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Abstract. The design of cryptographic hash functions is a very complex
and failure-prone process. For this reason, this paper puts forward a
completely modular and fault-tolerant approach to the construction of a
full-fledged hash function from an underlying simpler hash function H
and a further primitive F' (such as a block cipher), with the property
that collision resistance of the construction only relies on H, whereas
indifferentiability from a random oracle follows from F' being ideal. In
particular, the failure of one of the two components must not affect the
security property implied by the other component.

The Miz-Compress-Miz (MCM) approach by Ristenpart and Shrimpton
(ASTACRYPT 2007) envelops the hash function H between two injective
mixing steps, and can be interpreted as a first attempt at such a design.
However, the proposed instantiation of the mixing steps, based on block
ciphers, makes the resulting hash function impractical: First, it cannot
be evaluated online, and second, it produces larger hash values than H,
while only inheriting the collision-resistance guarantees for the shorter
output. Additionally, it relies on a trapdoor one-way permutation, which
seriously compromises the use of the resulting hash function for random
oracle instantiation in certain scenarios.

This paper presents the first efficient modular hash function with online
evaluation and short output length. The core of our approach are novel
block-cipher based designs for the mixing steps of the MCM approach
which rely on significantly weaker assumptions: The first mixing step is
realized without any computational assumptions (besides the underlying
cipher being ideal), whereas the second mixing step only requires a one-
way permutation without a trapdoor, which we prove to be the minimal
assumption for the construction of injective random oracles.

1 Introduction

MuULTI-PROPERTY HASH FUNCTIONS. Cryptographic hash functions play a cen-
tral role in efficient schemes for several cryptographic tasks, such as message au-
thentication, public-key encryption, digital signatures, key derivation, and many



others. Yet the huge variety of contexts in which hash functions are deployed
makes the security requirements on them very diverse: While some schemes only
assume relatively simple properties such as one-wayness or different forms of col-
lision resistance, other schemes, including practical ones such as OAEP [4,15]
and PSS [5], are only proven secure under the assumption that the underlying
hash function is a random oracle [3], i.e., a truly random function which can be
evaluated by the adversary. On the one hand, while a number of provably-secure
collision-resistant hash functions, such as VSH [9] or SWIFFT [18], have been
designed, they are not appropriate candidates for random oracle instantiation.
On the other hand, well-known theoretical limitations [8,19] only permit con-
structions of hash functions for random oracle instantiation from idealized prim-
itives [10], such as a fized-input-length random oracle or an ideal cipher,® but
(as first pointed out in [2]) these constructions may lose any security guarantees
as soon as the adversary gets to exploit non-ideal properties of the underlying
primitive.*

While one could in principle always employ a suitable hash function tai-
lored at the individual security property needed by one particular cryptographic
scheme at hand, common practices such as code re-use and the development of
standards call for the design of a single hash function satisfying as many prop-
erties as possible. This point of view has also been adopted by NIST’s on-going
SHA-3 competition [17], and motivated a series of works [2, 1] shifting the design
problem of multi-property hash functions to the task of constructing good multi-
property compression functions. A further line of research has been devoted to
robust multi-property combiners [13], which merge two hash functions such that
the resulting function satisfies each of the properties possessed by at least one of
the two starting functions. While these works simplify the design task, building
multi-property hash functions from single-property primitives remains far from
being simple, and is the main topic of this paper.

STATEMENT OF THE MAIN PROBLEM. This paper presents a modular design
for hash functions that are collision resistant in the standard model and can,
simultaneously, be used for random oracle instantiation in the ideal model. We
consider a setting where both a hash function H as well as some other (po-
tentially ideal) primitive F' (such as a block cipher) are given (a similar setup
was previously considered by Ristenpart and Shrimpton [23]): We aim at de-
vising a construction C**¥ which is collision resistant as long as H is collision
resistant,? and which behaves as a random oracle (with respect to the notion of
indifferentiability [19,10]) whenever F is ideal. For this approach to be practi-
cally appealing, the construction must preserve the good properties of H: For

3 An ideal cipher E : {0,1}" x {0,1}" — {0,1}" associates an (invertible) random
permutation E(k,-) with each key k.

4 Of course, a real block cipher cannot be ideal. (Likewise, a hash function cannot be
a random oracle either.) Yet modeling it as ideal captures the adversary’s inability
of exploiting any structure, and a security proof in this model implies in particular
the inexistence of any generic attacks treating the block cipher as a black box.

5 In particular, we require the existence of a standard-model reduction.



instance, it must allow for online processing of data (which is crucial for large
inputs or in streaming applications) whenever H can be evaluated online.® Also,
the construction should not increase the size of the hashes of H.

In particular, we advocate a safe and modular design paradigm where each
of both properties should ideally rely only on one of both component primitives,
whereas the other primitive may be arbitrarily insecure, except for (possibly)
satisfying some minimal structural requirement (that can be ensured by design),
such as F' being a permutation or H being sufficiently regular. This differs from
the point of view taken in [23], where H is guaranteed to be collision resistant
and is extended by means of an ideal primitive F' into a random oracle, while
preserving the collision-resistance guarantees of H: We believe that practical
considerations, especially efficiency, may in fact motivate the use of hash func-
tions with no provable security guarantees. Thus, it is desirable that even the
ability of finding collisions for H does not impact the indifferentiability of the
construction, as long as F' is still ideal. Either way, both points of view are re-
lated: Any solution satisfying our stronger requirements (including the one we
propose in this paper) also fits within the framework of [23], while the solution
proposed in [23] also satisfies stronger requirements, as discussed below.

We also remark that using the multi-property combiner of [14] one can com-
bine a random oracle (built from F') and H into a hash function that provably
observes both properties. However, as combiners inherently do not exploit the
knowledge of which one of both functions has a certain property, the resulting
construction is rather inefficient, e.g., it doubles the output length.

THE MCM APPROACH. Given a hash function H as above, the so-called miz-
compress-mixz (MCM) approach, introduced by Ristenpart and Shrimpton [23],
considers the construction

MCMMAMH () . — My (H (M, (2))),

where M; and Ms are arbitrary-input-length injective maps (the so-called mizing
stages) with stretch 7 and 7o, respectively, i.e., such that M; outputs a string
of length |z| + 7; on input x € {0,1}*. The injectivity of the mixing stages
ensures that MCM preserves the collision resistance of H in the standard model.
Additionally, it was shown in [23] that MCM is indifferentiable from a random
oracle if M; and My are random injective oracles (i.e., M; returns a random
(|z| + 7;)-bit string for each input x € {0,1}* that differs from all previously
returned values with the same length) and H is collision resistant and sufficiently
regular. Dodis et al. [12] subsequently interpreted this result as the combination
of two facts: (i) The mapping = +— H (M (x)) is preimage aware” under the same

5 Most hash functions rely on some iterated (and thus inherently online) design, such
as Merkle-Damgard [11, 21], or sponges [6].

" Informally, a construction C¥ based on an ideal primitive F is preimage aware if
there exists an algorithm — called the preimage extractor — which given the input-
output history of F and an output y, either aborts or returns x such that CF(x) =1,
and after such query no adversary can find an input 2’ such that CE(x') =y (and
2’ # x in case the extraction query did not abort).



assumptions, and (ii) Post-processing the output of a preimage-aware function
with a (possibly injective) random oracle yields a full-fledged random oracle. A
concrete instantiation of injective random oracles — called the TE-construction
— relying on an ideal cipher and a trapdoor one-way permutation has also been
proposed in [23]: To date, this was the only known such construction.

Interestingly, we observe that the MCM approach provides a modular design
approach for hash functions as advocated above, since the indifferentiability
result can be made independent of the collision resistance of H. (This was unno-
ticed in [23], and is briefly discussed in the full version of this paper.) However,
its deployment is subject to a number of practical and theoretical drawbacks,
whose solution was stated as an open problem in [23]: First, every construction
of injective random oracles (and in particular the TE-construction) cannot be
online, as, roughly speaking, each output bit needs to be influenced by all of
the input in order to exhibit random behavior. Additionally, the fact that the
TE-construction is length-increasing has a serious impact on the resulting hash
size: In particular, the stretch 7; typically equals the bit length of a sufficiently
secure RSA modulus, i.e., 7; > 2048 bits for reasonable security. Finally, the use
of a trapdoor one-way permutation within the TE-construction is rather unde-
sirable: In contrast to (non trapdoor) one-way permutations, the assumption is
very strong, e.g., it implies public-key encryption in the random oracle model [4].
Also, as pointed out in [23], the compositional guarantees of protocols using the
MCM approach (with the TE-construction) to instantiate a random oracle are
affected, as properties such as deniability may be lost (cf. e.g. the works by
Pass [22] and by Canetti et al. [7]).

These observations give rise to a number of challenging open questions. Can
we instantiate the first mixing stage of MCM with a weaker primitive which
allows for online processing? Can we instantiate the second mixing stage (where
online processing is not an issue) as an injective RO with limited stretch (possibly
even with no stretch at all)? And finally, can we weaken the underlying assump-
tion, eliminating the need of the trapdoor, or possibly even entirely removing
the underlying assumption?

CONTRIBUTIONS AND ROADMAP OF THIS PAPER. In this paper, we present
the first efficient modular construction of a hash function in the sense described
above. Our solution relies on the MCM approach, and in particular we address
and solve all of the aforementioned open questions, and hence make a substantial
step towards making the MCM approach practical.

First Mixing Stage. In Section 3, we present a novel mode of operation for a
block cipher E : {0,1}?" x {0,1}" — {0,1}" implementing an arbitrary-input-
length injective map — called iterated miz (IM) — that permits online processing
of its inputs, making only one call to E per n-bit message block, and has only
stretch n/2. Our first main theorem shows that the construction IMCZ# (M) :=
H(IME(M)) applying H to the output of IM is preimage aware if F is an ideal
cipher and, additionally, the hash function H satisfies a rather weak regularity
requirement (which is somewhat incomparable to the one used in [23], albeit
equally natural): Namely, given a random n-bit string m and some arbitrary



string S, the value H(S||m) has (min-)entropy not much lower than n (if n is
smaller than H’s hash size), or not much lower than the hash size otherwise. In
fact, even completely insecure hash functions can have this property, and it is
also natural to assume that it is satisfied by any reasonably built hash function.
We also present a variant of the IM-construction which requires a block cipher
with single-block key length n at the price of making two block-cipher calls per
message block.

We stress that (contrary to the TE-construction) our result does not rely
on any computational assumptions: In particular, the IM-construction relies on
invertible primitives, and is itself efficiently invertible. Thus, IM does not imple-
ment a random injective oracle.

Second Mizing Stage. With the goal of making the MCM approach preserve the
hash size of the underlying hash function in mind, the second part of this paper
(Section 4) addresses the question of building length-preserving injective random
oracles. (We call this a (non-invertible) random permutation oracle (RPO).) We
show that for any three permutations E, E’, 7 from n bits to n bits, the permu-
tation

NIRPEE'™ (3) := E'(n(E(x)))

is indifferentiable from a RPO if both E and E’ are (fixed-key) ideal ciphers,
and 7 is a one-way permutation, without a trapdoor.

In practice, E, E' are instantiated by a block cipher with two distinct fixed
keys. This limits us to n being a valid block size (e.g. n = 128 bits), which
can be smaller than the usual hash size (e.g. h = 256). This motivates the
question of extending the input/output size of random permutation oracles: In
Section 4.2, we present constructions (which are reminiscent of the Shrimpton-
Stam compression function [25]) for extending every n to n bits RPO into a v-n
bits to v - n bits RPO for any fixed v > 1.

In the full version we further show that in order to construct injective ROs
the assumption of a one-way permutation cannot be weakened to a one-way
function (at least under black-box security reductions).

Putting Pieces Together. Finally, instantiating MCM with IM and NIRP (or its
extension through our extender) as its first and second mixing stage, respectively,
leads to the first construction of a hash function with the following properties:

(i) Its collision resistance can be reduced in the standard model to the collision
resistance of the underlying hash function.

(i) It is indifferentiable from a random oracle in the ideal cipher model (with
a one-way permutation), as long as the underlying hash function is suffi-
ciently regular.

(iii) It can be evaluated online as long as the underlying hash function can be
evaluated in an online fashion.

(iv) It has hash size equal to the one of the underlying hash function.

(v) Tt can be used to instantiate a random oracle in all computationally secure
schemes in the random oracle model, with no composability limitations.



2 Preliminaries

NOTATIONAL PRELIMINARIES. Throughout this paper, {0,1}" denotes the set
of strings s of length |s| = n, whereas ({0,1}")* and ({0,1}")" are the sets of
strings consisting of n-bit blocks with and without the empty string, respectively.
The notation s||s’ stands for the concatenation of the strings s and s’. Also, we
use INJ(m,n) to denote the set of injective functions f : {0,1}" — {0,1}" (in
particular, INJ(n, n) is the set of permutations from n bits to n bits). Further, it is
convenient to define BC(k, n) as the set of block ciphers, i.e., of keyed functions E :
{0,1}® x {0,1}™ — {0, 1}"™ such that each key k € {0,1}" defines a permutation
Ex(-) :== E(k,-) € INJ(n,n) (and denote as E~1(k,-) the corresponding inverse).

Algorithms are in general randomized, and throughout this paper we fix a
RAM model of computation for these algorithms. We use the notation A®(r)
to denote the (oracle) algorithm A() which runs on input r with access to the
oracle O. In particular, an algorithm A¢) is said to have running time t (also
denoted as time(A) = ¢) if the sum of its description length and the worst-case
number of steps it takes (counting oracle queries as single steps), taken over
all randomness values, all inputs and all compatible oracles, is at most ¢. If
the algorithm takes inputs of arbitrary length, then time(.A, ¢) refines the above
notion to only take the maximum over inputs of length at most £.

Finally, the shorthand = & § stands for the action of drawing a fresh random

element x uniformly from the set S, whereas z & A9 (r) denotes the process of
sampling x by letting A interact with O on input r (and probabilities are taken
over the random coins of A and O).

ONE-WAY FUNCTIONS AND PERMUTATIONS. We define the one-way advantage
of an adversary A against a function f: {0,1}" — {0,1}" as

Adv(A) = Ple & {0,1}", o' & A(f(2)) : f(a) = F(2')].

For the special case of a permutation 7 : {0,1}" — {0,1}", it is convenient to

use the shorthand Advy"P(A) = P[x & {0,1}", 2’ & A(n(z)) : @ = 2'] for the
one-way permutation advantage.

IDEALIZED PRIMITIVES. We consider a number of (more or less) standard ide-
alized primitives throughout this paper, which are always denoted by bold-face
letters. For a set X, a random oracle (RO) R : X — {0,1}" is a system associ-
ating a random n-bit string R(z) with each input x. If X = {0,1}", then R is
called a fized-input-length RO (FIL-RO), whereas it is a variable-input-length RO
(VIL-RO) if X = {0,1}*. An ideal cipher (IC) E : {0,1}" x {0,1}" — {0,1}"
is a block cipher E chosen uniformly from the set BC(k,n), and allows both
forward queries E(k,z) as well as backward queries E=(k,y). If k = 0, then
we omit the first input and we call this a fized-key ideal cipher. Note that for
an IC E and distinct fixed key values ko, k1, ..., E(ko,-),E(k1,-),... are inde-
pendent fixed-key ICs. In contrast, a (fized-input-length) random injective oracle
(FIL-RIO) I : {0,1}™ — {0,1}"™ implements a uniformly chosen function from



INJ(m,n). In the special case m = n we call this a random permutation oracle
(RPO) P : {0,1}" — {0,1}".

We stress that the substantial difference between a fixed-key IC and a RPO
is that the former allows for inversion queries, whereas the latter does not (and
is in particular hard to invert).

INDIFFERENTIABILITY. The notion of indifferentiability was introduced by Mau-
rer et al. [19] to generalize indistinguishability to constructions CF : X — {0,1}"
using a public (idealized) primitive F (e.g., an IC, a FIL-RO, or a combination
of these), i.e., that can be accessed by the adversary. Roughly speaking, C¥ is
indifferentiable from an ideal primitive F’ if there exists a simulator SF access-
ing F/ such that (CF,F) and (F/,SF') are indistinguishable. In particular, we
will be concerned with the cases where F’ is either a RO or a RIO/RPO, and
we define the RO-indifferentiability advantage of the distinguisher D against the
construction CF and simulator S as the quantity

AdvER(D) = ‘P D" = 1] - p[DRS" = 1]

)

where R : X — {0,1}" is a RO with the same input and output sets as C.
The IRO-indifferentiability advantage Advicnpd ;,i;m is defined analogously by using
a RIO I instead of R. We stress that both quantities are related by a simple
birthday-like argument, i.e., Advicnél:éro(D) < Adviéléi:éo(D) +3(g+gs)?-27,
where ¢ is the number of query D makes to its first oracle, whereas gs is the
overall number of queries § makes when answering D’s queries. Note that indif-
ferentiability ensures composability, i.e., if a cryptographic scheme is secure using
an ideal primitive F/ accessible by the adversary, then it remains secure when
replacing F’ with a construction CF which is indifferentiable from F’ and letting
the adversary access F. See [19,10] for a formal treatment in the information-
theoretic and computational models.

COLLISION-RESISTANCE. Let H : K x {0,1}* — {0,1}" be a (keyed) hash
function with key generator . The collision-finding advantage of an adversary

A is
AQvE(A) = Plk & IC, (M, M) & A(k) : M # M’ A Hy(M) = Hy(M")]
The notion naturally extends to keyless hash functions (which can be consid-

ered in the same spirit proposed in [24]) and to constructions from some ideal
primitive F (where A is additionally given access to F).

THE MCM-CONSTRUCTION. For a hash function H : {0,1}* — {0,1}", and
injective maps M; : {0,1}* — {0,1}*, My € INJ(W',n), where n > h' > h, the
MCM-construction implements a map {0,1}* — {0,1}" as

MCMMHMe (V)= My (H(My (M) ] 07 ).

We also define l\/lCl\/I,'\C/Il’H"\/I2 = MCMM+HiM2 £ a1 k€ K if the hash function
H is keyed (with key space K) . Also, the definition does not allow My, M3 to be



keyed (in contrast to [23]). This is because we will present keyless instantiations
of M1, M5. Note that we assume My to be fixed input length without loss of
generality. The following simple result was shown in [23], and holds both for
keyed as well as for keyless hash functions.

Lemma 1. For all collision-finding adversaries A outputting a pair of mes-
sages each of length at most £, there exists a collision-finding adversary B such
that Advycymy, o, (A) = Advi(B), where time(B) = time(A) + O(2(¢ +
time(My, £))).

PREIMAGE AWARENESS. We briefly review the notion of preimage awareness [12]
for a hash function H¥ : {0,1}* — {0, 1}" built from an idealized primitive F. A
preimage extractor € is a (deterministic) algorithm taking a history « of input-
output pairs of F and a value y € {0,1}" such that £(a,y) returns a value
x € {0,1}* U {L}. We consider a random experiment (called the pra-game)
involving an adversary A which can query both F and £(a,-) (where « is the
current history containing the interaction with F so far, i.e., the adversary cannot
change the first argument), and where a set () contains all £-queries y of A and
an associative array V stores as V[y] € {0,1}*U{L} (for all y € Q) the answer of
the query y to £. The pra-advantage of the adversary A with preimage extractor
&, and primitive F is the quantity

AVl o(A) = P[(M,y) & AFCIF .y e Q AHF(M) = y AV[y] # M.

It turns out that preimage aware functions are good domain extenders for FIL-
ROs: More concretely, with H as above, consider the construction CFR" . M —
R/(HF(M)) for a FIL-RO R’ : {0,1}"* — {0,1}". Then, the following result was
proved in [12].

Lemma 2 (PRA + FIL-RO = VIL-RO [12]). There ezists a simulator S
such that for all distinguishers D making q queries to CF"® of length at most ¢,
q1 queries to F and qo queries to R/, there exists an adversary A with

AdvER o(D) < AdviT o (A).

The simulator S runs in time O(q1 +qz - time(£)) and makes g2 queries, whereas
A runs in time time(D) + O(q - time(H, ¢) + g0 + ¢1) and makes q - e + @1
F-queries and g2 extraction queries, where gy ¢ s the mazimal number of oracle
queries made by H to process an input of length at most £.

3 An On-Line Mixing Stage: The IMC-Construction

3.1 Description

THE IM-CONSTRUCTION. The iterated mix construction (or IM-construction for
short), depicted in Figure 1, relies on a block cipher E : {0,1}*" x {0,1}" —
{0,1}" and an injective mapping PAD : {0,1}* — {0,1}"/? x ({0,1}")* which
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Fig. 1. The IM-construction with block cipher E : {0,1}?™ x {0,1}" — {0,1}".

pads every string so that it consists of one n/2-bit block, followed by as many
n-bit blocks as necessary.® On input M € {0,1}*, it first obtains PAD(M) =
mql|...|me, and computes the output 1] ...|lye iteratively such that y; :=
E(IV|jma,0"?||m;) (where IV is an n-bit fixed initialization value) and y; :=
E(yi—1||mit1,m;) for all i =1,..., ¢, where my4q := 0".

In contrast to the TE-construction of [23], the IM-construction is iterated
and allows for (essentially) online processing, with the minimal restriction that
only the first ¢ — 1 output blocks y1,...,y;,—1 can be computed from the first ¢
message blocks my,...,m;. This one-block-lookahead evaluation strategy only
marginally impacts the efficiency of the construction, and is crucial in order to
ensure the desired security requirements.

INJECTIVITY OF THE IM-CONSTRUCTION. It is not difficult to see that the con-
struction is injective: Given an output y1 || ... |ye (for some £) we can iteratively
efficiently reconstruct the padding my||...[lm, of the input M by computing
m; = E7 (yi—1||miy1,m;) foralli = €,0—1,...,2, with myy1 = 0", and finally
0"/2|jmy := E~Y(IV||mg,y1). Thus, IM cannot be a VIL-RIO, and not even one
way, even though it is surprisingly still strong enough to instantiate the first
mixing step of the MCM approach, as we show below.

THE IMC-CONSTRUCTION. It is convenient to define the combination of the IM-
construction and a hash function H as the iterated miz-compress construction
(or IMC-construction, for short), which, on input a string M € {0,1}*, outputs
IMCEH (M) := H(IMP(M)). If H is keyed, then we similarly define the keyed
function IMCZJ’H(M) := IMC®H5(M). Note that if H can be evaluated online,
then this is the case for the IMC-construction as well.

SHORTER KEY SiZE. The use of a block cipher with key length equal twice the
block length is acceptable in practice.” Still, in oder to ensure compatibility with
a larger number of block ciphers, we propose an alternative construction (called
the DM-IM-construction) which relies on a block cipher E : {0,1}" x {0,1}" —

8 This can be done in the canonical way by appending the bit 1 followed by as many
0 bits as necessary in order to fulfill the length requirement.
9 For instance, AES supports key size 256 bits with block length n = 128 bits.



{0,1}", at the cost of making two calls per processed message block. The un-
derlying idea consists of producing an n-bit key value at each round by using
the Davies-Meyer construction on y;_1 and m;41: More precisely, we compute
y1 = E(E(my,IV) @ IV,0"/2||my) and y; := E(E(miy1,vyi-1) ® yi_1,m;) for
alli =2,...,¢. As above, for a hash function H, we define DM—IMCE"H(M) =
H(DM-IMF (M)). (And analogously for the keyed case.)

3.2 Preimage Awareness

The purpose of this section is to prove that, for an ideal cipher E : {0,1}?" x
{0,1}™ — {0, 1}", the construction IMCEH s preimage aware, provided H sat-
isfies very weak randomness-preserving properties that we discuss first.

HasH FUNCTION BALANCE. The IMC-construction does not exhibit any useful
properties if H can be arbitrary (consider e.g. the case where H is constant). It
is nevertheless reasonable to assume H to satisfy minimal structural properties
which could be (and generally are) ensured by design. In particular, we require
H to preserve some of the randomness of a uniformly chosen input m of a
given length n (where n is e.g. the block length of the cipher used in the IM-
construction), and this should hold even if m is appended to some other fixed
input string M.

Definition 1. An (unkeyed) hash function H : {0,1}* — {0,1}" is (¢, n)-prefix-
balanced if for all messages M € ({0,1}™)" and hash function outputs y €
{0,1}" we have P[m & {0,1}™ : HM||m) = y] < e.

The notion extends naturally to a keyed hash function H : {0,1}" x {0,1}* —
{0,1}": We say that it is (e, n)-prefix balanced if for all keys k the function Hy,
is (e(k),n)-prefix balanced, and ), P(k)-€(k) < €, where P(k) is the probability
that the key generator samples the key k. We remark that the best € one can
hope for is € = 27" as long as n < h holds, whereas ¢ > 2" for n > h. Note that
our notion is somewhat incomparable to the one of [23], where on the one hand
balancedness under variable input lengths is considered (rather than for some
fixed length n, as in our case), but, on the other hand, the property is not required
under prepending of fixed prefixes: Still we find this extension to be natural in
a hashing scenario. It is important to realize that prefix balancedness does not
imply any useful security properties for H: The function H : ({0,1}")" —
{0,1}" such that H(M|m) := m for all n-bit strings m and all M with length
multiple of n is (n,27")-prefix-balanced, despite finding collisions or preimages
in this function being trivial.

MAIN THEOREM. The following theorem is the main result of the first part of
this paper: It provides a concrete characterization of the security of the IMC-
construction in the ideal-cipher model. We stress that the result only relies on
FE being an ideal cipher, and H being sufficiently balanced, but no computa-
tional assumption is made, i.e., the result holds with respect to computationally
unbounded adversaries.



Theorem 1 (Preimage Awareness of IMC). Let E : {0,1}*" x {0,1}" —
{0,1}™ be an ideal cipher and let H : {0,1}* — {0,1}" be an (e,n)-prefiz-
balanced hash function. There exists a preimage extractor € (given in the proof)
such that, for all adversaries A issuing at most q queries to E and qg queries to
&, we have

Adviite g (A) <3 q(g+1) 270 +¢-272 +q(g + 2¢) - 5.

Furthermore, € answers an extraction query in time O(|a| - log |a]).

The result extends naturally to a keyed hash function by just averaging the
bound over all choices of the key. The security of IMC is bounded by (roughly)
min{2"/2,\/e}, and is not worse than the one in the TE-construction (which
additionally relies on the security of the underlying trapdoor one-way permuta-
tion). Note that Theorem 1 is concerned with the entire IMC-construction: An
interesting (and seemingly challenging) open question consists of distilling the
(minimal) properties needed by IM to yield preimage awareness for IMC.

The remainder of this section is devoted to the proof outline of Theorem 1.
Technical details are postponed to the full version, as well as a discussion on
how to obtain similar bounds for DM-IMC.

INTERACTION GRAPHS. An interaction with the ideal cipher E can be described
in terms of the history «, consisting of triples (k,z,y), where k € {0,1}?", and
x,y € {0,1}". Both a forward query E(k,z) with output y and a backward
query E~Y(k,y) with output z result in a triple (k,z,y) being added to «.!?
However, it is far more convenient to describe « in terms of a directed (edge
labeled) graph G = G(a) = (V, E) with vertex set V' := {0,1}" and edge set
E CV x V such that (y,y’) € E with labels label(y,y’) = m and next(y,y’) =
m' if (i) (y|m’,m,y’) € a with y # IV or (ii) (y||m’,0"?||m,y') € a if y =
IV. A (directed) path IV = yo — y1 — -+ — y, in G is called walid if for
all i = 1,...,£ — 1 we have label(y;,yi+1) = next(y;—1,y:). It is additionally
called complete if next(ye—1,y¢) = 0™. The value of a complete valid path is
defined as H(y1]|...||ye), and its preimage is the string M which is padded to

label(yo, y1)|| - - - [[label(ye—1, ye)-

THE PREIMAGE EXTRACTOR €. On input a history « and a (potential) output
z € {0, 1}" of IMC, the preimage extractor & first computes the subgraph G’ of
G(a) induced by the vertices which are reachable through a valid path. If G’ is
not a directed tree, then £ aborts and outputs L. Otherwise, if G’ contains one
single valid complete path with value z and preimage M, it outputs M. In any
other case, it outputs L.

It is not hard to see that £ can be implemented with running time O(|«] -
log|al) (i-e., where |a| approximately equals the number of edges in the graph

10 The actual history used in the definition of preimage awareness indeed contains more
information, such as whether the triple is added by a forward or by a backward query,
but this is irrelevant in the following.



G(a)) due to the fact that £ aborts if G’ is not a tree: Otherwise, the number
of possible valid paths may be very high, even exponential.!!

PRrROOF INTUITION. Assume without loss of generality that the adversary A
never repeats a query twice!'? and that whenever it terminates in the pra-game
outputting a pair (M, z), it has made all queries necessary to evaluate the IMC-
construction on input M (with output z). In other words, the interaction graph
G(a) of the final history « contains a valid complete path with preimage M and
value z. But because the query z was previously issued to &, if A wins the game,
one of the following has to occur: (i) The subgraph of the valid paths is not a
directed tree, (ii) No valid path with value z existed when the E-query z was
issued, but such a path was created afterwards, or (iii) There exist at least two
valid paths with value z. We show that these events are unlikely.

A key step is proving that, with very high probability, valid paths are con-
structed only by means of forward queries: A construction of a valid path by
backward queries may be successful either because we can “connect” the path
with an already existing one (built by forward queries), or because we construct
the entire path backwards. However, both cases turn out to be unlikely: In the
former case, a fresh backward query outputs a random m (under the permutation
property), and this can only be the next-label for an already existing edge with
low probability. (This motivates the one-block-lookahead strategy in IM.) In the
latter case, it is very unlikely to have all of the first n/2 bits returned by the
last evaluation query being equal to 0. (This motivates the padding in the first
block.) However, if a path is generated only by forward queries, we can ensure
that the value of a valid path is always sufficiently random due to the prefix-
balancedness of H. We refer the reader to the full version for a formalization of
this argument.

This highlights a very intriguing property of the IM-construction: Although
it can be efficiently inverted on any wvalid output, it is very unlikely that we can
come up with such a valid output without first evaluating the construction. (In
particular, this prevents that even a known collision for H will lead to a valid
collision for the IMC-construction.)

4 A Length-Preserving Mixing Stage: Random
Permutation Oracles

Post-processing the output of the IMC-construction with a random injective
oracle yields a full-fledged random oracle (by Theorem 1 and Lemma 2), whose
collision resistance can be reduced to the one of the underlying function H in the

' One may argue that we are taking a rather conservative approach: Even if the graph
were not a tree, it would most likely have a limited number of valid paths. Still, this
considerably simplifies the security analysis with no noticeable loss in the obtained
bounds.

12 Tn particular, if A asks a forward query E(k, z) which is answered by y, the matching
backward query E~!(k,y) is never issued. (And vice versa.)



standard model by Lemma 1. The use of the TE-construction [23] for this task is
subject to two main drawbacks: It requires a trapdoor one-way permutation and
also enlarges the output of the compressing stage. (The lack of online evaluation
capabilities is not a restriction, as we have to process only inputs of fized length
equal the output length of the underlying hash function.) In this section, we
solve both issues. We present a block-cipher based construction of a fixed input-
length length-preserving RIO, i.e., a (non-invertible) random permutation oracle
(RPO), that only relies on a one-way permutation without a trapdoor. In the
full version, we show that this assumption is somewhat minimal, as RIOs/RPOs
cannot be built from an ideal primitive and a one-way function.

Additionally, in order to reduce the dependence between the underlying
block- and hash sizes, we present domain/range extenders for RPOs.

4.1 Making Block-Ciphers Non-Invertible: The NIRP-Construction

DESCRIPTION. The NIRP-construction combines a permutation 7 : {0,1}" —
{0,1}" and two (fixed-key) ciphers Ey, F5 : {0,1}" — {0,1}" in a “sandwich-
like” manner. More precisely, for any input m € {0,1}"™ the NIRP-constructions
is defined such that NIRPF*#27 () .= Ey(n(E)(m))). (Also cf. Figure 2.) Ob-
viously, NIRPZ1 P2 i o permutation.

SECURITY OF NIRP. We show that the NIRP-construction is indifferentiable
from a (non-invertible) random permutation oracle if instantiated with two ideal
single-key!® block ciphers Eq, Eo and a one-way permutation 7 (without a trap-
door). The result is summarized by the following theorem.

Theorem 2. Let E;,E5 : {0,1}"™ — {0,1}" be two independent fized-key ideal
ciphers and let w: {0,1}" — {0,1}" be a permutation. There exists a simulator
S (given in the proof) such that for all distinguisher D issuing at most q queries
to the NIRP-construction, and at most qqu, qp, qc,qqa queries to Eq, Efl, E27E51,
respectively, there exists an owp-adversary A with

AdviietEimr (D) < 2-:(20+qa) 27" + qa- AdvP(A).

The simulator S runs in time O(qa + @ + ¢c + ¢a + (2¢a + gb + 2qq) - time(7))
and makes qq + 2qp + 2q. queries to its oracle, whereas the adversary A runs in
time time(A) < time(D) + time(S).

OUTLINE OF THE PROOF. The first part of the indifferentiability proof de-
scribes the simulator ST that mimics the ideal ciphers Eq, Eo (with their inverses
E; ' E;') given access to a RPO P : {0,1}" — {0,1}". Moreover we use the
notation S¥ = (SEI,SE27SE1—17SE2—1) to make the four sub-oracles of the sim-
ulator (answering the different query types) explicit. The second part (which is
postponed to the full version) upper bounds D’s advantage Advi\ﬁ?{;ingg,ﬂ-,S (D)
in distinguishing the ideal setting (with a simulator) and the real setting.

13 Recall that in the ideal cipher model, it is easy to derive two such ciphers from a
single ideal cipher E : {0,1}"x{0,1}" — {0,1}" as E1 := E(k1,-) and E; := E(ks, -)
for two arbitrary distinct keys k1 # k2.



THE SIMULATOR. The global state of the simulator ST consists of a table 7°
(which is initially empty) of tuples of the form (a,b, ¢, d) consistent with evalu-
ations of the NIRP-construction as in Figure 2, that is, where a, b are simulated
input-output values of the first cipher Eq, i.e., E1(a) = b (which can be generated
both by forward queries to E; and by backward queries to Efl) and analogously
¢, d play the same role for the second block cipher Es. Furthermore, the invariant
¢ = 7(b) and P(a) = d holds. It is also convenient to define A C {0,1}" as the
set of values a € {0,1}"™ such that (a,b,c,d) € T for some b, ¢,d. Analogously,
we define the sets B,C, and D.

To achieve perfect simulation given oracle access to P, upon a new query to
one of its four sub-oracles the simulator defines a new tuple (a,b, ¢, d) in 7, with
the input of the query placed at the appropriate position (as long as no such
tuple already exists, in which case the corresponding output value is returned),
and such that all remaining components are set to independent random values
conditioned on these individual values appearing in no other tuple, on d = P(a),
and on ¢ = 7(b). This is easily achievable with access to 7=! and P~!: For

example, on input a (to Sg, ), we choose a random b & {0,1}"\ B (i.e., different
from all b’ appearing in some other tuple), and set ¢ := 7(b) and d := P(a). (This
is done analogously on input b.) On the other hand, on input ¢, we compute
b:=m"1(c), a random a & {0,1}™\ A (i.e., different from all previous a’), and
then set d := P(a). Finally, on input d, we set a := P~1(d) and subsequently
generate a random b — {0,1}™ \ B and set ¢ := m(b).

However, in our setting we have to dispense with 7—! and P~!. In particular,
this means that in the latter two cases the simulator cannot set the values b and
a, respectively, but rather sets these components to a dummy value 1, and
completes these tuples with the actual values if they eventually appear as inputs
of Eq or Efl queries. Also note that the simulator must not generate random
values a and b that collide with a dummy value in order to ensure the permutation
property. This can be efficiently avoided by simply testing that P(a) # d (and
w(b) # ¢) for all d’s in tuples of the form (L,b,¢,d) (all ¢’s in tuples of the
form (a,Ll,c,d)), and whenever the test fails, we replace the dummy value by
the actual value, and draw a new a (or b). There are only two remaining cases
where the simulator fails to answer queries (and aborts):

(i) A query a is made and a tuple (a, L, ¢, d) exists: In this case the simulator
must return 7~ 1(c), but this requires inverting m, which is generally not
feasible. (Call this event Abort;.)

(ii) A query b is made and a tuple (L, b, ¢, d) exists: In this case, the simulator
must return P~1(d), but cannot invert P. (Call this event Aborts.)

By the above discussion, perfect simulation is achieved until one of these events
occurs: A game-based argument yields Adv’an‘é';E)l,EQ,,r,S(D) < P[Abort;] +
P[Aborts]. In the full version we give a complete pseudo-code description of the
simulator and show that the probabilities of both events are very small.

NIRP = MCM wiITH INVERTIBLE MIXING STEPS? Our NIRP-construction
somehow reflects the MCM design with a permutation, instead of a hash func-



Fig. 2. Left: The NIRP-construction for underlying fixed-key block ciphers E1, E2, with
(a,b, ¢, d) corresponding to the notation used in the simulator of Theorem 2. Right: The
ESS-construction for underlying permutations P, ..., Ps : {0,1}" — {0,1}".

tion, and this may suggest that the MCM approach works for invertible mixing
steps as well. Yet, we remark that the proof cannot be adapted to the case where
the first mixing stage processes inputs of variable input-length: The problem is
that in the simulation of queries to Ey and E; ' we need to choose a pair a, P(a)
and b, m(b) respectively, and at a later time possibly learn the missing dummy
values b and ¢ when they are queried. But in order for this to succeed, we need
the length of a and b to be compatible with the one of such later query, which
is of course impossible in the variable-input-length case.

4.2 Extension of Random Permutation Oracles

The use of the NIRP-construction to post-process the output of a hash function
H requires a block cipher with block size at least as large as its hash size, i.e.,
typically at least 160 bits. While block ciphers with large block size exist,!*
ciphers such as AES support only rather small block lengths, such as 128 bits.
This motivates the following natural question: Given a RPO P : {0,1}" —
{0,1}", can we devise a construction CF : {0,1}™ — {0,1}™ for m > n which
implements a permutation and is indifferentiable from a RPO? Note that this
calls for simultaneous domain and range extension of P, while we additionally
want to ensure injectivity of the resulting construction. The problem is similar in
spirit to the one considered in the private-key setting by Halevi and Rogaway [16],
even though the peculiarities of the public setting make constructions far more
challenging.'®

THE ESS-CONSTRUCTION. We present a construction — called ESS — for the case
m = 2n that relies on six permutations P, ..., Ps : {0,1}"™ — {0,1}" and is remi-
niscent of the compression function SS¥*¥2:%% : {0, 112" — {0,1}" by Shrimpton
and Stam [25] such that §gF PP (mq|ma) := P3(P1(mq1) @ Pa(ma)) ® Py(my):
It adds three extra calls (as depicted in Figure 2) to ensure both indifferentia-
bility of the 2n-bit output, as well as invertibility. It is indeed not hard to verify

4 Interestingly, such block ciphers are exactly the ones used within hash functions,
e.g., to instantiate the Davies-Mayer construction.

15 In particular, each such extender implies the construction of a compression function
{0,1}™ — {0,1}* for all £ < m from length-preserving random oracles which is
indifferentiable from a random oracle from m bits to ¢ bits, a problem which has
recently received much interest (cf. e.g. [20,25]). On top of this, injectivity is an
extra design challenge.



that ESS implements a permutation: Given output yil|/ye, the first input-half
my is retrieved by computing z := Py (ya), my := 2 @ P5 *(y1), and finally we
compute my := Py ' (Py(my) ® Py '(Py(m1) @ Py '(2))). (Of course, the inverses
Pfl are not efficiently computable in general, but they are well-defined.)

INDIFFERENTIABILITY OF ESS. The following theorem shows that whenever
the underlying permutations are independent RPOs, the ESS-construction is
indifferentiable from a RPO up to the birthday barrier.

Theorem 3. Let Pq,...,Pg : {0,1}" — {0,1}"™ be independent RPOs. There
exists a simulator S such that for all distinguishers D making at most q queries
to the ESS-construction and to each of the underlying RPOs, we have

AdVEEHY e 5(D) < [¢° - (40 + n+28) + ¢ (3n+13)] - 27"
The simulator S runs in time O(q*) and makes q queries.

ARBITRARY EXTENSION. A generalization of ESS— called MD-ESS — to construct
a RPO {0,1}*" — {0,1}*" for i > 2 using 4 + i independent RPOs from n
bits to n bits and making 4¢ + 1 RPO evaluations in total can be obtained as
follows: Let MD-SS™72%5 . {0, 1} — {0,1}" be the (plain) Merkle-Damgard

iteration (with no strengthening) that on input M = my]||...|m; computes
vj =SSP P (y |lmy) for 5 =1,...,i (with vo being the IV), and outputs
v;. Then, on input M = my||...||m; € {0,1}™% MD-ESS first computes y :=

P,(MD-SS™ 255 (1)) and finally outputs

(Para(y) @mo)|l - [(Pagi-1(y) © mi—1)|| Payi(y)-

To verify that MD-ESS implements a permutation, we remark that its output
uniquely determines y and mq, ..., m;_1, whereas m; is determined by the chain-
ing value v;_; and P, '(y) as in the ESS-construction. Its security is shown in
the full version. There, we also show that Pyy1, ..., Piri—1 (but not Pyy;) can be
replaced by (invertible) single-key (ideal) ciphers. Also, it can easily be modified
to support inputs with lengths n’ > n which are not multiples of n.

5 Conclusions

In this paper, we have shown the first modular and fault-tolerant hash function
construction which achieves both collision resistance in the standard model and
indifferentiability in the ideal model. In particular, this was achieved by building
appropriate mixing steps IM and NIRP that are compatible with the MCM-
construction and preserve the practical features of the inner compressing part,
i.e., the hash function H. By Lemma 1, the construction MCM'M-H.NIRP (where
possibly NIRP is replaced by its extension through one of the constructions
presented in Section 4.2) inherits the collision resistance of H, as IM and NIRP
are injective functions. In the ideal setting, we have shown that the combination
of IM and H is preimage aware as long as H is sufficiently balanced (Theorem 1),



and that NIRP is indifferentiable from a random permutation oracle (Theorem 2).
Thus, by applying Lemma 2, we conclude that MCMM-ELNIRP 5o i differentiable
from a variable-input-length random oracle.

While the IM-construction is very practical, the implementation of the NIRP-
construction, despite its efficiency, is conditioned on the existence of a one-way
permutation with input length equal the one of existing block ciphers. Indeed,
sufficiently-secure candidate one-to-one functions exist for similar input param-
eters (e.g., the discrete logarithm problem in properly chosen elliptic curves of
prime order g = 2™ can in general not be solved better than with running time
roughly O(2"/?), i.e., the security of our constructions), but the fact that the
block cipher expects n-bit inputs makes their use difficult.'® However, we stress
that such data-type conversion problems are common in practical constructions.
For instance, when using an RSA-based trapdoor one-way permutation, the out-
put of the TE-construction [23] must be (injectively) transformed into a string,
and the result may be far from being random (attempting to extract random
bits would destroy the injectivity property). It is our strong belief that these re-
sults should foster further research in designing good candidates for such central
cryptographic primitives working at the bit level.
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