic calcium
in human eosinophils; the effect was sensitive to thioperam-
ide and partially mimicked by burimamide but not by low
concentrations of (R)-a-methylhistamine. Similarly, the his-
tamine-induced inhibition of serotonin release in intestinal
enterochromaffin cells resembles an H4 response with re-
spect to pharmacology and tissue expression (Schworer et al.,
1994). It is also likely that the “histamine uptake” discovered
in bone marrow hematopoietic cells (Corbel et al., 1997) rep-
resents in-fact binding of [3H]histamine and other ligands to
the H4 receptor, based on the pharmacology. In some of these
studies, the potency of thioperamide can be difficult to inter-
pret because of a large species difference (up to 10-fold) in the
affinity of thioperamide for the human versus the rat H3

receptor (Lovenberg et al., 2000); the difference is controlled
by only two amino acid substitutions (Ligneau et al., 2000).
There are other reported effects of thioperamide that are not
reversed by H3 agonists, and the H4 receptor must now be
considered in these cases. For example, thioperamide in-
creases extracellular levels of both histamine and g-aminobu-
tyric acid in brain, but only the former effect is reversed by
H3 agonists (Yamamoto et al., 1997). Of course, thioperamide
actions are not restricted to the H3 and H4 receptors; it has
some affinity at other sites as well [e.g., 5-HT3 (Leurs et al.,
1995)] and may even be found to have activity at additional,
unknown histamine receptors. Although the new H4 work
accounts for the existence of some novel histamine receptors
previously suggested to exist, it cannot account for others.
For example, HTMT [6-[2-(4-imidazolyl)ethylamino]-N-(4-
trifluoromethylphenyl)heptanecarboxamide], the histamine

Fig. 1. Correlations of Ki values for the H4 receptor across laboratories.
Values for the human recombinant H4 receptor are shown for some of the
compounds in Table 1 as reported from five laboratories. Ki values are
from competition experiments with [3H]histamine (abscissa, Zhu et al.,
2001) plotted against Ki values from other studies using either [3H]his-
tamine or [3H]pyrilamine. The dashed line shows the linear regression of
values from Zhu et al. (2001) plotted against those from Morse et al.
(2001). Potency values agreed well across the H4 clones when labeled
histamine was used (P , 0.01), but not when labeled pyrilamine was
used. The clones had identical H4 sequences except for one (Oda et al.,
2000), which differed by three amino acids. Values plotted as 10,000 nM
were reported to be inactive at that concentration.
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derivative that suppresses lymphocyte function by a novel
receptor (Khan et al., 1986), is not active at the H4 (Table 1).
Similarly, improgan, a cimetidine congener that induces an-
algesia by a mechanism distinct from known histamine re-
ceptors (Hough et al., 2000), also had low affinity for the H4

site (Table 1).
The newly discovered effects of clozapine on the H4 recep-

tor (Table 1, Fig. 2) add a new chapter to the longstanding
relationship between psychosis, antipsychotic drugs, and
brain histamine (Green et al., 1977; Raucher et al., 1977).
Chlorpromazine, the first neuroleptic, was developed from
the early H1 antagonists, and many neuroleptics have activ-
ity at both H1 and H2 receptors (Hough and Green, 1984).
Activity at the former is thought to contribute to the sedative
profile of these drugs, and H2 antagonists may be beneficial
in treating psychosis (Rosse et al., 1996). The atypical neu-

roleptic clozapine was reported to have moderate activity on
the rat brain H3 receptor (Rodrigues et al., 1995), an effect
confirmed on the rat (Kathmann et al., 1994) but not on the
human receptor (Table 1). Although the Ki value for cloza-
pine on the H4 receptor is relatively high (500–700 nM, Table
1), plasma and brain concentrations associated with clinical
responses meet or exceed these values (Baldessarini and
Frankenburg, 1991) Even more interesting is that clozapine
seems to be an agonist at H4 receptors (Oda et al., 2000; Liu
et al., 2001). Although we do not yet know the consequences
of H4 receptor stimulation in the hippocampus (Zhu et al.,
2001) or in eosinophils, it seems quite possible that patients
taking clozapine are recipients of both actions. Whether this
receptor participates in either the therapeutic or toxic effects
of this drug is an intriguing question which remains to be
answered; it is tempting to speculate that the eosinophilic

Fig. 2. Relationship between H3 and H4 receptor potency.
Data for some compounds in Table 1 are plotted as H3 Ki
value (abcissa, Table 1) versus H4 Ki value (ordinate). H4
values are derived from competition experiments with
[3H]histamine from the studies identified. When more
than one laboratory studied the same compound, a single
H3 Ki value is plotted against more than one H4 Ki value.
Compound numbers correspond with those in Table 1.
Values plotted as 10,000 nM were reported to be inactive
at that concentration.

TABLE 1
Potencies of histaminergic drugs on four histamine receptors.
Kd or Ki values are given for the compounds shown. Compound numbers are referenced in Fig. 2. Except where noted otherwise, bioassay Kd values are from guinea pig ileuma

and atriumb (Hill et al., 1997).

# Drug H1
a H2

b H3
c H4

d H4
e H4

f

1 Histamine 5.4 8.1 17 9.7
2 Pyrilamine 0.4 5,200 .10,000 .10,000g .10,000
3 Diphenhydramine 1.0 .10,000 .10,000 .10,000
4 Cyproheptadine 3.1h 37i .10,000 .10,000
5 Cimetidine .10,000 800 .10,000 .10,000 .10,000
6 Ranitidine .10,000 200 .10,000 .10,000
7 Dimaprit .10,000j 1,100k 825 377 677 380
8 Impromidine 3,400 63k 67 12.3
9 Burimamide .10,000 7,800 84 180 160 100

10 Imetitl 0.3 2.7 6 3.1
11 Immepipl 0.4 9 23
12 (R)-a-Methylhistaminel 0.7 146 348 140
13 N-methyl-histaminel 0.5 23 149 63
14 Thioperamide .10,000 .10,000 25m 27 519 210
15 Clobenpropit .10,000 .10,000 0.6 12.8 7.2
16 Clozapine 2.8n 100o .10,000p 510 693
17 4-(3-Piperidin-1-yl-propoxy)-benzonitrile 25 .10,000
18 HTMT 1229
19 Improganq .10,000 .10,000 33,000 6,000

a Guinea pig ileum (Hill et al., 1997).
b Guinea pig atrium (Hill et al., 1997).
c Ki values for competition against [3H]N-methylhistamine binding on the human recombinant H3 receptor (Liu et al., 2001).
d Ki values for competition against [3H]histamine binding on the human recombinant H4 receptor (Liu et al., 2001).
e Ki values for competition against [3H]histamine binding on the human recombinant H4 receptor (Zhu et al., 2001).
f Ki values for competition against [3H]histamine binding on the human recombinant H4 receptor (Morse et al., 2001).
g T. Lovenberg, unpublished observations.
h Radioligand binding (Tran et al., 1978).
i Adenylate cyclase (Green et al., 1977).
j Bioassay (Ganellin, 1982).
k Bioassay EC50 values (Hill et al., 1997).
l Highly selective H3 agonists (Hill et al., 1997).
m Thioperamide has up to a 10-fold higher potency on the rat H3 receptor (Lovenberg et al., 2000).
n Radioligand binding (Baldessarini and Frankenburg, 1991).
o L. Hough and J. P. Green, unpublished observations.
p Clozapine has activity on the rat (Kathmann et al., 1994; Rodrigues et al., 1995), but not the human H3 receptor (Lovenberg et al., 1999).
q See Li et al. (1996) for improgan Kd values.
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agranulocytosis, which often limits clozapine effectiveness,
might be related to the H4 receptor (Oda et al., 2000).

Much additional work on the H4 system is needed. H4

receptor subtypes may be found based on similarities to H3.
The activities of the histamine metabolites need to be as-
sessed on this receptor, because several of these metabolites
have biological activity (Phillis et al., 1968; Thomas and
Prell, 1995), and histamine metabolism is highly regulated in
some cases (Haddock et al., 1990). Finally, H4-selective drugs
will need to be developed that can further define the biolog-
ical roles for this receptor and lead to unique pharmacother-
apies. All indications suggest that many more receptors for
histamine remain to be discovered.
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