
Vehicle-class Specific Control
of Freeway Traffic

Thomas Schreiter

Delft University of Technology, 2013



This thesis is the result of a project funded by
the Port of Rotterdam Authority (Havenbedrijf Rotterdam),

the Traffic Management Company Rotterdam (De Verkeersonderneming) and
the Netherlands Research School for Transport, Infrastructure and Logistics TRAIL.

Cover illustration: Peter van Dorst



Vehicle-class Specific Control
of Freeway Traffic

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof.ir. K.C.A.M. Luyben,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op maandag 18 maart 2013 om 12.30 uur
door

Thomas SCHREITER

Diplom-Informatiker, Universität Karlsruhe (TH), Duitsland,
geboren te Zwickau, Duitsland.



Dit proefschrift is goedgekeurd door de promotor:
Prof. dr. ir. S.P. Hoogendoorn

Copromotor: Dr. ir. J.W.C. van Lint

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter
Prof. dr. ir. S.P. Hoogendoorn, Technische Universiteit Delft, promotor
Dr. ir. J.W.C. van Lint, Technische Universiteit Delft, copromotor
Prof. dr. ir. B. De Schutter, Technische Universiteit Delft
Prof. dr. R.L. Bertini, Portland State University
Prof. Dr.-Ing. M. Papageorgiou, Technical University of Crete
Prof. dr. P.B. Mirchandani, Arizona State University
Prof. Dr.-Ing. K. Bogenberger, Universität der Bundeswehr München
Prof. dr. ir. B. van Arem, Technische Universiteit Delft, reservelid

TRAIL Thesis Series no. T2013/4, the Netherlands Research School TRAIL

TRAIL
P.O. Box 5017
2600 GA Delft
The Netherlands
Phone: +31 (0) 15 278 6046
E-mail: info@rsTRAIL.nl

ISBN: 978-90-5584-163-9

Copyright © 2013 by Thomas Schreiter

All rights reserved. No part of the material protected by this copyright notice may
be reproduced or utilized in any form or by any means, electronic or mechanical, in-
cluding photocopying, recording or by any information storage and retrieval system,
without written permission from the author.

Printed in the Netherlands



Preface

After I had finished my diploma thesis in computer science in 2008, I had absolutely no
intent to stay in academia and spend days sitting in front of a computer to solve abstract
problems. My advisors then pushed me to turn the thesis into a paper and submit it
to a conference. After a few months of thinking and a visit to an interesting far-away
place to meet researchers from around the world, I found that academia looked much
brighter. I then searched for interesting groups outside of Germany that could educate
a computer scientist in transportation, which led me to the Transport and Planning
department in the beautiful city of Delft.

Serge Hoogendoorn and Hans van Lint invited me to an interview to discuss possible
research projects. What was intended as a two-hour talk turned into a six-hour visit,
where I received a warm welcome by the members of the group and had a glimpse into
the social activities between the members. This eventually led me to accept the offer
and move to Delft. I want to thank Serge and Hans for that welcome and for the dis-
cussions and education in Dynamic Traffic Management in the following four years.
You have taught me how to become a scientific researcher in a very interesting field. I
also want to thank Ernst Scheerder from De Verkeersonderneming and Zlatan Muhur-
darevic from the Havenbedrijf Rotterdam for sponsoring and supervising the practical
part of my PhD project. Becoming a PhD student was one of the best decisions I have
made. I have met many interesting people, learned a lot about traffic, been educated
as a researcher and traveled to many places. I have lived in a country that is culturally
similar to Germany, with the differences being that there are canals in the cities but
absolutely no mountains, the people are somehow much more relaxed, the weather is
milder, there is an incredible bike infrastructure, and the best food is a raw fish pickled
in saltwater.

I also want to thank my roommates Tony, Victor, Femke, Chris, Maaike, Nina, Yufei,
Olga, Tamara and Gerdien for the challenging (and nerdy) discussions and the inter-
cultural experience. Furthermore, I enjoyed playing ping-pong after lunch and in the
evenings and getting to know my colleagues from a different side. I believe that this
table supports socializing between the members, which especially helps newcomers in-
tegrate into the group. Another big thanks goes to the secretaries, particularly Priscilla,
who manage the paperwork and magically keep track of the schedule of every person
so that the department and the travels run smoothly. Also a big thank you goes to Pe-
ter, Kees and Edwin, who manage the databases and the hardware, which includes my



vi Vehicle-class Specific Control of Freeway Traffic

bike that you helped fix many times. A general thank you goes to all the Dutch people
who remained patient while I was speaking Dutch. In general, the atmosphere in our
group is exceptionally friendly and supportive. In fact, I did not even bother to make
friends outside of our group, since there are so many fantastic people at the department
whom I spent a lot of time with after work; thank you Pavle, Daniel, Riccardo, Egidio,
Francesco, Gijs, Erik-Sander, Kakpo, Shiomi, Bernat, Nikola, Meng, Olga, Giselle,
Victor, Mo, Adam, Tamara, Yufei and Ramon.

There are a couple of colleagues whom I especially want to thank. Pavle, we had some
interesting and deep discussions about politics and culture. Ramon, we did not just
spend a substantial amount of time in a window-less room equipped with a whiteboard
and a coffee machine, we also had inspiring discussions about life. I am happy that
the two of you accepted to be my paranymphs. Yufei and Femke, we started roughly
at the same time and worked with the same traffic flow model. Naturally, we had
many discussions about modeling and collaborated in many ways. The finale comes
in March, when we will defend our theses in the same week. I am looking forward to
celebrating together, although I am nervous already.

I also want to thank my family for their support and I know that I can alway rely on you
folks, although I probably do not call home as often as I should. Finally, my biggest
thanks goes to my girlfriend Lisa, who supports me unconditionally both in research
and in other aspects of life. Sharing my life with you makes me very happy. I am
looking forward to experiencing our next step in Berkeley.

Thomas Schreiter, February 2013



Contents

Preface v

List of Figures xvi

List of Tables xvii

Notation xix

1 Introduction 1

1.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Scope of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Scientific Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Practical Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Design and Model Choices for the Control Loop 9

2.1 Design Choices for the Control Component . . . . . . . . . . . . . . 10

2.1.1 Requirements of the Control Component . . . . . . . . . . . 10

2.1.2 Control Methods . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.3 Conclusions of the Control Component . . . . . . . . . . . . 15

2.2 Design Choices for the Prediction Component . . . . . . . . . . . . . 17

2.2.1 Requirements of the Prediction Components . . . . . . . . . 17

2.2.2 Prediction Models . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.3 Conclusion of the Prediction Component . . . . . . . . . . . 25

2.3 Design Choices for the Estimation Component . . . . . . . . . . . . . 27



viii Vehicle-class Specific Control of Freeway Traffic

2.3.1 Requirements of the Estimation Component . . . . . . . . . . 27

2.3.2 Estimation Models . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.3 Conclusion of the Estimation Component . . . . . . . . . . . 30

2.4 DTM Measures Considered in This Thesis . . . . . . . . . . . . . . . 31

2.5 Traffic Sensors Considered in This Thesis . . . . . . . . . . . . . . . 33

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Estimation of Spatiotemporal Traffic Characteristics 37

3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Literature Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.2 Edge Detector . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.3 Line Detector . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.4 Postprocessing . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Extracting Shock Waves from Empirical Data . . . . . . . . . . . . . 48

3.4.1 Extracting Shock Waves Occurring at Stop-and-go Waves . . 49

3.4.2 Extracting Shock Waves Occurring in Free Flow . . . . . . . 50

3.4.3 Extracting Shock Waves Occurring at Fixed Bottlenecks . . . 50

3.4.4 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . 51

3.5 Extracting Shock Wave Speeds from Synthetic Data . . . . . . . . . . 52

3.5.1 Experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5.2 Experiment 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5.3 Experiment 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 Fast Freeway Traffic State Estimation 57

4.1 Background and Approaches of Traffic State Estimation . . . . . . . . 58

4.2 Optimizing the Adaptive Smoothing Method . . . . . . . . . . . . . . 59

4.2.1 Methodology of the Adaptive Smoothing Method . . . . . . . 59



Contents ix

4.2.2 The Adaptive Smoothing Method Solved with the Cross-cor-
relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.3 The Adaptive Smoothing Method Solved with the Fast Fourier
Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2.4 Experimental Setup to Compare the Three Implementations . 67

4.2.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . 68

4.2.6 Conclusion of the Optimization of the Adaptive Smoothing
Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3 Optimizing Traffic State Estimation Based on the Extended Kalman
Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3.1 Methodology of Extended Kalman Filtering . . . . . . . . . . 71

4.3.2 The Localized Extended Kalman Filter . . . . . . . . . . . . 74

4.3.3 Experimental Setup to Compare the Localized with the Global
Extended Kalman Filter . . . . . . . . . . . . . . . . . . . . 79

4.3.4 Results and Discussions . . . . . . . . . . . . . . . . . . . . 80

4.3.5 Application of the Localized Extended Kalman Filter to a Real-
size Network . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3.6 Conclusion of the Optimization Based on the Extended Kal-
man Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.4 Comparison of the Characteristics of the Adaptive Smoothing Method
and Localized Extended Kalman Filtering . . . . . . . . . . . . . . . 83

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5 Multi-class Flow Analysis and Modeling 89

5.1 Modeling Multi-class Traffic with Fastlane . . . . . . . . . . . . . . . 90

5.1.1 Basics of Macroscopic Traffic Flow Modeling . . . . . . . . . 90

5.1.2 Multi-class Macroscopic Traffic Flow Modeling . . . . . . . . 91

5.1.3 Dynamic PCE Value . . . . . . . . . . . . . . . . . . . . . . 93

5.2 Discretization of Fastlane . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2.1 Link Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2.2 Node Model . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3 Performance Indicators of Network Traffic . . . . . . . . . . . . . . . 96

5.3.1 Definition of Total Time Spent and Total Cost . . . . . . . . . 96



x Vehicle-class Specific Control of Freeway Traffic

5.3.2 Factors Contributing to the Total Cost . . . . . . . . . . . . . 96

5.4 Analysis of Class-specific Properties on Network Traffic Flow . . . . 97

5.4.1 Effects of Class-specific Properties on Throughput at an Active
Bottleneck . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.4.2 Effects of the Class-specific Properties on Spillback . . . . . 99

5.4.3 Effects of the Class-specific Properties on the Total Cost in
Free Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6 Multi-Class Traffic Control Concepts 111

6.1 Conceptual Framework of Multi-class Traffic Control . . . . . . . . . 112

6.2 Vehicle-class Specific Lanes . . . . . . . . . . . . . . . . . . . . . . 113

6.2.1 Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.2.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . 114

6.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.3 Multi-class Ramp Metering . . . . . . . . . . . . . . . . . . . . . . . 118

6.3.1 Layout and Implementation . . . . . . . . . . . . . . . . . . 118

6.3.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . 121

6.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.4 Multi-class Route Guidance . . . . . . . . . . . . . . . . . . . . . . 125

6.4.1 Layout and Implementation . . . . . . . . . . . . . . . . . . 125

6.4.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . 126

6.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139



Contents xi

7 Case Study: Multi-class Control of the Dutch Freeway A15 141

7.1 A15 Site Description . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.1.1 Network of the Site . . . . . . . . . . . . . . . . . . . . . . . 142

7.1.2 Recurring and Nonrecurring Traffic Problems on the Site . . . 143

7.1.3 Data Sources for Estimation and Calibration . . . . . . . . . . 143

7.1.4 Multi-class DTM Measures Used in the Case Study . . . . . . 144

7.1.5 The System BOS-HbR Applied to the A15 . . . . . . . . . . 145

7.2 Setup of Estimation Component . . . . . . . . . . . . . . . . . . . . 145

7.3 Setup and Calibration of the Prediction Component . . . . . . . . . . 147

7.3.1 The Network Model . . . . . . . . . . . . . . . . . . . . . . 148

7.3.2 Model of the User Classes and Their Flow Through the Network149

7.3.3 Calibration of Inflows and Turnfractions . . . . . . . . . . . . 149

7.3.4 Calibration of the PCE Function . . . . . . . . . . . . . . . . 154

7.3.5 Calibration of the Fundamental Diagram at Non-bottleneck
Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7.3.6 Calibration of the Fundamental Diagram at Active Bottlenecks 155

7.4 Validation of the Prediction Component . . . . . . . . . . . . . . . . 157

7.4.1 Validation During Regular Congestion . . . . . . . . . . . . . 157

7.4.2 Validation During Incidental Conditions . . . . . . . . . . . . 158

7.4.3 Discussion of Validation . . . . . . . . . . . . . . . . . . . . 159

7.5 Setup of the Control Component . . . . . . . . . . . . . . . . . . . . 160

7.6 Setup of the Case Study . . . . . . . . . . . . . . . . . . . . . . . . . 162

7.7 Results of the Case Study . . . . . . . . . . . . . . . . . . . . . . . . 162

7.7.1 Results of Multi-class Control Under Regular Conditions . . . 162

7.7.2 Results of Multi-class Control Under Incidental Conditions . . 163

7.8 Discussion of the Performance . . . . . . . . . . . . . . . . . . . . . 166

7.8.1 Analysis of the Performance . . . . . . . . . . . . . . . . . . 166

7.8.2 Potential Approaches for Improving the Performance . . . . . 169

7.9 Discussion of the Computation Time . . . . . . . . . . . . . . . . . . 171

7.9.1 Analysis of the Computation Time . . . . . . . . . . . . . . . 171

7.9.2 Potential Approaches for Improving the Computation Time . . 171

7.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175



xii Vehicle-class Specific Control of Freeway Traffic

8 Conclusions and Recommendations 177

8.1 Main Findings and Conclusions . . . . . . . . . . . . . . . . . . . . 178

8.2 Recommendations for Further Research . . . . . . . . . . . . . . . . 180

8.2.1 Traffic State Estimation . . . . . . . . . . . . . . . . . . . . . 180

8.2.2 Traffic State Prediction . . . . . . . . . . . . . . . . . . . . . 181

8.2.3 Traffic Control . . . . . . . . . . . . . . . . . . . . . . . . . 181

8.3 Recommendations for Practical Use . . . . . . . . . . . . . . . . . . 183

8.3.1 Traffic State Estimation . . . . . . . . . . . . . . . . . . . . . 184

8.3.2 Traffic State Prediction . . . . . . . . . . . . . . . . . . . . . 184

8.3.3 Traffic Control . . . . . . . . . . . . . . . . . . . . . . . . . 185

8.4 Workflow Towards Implementation of Multi-class Dynamic Traffic Man-
agement in Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

8.5 Application of BOS-HbR in Practice . . . . . . . . . . . . . . . . . . 187

Bibliography 189

Appendices 199

A Calculation of the Class-specific Turnfraction on the Main Route 201

B Conversion of Traffic Data to Initialize Fastlane 203

B.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . 203

B.2 Solution Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

B.3 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

Summary 207

Samenvatting 209

Zusammenfassung 211

TRAIL Thesis Series 213

About the Author 215



List of Figures

1.1 Operating room of the Traffic Management Center Rhoon . . . . . . . 2

1.2 The control loop for Dynamic Traffic Management (DTM) . . . . . . 3

1.3 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Optimal control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Overview of traffic control approaches . . . . . . . . . . . . . . . . . 16

2.3 Effects of congestion spillback . . . . . . . . . . . . . . . . . . . . . 18

2.4 Dissolution of congestion . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Comparison of spacings of vehicle classes . . . . . . . . . . . . . . . 20

2.6 Spacing of vehicle classes – dynamic pce value . . . . . . . . . . . . 20

2.7 Overview of traffic flow predictions models . . . . . . . . . . . . . . 25

2.8 Overview of traffic estimation models . . . . . . . . . . . . . . . . . 30

2.9 Structure of the Estimation component . . . . . . . . . . . . . . . . . 31

2.10 DTM measures considered in this thesis . . . . . . . . . . . . . . . . 32

2.11 Control loop for multi-class Dynamic Traffic Management . . . . . . 34

3.1 Shock waves observed in spatiotemporal freeway traffic data . . . . . 38

3.2 Relation between characteristic wave speeds and the fundamental dia-
gram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Structure of the Wave Speed Estimator . . . . . . . . . . . . . . . . . 42

3.4 Intermediate results of the Wave Speed Estimator for the case of shock
wave speeds at stop-and-go waves . . . . . . . . . . . . . . . . . . . 43

3.5 Example of edge detection in one dimension . . . . . . . . . . . . . . 44

3.6 Relation between Cartesian x-t image and its Hough transform to polar
coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46



xiv Vehicle-class Specific Control of Freeway Traffic

3.7 Frequency of wave speeds of lines detected . . . . . . . . . . . . . . 48

3.8 The freeway A13 near Delft, The Netherlands . . . . . . . . . . . . . 49

3.9 Results of the Wave Speed Estimator applied to empirical data . . . . 50

3.10 Results of extracting shock waves occurring in free flow . . . . . . . 51

3.11 Results of extracting shock waves at fixed bottlenecks . . . . . . . . . 52

3.12 Results of Experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.13 Results of Experiment 2 . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.14 Results of Experiment 3 . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1 Input and output speed data of the ASM . . . . . . . . . . . . . . . . 68

4.2 Computation time of the ASM against the number of filter points . . . 69

4.3 Computation time of the ASM against the varied variables . . . . . . 70

4.4 Structure of the Extended Kalman Filter . . . . . . . . . . . . . . . . 72

4.5 Error covariances under different conditions . . . . . . . . . . . . . . 76

4.6 Principle of the Localized-EKF . . . . . . . . . . . . . . . . . . . . . 77

4.7 Experimental network on which the Localized-EKF was verified . . . 79

4.8 Results of the Localized EKF: density patterns . . . . . . . . . . . . . 80

4.9 Comparison of the different filters . . . . . . . . . . . . . . . . . . . 81

4.10 Freeway network around the city of Rotterdam . . . . . . . . . . . . 82

4.11 Computation times of the Localized EKF . . . . . . . . . . . . . . . 82

5.1 Elements of a traffic network modeled in Fastlane . . . . . . . . . . . 90

5.2 Example of a fundamental diagram in Fastlane . . . . . . . . . . . . 92

5.3 Typical pce function in Fastlane . . . . . . . . . . . . . . . . . . . . 93

5.4 Node types in Fastlane . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.5 Setup for the analysis of spillback . . . . . . . . . . . . . . . . . . . 100

5.6 Example network for the analysis of the total cost in free flow . . . . 102

5.7 Total cost of the base case . . . . . . . . . . . . . . . . . . . . . . . . 104

5.8 Total cost when increasing the length of the longer route . . . . . . . 105

5.9 Total cost when lowering the inflow . . . . . . . . . . . . . . . . . . 106

5.10 Total cost when decreasing the free speed cars . . . . . . . . . . . . . 107



List of Figures xv

5.11 Total cost when ignoring trucks dynamics: πtruck ≡ 1 . . . . . . . . . 108

5.12 Total cost when increasing truck’s value of time . . . . . . . . . . . . 109

5.13 Overview of the contributing factors to the total cost and the optimal
prioritization of the classes . . . . . . . . . . . . . . . . . . . . . . . 109

6.1 Conceptual framework of multi-class traffic control . . . . . . . . . . 112

6.2 Vehicle-class specific lanes . . . . . . . . . . . . . . . . . . . . . . . 114

6.3 Results of the trucklane experiments: total monetary flow . . . . . . . 117

6.4 Physical layout of ramp meters . . . . . . . . . . . . . . . . . . . . . 119

6.5 Implementation of multi-class ramp meter in Fastlane . . . . . . . . . 120

6.6 Experimental setup of multi-class ramp meter . . . . . . . . . . . . . 121

6.7 Simulation results of multi-class ramp metering . . . . . . . . . . . . 123

6.8 Simulation results of multi-class ramp metering (cont.) . . . . . . . . 124

6.9 Layout of a multi-class route guidance controller . . . . . . . . . . . 126

6.10 Experimental setup of multi-class route guidance . . . . . . . . . . . 127

6.11 The model-predictive control loop . . . . . . . . . . . . . . . . . . . 129

6.12 Results of multi-class route guidance . . . . . . . . . . . . . . . . . . 131

6.13 Difference of total vehicle count at northern exit between MC MPC
and SC MCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.14 Performance of the four route-guidance controllers for varying inci-
dent strengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.15 Control signals of the multi-class MPC for different values of time and
different incident strengths . . . . . . . . . . . . . . . . . . . . . . . 135

6.16 Results of multi-class MPC for different incident strengths . . . . . . 136

6.17 Results of multi-class MPC for different incident strengths (cont.) . . 137

7.1 The network of the A15 site for the case study . . . . . . . . . . . . . 142

7.2 Truck percentage of the A15 . . . . . . . . . . . . . . . . . . . . . . 143

7.3 Results of the Estimation component . . . . . . . . . . . . . . . . . . 146

7.4 Network model of the site . . . . . . . . . . . . . . . . . . . . . . . . 148

7.5 Modeling of destination classes for rerouting . . . . . . . . . . . . . 149

7.6 Detector configuration for calibrating inflow and turnfraction . . . . . 150



xvi Vehicle-class Specific Control of Freeway Traffic

7.7 Example of calibrated total inflow and total turnfraction for the case
study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

7.8 PCE function used in case study . . . . . . . . . . . . . . . . . . . . 154

7.9 Example of a successful capacity calibration . . . . . . . . . . . . . . 156

7.10 Example of a failed capacity calibration . . . . . . . . . . . . . . . . 157

7.11 Validation of the Prediction component during regular conditions . . . 158

7.12 Performance of the validation . . . . . . . . . . . . . . . . . . . . . . 158

7.13 Validation of the Prediction component during incidental conditions . 159

7.14 Performance and computation time of the controller dependent on the
lengths of the prediction horizon and the control horizon . . . . . . . 161

7.15 Results of mixed-class control during regular conditions . . . . . . . 164

7.16 Results of multi-class control under regular conditions . . . . . . . . 164

7.17 Results of no control under incidental conditions . . . . . . . . . . . 165

7.18 Results of mixed-class control at an incident . . . . . . . . . . . . . . 166

7.19 Results of multi-class control at an incident . . . . . . . . . . . . . . 167

7.20 Comparison of performance during incidental conditions . . . . . . . 168

7.21 Average computation time of the Control component . . . . . . . . . 171

8.1 Screenshot of BOS-HbR Website . . . . . . . . . . . . . . . . . . . . 187



List of Tables

2.1 Overview of prediction models and their capabilities to reproduce traf-
fic flow phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1 Simulation parameter settings for comparing the ASM implementations 67

4.2 Speedup factor of the FFT implementation of the ASM . . . . . . . . 71

4.3 Error measurements of the ASM implementations . . . . . . . . . . . 72

4.4 Qualitative comparison of characteristics between Adaptive Smooth-
ing Method and Localized Extended Kalman Filter . . . . . . . . . . 84

6.1 Ramp meter policies applied in both experiments . . . . . . . . . . . 122

6.2 Rerouting of the vehicle class by the multi-class MPC dependent on
the incident strength . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.1 Sensors providing traffic data of the site . . . . . . . . . . . . . . . . 144

7.2 Calibration parameters of the Predictions component of the case study 147

7.3 User classes in the case study . . . . . . . . . . . . . . . . . . . . . . 150

7.4 Calibration of the user-class specific inflows and turnfractions the case
study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

7.5 Results of the case study . . . . . . . . . . . . . . . . . . . . . . . . 162



xviii Vehicle-class Specific Control of Freeway Traffic



Notation

x space
t time
u class
vu speed of class u (in km

h )
πu passenger-car equivalent (pce) function of class u (in pce

veh )
πu(vu) passenger-car equivalent (pce) value of class u at given speed (in pce

veh )
h rear-bumper-to-rear-bumper time headway between two vehicles (in s)
r rear-bumper-to-rear-bumper spacing between two vehicles (in m)
qu (vehicular) flow of class u (in veh

h )
Qu effective flow of class u (in pce

h )
Qtot total effective flow (in pce

h )
ku (vehicular) density of class u (in veh

km )
Ku effective density of class u (in pce

km )
Ktot total effective density (in pce

km )
ηu share of class u in traffic (in %)
ζu value of time of class u (in C

vehh )
T total time spent (in vehh)
T C total cost (in C)
vfree

u fundamental diagram: free-flow speed of class u (in veh
km )

C fundamental diagram: (effective) capacity (in pce
h )

Kcrit fundamental diagram: critical (effective) density (in pce
km )

Kjam fundamental diagram: (effective) jam density (in pce
km )

c propagation speed of a shock wave (in km
h )



xx Vehicle-class Specific Control of Freeway Traffic



Chapter 1

Introduction

Many freeways are highly congested on a daily basis. One reason is that traffic demand
is simply too high for the current infrastructure so that congestion always arises at the
same bottlenecks during rush hours. A second reason is incidents, where the freeway
is partially or totally blocked due to accidents.

Congestion caused by recurrent bottlenecks can be solved by reconstructing the infras-
tructure to increase the number of lanes or to create new freeways. Those measures,
however, take years to come into effect and are above all very expensive. Furthermore,
long-term impacts include induced traffic demand, which damp the expected reduction
of congestion. Alternatively, travelers can be incentivized to travel by another mode of
transportation or to travel outside of the rush hour, for instance by road pricing. These
mobility measures have a more immediate effect than reconstructing the infrastructure.

A solution to reduce congestion caused by either recurrent bottlenecks or incidents
with a faster effect is to intervene by controlling the traffic flow. Traffic management
centers like the one in Figure 1.1 have been established to monitor the traffic conditions
of a freeway network. If traffic conditions deteriorate, the traffic management center
can influence traffic by activating control measures. Such approaches are known as
Dynamic Traffic Management (DTM).

Multiple DTM measures have been developed and applied successfully over the past
decades. A common example is route guidance, which informs travelers about inci-
dents on their way and suggests alternative routes around the incident. Another exam-
ple are ramp meters, which are installed on on-ramps to the freeway; they restrict the
inflow into the freeway to prevent the freeway traffic from breaking down into conges-
tion. A further example is the peak-hour lane, which is an extra lane that is opened for
traffic during rush hour.

The current practice of DTM is that it operates on the traffic flow as a whole, disregard-
ing the different vehicle classes of which it is composed. Vehicles can be categorized
along different properties, such as the vehicle length, the maximum speed, the accel-
eration capabilities, the number of passengers, the value of time, the emissions, the
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Figure 1.1: Operating room of the Traffic Management Center Rhoon in the
Netherlands; source: Inter Visual Systems (2012)

destination and many more. Some of these class-specific properties have a direct ef-
fect on the traffic flow of the network: given the same speed, short vehicles can travel
with a shorter (rear-bumper to rear-bumper) distance headway than long vehicles, lead-
ing to a higher throughput. Other properties do not directly affect the flow of traffic,
but have an effect on the performance of it. The value of time, for example, is not
directly related to traffic flow, but it is an important factor when assessing the network
performance in terms of the costs congestion induces on delayed vehicles.

This thesis expands DTM to take vehicle-class specific properties into account. The
effects of different vehicle classes on traffic flow are analyzed and vehicle-class specific
control strategies are developed and tested in simulations to improve the traffic both in
regular and incidental conditions.

1.1 Problem Definition

Dynamic Traffic Management applies the classical control loop as illustrated by Fig-
ure 1.2. The traffic system under consideration is observed by sensors that provide
traffic data to the traffic management center. The traffic management center uses these
data to determine appropriate signals for the DTM measures like ramp meters, route
guidance measures or similar controllable devices that influence the traffic system. The
traffic management center performs this task in two parts. First, the current traffic is es-
timated based on the sensor data. Second, suitable control signals are computed based
on the current traffic state. In current practice, these signals are determined by control
scenarios, which are usually expressed as simple rules or switching schemes. In sci-
entific work, more advanced control concepts have been developed that determine the
control signals proactively by employing a traffic flow model which predicts the traffic
state ahead.
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Traffic System

SensorsDTM measures

EstimationControl

few minutes

Traffic Management Center

Figure 1.2: The control loop for Dynamic Traffic Management (DTM)

The aim of this thesis is to expand the control loop of Figure 1.2 to a DTM framework
that takes multiple vehicle classes into account in order to improve the performance of
the traffic system. Besides being able to exploit the specific properties of each vehicle
class, the computation of the control signals has to be fast in order to react quickly
to the current traffic conditions. For practical applications, a cycle of the control loop
therefore has to be performed within a few minutes.

To achieve this objective, the following research questions are addressed:

1. What methods are suitable in the components of the control loop in order to
perform multi-class DTM?

2. How can the current traffic state of a realistically-sized freeway network be esti-
mated quickly and accurately for each vehicle class?

3. How can features of spatio-temporal traffic data be extracted in order to calibrate
traffic state estimators and traffic flow models?

4. How can multi-class traffic flow be modeled mathematically so that it satisfies
key requirements from traffic flow theory, and what are the effects of the class-
specific properties on traffic flow?

5. How can existing DTM measures be expanded to multiple vehicle classes and
what are their effects on traffic flow?

6. What is the benefit of multi-class DTM compared to conventional, mixed-class
DTM for a realistic freeway network?
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1.2 Scope of the Thesis

This thesis deals with freeway traffic, i.e. traffic flows in only one direction, traffic
is not hindered by crossings on the same level, and vehicles can easily overtake each
other in light traffic conditions. The networks discussed in this thesis are assumed to
be of realistic size, i.e. in the order of tens of kilometers; the computation times stated
in this thesis therefore refer to practical applications. Furthermore, the time frame of
DTM is short-term, i.e. the actions of the DTM measures affect the traffic system im-
mediately and last a few hours at most. This thesis regards only traffic itself and does
therefore not address mobility or demand management. The focus is furthermore on
the effects of multi-class DTM on the traffic flow; topics like implementation, hard-
ware, maintenance or enforcement of the DTM measures are beyond the scope of this
thesis.

In this thesis, the class-specific properties of vehicle length, maximum speed and value
of time are used. Many vehicle classes can be modeled by these means; in this thesis,
most experiments are performed regarding the two classes cars and trucks. Cars are
short, have a high maximum speed, and have a low value of time; whereas trucks are
long, have a low maximum speed, and have a high value of time. The exact values will
be named later in the experiments.

1.3 Scientific Contributions

This thesis contributes to science in the following ways:

• A Framework for multi-class Dynamic Traffic Management. Currently, DTM fo-
cuses on controlling traffic as a whole, disregarding the vehicle classes of which
it is composed. The framework that is developed shows how the components
of the current control loop of Figure 1.2 have to be expanded in order to take
multiple vehicle classes into account. (Chapter 2)

• A novel method to automatically extract shock waves and their propagation
speeds from spatiotemporal traffic data. Shock waves characterize the transition
between two traffic states. Furthermore, both traffic regimes are characterized by
a shock wave speed, which is a key characteristic of the fundamental diagram.
A method is developed that automatically extracts shock wave speeds from spa-
tiotemporal data. It supports the calibration of traffic models that employ a part
of the fundamental diagram, or support the evaluation of the performance of
traffic flow models that aim at reproducing shock waves propagating with cor-
rect speeds. (Chapter 3)

• The reformulation of two traffic state estimators so that they compute the traffic
state of a realistically sized freeway within a few seconds. Firstly, it is shown that
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the Adaptive Smoothing Method by Treiber et al. (2011) can be reformulated to
apply the Fast Fourier Transform which solves the model significantly faster.
Secondly, the Extended Kalman Filter can be reformulated to apply measure-
ments only locally, which omits expensive calculations that have only negligible
effects on the result. (Chapter 4)

• Insights into the effects of vehicle-class specific properties on the total cost of
the network traffic. It is shown that the network performance in the form of the
total cost, which is the sum of the individual travel times weighted by the value
of time, is mainly determined by the throughput at bottlenecks, the spillback of
congestion, and the free-flow travel time. All of them are affected by the vehicle
length and the maximum speed of each vehicle class. (Chapter 5)

• The generalization of conventional, mixed-class DTM measures to multiple ve-
hicle classes. Ramp meters and route guidance measures are typical examples of
DTM measures that are currently applied mainly as mixed-class measures. The
effects of their multi-class counterparts are analyzed. Furthermore, the effects of
a trucklane is discussed. (Chapter 6)

• Insights into the potential of the multi-class DTM framework by applying it to
simulations of the Dutch freeway A15. In a case study, the traffic state of the
freeway is estimated by the methods developed in Chapters 3 and 4, and traffic
is controlled by a multi-class ramp meter and two multi-class route-guidance
measures developed in Chapter 6. The performance improvements of multi-class
DTM with respect to mixed-class DTM is shown. (Chapter 7)

1.4 Practical Contributions

This thesis contributes to practice in the following ways:

• A method to automatically identify shock wave speeds from spatiotemporal traf-
fic data plots. This tool can be used to support traffic state estimators that are
parameterized by characteristic shock wave speeds, to estimate parts of the fun-
damental diagram, and to evaluate the predictive performance of traffic flow
models. (Chapter 3)

• Development of traffic state estimators that run efficiently within a few seconds
for real-sized freeways. Two existing traffic state estimators are reformulated.
The validation shows that both compute the current traffic state within a few
seconds and are therefore applicable for DTM. (Chapter 4)

• Generalization of current state-of-the-practice DTM measures to multiple vehi-
cle classes. Ramp meters and route-guidance measures are generalized to dis-
tinguish between multiple vehicle classes, and their positive effects on the traffic
performance are shown. (Chapter 6)
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• Development of the prototype software BOS-HbR, which implements the multi-
class DTM framework to the Dutch A15 eastbound near the harbor of Rotterdam.
All components of the control loop are implemented in Matlab and applied to
traffic data from the freeway, which are gathered in real-time. This prototype
is called “Beslissingsondersteunend Systeem voor het Havenbedrijf Rotterdam”
(BOS-HbR, in English.: “Decision Support System for the Port of Rotterdam
Authority”.) The following three points name its details.

• A traffic state estimator for the Dutch A15 in real-time. The traffic state esti-
mators developed in Chapters 3 and 4 are combined and applied to the traffic
data gathered from the A15; they estimate the traffic state within one minute.
(Chapter 7)

• A validated multi-class traffic flow model for the Dutch A15. The multi-class
traffic flow model is validated so that is capable of predicting the traffic state one
hour ahead, given the current traffic state of the freeway. (Chapter 7)

• An optimal controller for multi-class DTM of the Dutch A15 in order to improve
the traffic performance. Based on the current traffic state and the prediction,
control signals are computed by applying the multi-class DTM framework de-
veloped in Chapter 2. (Chapter 7)

• The outline of a workflow plan to move towards practical implementation of the
prototype BOS-HbR. The prototype is currently implemented in Matlab with the
goal to show a proof of concept of multi-class DTM. In order to apply BOS-
HbR in practice, a path towards practical implementation for robust multi-class
control is set up. (Chapter 8)

1.5 Structure of the Thesis

The remainder of this thesis is structured as shown in Figure 1.3.

Chapter 2 refines the control loop outlined in Figure 1.2 in order to be applicable in
multi-class DTM. For each component of the control loop, applicable methods are
reviewed and a suitable method is chosen.

The two chapters thereafter are concerned with the Estimation component. Chapter 3
develops a tool that automatically extracts features from spatiotemporal traffic data.
Specifically, the tool estimates how fast the transitions between traffic states, so-called
shock waves, propagate.

Chapter 4 analyzes two existing traffic state estimation methods and reformulates them
to estimate the traffic state within a few seconds. The first method is the Adaptive
Smoothing Method, which will be solved by the Fast Fourier Transform. The second
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Figure 1.3: Structure of the thesis
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method is based on the Extended Kalman Filter, which is reformulated to apply the
sensor data only locally.

The following two chapters then deal with the Control component. Chapter 5 presents
a traffic flow model that takes the properties of different vehicle classes into account.
Based on this model, called Fastlane, the effects of the vehicle properties on the net-
work performance in the form of the total cost of traffic are analyzed.

Chapter 6 generalizes existing DTM measures to multi-class DTM measures. The
effects of a trucklane, of multi-class ramp metering and of multi-class route-guidance
on the traffic performance are shown by using the multi-class traffic flow model.

Chapter 7 combines the estimation and control concepts developed in the preceding
chapters to the multi-class DTM prototype BOS-HbR. In a case study, the Dutch free-
way A15 eastbound near the harbor of Rotterdam, the Netherlands, is simulated and
multi-class DTM measures are coordinated to improve the traffic conditions in both
regular and incidental conditions.

Chapter 8 presents conclusions and recommendations for further research and practice.
In addition, a workflow towards practical implementation and the online version of
BOS-HbR that can serve as the basis of multi-class DTM are presented.



Chapter 2

Design and Model Choices for the
Control Loop

In this chapter, we motivate the major design and model choices for the components
of the control loop introduced in Figure 1.2. This chapter is not intended as a state-
of-the-art review for all components, but to underpin the scope of this research and
to motivate the choices made. These choices are made on the basis of scientific cu-
riosity, theoretical and application-specific requirements and in some cases practical
arguments. For many components, details are provided in the ensuing chapters. This
implies that in this chapter, we make forward references to the ensuing chapters in this
thesis.

Section 2.1 discusses suitable control methods for the analysis of multi-class Dynamic
Traffic Management. In order to be able to predict the effects of multi-class DTM
measures, the control method will contain a predictive element. Section 2.2 therefore
discusses suitable prediction models that reproduce both essential traffic phenomena
occurring on freeways and the effects of multi-class DTM measures. In Section 2.3,
estimation models are discussed to determine the current traffic state on the freeway.
An overview of the DTM measures and traffic sensors used in this thesis are given
in Sections 2.4 and 2.5, respectively. Conclusions including a refined version of the
control loop for multi-class Dynamic Traffic Management are presented in Section 2.6.
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2.1 Design Choices for the Control Component

This section reviews control methods in order to analyze the effects of multi-class
traffic control on the network performance. First, we define the requirements of the
Control component of the control loop of Figure 1.2. Two of the basic requirements
are that the controller is both effective, i.e. it improves the performance of the network,
and fast, i.e. it the control signals are computed quickly so that the controller is appli-
cable in real time. Subsequently, we discuss how common control approaches meet
these requirements. We then conclude that a model-predictive control is the most suit-
able approach to analyze multi-class Dynamic Traffic Management, since it is able to
optimize the network performance given the new multi-class DTM measures that will
be developed in Chapter 5.

2.1.1 Requirements of the Control Component

Several control methods have been developed in the past. In order to choose a suitable
one for this thesis, we first discuss the requirements of the control component. There is
a long range of requirements which can be considered, among others that the controller
should be effective, fast, easy to develop, easy to deploy, easy to maintain, easy to use,
inexpensive, flexible, intuitive and sustainable (Munroe, 2012). In the following, we
will select the most important criteria.

The scope of this thesis is to develop and analyze multi-class control of freeways. The
basic requirements of any control method is therefore to be able to handle multi-class
traffic and multi-class DTM measures. Furthermore, the scope of the controller is a
freeway network in the order of tens of kilometers over a horizon of a few hours.

In order to apply Dynamic Traffic Management, the controller has to compute the
control signals fast. For practical DTM applications in real-time, this leads to a com-
putation time in the order of a few minutes.

Many freeways are subject to two types of traffic conditions. Under regular conditions,
traffic congestion arises practically at the same location every day. Irregular conditions,
however, can cause very different congestion patterns. For example, an incident can
temporarily create a new bottleneck which results in a unique congestion pattern. An-
other example is a drastic change in the traffic demand pattern. The controller must be
flexible to work under both regular and incidental traffic conditions.

The final requirement is that the controller be flexible to adapt to new infrastructure.
For instance, freeways can be reconstructed to increase the number of lanes. During
construction, the network layout will change often; among others the location of the
bottlenecks can change multiple times. Another example is that new DTM measures
can be installed. The controller thus must be able to adapt to a new network layout or
to changing DTM measures.
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In summary, since the focus of this thesis is to analyze the effect of multi-class control
on traffic flow and the network performance, we require a multi-class network-wide
freeway control method that both computes the control signals quickly and is flexi-
ble so that it works under regular and irregular traffic conditions and under changing
infrastructure.

2.1.2 Control Methods

This section discusses control methods for multi-class DTM that are fast and flexible
to various extents. The following methods are not entirely disjoint, so some of them
can be combined together. For each method, we define how the approach works, name
examples, and discuss its computational speed and its flexibility.

2.1.2.1 Rule-based Reactive Control

Approach Rule-based controllers set the control signals by applying predefined rules,
usually in the form of simple “if-then” statements. In the reactive version, the rules are
applied to the current traffic state.

Examples An example of a reactive controller is the coordinated ramp meter algo-
rithm HERO by Papamichail & Papageorgiou (2008), which sets the outflow of the
ramp dependent on the current queue length of the other ramps. The rule thereby is to
keep the queues of each ramp at equal length. Another coordinated ramp meter con-
troller is ACCEZZ by Bogenberger et al. (2001). Its rules were derived from extensive
ex ante simulations with a traffic flow model; the rules were computed by applying a
neural network and genetic algorithms.

Wahle et al. (2000) simulated a route guidance controller that advised the fastest route
based on measured travel times. They showed that such a controller leads to oscilla-
tions in the travel times and to an underutilization of traffic.

Computational Speed By only applying predefined rules, the computational speed
of a rule-based controller is very high.

Flexibility A drawback is, however, that the rules have to be defined before the con-
troller is deployed. Moreover, rules have to be defined for every traffic situation that
can possibly arise. Incidents can occur at many different locations and times with dif-
ferent strengths, so that their effects on the network can vary widely. The number of
rules that have to be developed and validated can become very large. A further draw-
back for some of the methods is that when the infrastructure changes, a new set of rules
has to be developed, which makes a rule-based approach difficult to maintain over a
longer period.
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2.1.2.2 Case-based Reactive Control

Approach A case-based reactive controller employs set of cases, which describe
which control actions to take give a specified traffic state. The current traffic state is
then compared to the case base, and the case that matches the current traffic state best
is selected.

Examples A case-based system is the BOSS Scenario Evaluation System (BSES) for
the ringroad of Amsterdam developed by Hoogendoorn et al. (2003) and De Schutter
et al. (2003). The network is split into subnetworks, whereby each subnetwork is an
agent. Hodge et al. (2011) developed a case-based decision support system where the
cases are compared by a pattern matching algorithm. Among the cases which closely
match the current conditions, the one that leads to the highest performance is advised.
Almejalli et al. (2007) developed a decision support system based on fuzzy inference.
The fuzzy membership functions are trained from previous cases and adapted with
each new case.

Computational Speed Since this approach has to match the current traffic state to
an appropriate case in the case base, the computation time is higher than rule-based
controllers.

Flexibility Case-based controllers can interpolate between existing cases to match
the current traffic state to the closest case. They are therefore more flexible than rule-
based systems. How, for very different traffic situations or new infrastructure, new
cases have to be developed

2.1.2.3 Rule-based and Case-based Predictive Control

Approach The rule-based and case-based controllers of the two previous sections
react only to the current traffic state. These approaches can be extended so that the rules
and cases apply to the future traffic conditions. By this means, negative effects can be
anticipated beforehand and appropriate DTM measures can be activated to counter
these effects before they arise. In a network with multiple routes, for example, a route
guidance measure can advise the route with the lowest expected travel time. To predict
the future traffic conditions, a traffic flow model is applied.

Examples Wang et al. (2003) applied predictive control to guide vehicles via the
fastest route, based on predicted arrival times.
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Computational Speed The predictive rule-based and case-based controllers com-
pute the control signals slower than their reactive counterparts, since the prediction
model has to be applied in addition.

Flexibility Predictive methods are more flexible than reactive ones, as they predict
the effects of the current traffic state. For example, they predict the congestion that
is caused by an accident and can counter its negative effects. However, like their
reactive counterparts, if the network infrastructure changes, the rules and cases have to
be revised.

2.1.2.4 Optimal Control

Optimal Control

Prediction

Optimization

Performance Function

current
traffic 
state

future traffic 
state

control signal 
trajectory

optimal control 
signal trajectory

Figure 2.1: Optimal control

Approach A very different approach is optimal control. It predicts the effects of the
DTM measures on future traffic state and optimizes their control signals in order to
minimize a specified performance function (Figure 2.1). The road authority thereby
can choose the performance function it want to minimize. Common functions are the
total time spent, the travel time on route or the emissions.

Since optimal control analyzes the predicted future traffic state, it requires a prediction
model that reproduces the effects of the DTM measures. Furthermore, the control
signals not just for the current moment, but also for the near future, namely during
the prediction horizon, are optimized; in other words, the result of optimal control is a
control signal trajectory. The optimization procedure finds the global minimum of the
objective function, which maps the control signals to a real number, the performance
value. This objective function contains the traffic prediction model, and evaluates the
performance of its prediction. Since the traffic prediction model is usually elaborate, a
closed-form expression to determine the minimum of the objective function does not
exist. Instead, the minimum is found by an iterative approach. Due to these iterations,
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the prediction model will be executed multiple times, until the minimum is found. The
point of the minimum is the optimal control signal trajectory.

The whole trajectory of the optimal control signals is applied to the DTM measures,
i.e. the signals are not re-evaluated at a later point. Since there is no feedback, optimal
control is mainly used for simulation purposes. If the feedback loop is closed, then it
is part of model-predictive control, which will be discussed below.

Examples Kotsialos et al. (2002) and Papamichail et al. (2010) developed the Ad-
vanced Motorway Optimal Control (AMOC) system and applied it to the ramp meters
of the ringroad of Amsterdam. They show that congestion can by completely prevented
if all on-ramps are metered and coordinated. Carlson et al. (2010) applied optimal con-
trol to meter the mainstream of a freeway in order to prevent the capacity drop and a
lane drop.

Computational Speed The computational speed is relatively low, since the predic-
tion model is executed multiple times during the optimization procedure. Dependent
on the number of DTM measures and the length of the control signal trajectory, the
computation can take between several seconds and multiple hours. For practical ap-
plications, the computational speed has to be traded off against the number of DTM
measures.

Flexibility A big advantage of optimal control is that it is flexible to changing con-
ditions. If an incident occurs, its effects are directly accounted for in the optimization
by the prediction model. Developing rules or cases for different incidents is therefore
not necessary, which reduces the development time of an optimal controller compared
to a rule-based approach. Furthermore, if the network changes, the prediction model
has to be revised and re-calibrated.

A drawback of pure optimal control is that the control signals are not re-evaluated. If
traffic conditions change, e.g. a congestion dissolves earlier than expected, the previ-
ously computed control signals might no longer be optimal.

2.1.2.5 Model-predictive Control

Approach Pure optimal control is applied only once and the control signals are not
re-evaluated. This drawback is remedied by computing new control signal trajectories
after a while by feeding the current traffic state back to the controller. This approach is
called model-predictive control (MPC) or receding-horizon control. In each iteration
of the control loop, an optimal controller optimizes the control signals of the DTM
measures to achieve the optimal traffic performance.
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Examples Hegyi et al. (2005) applied model-predictive control to coordinate ramp
meters and variable speed limits to minimize the total time spent of a freeway.

Computational Speed Since optimal control is applied in every feedback iteration,
the computation times of optimal control and MPC are the same.

Flexibility MCP exhibits the same advantages as optimal control, as irregular condi-
tions can directly be taken into account and a changing infrastructure can be modeled
in the prediction model. In addition, the feedback of the current traffic state leads to
a frequent recalculation of the control signal trajectory, which enables a more robust
performance than optimal control. Even if the real traffic behaves differently than ex-
pected by the prediction model, the new traffic state is used as the basis for the new
signals so that prediction errors can be corrected.

2.1.2.6 Anticipatory Control

Approach A different approach is anticipatory control. Like the two previous ap-
proaches, it predicts the effects of the DTM measures. However, it further anticipates
the reactions of the travelers to the DTM measures. For example, if a ramp meter is
activated and causes a waiting queue to emerge, travelers may react and choose a faster
route via a different on-ramp. Anticipatory control predicts and takes these reaction of
the travelers into account.

Examples Taale & Hoogendoorn (2012) developed a framework for the Amsterdam
area to coordinate meter installations on on-ramps and freeway junction.

Computational Speed Since the control signals and the travelers’ reactions have to
be computed, this control approach is slow.

Flexibility Due to taking the drivers’ reactions into account, this approach is very
flexible. For incidents, this approach might not be necessary, since drivers cannot adapt
within a few minutes, but usually change their behavior on a day-to-day basis. Antici-
patory control is thus useful for developing DTM strategies for commuting traffic, i.e.
for regular traffic conditions.

2.1.3 Conclusions of the Control Component

The diagram in Figure 2.2 summarizes the control methods in terms of computational
speed and flexibility. The fastest, but least flexible approaches are rule-based and
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Figure 2.2: Overview of traffic control approaches

cased-based controllers. Optimal control and model-predictive control both predict
the effects of the traffic conditions and of the DTM measures. Due to the optimization
procedure which executes a prediction model multiple times, optimal control and MPC
are noticeably slower than the previously named approaches. However, their advantage
is that they are flexible to incidents and changing infrastructure. Finally, anticipatory
control also considers the expected reaction of the travelers, so its computational bur-
den is even higher.

Some of the control approaches can be combined. The ramp meter controller AC-
CEZZ (Bogenberger et al., 2001) is a rule-based system, whereby an optimal controller
was used to develop and validate the rules offline. Similarly, anticipatory control can
employ a model-predictive controller to optimize the control signals; the prediction
model then also contains a model of the travelers’ reactions.

Decision

The purpose of this thesis is to develop and analyze multi-class control for freeways
that works both under regular and under incidental conditions, and can optimize the
signals of the multi-class DTM measures that will be developed in Chapter 5. We there-
fore choose optimal control and model-predictive control as control methods, since
they both predict the effects of the incidents and of the multi-class DTM measures and
optimize the traffic performance. To keep the computational time low, especially for
real-time applications, the number of DTM measures will be limited.

Model-predictive control is used in one of the experiments in Chapter 6. Its method-
ology is explained in Section 6.4.2.2. In the case study of Chapter 7, the prediction
model is validated for a horizon of one hour. Then, model-predictive control based on
the validated traffic flow model is used to optimize the traffic state of the Dutch A15
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near the harbor of Rotterdam. A simpler version of the case study is currently running
online (Section 8.5). Since the control signals are not applied to the actual traffic sys-
tem, an optimal control approach computes the signals for this one hour and applies
them to the simulated freeway. If operators of a traffic management center would apply
the advised signals to real network, then the feedback of the whole control loop would
be closed so that the approach would then be a full-fledged model-predictive controller.

As a remark, some of the DTM measures employ a local reactive controller. For in-
stance, some ramp meter installations use an Alinea algorithm to determine the outflow
of the ramp based on the traffic data gathered on the freeway. In fact, this resembles
another control loop, namely within the DTM measures. The control approach in this
thesis is therefore a hybrid one: the model-predictive control loop as global control,
and the control loop within the DTM measures as local control. For the sake of brevity,
the local control loop within the DTM is not shown in the figures.

Since optimal control and model-predictive control employ a Prediction component,
a suitable prediction model is required. The next section reviews possible prediction
models and chooses one.

2.2 Design Choices for the Prediction Component

This section compares traffic prediction models that can be used to forecast traffic for
the Control component. First, the requirements for the Prediction Component are out-
lined. Then, existing traffic flow prediction models are discussed. Finally, we conclude
that the macroscopic multi-class traffic flow model Fastlane is the most suitable one to
predict the traffic conditions for the multi-class controller.

2.2.1 Requirements of the Prediction Components

The main goal of the Prediction component is to predict the expected traffic state for a
short term, given the current traffic state and the control signal trajectory for the multi-
class DTM measures. The prediction horizon in this thesis will be in the order of one
hour.

In order to apply the controller in real-time, the prediction model has to compute the
future traffic state fast. Since the controller optimizes the signals in an iterative ap-
proach, the prediction model is executed multiple times and therefore must run within
a few seconds. Furthermore, in order to evaluate the effects of different control sig-
nals, the model outcome should only depend on the current traffic situation and the
control signals, and should not exhibit a random behavior; in other words, it should be
deterministic.

The traffic predictions of the model have to be valid in two ways. Firstly, the effects of
the (multi-class) DTM measures have to be predicted correctly. Secondly, the model
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must reproduce the important traffic flow phenomena that occur in practice. In the
following, these phenomena are discussed.

Traffic Flow Phenomena

Congestion Probably the most important and also most commonly known pheno-
menon of traffic is congestion. It is characterized by a high traffic density and low
speeds leading to low traffic performance such as high total time spent or low network
throughput.

 

North

Bottleneck 
causes congestion

East

Spillback delays 
eastbound traffic

Figure 2.3: Effects of congestion spillback: spillback delays travelers (east) who
do not want to pass the bottleneck (north) and therefore severely increases the
total cost

When congestion emerges at a fixed bottleneck, a queue forms and spills back up-
stream. Figure 2.3 shows how the vehicles that head north (blue) and therefore want to
pass the bottleneck have to queue up. However, since congestion spills back over the
off-ramp that is located further upstream, vehicles that head east (green), and therefore
do not want to pass the bottleneck, also have to enter the congestion. An immedi-
ate consequence is that the eastbound vehicles are now delayed, too, although they
will never pass the actual bottleneck. A secondary consequence is that the congestion
now grows even faster, since both the northbound and the eastbound vehicles have to
queue. This effect increases the congestion spreading speed even more. Spillback is
thus a self-perpetuating effect if it blocks upstream infrastructure.

Congestion dissolves in two different ways, dependent on the cause of its dissolution.
If the traffic demand decreases, e.g. at the end of the rush hour, then the head of the
congestion stays fixed at the bottleneck location, while the tail moves downstream until
it hits the bottlenecks so that the congestion is dissolved (Figure 2.4(a)). Conversely, if
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(a) Decrease of traffic demand: con-
gestion head is fixed (two regular
bottlenecks, 08-11-2010)

(b) Increase of supply: congestion
head moves upstream (two in-
cident clearances at 13:00 and
14:45, respectively, 04-11-2010)

Figure 2.4: Dissolution of congestion, dependent on the cause (spatio-temporal
speed plots of the Dutch A15R)

the traffic supply increases, e.g. when an incident clears, then the head of the conges-
tion moves upstream until it hits the tail (Figure 2.4(b)). In the latter case, this effect
can lead to congestion that is located far away from the original location of its cause.

When drivers leave congestion at its head, they slowly accelerate to their intended
speed. This maneuver takes several seconds and can cover several hundred meters.
Due to this slow transition of traffic states, the head of the congestion thus is not visible
as a sharply defined line in the spatiotemporal speed plots. Furthermore, this acceler-
ation out of congestion can leave gaps in the traffic, i.e. when drivers finally drive at
their intended speed, the gap to their predecessor is unnecessarily large. In essence,
the capacity of the road is not fully used. This phenomenon is called the capacity drop.
Its strength varies, though its value is approximately ten percent (Chung et al., 2007).

Many drivers have experienced that they suddenly have to stop for no apparent reason
and then can continue traveling after about a minute. They have just passed a so-
called stop-and-go wave. This is a region of slow-traveling traffic which covers a few
hundred meters and propagates upstream. Stop-and-go wave often occur in congestion
(see Figure 2.4(a)), but they sometimes also emerge when the freeway is operating near
capacity but is still in free flow.

Multiple vehicle classes Vehicles differ in a number of ways from each other. Firstly,
they differ in their free speed capabilities. Cars can usually driver much faster large
vehicle like trucks or buses. The travel time of cars is therefore lower than that of
trucks.
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spacing truck
spacing car

Figure 2.5: Comparison of spacings of vehicle classes, (frame of a video taken at
the Dutch A15R near on-ramp Charlois)

7m 20m

40m
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Figure 2.6: Spacing of vehicle classes: the spacing depends on the vehicle class and
on the traffic state; top: in free flow, the pce value is low; bottom: in congestion,
the pce value is high

Secondly, vehicles differ in their length. A truck is much longer than a car. This has
a substantial effect on the spacing between cars, and thereby on the throughput of the
road. Figure 2.5 shows the traffic of the Dutch A15 during the evening peak, which is
mostly composed of trucks and cars. Since trucks are substantially longer than cars,
they occupy much more space than a car. These differences in spacing led to the
definition of the so-called passenger-car equivalent (pce) value

πu =
ru

rcar
(2.1)

of a class u, which is the ratio between the spacing ru of a vehicle of that class and the
spacing rcar of a car in the same traffic conditions.

Furthermore, this pce value depends on the traffic state, as illustrated in Figure 2.6. The
more congested the freeway is, the more relative space a truck occupies compared to
a car. For comparison, in free-flow near capacity the spacing of a truck approximately
equals the spacing of one and a half cars. In severely congested conditions, this ratio
is one truck equals approximately three cars. Elefteriadou et al. (1997) provides an
overview of typical pce values for truck under different traffic and road conditions.

A third important property of multi-class traffic is that vehicle-classes differ in their
value of time. Although the value of time (VOT) does not directly affect the traffic
flow, it is important for evaluating the performance of the traffic network if costs are an
objective. For the Dutch road authority, for example, a truck is three times as valuable
as a car (Rijkswaterstaat, 2011).
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There are further categories to differentiate between vehicles, though these will only
play a minor or no role in this thesis. The origin and the destination of the vehicles can
differ. As we already showed previously, the destination can be exploited to prevent
spillback (Figure 2.3). In the case study, will we differentiate vehicle also by their
destination (Section 7.3.2). Another category is the exhaust gas or noise emission of a
vehicle. Like the value of time, emissions do not directly affect traffic flow, but are an
important measure if the goal to minimize the total emission of a network.

2.2.2 Prediction Models

This section discusses prediction models (or categories thereof) that can potentially
be used in a model-predictive control approach for multi-class DTM. For each model,
we presents its main principle, some examples its computational speed and the traffic
phenomena it is capable of reproducing.

2.2.2.1 The Basic Macroscopic Traffic Flow Model: LWR

Model Macroscopic models represent traffic as a fluid which resembles the average
behavior of traffic. The conservation of vehicles states that no vehicle can be destroyed
or created. Mathematically, this is expressed by describing the traffic density k and
traffic flow q over space x and time t by the partial differential equation

∂k
∂ t

+
∂q
∂x

= 0 . (2.2)

The LWR model by Lighthill & Whitham (1955) and Richards (1956) was the first
macroscopic model developed. Although it is not a multi-class model, it is named here
because of its importance for the models that are discussed thereafter.

The average traffic behavior is modeled by the fundamental diagram qFD, which de-
scribes an equilibrium relation between the traffic flow q and the traffic density k:

q = qFD(k) (2.3)

Furthermore, the speed

v =
q
k

(2.4)

in free-flow conditions is constant, and the flow linearly decreases with increasing
density in congestion, i.e. the fundamental diagram is triangular. Acceleration and
deceleration are infinite. With the assumption of flow maximization, the LWR model
is uniquely solvable.

Computational Speed A discretized version of the LWR model exists in the form
of the Cell Transmission Model by Daganzo (1994), which partitions the network into
segments, commonly in the order of one hundred meters length. The computation is
fast; usually much faster than microscopic models of similar size.



22 Vehicle-class Specific Control of Freeway Traffic

Phenomena The LWR model reproduces congestion correctly, including its emer-
gence and dissolution. Acceleration is unrealistically high. The capacity drop is not
reproduced. The propagation of stop-and-go waves is reproduced, though not their
emergence.

2.2.2.2 Mixed-class Generalizations of the LWR Model

Model The LWR model has been expanded in several different ways. Many models
generalize the fundamental diagram (2.3) to assume another shape. Higher-order mod-
els replace the flow maximization with a second partial-differential equation. Since
vehicles do not appear or vanish inside of network, the conservation of vehicles (2.2)
remains.

Examples Lebacque (2003) limits the acceleration of the traffic to a finite value. This
enables the reproduction of the capacity drop. Payne (1971) replaces the flow maxi-
mization of the LWR model with a partial differential equation modeling the speed:

∂v
∂ t

+ v
∂v
∂x

=
vFD(k)− v

τ
+

1
2τ

dvFD

dk
1
k

∂k
∂x

, (2.5)

with a parameter τ . The Metanet model by Messmer & Papageorgiou (1990) is a
discretization thereof and commonly used for simulations of traffic control.

Computational Speed Generalizations of the LWR model usually include more
equations. This usually leads to a higher computational speed.

Phenomena Dependent on the generalization, different phenomena like the capacity
drop or the emergence of stop-and-go waves in additions to the ones reproduced by the
LWR model can be captured.

2.2.2.3 Multi-class Macroscopic Traffic Flow Models with Fixed PCE Value

Model Multi-class macroscopic models expand the LWR model to multiple vehicle
classes. The conservation of vehicles (2.2) is generalized for each vehicle class u:

∂ku

∂ t
+

∂qu

∂x
= 0 . (2.6)

Furthermore, the speed can differ between classes so that the fundamental diagram is
class-specific, too:

qu = qFD
u (Ktot) , (2.7)

whereby Ktot represents a traffic density aggregated over all user classes. Furthermore,
the relative spacing between vehicle classes can differ. In this model, we assume that
the ratio of the spacings between two vehicle classes, i.e the pce value πu (2.1), is fixed.
Later, we will discuss a model with a dynamic pce value.
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Examples Multi-class models have been proposed for the case where only the speed
of the vehicles differs (Wong & Wong, 2002; Logghe & Immers, 2008), and for the
case of different vehicle lengths (Chanut & Buisson, 2003; Ngoduy & Liu, 2007).
Hoogendoorn (1999) has proposed a lane-specific multi-class model.

Computational Speed The computational speed is lower than that of the LWR of
comparable size, since the state of multiple classes and their interactions have to be
calculated as well.

Phenomena Besides the phenomena of the LWR model, it also reproduces the traffic
composition and different speeds per class. Macroscopic traffic flow models also have
the potential to reproduce the capacity drop and the emergence of stop-and-go waves.
Currently, however, no multi-class macroscopic model has been developed that is able
to do so.

2.2.2.4 Multi-class Macroscopic Traffic Flow Models with Dynamic PCE Value

Model Macroscopic multi-class models can be extended to take the dynamics of
the spacings between vehicle classes into account, i.e. the pce values πu(vu) (2.1) are
dynamic dependent on the traffic state. For example, a truck can equal three cars in
congestion, but only one and a half cars in free flow.

Examples The model Fastlane by Van Lint et al. (2008b) contains a dynamic pce
function which defines a pce value dependent on the traffic state.

Computational Speed The computational speed is slightly lower than other macro-
scopic multi-class models of same size, since the pce value has to be calculated as
well.

Phenomena In addition to the phenomena reproduced by other macroscopic multi-
class models, a model with a traffic-state dependent pce function also reproduces the
vehicle spacings more realistically.

2.2.2.5 Microscopic Traffic Flow Models

Model In contrast to macroscopic models where traffic is modeled as a fluid, micro-
scopic models represent each vehicle individually. A vehicle thereby reacts dependent
on the vehicles in its vicinity – usually its predecessor for the longitudinal behavior
and the those in the adjacent lanes for lane-changing behavior. Since every vehicle is
modeled, microscopic models can easily represent multiple vehicle classes.
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Many microscopic models are non-deterministic, i.e. they include some random behav-
ior by employing random number generator. Consequently, the results of two different
model runs with the same or similar input can lead to very different outputs. For ex-
ample, congestion can emerge as different time. To achieve a representative result, a
microscopic model is usually run multiple times and the results are then averaged.

Due to the detailed representation of traffic, the network has to be modeled in great
detail. For example the shape and curvature of the on-ramps, or the slope of hills must
be represented.

Examples Many microscopical models have been developed for the longitudinal be-
havior. In the model by Newell (2002), in congestion, the vehicle α simply determines
its speed vα(t) at time t dependent on the distance xα(t)− xα−1(t) to its leader α−1:

vα

(
t +

τ

2

)
=

1
τ
(xα−1(t)− xα(t))−

d
τ
, (2.8)

whereby d and τ are a spatial and a temporal delay parameter, respectively. Essentially,
the follower α copies the trajectory of its leader α−1 delayed by d in space and τ in
time. In free-flow, the vehicle simply travels with its maximum speed. This model is a
microscopic version of the macroscopic LWR model, which will be discussed soon.

The Optimal Velocity Model by Bando et al. (1998) determines the acceleration aα of
a vehicle according to a distance-speed relation ship V , also called the optimal velocity
function:

aα = β · (V (xα−1− xα)− vα) , (2.9)

whereby β is a parameter expressing the sensitivity of the driver. The Intelligent Driver
Model by Treiber et al. (2000) determines the acceleration based on the current speed,
speed difference and distance to its leader:

aα = β

[
1−
( vα

vfree

)δ

−
(

r∗(vα ,∆vα)

xα−1− xα

)2
]
, (2.10)

with the desired minimum gap

r∗(vα ,∆vα) = rmin
√

vα

vfree +T vα +
vα∆vα

2
√

βγ
, (2.11)

with the parameters rmin, T , vfree, β , γ and δ . These models can easily be generalized
to multiple vehicle classes by making the parameters vehicle-dependent.

Whereas the models named above are deterministic, the following ones include random
behavior and are therefore non-deterministic. The model by Leutzbach & Wiedemann
(1986) is a psycho-spacing model, whereby the driver begins or stops accelerating
depending on the distance and speed difference to its leader.

Longitudinal microscopic models combined with lane-changing models are then typ-
ically used in practice for simulation. The software tool FOSIM (Dijker, 2002) is
calibrated for Dutch freeways. Commercial packages for network-wide simulations
include ptv Vissim, Quadstone Paramics and Aimsun.
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Computational Speed The computational speed of a microscopic model can be low.
One reason is that a lot of vehicles have to be simulated. Since the number of vehi-
cles in the network is much higher in congestion than in free-flow, the model performs
significantly slower when congestion is present. Another reason is that multiple simu-
lations have to be performed in order to create a meaningful average result that can be
used in the model-predictive controller, if it is a non-deterministic model.

Phenomena Microscopic model can potentially reproduce very detailed phenomena.
Besides congestion, multiple vehicle classes and their effects on the spacing, emerging
and dissolution of spillback, as well as bounded acceleration and the capacity drop can
be reproduced. However, a microscopic model that reproduces all phenomena well
does not yet exist.

2.2.3 Conclusion of the Prediction Component

The matrix in Table 2.1 summarizes the models’ capabilities to reproduce traffic flow
phenomena. The LWR model was the first macroscopic traffic flow model that repro-
duces the congestion well, including spillback and dissolution. It has been expanded
in order to reproduce different vehicle classes. Though current multi-class models do
not capture the capacity drop, several macroscopic mixed-class models such reproduce
it to some degree. A combination of those models might be able to be both multi-class
and reproduce the capacity drop. Furthermore, macroscopic models are divided into
ones with a fixed pce value and ones with a dynamic pce value. The latter ones are
more realistic macroscopic models. Microscopic models have the potential to repro-
duce all traffic flow phenomena; though currently, no microscopic model reproduces
all phenomena. Furthermore, they are not deterministic in general.

macroscopic model 
LWR

m i c r o s c o p i c  m o d e l s

multi-class 
macroscopic models 
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Figure 2.7: Overview of traffic flow predictions models
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congestion � � � � �
spillback � � � � �

congestion dissolution after increase of demand � � � � �
congestion dissolution after increase of supply � � � � �

capacity drop – � ◦ ◦ �
emergence of stop-and-go waves – � ◦ ◦ �

propagation of stop-and-go waves � � � � �
multi-class – – � � �

dynamic pce value – – – � �
deterministic model � � � � –

Table 2.1: Overview of prediction models and their capabilities to reproduce traf-
fic flow phenomena; �: model reproduces phenomenon, –: model does not pro-
duce phenomenon, ◦: model reproduces phenomenon only partially or has the
potential to reproduce it if it is extended

The diagram in Figure 2.7 compares the prediction models in terms of computational
speed and validity for our purposes of applying a model-predictive controller for multi-
class freeway traffic. Microscopic models have the potential to model many traffic phe-
nomena, though currently they require many executions in order to produce a mean-
ingful average result for the model-predictive controller. The class of macroscopic
models represent the average behavior of traffic so that one model execution is suffi-
cient, which renders them much faster than microscopic models. The more realistic a
macroscopic model is, the more equations it usually contains and therefore the slower
it computes the result. Macroscopic models that take the dynamics of the spacings
between vehicle classes in the form of a pce function into account are the most valid
models for the purpose of this thesis.
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Decision

Since a goal of this thesis is to develop a multi-class controller, the multi-class behav-
ior of traffic should be represented sufficiently accurate. The two candidates for that
purpose are microscopic models and multi-class macroscopic models with a dynamic
pce function. Since microscopic models require a long time to produce a meaningful
average result, they are unfeasible for the control purposes of this thesis. Other rea-
sons against them are that the data on an individual level are not gathered, and that the
network layout has to be known in detail. Macroscopic models, in contrast, are much
faster and can run within a few seconds.

We therefore choose Fastlane as the prediction model used in the rest of this thesis. The
model originate from Van Lint et al. (2008b); its continuous model is also presented in
this thesis in Section 5.1 and discretized in Section 5.2.

In order to use Fastlane in a predictive control environment, it has to be calibrated to
the traffic network under consideration. As part of the case study of this thesis, Fastlane
is calibrated and validated to the Dutch A15 in Sections 7.3 and 7.4, respectively. The
input of Fastlane is the current traffic density over space. The next section chooses an
appropriate model to estimate the current traffic state.

2.3 Design Choices for the Estimation Component

This section presents an overview of traffic state estimation methods. First, the re-
quirements for the Estimation Component are outlined. Then, estimation methods are
discussed. Finally, we conclude that both the Adaptive Smoothing Method and the
Extended Kalman Filter technique are suitable. These two methods will be analyzed
further in Chapter 4, and we will decide there to ultimately use the Adaptive Smoothing
Method.

2.3.1 Requirements of the Estimation Component

The task of the Estimation component is to map the traffic data from the sensors to the
input of the Prediction component, which represents the current traffic state. In most
real-time freeway applications, the spatiotemporal data in the form of speed, flow or
density have to be fused to the density over space, preferably for each vehicle class.

In order to perform control in real-time, the current traffic state has to be computed fast,
i.e. within a few seconds. Furthermore, the traffic state estimated must closely match
the true traffic state. Since the sensors do not cover the whole freeway, but instead
provide only partial information, the data have to interpolated in a valid way.
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2.3.2 Estimation Models

In the following, several traffic state estimation models are discussed. For each method,
we present its main idea and examples, and discuss its computational speed and its
validity.

2.3.2.1 Interpolation in Space

Method A simple method of estimating the traffic state is to interpolate the most
recent data between the sensors. Simple interpolation can be done constantly (using
the data of the downstream detector), linearly, (a weighted average between the two
adjacent detectors), or by some other interpolation function.

Examples Examples of piecewise constant or piecewise linear interpolation are dis-
cussed in Van Lint & Van der Zijpp (2003).

Computational Speed Due to their simplicity, these interpolation methods compute
the traffic state very fast.

Validity The drawback is, however, that the traffic state is not very accurate. The
main reason is that the dynamics of traffic or not taken into account.

2.3.2.2 Interpolation in Space and Time: Adaptive Smoothing Method

Method The Adaptive Smoothing Method (ASM) (Treiber & Helbing, 2002) does
take the dynamics of traffic into account. Some characteristics of traffic, e.g. speed and
flow, travel with a certain speed along the freeway. This method interpolates the data
along this propagation speed, i.e. it interpolates the data over space and time.

Examples The Adaptive Smoothing Method was developed originally by Treiber &
Helbing (2002) for one data source. It was then expanded to multiple data sources by
Treiber et al. (2011) and Van Lint & Hoogendoorn (2010).

Computational Speed Due to the more complicated model, current implementa-
tions compute the traffic state within a few minutes.

Validity Since the propagation of the traffic characteristics is taken into account, this
model performs better than a simple spatial interpolation method.
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2.3.2.3 Nudging

Method Newtonian relaxation, or nudging, combines the data of the sensors with the
prediction of a traffic model. Traffic flow models like the ones discussed in Section 2.2
can serve as the prediction model. Depending on the traffic flow model, the propaga-
tion of the traffic characteristics are taken into account. The errors of the model can
therefore be corrected with data of the sensors.

Examples Nudging is used by Herrera & Bayen (2010) for estimating the traffic state
based on mobile phones by adding or removing vehicles in the model prediction.

Computational Speed Since nudging employs a prediction model, its computational
burden is higher than those of the previous estimation models.

Validity Since nudging employs both a traffic flow model that takes the propaga-
tion direction into account and furthermore corrects the model errors to some extent,
nudging can lead to better estimation results than the ASM.

2.3.2.4 Recursive Bayesian Estimation

Method Like nudging, recursive Bayesian estimators combine sensor data with a
model prediction. In addition to the previous approach, the model and sensor uncer-
tainties are modeled. These data are then fused by applying Bayes’ Law.

Examples Commonly used recursive Bayesian estimators in traffic state estimation
include the Extended Kalman Filter (Wang et al., 2007; Tampère & Immers, 2007;
Van Lint et al., 2008a), the Unscented Kalman Filter (Ngoduy, 2008), the Ensemble
Kalman Filter (Work et al., 2008), and the Particle Filter (Mihaylova et al., 2007).

Computational Speed Recursive Bayesian estimators consist of some demanding
mathematical operations like matrix inversions; they can therefore be relatively slow.

Validity Since Bayesian estimators also take the model and sensor noise distributions
into account, they can be the most valid. However, both the prediction model and the
noise parameters have to be calibrated.
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Figure 2.8: Overview of traffic estimation models

2.3.3 Conclusion of the Estimation Component

The diagram in Figure 2.8 compares the estimation models in terms of computational
speed and validity. The more information is taken into account, the more valid a model
can be, though also that also increases the computational complexity. Simple inter-
polation methods can be very fast, but they can exhibit large estimation errors. The
Adaptive Smoothing Method takes the propagation direction of the characteristics into
account, which produces better results. Since nudging and recursive Bayesian esti-
mation combine the data with the prediction of a traffic flow model, they have the
potential to be the most valid ones. Because they use a prediction model, they are also
the slowest estimators.

Decision

Both the Adaptive Smoothing Method and recursive Bayesian estimators exhibit a
good performance. In Chapter 4, we will further analyze both the ASM and the Ex-
tended Kalman Filter, which is a form of a recursive Bayesian estimator. They will be
computationally improved so that they can estimate the current traffic within a few sec-
onds and are therefore suitable for real-time applications. In that chapter, we will also
decide on a traffic state estimator. We will choose the Adaptive Smoothing Method as
a suitable traffic state estimator to be applied in the Estimation Component, since it is
much easier to calibrate than the recursive approaches.

Furthermore, Chapter 3 will develop a method to automatically estimate the propaga-
tion of the characteristics, which is used to calibrate the state estimators. The structure
of the Estimation Component of the control loop is illustrated in Figure 2.9.
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2.4 DTM Measures Considered in This Thesis

In this thesis we will test and develop multi-class traffic control concept in which three
types of freeway DTM measures are considered: ramp metering, route guidance and
dynamic truck lanes.

Ramp Meters are installed at on-ramps to limit the inflow into the freeway. One aim
thereby is to cap the traffic flow in order to prevent (or at least delay) the onset of
congestion on the freeway. Furthermore, if traffic is kept in free flow, the capacity drop
often caused by congestion (Chung et al., 2007) is avoided, thereby ensuring a larger
capacity than without ramp metering. Another aim is to improve merging of traffic by
granting vehicles access to the freeway when a sufficiently large gap is present, which
homogenizes traffic and therefore decreases the chance of the onset of congestion.

Figure 2.10(a) shows the ramp meter installation at the on-ramp Delft Noord to the
Dutch A13. The green time of the traffic light is fixed, allowing one vehicle to pass. By
varying the red time, the outflow of the ramp and therefore the inflow into the freeway
(in veh

h ) is controlled. A simple demand-capacity algorithm can control the ramp flow
in such a way that it equals the difference between the capacity of the freeway and
its current flow (Masher et al., 1975). A similar approach is the algorithm used by
the Dutch road authority (Taale & Middelham, 2000), though it smooths the freeway
traffic data over time. The control algorithm Alinea (Papageorgiou et al., 1991) is a
PI-controller that assigns the ramp flow in such a way that the traffic state downstream
of the on-ramp is kept at a specified traffic density, which is usually set slightly below
the critical density so that the freeway traffic stays in free-flowing conditions.

The second DTM measure used in this thesis is route-guidance. Travelers can usually
choose between multiple routes from their origin to their destination. Route guidance
measures are used to influence that route choice in order to distribute traffic streams
across the network. This is a measure to route vehicles around a congested area.
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(a) Ramp meter (at on-ramp Delft
Noord of the Dutch A13, from
Wikemedia Commons (2012))

(b) Route guidance (near ring free-
way of Amsterdam, from Wike-
media Commons (2012))

(c) High-occupancy and toll lane
(HOT, near Seattle, WA, SR 167,
from Homepage Texas Trans-
portation Institute (2012))

Figure 2.10: DTM measures considered in this thesis

Routes can be advised by several different actuators. Road-side signs can directly
advise a route or, alternatively, inform the drivers about the travel times or traffic con-
ditions of each possible route (Figure 2.10(b)). Since many travelers use personal sys-
tems like navigation devices or smart phones, the route can also be advised to each trav-
eler individually. Route Guidance measures control the turnfraction of traffic streams
at network bifurcations like off-ramps or junctions. Route guidance control has been
implemented in several countries, among others in Scotland (Messmer et al., 1998) and
Denmark (Mammar et al., 1996). Route guidance has been applied in simulations of
the Dutch A10 ringroad around Amsterdam (Wang et al., 2006).

The third DTM measure discussed is the vehicle-class specific lane. Traffic is com-
posed of multiple vehicles classes, whereby the values of the classes differ. Examples
of valuable vehicles are trucks with time-critical goods, cars with multiple passengers,
or cars with a single passenger who is willing to pay a toll to gain access to a faster
lane. Congestion thus has a particularly large negative effect on the travel costs of these
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vehicles. A vehicle-class specific lane is a measure to let the valuable vehicles bypass
a congested area. A vehicle-class specific lane can be static, or it can be dynamically
switched on or off dependent on the traffic state.

Figure 2.10(c) shows a variable sign of a high-occupancy and toll lane (HOT), where
the price for cars with a single passenger can be adjusted dynamically. A vehicle-
class specific lane separates the flows of traffic across lanes and controls the traffic
composition of the lanes. High-occupancy vehicle lanes (HOV) and high-occupancy
and toll lanes (HOT) are popular in the US. Buckeye (2012) presents an overview of
vehicle-class specific lanes applied in the state of Minnesota. The optimal price setting
for HOT is an issue of current research, see for example Lou et al. (2011). De Palma
et al. (2008) analyzes the optimal toll rate of a truck lane in terms of travel costs, noise
and safety.

Ramp metering and route guidance will be generalized to multi-class DTM measures
in Chapter 6 and eventually applied in the case study of Chapter 7. Furthermore, since
vehicle-class specific lanes like truck lanes already exist, we will include them in the
analyses of Chapter 6.

2.5 Traffic Sensors Considered in This Thesis

The literature of road sensing technology is large (Tyburski, 1988). This section pro-
vides only a brief overview. As shown in the control loop of Figure 1.2, the traffic data
are used by the Estimation component to compute the current traffic state. For fur-
ther purposes like analyzing historic data or traffic model calibration, data are usually
logged in a database.

Stationary sensors provide data at a fixed location. The most commonly used stationary
sensor is the inductive loop, which is placed in the surface of the road. When a vehicle
passes the loop, its metallic frame induces an electric current. The onset and the offset
of this current mark the passing and leaving time of the vehicle. By counting the
number of passing vehicles, the traffic flow can be calculated. There are several types
of inductive loops. Dual-inductive loops are common in the Netherlands. Since the
distance between the loops is known, the speed and the length of the vehicle can be
deduced. Single-inductive loops are common in the United States. The vehicle speed
is therefore not directly observed. Nevertheless, methods have been developed to infer
the vehicle speed from the measured flow and occupancy (Coifman & Kim, 2009).
There are also other sensors to gather stationary data like flow and speed; examples are
infrared detectors and microwaves.

In-vehicle sensors like Global Positioning System devices (GPS) measure and dissem-
inate the position and the speed of a vehicle. GPS sensors are common nowadays in
navigation devices or smartphones. These floating-car data (FCD) do not measure the
traffic flow. However, the flow can be deduced if the percentage of equipped vehicles
is known.
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Point-to-point sensors like Bluetooth or fixed cameras with automatic vehicle iden-
tification (AVI) provide information about the travel time and partially about origin-
destination information. To calculate the complete origin-destination information, a
similar requirement as for FCD applies, namely that a known percentage of the traffic
of each origin-destination pair is equipped with Bluetooth devices.

In this thesis, data from various sensors are used. We mainly use data from induction
loops, since these are easily available. The database of Regiolab Delft (2012) stores
data from dual-inductive loops of the freeways in the Netherlands. Roportis (2012)
stores loop data from the road network in the harbor area of Rotterdam. Furthermore,
we use videos gathered from a helicopter perspective. Although these data are not used
to estimate the current traffic state, they are valuable for the calibration of traffic flow
models, as it will be performed in Section 7.3 as part of a case study.

2.6 Conclusion

This chapter designed the parts of the control loop that was outlined in its basic form
in Figure 1.2. Since the scope of this thesis is to control freeway traffic vehicle-class
specifically, most of the parts of the control loop are multi-class. The refined version
is shown in Figure 2.11.

Traffic System Sensors multi-class 
DTM measures

BOS-HbR 
(Beslissingsondersteunend systeem voor het Havenbedrijf Rotterdam)

Optimal Control

Prediction

Optimization

Performance Function

current
traffic 
state

future traffic 
state

control signal 
trajectory

optimal control 
signal trajectory

Estimation

sensor data

Wave Speed 
Estimator

Adaptive 
Smoothing 

Method

characteristic 
propagation speed

Fastlane

Figure 2.11: Control loop for multi-class Dynamic Traffic Management
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As a control approach, optimal control and model-predictive control are chosen, since
they can directly take the effects of irregular traffic conditions such as incidents into
account, they are able to predict the effects of the multi-class DTM measures, and they
optimize the future traffic conditions based on a defined objective such as minimizing
the total cost.

To predict the future traffic conditions, the multi-class macroscopic traffic flow model
Fastlane will be used. It reproduces the most important traffic flow phenomena, such as
the onset and dissolution of congestion, spillback, and a dynamic pce value dependent
on the current traffic state.

The current traffic state is estimated by the Adaptive Smoothing Method, which inter-
polates the data based on the propagation speeds of the traffic characteristics such as
flow and speed.

The DTM measures are vehicle-class specific, i.e. they can control each vehicle class
separately. In this thesis, a class-specific lane, a class-specific ramp meter and a class-
specific route guidance measure will be used. To observe the traffic state in real-time,
inductive loop detectors are used.

The following chapters will further develop the components of the control loop of Fig-
ure 2.11. Chapter 3 develops a method which automatically estimates the propagation
speed of the characteristics. Chapter 4 computationally improves both the Adaptive
Smoothing Method and an Extended Kalman Filter in order to estimate the traffic state
within a few seconds. Chapter 5 analyzes the effects of different vehicle classes on
traffic throughput, congestion spillback and total cost on the prediction model Fast-
lane. Chapter 6 develops multi-class DTM measures and test their performance and
their effects on traffic.

In a case study in Chapter 7, the three components Estimation, Prediction and Control
will be applied to the Dutch A15 near the harbor of Rotterdam and form the sys-
tem BOS-HbR, which stands for “Beslissingsondersteunend Systeem voor het Haven-
bedrijf Rotterdam” (in English: “Decision Support System for the Port of Rotterdam
Authority”.) An online version will be shown in Section 8.5, where the current traffic
state is estimated in real-time, the future traffic conditions are predicted and control
signals are optimized for the next hour.
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Chapter 3

Estimation of Spatiotemporal Traffic
Characteristics

The goal of this first part of the thesis is to accurately estimate the traffic state of a
freeway within a few seconds given available raw traffic data. This chapter develops a
method that estimates the location of the transitions of traffic states. The propagation
speed of shock waves is analyzed from spatiotemporal traffic data by applying image
processing tools. The propagation speed of the shock waves are used to calibrate the
traffic state estimators described in Chapter 4.

First, Section 3.1 presents a background of traffic shock waves and their relevance
for traffic state estimation. Then, Section 3.2 reviews state-of-the-art methods of
wave speed estimation. The new method of wave speed estimation is developed in
Section 3.3. This method is applied to empirical data from Dutch freeways in Sec-
tion 3.4. Another application is the performance evaluation of traffic flow models; in
Section 3.5, this method is applied to synthetic data to evaluate the speed of shock
waves generated by a traffic flow model. The conclusions are presented in Section 3.6.

This chapter is an extended version of Schreiter, Van Lint, Yuan, & Hoogendoorn
(2010b): “Propagation Wave Speed Estimation of Freeway Traffic with Image Pro-
cessing Tools” presented at the 89th Annual Meeting of the Transportation Research
Board.
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3.1 Background

The estimation of spatiotemporal characteristics is an important part for estimating the
current traffic state. This chapter focuses on the estimation of shock waves and their
propagation speeds, since they will be used later to calibrate the traffic state estimators.
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(a) Spatiotemporal speed data, a shock wave at the upstream front of a stop-and-go
wave (24-04-2009)
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(b) Spatiotemporal flow data, a shock wave as platoons of vehicles travel through light
traffic (25-04-2009)

Figure 3.1: Shock waves (black) observed in spatiotemporal freeway traffic data
(Dutch A13R)

A typical example of a shock wave occurs at stop-and-go waves. From a driver’s per-
spective, traffic slows suddenly down so that they have to brake; after a few minutes,
traffic resumes free-flow conditions so that drivers can continue their trip. When ob-
serving the traffic stream from atop, the stop-and-go wave is visible as a region of a few
hundred meters length where traffic is standing still. Since vehicles leave that region at
its head and new vehicles enter that region at its tail, the stop-and-go wave propagates
upstream. Such a stop-and-go wave is thus characterized by two shock waves, one at
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the head and one at the tail. This pattern is visible in the printouts of spatiotemporal
traffic flow data. Figure 3.1(a) shows multiple stop-and-go waves in a speed contour
plot. The upstream shock of a stop-and-go wave is marked by the thick black line.
This shock wave emerges at Kilometer 18 at 15:35 and then propagates upstream with
a constant speed of c =−19 km

h .

Shock waves also occur in free-flow traffic, as the spatiotemporal flow plot of Fig-
ure 3.1(b) shows. Vehicle platoons cause a regions of high flow, which are surrounded
by shock waves. One of them is marked by the thick black line.

Empirical data show that the propagation speed of the characteristic congestion wave
speed varies between −25 km

h and −15 km
h (Schönhof & Helbing, 2009; Kerner & Re-

hborn, 1997; Treiber et al., 2000; Kerner, 1998; Chiabaut & Leclercq, 2011; Bertini &
Leal, 2005; Graves et al., 1998; Zhang & Rice, 1999; Cassidy & Mauch, 2001). This
variation can be explained with the following simple car-following law (Pipes, 1967):

r = rmin +hmin · v ⇔ v =
r− rmin

hmin , (3.1)

where r denotes the average gross distance headway between vehicles, rmin the dis-
tance at standstill, v the speed and hmin the minimum time headway. Note, that this
relation only holds in sufficiently high densities k. Since k = 1

r , from (3.1) follows

v(k) =
1
k − rmin

hmin ⇒ q = kv(k) =
1− rmink

hmin , (3.2)

showing that this car-following law leads to a linear congestion branch of the funda-
mental diagram expressed in flow q and density k as illustrated in Figure 3.2. Then,

ccong =
dq
dk

=− rmin

hmin (3.3)

shows the relation between ccong and the car-following parameters. This relation pro-
vides a tool to show how changes in composition, road condition and weather condi-
tions affect the wave speed. For instance, a large share of trucks changes the average
distance at standstill rmin substantially, causing an increase in the speed ccong. Re-
ductions in the minimum headway hmin, for example caused by changes in weather
conditions, geometry or improved visibility, also lead to an increased wave speed (in
absolute terms). The correct estimation of the site-specific ccong is thus important.

In low densities, the flow grows approximately linear with the density, as the left branch
of the fundamental diagram in Figure 3.2 shows. The characteristic waves speeds cor-
respond therefore directly to the slope of the two branches of the fundamental diagram.
This relationship is also used in traffic state estimation with the Adaptive Smoothing
Method (Treiber et al., 2011), which will be analyzed later in Chapter 4. The charac-
teristic wave speeds are therefore used to calibrate the fundamental diagram and traffic
state estimators.
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Figure 3.2: Relation between characteristic wave speeds and the flow-density fun-
damental diagram (data from Dutch freeway A15 eastbound by dual-inductive
loops at Km 55.1 from 20-03-2012)

Conversely, the estimation of the characteristic shock wave speeds is possible from the
flow-density fundamental diagram. However, the direct estimation of the fundamen-
tal diagram from a single stationary loop detector is difficult, since the data are very
noisy. An example is shown Figure 3.2 by the scattered dots, which represent data
gathered at a stationary detector. A reason for this noise is that loop detectors aver-
age the data over one minute, i.e. the data are aggregated over multiple traffic states,
which leads to measurement errors (Laval, 2010). Moreover, on Dutch freeways, the
sensors aggregate the speed arithmetically, which leads to a systematic overestimation
of the speed (Knoop et al., 2009) and therefore to a bias in the fundamental diagram.
Shock wave speeds can therefore hardly be estimated accurately from single stationary
detector data.

A alternative approach is to analyze spatiotemporal data plots like the one in Figure 3.1
directly. There, the transitions of traffic states and the shock waves are directly visible,
despite the imprecision and bias caused by the sensors. In this chapter, we develop a
method that directly analyzes spatiotemporal data and scans such a plot for the transi-
tion of traffic states by applying image processing methods, namely an edge detector
and a line detector. The method is able to localize shock waves that propagate with
constant speed and it determines this propagation speed. The method can be applied
for determining the characteristic shock wave speed of a traffic regime or to locate a
bottleneck in the road stretch.

3.2 Literature Overview

The most intuitive method of identifying shock waves is to manually inspect spatiotem-
poral traffic data plots like the ones in Figure 3.1. A shock wave is visible as the border
between two areas of different color. By measuring the spatial (∆x) and temporal (∆t)
spread of that line, the propagation speed c of the corresponding shock wave speed is
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the slope of that line:

c =
∆x
∆t

. (3.4)

Nevertheless, methods have been developed to support this process.

Zheng et al. (2011a) analyze the speed signal of a stationary detector. A strong change
of speed indicates a change of the traffic regime. If two of these changes are found
within a few minutes, then a stop-and-go wave likely had passed. Such a strong change
is detected by applying a wavelet transform, which is a common method in signal pro-
cessing. More specifically, a peak in the energy distribution of the wavelet transform
indicates a strong change of speeds over a longer period. In this way, the wavelet
method is robust for narrow peaks in the signal, as it can be caused by detector errors.
By applying this method to multiple adjacent detectors, the shock waves are located
in space and time by tracing the peaks of each wavelet signal. A linear fit of these
peaks then yields the propagation speed of the stop-and-go wave. Similarly, Zheng
et al. (2011b) apply the same wavelet transform to vehicle trajectories to estimate the
shock wave speeds.

Another method is to estimate the propagation wave speed by matching cumulative
vehicle count curves of neighboring detectors. According to Newell’s car-following
model (Newell, 2002), in congestion, the trajectories of successive vehicles are similar;
they are only shifted in space and time by the wave speed. This principle is used by
Chiabaut et al. (2010) by comparing to successive vehicle trajectories. Furthermore,
Chiabaut & Leclercq (2011) apply the same principle to macroscopic data: the shift
between the speed and cumulative flow counts of neighboring detectors determines the
shock wave speed.

Treiber & Kesting (2012) analyze the speed time-series of speed data of neighboring
detectors by using the cross-correlation, which expresses how similar two signals are.
Since in congestion the time-series are shifted by the characteristic shock wave speed c,
the cross-correlation is maximized when the downstream time-series is shifted by ∆t =
∆x · c (with ∆x as the distance between the detectors). However, different regimes are
characterized by different wave speeds. A regime change thus leads to different signals
between the detectors so that the cross-correlation approach may not work if applied to
the whole signal. This method therefore requires a pre-selection of the data so that only
data of the same traffic regime are used in the analysis. Similarly, Coifman & Wang
(2005) use the cross-correlation of the cumulative vehicle count and speed signals
between neighboring detectors to determine the shock waves speeds in congestion.

3.3 Methodology

This section develops the methodology of the Wave Speed Estimator (WSE). Based on
spatiotemporal speed and flow data from freeways, the WSE computes the shock wave
speeds. It consists of four components, as Figure 3.3 illustrates.
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Figure 3.3: Structure of the Wave Speed Estimator

The two main components originate from the field of image processing. An edge detec-
tor localizes the border between two objects. A line detector is able to localize straight
lines. The research field of image processing is well known and widely applied in traf-
fic science as well as in many other domains. Applications are, for example, license
plate recognition used in automatic vehicle identification systems (Shapiro et al., 2006;
Anagnostopoulos et al., 2006; Abdullah et al., 2007), optical road estimation for au-
tonomous vehicles (Dahlkamp et al., 2006), the surveillance of traffic by video sensors
(Kastrinaki et al., 2003), the automatic detection of pedestrians and bicycles (Mali-
novskiy et al., 2009) or the detection of vehicles (Chi & Caldas, 2011). In every-day
life, image processing methods are used in face recognition applied in digital cameras.

Since the image processing methods operate on images, conversion from traffic data to
image data and back are necessary. These are performed by the preprocessing and the
postprocessing component of the WSE.

The remainder of this section explains each component of the WSE in detail. For
illustration purposes, the intermediate results of each component are exemplified in
Figure 3.4, where the characteristic shock wave speed of congested traffic is deter-
mined. In the experiments of Sections 3.4 and 3.5, we show other applications of the
method such as the estimation of the characteristic free-flow speed and the localization
of a bottleneck.
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(d) Speed data map after line detector and postprocessing; blue lines: lines
representing a stop-and-go wave, green: all other detected lines

Figure 3.4: Intermediate results of the Wave Speed Estimator for the case of shock
wave speeds at stop-and-go waves
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Figure 3.5: Example of edge detection in one dimension

3.3.1 Preprocessing

Before applying the image processing tools, the spatiotemporal traffic data is con-
verted to an image. An image is a matrix where each element represents a so-called
pixel, which is a rectangular area of fixed size and is assigned one value represent-
ing the brightness. In colored images, each pixel is assigned a vector of three values,
representing the red, green and blue intensity, respectively. The image is created by
interpolating the traffic data at equidistant sample points with a fixed resolution in
space ∆xdiscr and time ∆tdiscr.

Furthermore, the raw traffic data may contain outliers and other high-frequency noise
that obstruct the detection of the waves. A moving-average low-pass filter is therefore
applied to reduce the high frequencies.

As an example, Figure 3.4(a) shows the result of applying the preprocessing steps to
the raw data from Figure 3.1(a). Due to the low-pass filtering, the results look smoother
than the original raw data. Still, the borders between high and low speeds are preserved
so that shock waves are still visible.

3.3.2 Edge Detector

The next step is to detect the transitions of traffic states. An edge detector is able to
detect the transitions between dark and light regions in an image.

Figure 3.5 exemplifies the application of an edge detector in one dimension. The top
diagram shows a raw traffic signal v(t) over time, for example from a stationary de-
tector. Two traffic state transitions occur: at 00:02, traffic breaks down from 80 km

h to
30 km

h ; two minutes later, traffic recovers.
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These transitions can be detected by a gradient-based method. Convolving the signal
with a gradient-based kernel h =

[
−2 −1 0 1 2

]
results in the signal

g(t) = (v∗h)(t) (3.5)

shown at the bottom of Figure 3.5. The traffic state transitions are amplified and are
visible by strong extrema.

An edge detector applies the same principle in two dimensions. The gradients gx and
gt are determined by applying a gradient-based kernel (3.5) in each dimension. Then,
these gradients are superimposed:

G(x, t) =
√

gx(x, t)2 +gt(x, t)2 . (3.6)

If the superimposed gradient G exceeds a specified threshold γ in a point (x, t), then an
edge is detected at the point:

E(x, t) =

{
1 if G(x, t)> γ

0 else
. (3.7)

The result of an edge detector is thus a binary image E, representing the edges of the
traffic state conditions. An example is shown in Figure 3.4(b), where the diagonal lines
represent the edges that are caused by the stop-and-go waves.

Note that the absolute values of the original signal are irrelevant, as long as the state
transitions are visible. For example, the dual-loop detectors used in the Netherlands
are inherently biased because they aggregate the speed arithmetically over one minute,
which leads to an overestimation (Knoop et al., 2009). By applying an edge detector,
however, the traffic state transitions can be located despite this bias.

3.3.3 Line Detector

In the resulting image of the edge detector, the traffic state transitions are visible as
white lines. To locate them, a line detector is applied to the edge image.

The Hough transform (Hough, 1962) is a widely-used method of detecting lines. It
transforms an original image from the Cartesian x-t-plane into the so-called Hough
domain or ρ-θ -plane. These parameters specify the polar coordinates of straight lines
in the original picture by the relation

ρ = t cosθ + xsinθ , (3.8)

with the angle θ and the distance ρ to the origin of the image.

Figure 3.6 illustrates the important properties of the Hough transform. A point (x, t) in
the original picture corresponds to a sine wave in the Hough domain, as Figure 3.6(a)
shows. Moreover, a set of collinear points corresponds to a set of sine waves that all
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Figure 3.6: Relation between Cartesian x-t image and its Hough transform to
polar coordinates
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intersect at exactly one point, as the green box in Figure 3.6(b) shows. This point (θ ,ρ)
defines the angle θ and the distance to the origin ρ of its corresponding straight line.
Two parallel lines therefore result in a set of sine waves that intersect in two points
with the same angular coordinate, as Figure 3.6(c) shows.

The propagation speed of the corresponding shock waves is therefore determined by
the angle θ :

c =− tan(90◦−θ) · ∆xdiscr

∆tdiscr
. (3.9)

The distance ρ of the line to the origin of the Hough plane (the lower left corner) is
used to locate the shock wave. In the case of standing waves, this can be used to locate
the cause of the wave, such as a recurrent bottleneck or an accident.

The Hough transform is applied to the output image of the edge detector. This leads to
a grayscale image in the Hough domain, as shown in Figure 3.4(c). The local maxima,
which are the points with the highest intensity (boxes), are detected in the Hough
domain. The results of the Hough transform and the line detector are thus a set of
lines. An example of the result of the line detector is shown in Figure 3.4(d). (The
background is a grayscale version of the preprocessed image from Figure 3.4(a).)

3.3.4 Postprocessing

The result of the line detector is thus a set of lines. If the goal is to determine the
shock wave speed that characterizes a specific traffic flow pattern, these lines have to
be analyzed further.

Each traffic pattern is characterized by a prior probability density function (pdf) f p

that describes which wave speeds it causes. The lines found by the line detector then
represent a second pdf

f L(c) =
1

∑
n
i=1 si

·
n

∑
i=1

si ·δ (c− ci) , (3.10)

with their corresponding propagation speeds c1,c2, . . . ,cn weighted by their corre-
sponding lengths s1,s2, . . . ,sn, and the functional δ as the Dirac delta function:

δ (c) =

{
+∞ if c = 0

0 else
(3.11)

∫ +∞

−∞

δ (c)dc = 1 . (3.12)

By applying Bayes’ Law, the estimated posterior pdf

f e(c) =
f L(c) · f p(c)∫+∞

−∞
f L(c) · f p(c)dc

(3.13)
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Figure 3.7: Frequency of wave speeds of lines detected; blue: lines within prior
distribution (gray) of Figure 3.4, green: all other lines detected

describes the distribution of filtered shock wave speeds. The mean of that pdf then is
the mean shock wave speed

c =
∫ +∞

−∞

f e(c′) · c′ dc′ , (3.14)

which is the result of the WSE.

In the ongoing example of Figure 3.4(d), the shock waves of stop-and-go waves are of
interest. Since stop-and-go waves propagate with a speed between −25 km

h and −15 km
h

(Schönhof & Helbing, 2009; Kerner & Rehborn, 1997; Treiber et al., 2000; Kerner,
1998; Chiabaut & Leclercq, 2011; Bertini & Leal, 2005; Graves et al., 1998; Zhang &
Rice, 1999; Cassidy & Mauch, 2001), we chose a uniform pdf

f p(c) =


1

b−a
if c ∈ [a,b]

0 else
(3.15)

in the range of [a,b] = [−30 km
h ,−10 km

h ] as prior distribution f p. Figure 3.7 shows a
histogram of wave speeds of all lines detected ( f L). The gray function is defined by the
prior pdf f p. The posterior distribution f e (blue) therefore contains all the lines that
fall within the prior function. The mean of the posterior distribution is c =−19.9 km

h .

3.4 Extracting Shock Waves from Empirical Data

In this section, the proposed method is validated for empirical data by applying it to
spatiotemporal data gathered from Dutch freeways. Three experiments are performed
in order to estimate the shock waves caused by stop-and-go waves, by vehicle platoons
in free flow, and by a fixed bottleneck. To evaluate the performance of the WSE, its
estimated shock wave speeds are compared to the ones found by manual inspection.
We generated the latter ones by visualizing the raw data and estimating the shock waves
speeds by hand. Finally, a sensitivity analysis is performed.

The WSE is applied to freeway data gathered from the A13 southbound between The
Hague and Rotterdam (Kilometers 10 to 20, Figure 3.8). The dual-loop detectors are
placed approximately 500m apart on average and aggregate the speed and flow data
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Figure 3.8: The freeway A13 near Delft, The Netherlands; source: Google Maps
(2012)

over one minute. The evening traffic data between 15:00 and 19:00 from 14 days (from
24-04-2009 to 07-05-2009) serve as raw data. Figure 3.1 shows two examples of the
raw data. Since some of those days were weekends or holidays, not all of the traffic
patterns occurred on all of the days.

3.4.1 Extracting Shock Waves Occurring at Stop-and-go Waves

Stop-and-go waves are a common phenomenon in congestion, as Figure 3.1 exempli-
fied. Speed data are used as input, since stop-and-go waves are clearly visible there.
The prior distribution f p of the postprocessing component is set to a uniform distribu-
tion (3.15) with a range of [a,b] =

[
−30 km

h ,−10 km
h

]
.

Figure 3.9 presents the results of the Wave Speed Estimator. For both wave speeds ccong

(blue, this section) and cfree (red, Section 3.4.2), the estimated wave speed (crosses) and
the minimum and maximum speed values of all lines detected (triangles) are plotted.
For comparison, the results of the manual inspection method are plotted as well (grey).

Congestion occurred on 9 out of the 14 days. On 8 out of these 9 days, the WSE
estimated the congested wave speed ccong within a range of 2 km

h to the manual method.
On the twelfth day, no lines of congestion were detected. Since the values estimated
by the WSE are close to those of the manual inspection method, we conclude that the
WSE is capable of estimating the characteristic shock wave speed in congestion.

As the minimum and maximum values indicate, the lines detected are within a very
small range; Figure 3.7 shows a histogram of all lines detected of the first data set. This
narrow distribution of lines indicates that the shock waves occurring in congestion can
be well summarized by one wave speed value ccong for that day.
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Figure 3.9: Results of the Wave Speed Estimator applied to empirical data to
detect the wave speed of shock waves (in km

h ); crosses: average wave speed es-
timated, triangles: the minimum and maximum values found; blue: congestion
(Section 3.4.1); red: free-flow (Section 3.4.2); gray: results of the manual inspec-
tion method

3.4.2 Extracting Shock Waves Occurring in Free Flow

Vehicle platoons or other fluctuations in free flow cause shock waves that propagate
downstream. Since they are well visible spatiotemporal flow plots (see Figure 3.1),
flow data are used as input. The prior distribution f p is set to a uniform function (3.15)
with a range of [a,b] =

[
50 km

h ,120 km
h

]
.

An example result of the WSE for the second day is shown in Figure 3.10(a). Many
shock waves are detected correctly. These shock waves propagate with different speeds,
as the histogram in Figure 3.10(b) shows. Similarly, the other days show a large range
of wave speeds as well (Figure 3.9). This result suggests that the free-flow branch of
the fundamental diagram is bent.

In the case of free flow, the eaves are difficult to detect manually. The results of the
manual inspection (gray) are therefore very imprecise. Nevertheless, the results of
Figure 3.9 show that the results of the WSE match the manual results in many cases.
We conclude therefore that the WSE is also capable of estimating shock waves in free-
flow.

3.4.3 Extracting Shock Waves Occurring at Fixed Bottlenecks

Fixed bottlenecks cause standing shock waves. In this experiment, the WSE is used to
determine the location of a bottleneck. Figure 3.11(a) shows the speed contour plot of
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Figure 3.10: Results of extracting shock waves occurring in free flow

an accident on the A15 near Km 57.5 at 13-01-2010. Since the speed of a shock wave
created by a fixed bottleneck is zero, the prior distribution (3.15) is set to a uniform
function with the range [a,b] =

[
−1 km

h ,1 km
h

]
.

Figure 3.11(b) presents the results of the WSE for the case of standing waves. The
downstream front of the bottleneck is clearly estimated. By applying (3.8), the dis-
tance coordinate ρ of the Hough image is used to determine the bottleneck location.
The WSE reports a location of xbn = 57.6km, which matches the true location. The
WSE is therefore capable of localizing fixed bottlenecks. Since the shock between the
congestion tail and free-flow propagates with drastically changing speeds, no straight
line is detected there.

3.4.4 Sensitivity Analysis

The sensitivity of the estimated shock wave speeds is analyzed in order to determine
how reliable the results of the WSE are and how difficult it is to calibrate. The param-
eters values of the pixel size ∆tdiscr and ∆xdiscr, the size of the raw data in space and
time, the resolution of the Hough angle θ and further parameters of the image process-
ing methods were varied. The raw data from Figure 3.1 were used as input with the
goal of estimating the characteristic speed of shock waves in congestion.

The results show that the estimated shock wave speeds vary little within a range of
1 km

h . However, if the amount of input data is changed drastically, e.g. to a data window
of 24h by 30 km, then the WSE might not detect any shock waves. The reason is that
the intermediate images are then much larger than the default case of 4h by 10 km, for
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Figure 3.11: Results of extracting shock waves at fixed bottlenecks

which the WSE was calibrated. Due to the different image size, the parameter values of
the image processing tools have to be adjusted. For example, the pixel sizes ∆xdiscr and
∆tdiscr of the preprocessing component can be increased so that the size of the image
matches that of the default settings.

To conclude, the sensitivity analysis shows that if the WSE estimates a shock wave
speed, then the result is reliable. For some parameter values, however, no shock waves
were detected. Especially for the case of changing data sizes, the WSE might have to
be re-calibrated.

3.5 Extracting Shock Wave Speeds from Synthetic Data

This section applies the Wave Speed Estimator to spatiotemporal plots generated by a
traffic flow model to validate it for synthetic data. Three experiments are performed
on a road stretch; two of them reproduce congestion to assess the speed of stop-and-
go waves, and one produces vehicle platoons in free-flow to assess the characteristic
free-flow speed.

The synthetic data are created by the Intelligent Driver Model (Treiber et al., 2000),
since it realistically reproduces traffic flow phenomena such as congestion or the emer-
gence and propagation of stop-and-go waves. The output of this traffic flow model is
vehicle trajectories. The trajectories are then aggregated to macroscopic quantities
flow and speed according to Edie’s definitions (Edie, 1965) (resolution 200m by sec-
ond[10]). The WSE was then applied to these spatiotemporal quantities.
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Figure 3.12: Results of Experiment 1

3.5.1 Experiment 1

A bottleneck of half a kilometer length is located near the end of the road stretch. In
the bottleneck, the parameter values of the model are modified to reduce the capacity.
The inflow into the road stretch is chosen in such a way that congestion emerges at the
bottleneck.

Figure 3.12(a) shows the output of the traffic flow model. Stop-and-go waves emerge
upstream of the bottleneck. Near the bottleneck, the waves are not yet stabilized;
further away from the bottleneck, the waves maintain a constant speed of c = 11.0 km

h ,
as can be verified by manual inspection (black line).

The output of the WSE is shown in Figure 3.12(b). As can be seen, the WSE detects
many shock waves (blue) in the region a few kilometers upstream of the bottleneck,
where the stop-and-waves have been stabilized. The average of the lines detected is
11.0 km

h .

Some more shock waves are detected (green). Congestion grows with nearly constant
speed between 00:40 and 01:05; similarly, it dissolves with nearly constant speed be-
tween 01:25 and 01:40. The WSE detects these boundaries, as the lines in the figure
show. Furthermore, since the traffic state changes drastically at the bottleneck, the
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Figure 3.13: Results of Experiment 2

WSE detects a shock wave there with a propagation speed of zero.

3.5.2 Experiment 2

In the second experiment, some parameter values of the traffic flow model are changed,
as it would be done in model calibration.

Figure 3.13(a) shows the output of the traffic flow model. Again, congestion and stop-
and-go waves emerge at the bottleneck. They now propagate with a speed of c =

13.4 km
h .

The results of the WSE are shown in Figure 3.13(b). As can be seen, the WSE detects
many stop-and-go waves a few kilometers upstream of the bottleneck. The propagation
speed detected now is 13.1 km

h .

3.5.3 Experiment 3

In the third experiment, light traffic conditions with a fluctuating inflow rate are sim-
ulated to create vehicle platoons. The bottleneck from the previous experiments is
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Figure 3.14: Results of Experiment 3

removed so that no congestion emerges.

Figure 3.14(a) shows the spatiotemporal flow output of the model. The vehicle pla-
toons are accompanied by shock waves: at 00:15, for example, a long platoon of ve-
hicles enters the freeway. Similarly, at 01:30, a short platoon is clearly visible in the
flow.

Figure 3.14(b) shows the results of the WSE. It detects many shock waves that fall into
the range for free-flow waves (red lines). For example, the shock waves created by the
platoons mentioned above are correctly estimated. Similarly to the experiments with
real data, the speeds of the shock waves in free flow differ largely, as can be seen in
the figure. The calculation of an average shock wave speed is therefore omitted.

3.5.4 Discussion

The results show that the Wave Speed Estimator is capable of estimating the speeds of
shock waves from synthetic data as well. The propagation speeds detected by the WSE
are close to the ones found by manual inspection.

Furthermore, in the congested case, wave speeds were found only where the stop-and
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go waves are stabilized. As can be seen in the output, in the proximity of the bottleneck
the stop-and-go waves are still growing and merging. A few kilometers upstream of
the bottleneck, the stop-and-go waves then stabilize and then propagate with a constant
speed and a constant amplitude. Due to its line detector component, the WSE only
finds straight lines, and therefore only the stabilized stop-and-go waves.

All components of the WSE are based on matrix operations that are computable in
polynomial time. The method is thus scalable if the input size increases. The experi-
ments presented here are calculated in less than 30s per data set on a usual laptop with
a CPU clock frequency of 2.5GHz and main memory of 3.5GB in a Matlab implemen-
tation. The computation time is therefore lower than the manual inspection method.

3.6 Conclusion

In this chapter, we developed and validated a method that automatically detects shock
waves and their propagation speeds from spatiotemporal traffic data. It uses image
processing methods to detect the transitions between traffic states. Since only the tran-
sitions are detected but not the absolute values of the traffic state, this method is robust
towards biased data as they occur in speed measurements of the freeways by inductive
loops in the Netherlands. By averaging the propagation speed of the shock waves, the
characteristic wave speed of traffic regimes can be estimated.

An application of the characteristic shock wave speeds is the estimation of parts of
the fundamental diagram. These are important parameters of the traffic state estima-
tors that will be introduced in the following chapter. In the case study of Chapter 7,
the method of this chapter is used to automatically calibrate the Adaptive Smoothing
Method (Treiber et al., 2011).

A further application is the evaluation of the performance of traffic flow models. This
is a recurrent task in model calibration. The WSE can thus be applied in the calibration
of traffic flow models that aim at reproducing shock waves with the correct propagation
speed.

For further research, the number of stop-and-go waves occurring per time could be
estimated, if the WSE is fine-tuned so that both borders of all stop-and-waves can be
estimated. Furthermore, the composition of traffic could be estimated based on the
shock wave speed according to (3.1). Research questions in this line are how strong
a relationship between shock wave speeds and the traffic composition is observed in
empirical data, and how precisely the WSE must be able to detect the shock wave
speeds in order to determine the traffic composition accurately and precisely.



Chapter 4

Fast Freeway Traffic State Estimation

In this chapter, two fast methods for estimating the current traffic state of a real-size
network in real-time are developed and validated. The Wave Speed Estimator devel-
oped in the previous chapter thereby forms part of the calibration of these state estima-
tors. The current traffic state is then the basis for the Control component of the control
loop of Figure 2.11.

First, a background of freeway traffic state estimation is given in Section 4.1. In Sec-
tion 4.2, the Adaptive Smoothing Method is reformulated so that it filters road stretch
data of realistic size within a few seconds. Its algorithm is reformulated so that it uses
the Fast Fourier Transform. In Section 4.3, a fast recursive state estimator based on
the Extended Kalman Filter technique is developed and validated. The sensor data
are applied only locally where they carry information about the traffic state, instead
of globally to the whole network. Both techniques are qualitatively compared in Sec-
tion 4.4. Conclusions are presented in Section 4.5.

Section 4.2 is a revised version of Schreiter, Van Lint, Treiber, & Hoogendoorn (2010a):
“Two Fast Implementations of the Adaptive Smoothing Method Used in Highway Traf-
fic State Estimation” presented at the IEEE Conference on Intelligent Transport Sys-
tems. Section 4.3 is a brief version of Van Hinsbergen, Schreiter, Zuurbier, Van Lint, &
Van Zuylen (2012): “Localized Extended Kalman Filter for Scalable Real-Time Traf-
fic State Estimation” in IEEE Transactions on Intelligent Transport Systems. A revised
version of that paper also appeared as a chapter in the dissertation of Van Hinsbergen
(2010).
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4.1 Background and Approaches of Traffic State Esti-
mation

One component of the control loop in Figure 2.11 is the estimation of the current
traffic state. The current traffic state describes, where the traffic is currently located;
commonly, the traffic density for each location is used for that description. The current
traffic state is estimated based on sensor data gathered at the road side in real-time.
However, the sensor data are usually subjected to noise. Furthermore, the freeway is
not completely covered by sensors so that the data contain “holes.” The data thus do
not provide the traffic state directly. Therefore, the data have to be analyzed in order
to estimate the traffic state.

A simplistic traffic state estimator removes the holes in the data by interpolating the
existing data piecewise constantly or piecewise linearly (Van Lint & Van der Zijpp,
2003). These methods assume that traffic behaves equally under all conditions. As
mentioned in Chapter 3, in reality, the direction in which information travels through
the network depends on the traffic conditions: in free-flow conditions, information
travels downstream, but in congested conditions, information travels upstream. There-
fore, these simple methods exhibit significant bias (Van Hinsbergen et al., 2008).

One way to take the information direction into account is to smooth the data over
space and time dependent on the prevailing traffic conditions. The Adaptive Smoothing
Method (ASM) (Treiber et al., 2011) is able to interpolate traffic conditions between
detectors over space and time, taking the information direction into account. Origi-
nally, the ASM was developed for loop detector data (Treiber & Helbing, 2002), and
then generalized to other data sources like floating-car data (Van Lint, 2010; Treiber
et al., 2011).

Another way of taking the information direction into account is to use a recursive state
estimation technique of Kalman filtering (Kalman, 1960), which combines the sensor
data with the traffic state predicted by a traffic flow model. This filter combines the data
with the predicted state dependent on the error covariance of the state, the noise of the
data, and the difference between the data and the expected observations. A common
recursive filter is the Extended Kalman Filter (EKF) (Evensen, 2003), whereby several
versions of it have been used in traffic state estimation (Wang & Papageorgiou, 2005;
Tampère & Immers, 2007).

Another technique of estimating the traffic state by the combination of a model and data
is the particle filter. Mihaylova et al. (2007) fuse speed and flow data from induction
loops to estimate the density. A major drawback of particle filters is that they require a
huge number of particles, which renders them computationally infeasible for real-time
applications. Furthermore, Newtonian relaxation (also known as nudging) combines
the prediction of a model with the observation. In contrast to Kalman filter approaches,
the correction of state is dependent on the spatial and temporal distance of the state to
the measurement location and the difference between data and expected measurement,
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and not on the covariance of the state. Herrera & Bayen (2010) developed and imple-
mented Newtonian relaxation for loop and floating-car data. Qing (2011) developed a
method to improve loop detector data by combining them with measured travel times
without using a traffic flow model. However, since measured travel times are required,
the latter approach is only suitable for offline applications.

As decided in Section 2.3.3, in this thesis, we focus on two of the estimation techniques
named above, namely the Adaptive Smoothing Method and the Extended Kalman Fil-
ter. However, current implementations of them work in real-time only for small-sized
networks. In order to use them in real-time applications, this chapter analyzes both the
ASM and the EKF for traffic state estimation and subsequently develops faster imple-
mentations. Both methods are then tested to prove that they are applicable in real-time
for online applications in Dynamic Traffic Management. Finally, in Section 4.4, we
reason why we apply the Adaptive Smoothing Method in the case study.

4.2 Optimizing the Adaptive Smoothing Method

The first traffic state estimator discussed is the Adaptive Smoothing Method (ASM)
by Treiber & Helbing (2002). Since its initial conception, it has been generalized
to multiple data sources (Van Lint & Hoogendoorn, 2010; Treiber et al., 2011) and
used in various applications (Van Lint, 2010; Kesting & Treiber, 2008). The ASM
estimates the traffic state based on spatio-temporal data. Its methodology is presented
in Section 4.2.1. Conventional implementations require multiple minutes to estimate
the traffic state. However, Section 4.2.2 reformulates the ASM and solves it by a
cross-correlation operation that operates on the whole spatiotemporal data matrix at
once. This methodology is even further improved in Section 4.2.3 by solving the cross-
correlation with the Fast Fourier Transform, which originates from the field of signal
processing. The three implementations of the ASM are tested with data from a Dutch
freeway in Section 4.2.4. The results show improvements of computation time up to
two orders of magnitude and run within a few seconds (Section 4.2.5). The proposed
implementations can therefore replace the conventional implementation in practical
applications (Section 4.2.6).

4.2.1 Methodology of the Adaptive Smoothing Method

The ASM takes speed data vraw(x, t) as input, observed at locations x ∈ X raw at times
t ∈ T raw. A second spatio-temporal traffic data variable is optional. For instance, the
flow observed at the same points as the speed is used, but other macroscopic quantities
such as traffic density can also be used. In the remainder of the paper, the symbol z
refers to any macroscopic traffic quantity, whereas v specifically denotes the speed.

The output of the ASM is a continuous, spatio-temporal variable zout. In order to solve
the ASM numerically, however, the filtered map is discretized at locations Xout and
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times T out. Usually, this underlying space-time grid is chosen to be equidistant with
resolution ∆xout and ∆tout, respectively.

The calculation of the output map is based on kinematic wave theory. Depending on the
underlying traffic regime, the characteristics of traffic travel with a certain wave speed
over space and time. Each of these regimes has one typical wave speed with which the
characteristics travel. In congestion, this wave speed is approximately ccong =−20 km

h ,
in free flow approximately cfree = 80 km

h . The exact values of these two calibration
parameters can be determined by applying the Wave Speed Estimator presented in
Chapter 3.

The data map zraw is nonlinearly transformed into a smooth map zout, whose elements
are a weighted sum of smoothed elements of both traffic regimes:

zout(x, t) = w(x, t) · zcong(x, t)+ [1−w(x, t)] · zfree(x, t) . (4.1)

The intermediate functions zcong and zfree represent the traffic in congested and in free-
flow conditions, respectively. The weighting factor w depends on the underlying traffic
regimes. The congested function zcong is defined by

zcong(x, t) =
1

ncong(x, t)∑
xi

∑
t j

ϕ
cong(xi− x, t j− t) · zraw(xi, t j) (4.2)

with the normalization factor

ncong(x, t) = ∑
xi

∑
t j

ϕ
cong(xi− x, t j− t) , (4.3)

whereby the sums cover all date locations xi ∈ X raw and data times t j ∈ T raw. The
smoothing kernel

ϕ
cong(x, t) = exp

−|x|
σ
−

∣∣∣t− x
ccong

∣∣∣
τ

 (4.4)

is an exponential function with the spatial parameter σ and the temporal parameter τ .
The characteristic congested wave speed ccong influences the skew of the kernel.

The free-flow function zfree is similarly defined to zcong (4.2)–(4.4) with a normalization
factor nfree, the free-flow smoothing kernel ϕ free and the free-flow wave speed cfree.

The weighting factor w in (4.1) depends on the intermediate speed functions vcong and
vfree:

w(x, t) =
1
2

[
1+ tanh

(
vcrit− v∗(x, t)

∆v

)]
(4.5)

with critical speed vcrit, transition speed range ∆v and

v∗(x, t) = min
(

vcong(x, t),vfree(x, t)
)
. (4.6)
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For details about the ASM refer to Treiber et al. (2011).

In conventional algorithms, the double sum of zcong (4.2) is coded as a double loop. In
scientific simulation tools that are specialized in matrix operations such as Matlab, the
execution of “for”-loops is particularly slow.

The Computation Time Complexity of the ASM

The computationally most complex function is the calculation of zcong (4.2) (and sim-
ilarly zfree. The conventional implementation loops over space and time, where the
number of filter points in these dimensions is X

∆xout and T
∆tout , respectively, with X and

T denoting the length of the resulting rectangle in space and time, respectively.

For practical reasons, not all data are taken into account, because the values of the ker-
nel ϕcong (4.4) quickly approach zero. Therefore, only a certain space-time rectangle
around the filter point (x, t) is relevant for the computation. Usually, this rectangle is
chosen to be of length 2aσ in space and 2aτ in time, for a kernel width factor a. A
value of a = 5 provides good results for an exponential kernel.

The number of these relevant data points therefore depends on a and the average data
resolution ∆xraw and ∆traw. To conclude, the computation time complexity of the con-
ventional method is

ASM ∈ O
(

X
∆xout ·

T
∆tout ·

στa2

∆xraw ·∆traw

)
. (4.7)

(The Big-Oh notation here denotes the growth rate of the computation with respect to
the input variables for large values. For example, the computation time grows linear in
the road stretch length X , meaning doubling the road stretch length leads to a doubling
of the computation time.)

4.2.2 The Adaptive Smoothing Method Solved with the Cross-cor-
relation

The crucial part of the ASM is the computation of the intermediate regime functions
zcong and zfree (4.2). This equation can be solved in a different way, relying on matrix
arithmetics suitable for Matlab. For this purpose, the continuous equations of the ASM
are discretized and solved with the two-dimensional cross-correlation �, which is a fast
operation. The cross-correlation is defined as

(A�B)(m,n) = ∑
µ

∑
ν

A(µ,ν) ·B(m+µ,n+ν) , (4.8)

where A and B are matrices. This section presents the algorithm of the cross-correlation
implementation.
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By applying a shift of indices with ξi = xi− x and τ j = t j− t, the numerator of zcong

can be expressed by a cross-correlation operation:

∑
ξ

∑
λ

ϕ
cong(ξ ,λ ) · zin(x+ξ , t +λ ) = (ϕcong � zin)(x, t) . (4.9)

This is a continuous function; however, to solve the ASM numerically, a discretized
version is used, where these functions are sampled at equidistant points in space and
time. For this purpose, the data zraw are discretized at equidistant points with the spatial
resolution ∆xout and the temporal resolution ∆tout to the matrix Zin. The congested
matrix then reads

Zcong
lk =

∑
i

∑
j

Φ
cong
i j ·Zin

l+i,k+ j

∑
i

∑
j

Φ
cong
i j ·Ml+i,k+ j

=

(
Φcong �Zin)

lk
(Φcong �M)lk

, (4.10)

with a discretized smoothing kernel Φcong and a binary indication matrix M. The
division of the matrices in (4.10) is element-wise. The denominator originates from
the normalization function ncong (4.3), which is a weighted sum of the kernel at all
data points. In the discretized version, only elements of Φcong that correspond to a data
point should be summed up. Therefore, the indication matrix M is defined by

Mlk =

{
1 if data at Zin

lk available

0 else
. (4.11)

The following algorithm explains the steps of the cross-correlation in more detail.

The Algorithm of the ASM solved with Cross-correlation

The ASM is solved by the cross-correlation in the following four sequential steps.

1) Discretization of data The data maps in the equations of the ASM are discretized
at equidistant points with the spatial resolution ∆xout and the temporal resolution ∆tout.
The data point zraw(x, t) is mapped to the discretized point in Zin which is closest to
(x, t). All remaining elements in Zin are set to zero.

To clarify this discretization, consider the following example where the following data
matrices are given:

speed data V raw =

1 2 3
4 5 6
7 f 9

 , (4.12)

at locations X raw =
[
0 1000 2900

]
, (4.13)

at times T raw =
[
0 60 120

]
, (4.14)
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where f indicates missing data. Let the output resolution be ∆xout = 500 and ∆tout =

30. Then, the discretized variables read

Xout =
[
0 500 1000 . . . 3000

]
, (4.15)

T out =
[
0 30 60 90 120

]
, (4.16)

V in =



1 0 2 0 3
0 0 0 0 0
4 0 5 0 6
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
7 0 0 0 9


, M =



1 0 1 0 1
0 0 0 0 0
1 0 1 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 1


. (4.17)

Note that a discretization error occurs in this example: the data at location 2900 are
relocated to the nearest sample point at 3000. In practice, these discretization errors
are negligible, if the output resolution is chosen high, for example 100m.

2) Discretization of the kernel Next, the kernel matrix ϕcong (4.4) is discretized
with the same resolution ∆xout and ∆tout, where the maximum is in the center of the
matrix:

Xkern =
[
−a ·σ , . . . ,−∆xout, 0, ∆xout, . . . ,a ·σ

]
(4.18)

The temporal points T kern are defined in a similar way. The congestion kernel matrix
is defined as

Φ
cong
i j = exp

−|Xkern
i |
σ
−

∣∣∣T kern
j − Xkern

i
ccong

∣∣∣
τ

 (4.19)

The free flow kernel matrix Φfree is defined similarly.

3) Apply smoothing kernels by cross-correlation Apply the cross-correlation � to
determine the intermediate regime functions Zcong and Zfree (4.10).

4) Weighting and summing The result Zout is computed by weighting (4.5) and
summing (4.1) the intermediate regime matrices (4.10):

W =
1
2
·
(

1+ tanh
[

vcrit−min{V cong,V free}
∆V

])
, (4.20)

Zout =W ·Zcong +(1−W ) ·Zfree , (4.21)

with element-wise minimum, element-wise tanh and element-wise multiplication. Zout

is the output of the cross-correlation implementation of the ASM.
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The Computation Time Complexity of the ASM Solved using the Cross-correlation

The complexity is significantly defined by the cross-correlation operation (4.10). In
the following, the runtime complexity of numerator Φcong � Zin is analyzed; similar
results hold for the denominator.

The complexity of the cross-correlation of two matrices A ∈ RNA×MA and B ∈ RNB×MB

is (Cormen et al., 2001)

A�B ∈ O (NAMA ·NBMB) . (4.22)

The size of the input matrix Zin is linearly dependent on the road stretch length X and
the filter grid resolution ∆xout:

|Zin| ∈ O
(

X · 1
∆xout ·T ·

1
∆tout

)
. (4.23)

The size of the smoothing kernel matrix Φcong is linearly dependent on the kernel width
factor a and the resolution ∆xout:

|Φcong| ∈ O
(

σa · 1
∆xout · τa · 1

∆tout

)
. (4.24)

The cross-correlation operation is therefore the product (4.22) of both complexities
(4.23) and (4.24):

Φ
cong �Zin ∈ O

(
X ·T · στa2

(∆xout)2 · (∆tout)2

)
. (4.25)

The remaining operations in the cross-correlation implementation are multiplications,
additions and other element-wise operations, which are less complex than the cross-
correlation. Since cross-correlation implementation is a sequential algorithm, its com-
plexity equals the complexity of the most complex operation (4.25).

The algorithm is linearly complex in the road stretch length X , which makes it eas-
ily scalable in practical applications. The quadratic complexity in the resolution ∆xout

might be problematic, because a high resolution is needed to minimize discretization
errors caused by the equidistant input grid of Zin. The argument in the temporal di-
mension is similar because of the symmetry of the algorithm. Nevertheless, the exper-
iments will show that the algorithm runs very fast even for very high resolutions.

The complexity of this cross-correlation implementation (4.25) is nearly equal to the
one of the conventional implementation (4.7). The only difference is an exchange of
the variables of the data resolution with variables of the filter data resolution. However,
although there seems to be no improvement of the complexity class, there is a speedup
in practical runtime, as will be presented in Section 4.2.5.
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4.2.3 The Adaptive Smoothing Method Solved with the Fast Fourier
Transform

A fast implementation of the cross-correlation already exists. However, an even faster
computation is possible with the Fast Fourier Transform (FFT). The FFT and the cross-
correlation are both related to the convolution ∗, which is defined as

(A∗B)mn = ∑
µ

∑
ν

Aµν ·Bm−µ,n−ν (4.26)

of two matrices A and B. In the special case that one of the matrices is symmetric, i.e.

Amn = AM−m+1,N−n+1 , (4.27)

the cross-correlation � equals the convolution ∗. In all cross-correlation operations of
Section 4.2.2, the kernel matrices Φcong or Φfree are involved. Since these are indeed
symmetric, the cross-correlation operations of the previous section can be replaced by
convolution operations.

The convolution law

A∗B = F−1 (F(A) ·F(B)) (4.28)

connects the convolution ∗ and the Discrete Fourier Transform F , where · here de-
notes the element-wise multiplication of two (complex) matrices. The Discrete Fourier
Transform (DFT)

(F(A))mn =
N

∑
ν=1

(
e−

2πi·ν
N ·

M

∑
µ=1

e−
2πi·µ

M Aµν

)
(4.29)

converts a two-dimensional discrete signal from its space-time domain into the fre-
quency domain. This operation is inverted by the Inverse Discrete Fourier Transform
(IDFT)

(F−1(A))mn =
1

NM

N

∑
ν=1

(
e

2πi·ν
N

M

∑
µ=1

e
2πi·µ

M Aµν

)
. (4.30)

The convolution of two matrices can therefore be computed by converting these matri-
ces into the frequency domain by the DFT, multiplying their results element-wise, and
transforming this product back into the space-time domain by the IDFT (4.28).

The Fast Fourier Transform (FFT) is a fast implementation of the DFT, provided that
the input matrices are of the same size and that their number of elements in each dimen-
sion is a power of two. The efficiency of the FFT is widely exploited in other scientific
fields, for example in mathematics to speed up polynomial multiplications (Cormen
et al., 2001), in the digital image format JPEG (Wallace, 1992) (instead of the FFT it-
self, the slightly different Discrete Cosine Transform (DCT) is used), but also in traffic
engineering to efficiently determine the reliability of travel times (Ng & Waller, 2010).
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The Algorithm of the ASM Solved with the FFT

The computation of the ASM solved with the FFT is based in the cross-correlation
implementation of Section 4.2.2. Every cross-correlation operation (4.10) is replaced
by the convolution law (4.28).

To make the matrices of same size and their length in each direction a power of two,
they are padded with zeros. Furthermore, the size of the zero-padding area has to be
sufficiently large to avoid overlapping of the circular FFT operations: the data map
has to be zero-padded in each dimension with at least the size (4.18) of the kernel
matrix (4.19). After the IFFT operation, the padded zeros are removed to restore the
original size of the matrices. This zero-padding procedure ensures that the FFT imple-
mentation leads to the same results as the cross-correlation implementation.

The remaining operations of the FFT implementation are equal to the cross-correlation
implementation.

The Computation Time Complexity of the ASM Solved with FFT

The complexity of the FFT implementation differs from the cross-correlation imple-
mentation only in the computation of the actual cross-correlation terms.

Let A ∈ RN×M and B ∈ RN×M be matrices of the same size. Then, the complexity of
the FFT (4.29)

F(A) ∈ O (NM logNM) (4.31)

is nearly linear in the number of elements (Cormen et al., 2001). The IFFT (4.30) is in
the same complexity class, due to the similar definition. The elementwise multiplica-
tion in (4.28) is linear in the number of elements. In conclusion, the cross-correlation
can be solved with the FFT

A�FFT B ∈ O (NM logNM) (4.32)

in less than quadratic time.

Note that the size of the kernel Φcong must be the same as of the data map Zin. The
computation time complexity of this equation is therefore

Φ
cong �FFT Zin ∈ O

(
XT

∆xout∆tout log
XT

∆xout∆tout

)
. (4.33)

The comparison of the complexity of the FFT implementation (4.33) with the cross-
correlation implementation (4.25) shows that the FFT implementation is less complex
in the resolution; i.e., the higher the resolution, the faster the FFT implementation runs
compared to the cross-correlation implementation. (In fact, the log part in (4.33) is
barely noticeable in practice; the quadratic complexity of the resolution is therefore
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Parameter Value(s) Description

X {5, 10, 20, 30} km
h road section length

T {2, 4, 6, 8, 10} h measurement time length
∆xout {10, 25, 50, 100} m spatial resolution of results

∆tout 30 s temporal resolution of result
ccong -18 km

h congested wave speed
cfree 80 km

h free-flow wave speed
∆v 10 km

h length of transition region
vcrit 70 km

h critical speed
σ 500 m spatial kernel length
τ 60 s temporal kernel length
a 5 size of kernel matrix

Table 4.1: Simulation parameter settings for comparing the ASM implementa-
tions

reduced to nearly linear.) In contrast, the FFT method is more complex in the road
length X and the measurement time T , favoring the cross-correlation implementation
for very large data sets.

The complexity is insensitive to the resolution of the data points ∆traw and ∆xraw. This
allows for the combining of loop detector data with an arbitrary amount of floating-car
data without losing runtime.

4.2.4 Experimental Setup to Compare the Three Implementations

To test the quality and computation time of the proposed implementations of the ASM
against the conventional one, simulations are performed. In order to measure compa-
rable computation times, all implementations are executed with the same parameter
settings and run on an idle state-of-the-art laptop.

Three parameters are varied: the road length X , the measurement time T , and the
resolution ∆xout. For every combination, simulation runs of data over 10 days are
performed. The parameter settings are listed in Table 4.1.

Raw data were gathered from dual-loop detectors from the Dutch A15 East between
Kilometers 30 and 60 between 06:00 and 16:00 from 01-10-2009 to 10-10-2009. These
observed speed and flow aggregated over 1min at every 500m on average.

The computation time is averaged arithmetically over these 10 observation days. The
quality of the filter result is measured by the Root Mean Squared Error (RMSE) and
the Mean Absolute Percentage Error (MAPE) of the speed and flow maps of the cross-
correlation and the FFT implementation against the conventional ASM.
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(a) Raw data

(b) Filtered data (by FFT implementation)

Figure 4.1: Input and output speed data of the ASM

4.2.5 Results and Discussion

An example of input and output data of the ASM is shown in Figure 4.1. The induction
loops of the A15 eastbound near Rotterdam, the Netherlands, collected speed data over
a length of X = 30km and a measurement time of T = 10h. Both traffic regimes, free
flow (green) and congestion (yellow and red), are present. Note that some detectors
do not provide data, leaving holes in the data map (Figure 4.1(a)). The ASM smooths
these data, resulting in a complete speed map (Figure 4.1(b)). In this figure, the FFT
implementation was used.

Figure 4.2 shows the relationship between computation time and the number of filter
grid data points. Huge differences in computation time between the three implementa-
tions are apparent. The computation time of the conventional method increases sharply
up to several minutes for data sets of practical size, whereas the cross-correlation and
especially the FFT run much faster.

Figure 4.3 shows the computation times in more detail. In each subplot, the computa-
tion time is plotted against one of the three variables varied from Table 4.1, whereas
the remaining two are fixed. (Note that the scale differs between the subplots.) In
the largest data test with a road length of X = 30km, a measurement time T = 10h
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Figure 4.2: Computation time of the ASM against the number of filter points of
the three implementations: conventional (red circles), proposed cross-correlation
(blue stars), proposed FFT (black diamonds)

and fine-grained resolution of ∆xout = 10m, the computation time difference is drastic
(Figure 4.3(c)). The conventional implementation takes almost five minutes, whereas
the cross-correlation computes the result in less than two minutes. The FFT, however,
performs even faster, with a computation time of less than ten seconds.

Table 4.2 lists the speedup of the FFT implementation against the conventional ASM
for all varying variables, averaged over the ten days. This speedup factor is at least
one order of magnitude. The highest speedup gained, however, was more than a factor
of 100. In the cross-correlation implementation, speedup factors between 2.7 and 25
were observed.

In Table 4.3, the errors between the two implementations proposed and the conven-
tional implementation were calculated. The mean absolute percentage error (MAPE)
of the speed and the flow maps for both implementations is significantly less than half a
percent. The root mean squared error (RMSE) of the flow map is approximately 10 veh

h ,
and of the speed map at less than 0.2 km

h . Further, both implementations proposed have
the same error.

The filter of the two new presented implementations is therefore extremely close to the
conventional implementation, leaving only very small errors due to the discretization
of the data points. Other than the small discretization errors, the quality of the proposed
implementations is equal to the conventional one.

4.2.6 Conclusion of the Optimization of the Adaptive Smoothing
Method

The reformulation of the ASM treats the input data not as single points, but operates
on the spatiotemporal data matrix as a whole. By interpreting the ASM as a cross-
correlation and subsequently solving it by the Fast Fourier Transform, the computation
time is drastically reduced while preserving the estimation quality. Experiments based
on real data with realistic data sizes show a gain in computation time of a factor of up
to one hundred. In practice, the ASM now runs withing a few seconds, rendering it
applicable for real-time purposes.
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Figure 4.3: Computation time of the ASM against the varied variables (c.f. Ta-
ble 4.1)

4.3 Optimizing Traffic State Estimation Based on the
Extended Kalman Filter

In this section, the recursive filter technique of the Extended Kalman Filter (EKF) is
analyzed and improved. In contrast to the ASM of the previous section, a recursive
filter employs a predictive (traffic flow) model, which describes how the (traffic) sys-
tem evolves over time. To correct for model inaccuracies, the system state is updated
with sensor data. Section 4.3.1 explains the methodology of the EKF. In common EKF
implementations, data are used to correct the traffic state of the whole network. How-
ever, Section 4.3.2 shows that a measurement provides information only in the physical
vicinity of the sensor. The EKF is therefore localized to update the traffic state only
in the vicinity of the sensor. Experiments are set up in Section 4.3.3; its results show
that the local application of measurements leads to a significant speed up in compu-
tation time while preserving the estimation quality (Section 4.3.4). Experiments in a
real-sized network prove that the Localized EKF (L-EKF) is applicable in real-time
(Section 4.3.5). Conclusions are drawn in Section 4.3.6.
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(a) ∆xout = 10 m

2h 4h 6h 8h 10h

5km 43.5 35.5 62.4 58.4 43.4
10km 59.4 43.5 72.7 69.5 53.5
20km 53.9 42.4 59.1 56.3 40.1
30km 69.2 53.1 87.9 85.6 57.3

(b) ∆xout = 25 m

2h 4h 6h 8h 10h

5km 43.4 32.2 43.9 40.3 28.8
10km 46.7 36.7 47.7 43.3 33.3
20km 64.3 48.0 76.5 73.5 58.4
30km 62.5 48.2 75.5 72.0 59.4

(c) ∆xout = 50 m

2h 4h 6h 8h 10h

5km 47.2 33.0 43.6 39.8 28.3
10km 71.6 48.7 68.9 61.9 42.4
20km 58.1 44.4 57.8 53.3 39.6
30km 87.6 60.3 106.0 97.9 73.4

(d) ∆xout = 100 m

2h 4h 6h 8h 10h

5km 48.8 35.0 44.4 39.8 26.7
10km 60.3 41.9 56.0 50.5 36.0
20km 86.6 56.8 81.5 72.5 49.8
30km 88.2 59.4 84.0 75.0 52.2

Table 4.2: Speedup factor of the FFT implementation of the ASM against the
conventional implementation, averaged over all 10 days

4.3.1 Methodology of Extended Kalman Filtering

This section first presents an overview of the methodology and then shows the two
parts of prediction and correction in detail.

4.3.1.1 Overview of Kalman Filtering

The Kalman filter (Kalman, 1960) is a recursive filter, i.e. it consists of a prediction and
a correction component as illustrated in Figure 4.4. Its purpose is to estimate the true
(traffic) state k̃ j at time step j, which is here the traffic density over space. Since the
state is not directly visible, sensors observe the system and provide measurements z j.

Since both the traffic system and the sensors are not perfectly known, the true traffic



72 Vehicle-class Specific Control of Freeway Traffic

Speed Flow

MAPE cross-correlation 0.097% 0.301%
MAPE FFT 0.097% 0.301%

RMSE cross-correlation 0.130 km
h 9.198 veh

h

RMSE FFT 0.130 km
h 9.198 veh

h

Table 4.3: Error measurements of the ASM implementations proposed against
the conventional ASM implementation

Traffic System Sensor

Prediction Correction

k̃ j z j

Extended Kalman Filter

k-
j, P-

j

k+
j , P+

j

a, Q j h, R j

w j v j

k+
j−1, P+

j−1
j← j+1

Figure 4.4: Structure of the Extended Kalman Filter

system cannot be estimated perfectly. However, it is possible to estimate a probability
density function (pdf), which represents the distribution of possible states. In general,
any pdf is possible to represent this belief state, and many filters have been proposed.

One of the most commonly recursive filter techniques applied in practice is the Kalman
Filter. Since traffic is a non-linear process, extensions of the linear Kalman filter are
used. The Extended Kalman Filter (EKF) (Sorenson, 1985) linearizes the model at the
current state; examples of the EKF in traffic applications are Wang & Papageorgiou
(2005) and Tampère & Immers (2007). The Unscented Kalman Filter (UKF) (Julier
& Uhlmann, 1997) avoids such a linearization by using a small sample set of possible
system states instead; the UKF has been applied in traffic state estimation by Ngoduy
(2008). The Ensemble Kalman Filter (EnKF) (Evensen, 2003) is applicable for highly
non-linear systems. It describes the belief state by a large non-deterministically deter-
mined sample of possible system states. The EnKF was applied in freeway traffic state
estimation based on floating-car data (Work et al., 2008). For a discussion on Kalman
filter techniques applicable for traffic state estimation, refer to Blandin et al. (2012).

Another recursive filter is the Hybrid Density Filter (HDF) (Huber & Hanebeck, 2007),
which models the belief state by a Gaussian Mix density, which allows the description



4. Fast Freeway Traffic State Estimation 73

of a multi-modal probability density. Since the representation of the pdf requires many
parameters, the computation time of that filter is relatively high compared to Kalman-
like filters. Up to now, the HDF has been applied to state estimation and optimization
of an autonomous vehicle in computer simulations (Weissel et al., 2008), but an ap-
plication to network-wide state estimation used for Dynamic Traffic Management is
expected to be computationally unfeasible.

The Kalman filter and its extension thus are the commonly used recursive filters in
traffic state estimation. In the remainder of this section, we use the Extended Kalman
Filter, though the methodology is applicable to other recursive filters as well.

4.3.1.2 Prediction Step

The EKF models the probability function by a Gaussian distribution, which is charac-
terized by the mean state vector k+

j and the error covariance matrix P+
j at time step j.

The real traffic system is modeled by applying a traffic flow model a. Since the sys-
tem is usually not perfectly known, a noise term v j is taken into account. In the EKF,
this noise is assumed to be additive and Gaussian, and is modeled by the system noise
covariance matrix Q j of appropriate size. The estimated mean state and covariance
matrix are thus predicted over time by

k-
j = a(k+

j−1) (4.34)

P-
j = A jP+

j−1AT
j +Q j , (4.35)

whereby the matrix A j is the linearization of the system model a at the current esti-
mated mean state k+

j (Jazwinski, 1970):

A j = ∇a(k)|k+
j−1

. (4.36)

4.3.1.3 Correction Step

Because of the system noise Q j, the estimate of the state estimate becomes more un-
certain over time, so that the error covariance matrix Pj grows over time. Therefore,
the estimate is corrected by taking the measurements z j into account. The sensors are
modeled by the function h. By using loop detectors, for example, a relation between
density and flow or density and speed, commonly referred to as the fundamental dia-
gram, is used. However, since the sensors are not perfectly known, too, a noise term v j

is taken into account. In the EKF, this noise is represented by the measurement noise
covariance matrix R j of appropriate size. The estimated state is updated according to
Bayes’ law by

C j = P-
jH

T
j
(
H jP-

jH
T
j +R j

)−1
(4.37)

k+
j = k-

j +C j
(
z j−h(k-

j)
)

(4.38)

P+
j = P-

j −C jH jP-
j . (4.39)
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The Kalman gain C j (4.37) indicates how much the state estimate is corrected based
on the relative values of the uncertainties of the a priori state estimate (through P-

j) and
of the measurements (through R j). The matrix H j is the linearization of the sensor
model h at the current estimated a priori mean state k-

j:

H j = ∇h(k j)|k-
j
. (4.40)

The result of the EKF is an a posteriori state vector k+
j (4.38) and an a posteriori

estimate of error covariance matrix P+
j (4.39), which are a balanced estimate of the

traffic state, given both the prediction of the traffic model and the sensor data.

Note that the EKF is generally applied with a Gaussian assumptions on both the dis-
tributions of the data and the model. Generally, Gaussian distributions are not found
in practice in traffic. However, the EKF can still be applied when distributions are
non-Gaussian. The value of the EKF has been shown in the many cases where it has
been applied for traffic state estimation (Van Hinsbergen et al., 2008; Wang & Papa-
georgiou, 2005; Tampère & Immers, 2007; Wang et al., 2007; Zuurbier et al., 2006;
Van Lint et al., 2008a).

4.3.1.4 Global Extended Kalman Filter

Usually, the EKF is applied at once to the entire network, so that state vector k j rep-
resents all cells in the entire network and Pj contains estimates of the covariance of
the errors between all cells (Wang & Papageorgiou, 2005; Zuurbier et al., 2006). Each
time, when measurements become available somewhere in the network, the densities
in all cells are corrected at once. This process, which is termed Global EKF (G-EKF)
here, uses the available data to its maximum potential, as all densities in all cells are
corrected using the error covariance between all measured cells and all non-measured
cells. However, this procedure has one major concern, namely the calculation times
can become very high.

The EKF contains two expensive operations: the matrix inverse operation in (4.37)
that scales in the number of measurements, and the matrix multiplications of (4.39)
that scales in the number of cells in the network. Theoretically, both of these opera-
tions scale in the order ofO(M2.8074) with the Strassen algorithm (Strassen, 1969). For
larger networks (containing more than, e.g., a few hundred measured cells), the com-
plexity of these operations will make real-time calculations impossible on a normal
computer, rendering the G-EKF infeasible for large-scale online applications.

4.3.2 The Localized Extended Kalman Filter

In this section, a new EKF implementation that is much faster on larger networks is pro-
posed because it simplifies the matrix inverse operation of the correction step (4.37).
First, it is important to notice that error covariance matrix Pj contains many values
close to zero.
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4.3.2.1 Progression of the Covariance over the Network

As the traffic system progresses over time, a nonzero error covariance can exist be-
tween the errors of any two cell states. This section shows that the covariance under
most conditions decrease as the distance between two cells increases.

Through (4.35) and (4.39), it can be seen that the covariance is influenced by the
linearization H j of the fundamental diagram, the linearization A j of the model, and
Kalman gain C j. Because of the nonlinearity of the system and the stochasticity of
the model and the data, it is very hard to analytically prove under which conditions
the covariance will decrease with increasing distance. However, through extensive
experimentation on different networks with different sizes, it has been observed that,
under most conditions, the error covariance between two cells further away is smaller
than between two cells close to each other. This is a very intuitive result: only a very
small portion of traffic at a certain location will travel to another location, for example
10 km away; therefore, it can be expected that the error covariance between these two
locations is practically zero.

Figure 4.5 shows the error covariance between the cells on a certain route. For this
result, the small network as will be presented later (see Figure 4.7) was simulated for
600 time steps. The demand and supply of the origins and destination were varied to
cause state transitions. In most cases, the covariance between two cells is smaller the
further they are apart; only in the third case is the covariance between cell 1 and cell 9
larger than before. However, further downstream, the error covariance is again very
close to zero. Similar results were obtained on different networks with other structures
and other congestion patterns.

The fact that the covariance values are usually smaller further away from a certain cell
means that, in the G-EKF, matrix Pj will contain many values close to zero for cells far
apart in the network. Corrections to states based on these very small covariance values
will be negligible.

It is important to note that the nonzero values will not always be close to the diagonal
of the matrix, because cells that are spatially close in a network cannot be guaranteed
to be close to each other in the matrix. In addition, experimentation has shown that Pj

is not always diagonally dominant. These two issues prevent more efficient algorithms
from being applied for the inverse operation, and an alternative is required.

This section therefore proposes to use the structure of the network topology in the
corrections and to use a measurement to correct only the states of cells in the vicinity
of the detector. The resulting scheme is named Localized EKF (L-EKF) to indicate the
local nature of the corrections.
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Figure 4.5: Error covariance values of the first cell of the 21-cell link and all
other cells on the link under three different conditions: A dark color indicates
high covariance. The gradient indicates that the covariance decreases the further
the two cells are apart. Note that different scales apply to the different figures.

4.3.2.2 The Algorithm of the Localized Extended Kalman Filter

In the L-EKF, many local EKFs are sequentially applied for each cell that contains
measurements, instead of constructing one large EKF for the entire network. Local
measurements are no longer used to correct the errors of cells far downstream or up-
stream but are only used to correct the state of cells within a certain radius r of the
measurement. Figure 4.6 shows the principle of the L-EKF with a radius of r = 3
cells. Note that r can be held constant throughout the simulations or can be varied
under the prevailing traffic conditions. To remain focused, r is kept constant in the
remainder; future work needs to validate if a dynamic r can improve the results.

In the local EKF scheme, first, a “global” estimate of state vector k-
j and of error

covariance matrix P-
j is made using full-sized A j, Pj, and Q matrices. Global vectors

and matrices are indicated by a superscript G and can be calculated quickly because



4. Fast Freeway Traffic State Estimation 77

1 2 3 4 5 6 7

1

2

3

4
5

6

7

1 2 3 4 5
1

2

3

4
5

3 4 5 6 7

3

4

5

6
7

1 2 3 4 5 6 7

kL+
j = kL-

j +CL
j (zL

j −h(kL-
j ))

PL+
j = PL-

j −CL
j (H

L
j )

TPL-
j

kG
j = a(kG

j−1)

PG
j = AG

j PG
j−1(A

G
j )

T +QG
j

kL+
j = kL-

j +CL
j (zL

j −h(kL-
j ))

PL+
j = PL-

j −CL
j (H

L
j )

TPL-
j

Figure 4.6: Principle of the L-EKF on a seven-cell link with measurements in
cells 3 and 5. On top, a seven-cell link is shown. First, the global a priori state
vector kG

j and a priori error covariance matrix PG
j are computed using (4.41) and

(4.42). The 7×7 matrix represents PG
j . Then, an L-EKF is constructed for cell 3,

which extracts a PL+
j -matrix (the dark gray 5× 5 matrix). This L-EKF corrects

the states of cells 1–5. The resulting estimates of kL+
j and PL+

j are copied back into
the global matrices. Then, an EKF is constructed for cell 5 (light gray square),
and the process is repeated for cells 3–7.

the required operations are relatively light, i.e.,

kG
j = a(kG

j−1) (4.41)

PG
j = AG

j PG
j−1(A

G
j )

T +QG . (4.42)

Then, a local EKF is constructed for the first measured cell. A new local a priori
density vector kL-

j is created by copying all elements within the filter radius r from
kG

j , and a local a priori error covariance matrix PL-
j is obtained by copying the relevant

values from PG
j . Finally, a new derivative matrix HL

j is created by substituting kL-
j in

(4.40). Then, new estimates of the densities and of the variances in the vicinity of the
measurement are determined using

CL
j = PL-

j (HL
j )

T (HL
j PL-

j (HL
j )

T +RL)−1
(4.43)

kL+ = kL- +CL
j
(
zL

j −h(kL-
j )
)

(4.44)

PL+
j = PL-−CL

j HL
j PL- . (4.45)

The procedure continues by substituting state estimates kL+
j and error covariance esti-

mates PL+
j back into the global vector kG

j and global matrix PG
j at the correct coordi-

nates. The preceding process is then repeated for the next measurement.

Note that the order in which the local filters are applied is not important if the model
is linear. The Kalman filter (not the EKF which is an approximation) is a Bayesian
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optimal estimator that finds the maximum of the posterior of the state of a cell i at
time j, given data vector z j, i.e.

p(ki j|z j) =
p(z j|ki j) p(ki j)

p(z j)
. (4.46)

Consider the case where two sequential corrections are made, i.e., one with data point z1

and one with data point z2, and where the posterior of the first correction is the prior
of the second correction. Indexes i and j will be omitted to simplify notations. In the
case where z1 is first used to correct, the first correction step of the Kalman Filter can
be written as

p(k|z1,z2) =
p(z1|k,z2) p(k|z2)

p(z1|z2)
. (4.47)

The second correction p(k|z2) is also found using the Kalman Filter, i.e.,

p(k|z2) =
p(z2|k) p(k)

p(z2)
(4.48)

Substituting (4.48) into (4.47) and using the rule p(a|b)p(b) = p(a,b) lead to

p(k|z1,z2) =
p(z1|k,z2) p(z2|k) p(k)

p(z1|z2) p(z2)
(4.49)

=
p(z1,z2|k) p(k)

p(z1,z2)
. (4.50)

It can now be seen that the same result would be obtained if z2 was first used and then
z1. Because the measurement model h is nonlinear, it can be expected that the order
does influence the solution; however, no a priori knowledge is present on what order
to follow. If the state of the model is close to the actual state, i.e. if the model is well
calibrated and previous corrections have led to the state being approximately correct,
then the linearization is more accurate; in that case, the order in which the corrections
are applied will influence the solution less. In this thesis, the filters are applied in the
order in which data arrive in the processing computer.

The L-EKF process has two major advantages compared with the G-EKF: First, the
measurement error covariance matrix R in (4.43) is of size 1×1. This means that the
inverse operation becomes scalar and thus is very fast. Second, the matrix multipli-
cations (4.45) are performed on much smaller matrices, which again results in gain in
computation time. The L-EKF procedure linearly scales in the number of measure-
ments; for each available measurement, (4.43)–(4.45) need to be carried out one more
time, but each of these operations is very light. Compared with the G-EKF, the L-EKF
is therefore suitable for large-scale and real-time applications.

As opposed to the G-EKF, in the L-EKF, the states of cells far away are not corrected.
This leads to a potential loss of accuracy because not all covariance values are used for
correction. However, as the error covariance between cells further apart is generally
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Figure 4.7: Experimental network on which the L-EKF was verified; the vertical
arrows indicate the four measurement locations

small, the loss in accuracy is expected to be negligible if the L-EKFs have a large
radius and if the measurement network is sufficiently dense.

To show the difference between the L-EKF and G-EKF in both accuracy and com-
putation time, two separate experiments were conducted: one on a small scale with
synthetic data and one on a large scale with real-world data.

4.3.3 Experimental Setup to Compare the Localized with the Global
Extended Kalman Filter

To illustrate the accuracy of the L-EKF compared with the G-EKF, an experiment on a
small-scale network is conducted. The L-EKF and G-EKF have been programmed in
the software package JDSMART, which is a Java-based implementation of the LWR
model solved by the Godunov scheme. For the matrix operations, the fast Universal
Java Matrix Package Java library (UJMP, 2010) has been used. All computations are
performed on a Windows XP machine with a 3.0-GHz dual-core processor and 2GB
of memory.

Figure 4.7 shows the network of this experiment; it is discretized into 59 cells. Ar-
rows on the links indicate the driving direction. First, a “ground-truth” simulation is
performed, with a certain demand pattern on the two origins and with fundamental
diagram parameters for each link, which together caused a complex congestion pat-
tern on the network. Each time step, the densities of all cells are stored as the ground
truth. The speeds in four cells throughout the network indicated by the vertical arrows
in Figure 4.7 are stored each time step, which are distorted with zero-mean Gaussian
noise with a standard deviation of 5 km

h .

The network is then simulated again, with the same fundamental diagrams but with
zero-mean Gaussian noise added to the demands at the two origins (standard deviation
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Figure 4.8: Results of the L-EKF: density patterns for two of the four locations:
locations 1 (top) and 2 (bottom) indicated by vertical arrows with 1 and 2, re-
spectively, in Figure 4.7. The figure illustrates that, for almost all time steps, the
densities from G-EKF and L-EKF are equal.

of 200 veh
h ) and the turn fractions of node 1 (standard deviation of 20%). This causes

the resulting congestion pattern to be significantly different from the ground-truth ex-
periment. Using the (noisy) speed measurements from the ground-truth simulation,
the states can be corrected (the intentionally added noise removed) using the L-EKF
or the G-EKF. The process of adding noise to the speeds, demand, and turn fractions
is repeated 25 times to be able to generalize the results.

The parameters of the L-EKF and G-EKF (matrices R and Q, and L-EKF radius r)
were set as follows: The values on the diagonal of R are set to 25 km2

h2 for both the L-
EKF and the G-EKF, since the measurement error has a standard deviation of 5 km

h . For
each of the 25 simulations, the EKFs are tested with different values on the diagonal
of Q, and the best scoring values are chosen; for the L-EKF, radius r is also varied (but
equal for all filters in one simulation) between 0 and 59, which is the network size.

4.3.4 Results and Discussions

Figure 4.8 shows an example of the ground truth and distorted and corrected cell densi-
ties for one of the 25 simulations at two of the four selected locations. For the corrected
densities, the best performing G-EKF and L-EKF are plotted. The figure illustrates that
the estimated densities are closer to the ground truth densities when compared with the
simulation without EKF but, most importantly, that the L-EKF and G-EKF overlap for
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(a) RMSE

(b) Computation times

Figure 4.9: Comparison of the different filters. (Dark solid line) L-EKF is com-
pared for different horizons with the base simulation without (dashed line) EKF
and (light solid line) G-EKF.

almost all time steps for all locations.

Figure 4.9(a) shows the average root mean square error (RMSE) between the corrected
and ground-truth states for all time steps for all 25 simulations, along with the average
computation times. As can be seen, both EKFs result in lower errors than when no
correction is applied. The L-EKF with a small radius (r < 5) performs worse compared
with the G-EKF, because not all data are used to their full potential; however, with
sufficiently large radii (r > 5), the same level of accuracy is obtained. This result
confirms that corrections made by the G-EKF to cells far away are indeed negligible.
In addition, the results of the L-EKF with full radii (59 cells) confirm that the order in
which the filters are used is, in this case, not important: The sequentially applied filters
are as accurate as the G-EKF.

Figure 4.9(b) shows that, even for this small network, the L-EKF is faster than the
G-EKF for r < 20. For larger r, the calculation times start to increase beyond the
computation times for the G-EKF because of the overhead in copying the data back
and forth and because of the other matrix operations (4.43)–(4.45).
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Figure 4.10: Freeway network around the city of Rotterdam with a total length
of 272 km.

Figure 4.11: Computation times as a function of the number of detectors used for
estimation (10-03-2008). The L-EKFs show hardly any increase in computation
time, whereas the G-EKF shows a rapidly increasing computation time.

4.3.5 Application of the Localized Extended Kalman Filter to a
Real-size Network

The L-EKF is also applied to the freeway network of Rotterdam, The Netherlands, as
shown in Figure 4.10. Due to the size of this network, this experiment is a benchmark
for realistic traffic state estimation applications. For brevity, this section presents the
results of the computation time only. For detailed information about the setup and the
results of this experiments, refer to Van Hinsbergen et al. (2012).

Figure 4.11 presents the computation time of the filters for different number of detec-
tors. The conventional G-EKF performs in real-time only if a few loop-detectors are
used. For realistic cases, however, the G-EKF requires much more time and thus is not
capable of estimation the traffic state in real-time. In contrast, the L-EKF performs sig-
nificantly better, and runs in real-time also for large radii. This difference is due to the
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correction step of the EKF. Since the prediction step of the G-EKF and the L-EKF are
the same, the vast improvement in computation time thus is due to the reformulation
of the correction step.

4.3.6 Conclusion of the Optimization Based on the Extended Kal-
man Filter

In this section, the Extended Kalman Filtering technique was reformulated so that the
data are used to correct only the traffic state in the physical vicinity of the sensor.
By this localization, the computation time of the correction step in the EKF reduces
from almost cubic to linear complexity in the number of measurements. For practical
applications, the state estimation of real-sized networks is now possible in real-time.

Therefore, both the Adaptive Smoothing Method and the Extended Kalman Filter im-
proved in this chapter are able to estimate the traffic state in real-time. The following
section compares them qualitatively.

4.4 Comparison of the Characteristics of the Adaptive
Smoothing Method and Localized Extended Kal-
man Filtering

Both the Adaptive Smoothing Method and the Localized Extended Kalman Filter tech-
nique are now capable of estimating the traffic state in real-time. This section quali-
tatively compares both techniques. The focus is on the three categories of traffic flow
theoretic aspects, the application and implementation, and the computation time. Ta-
ble 4.4 presents a qualitative comparison between the ASM and the EKF approach.

The first category compares whether the two estimation techniques are valid in terms
of traffic flow theory related aspects. The ASM is based on shockwave theory; the
characteristic shock wave speeds describe with what speed the traffic flow and traffic
speed propagated over the freeway. Due to the smoothing, however, the conservation
of vehicles is not ensured. Furthermore, the propagation of the traffic composition
differs from that of speed or flow; for example, the composition propagates with a
wide range of speed, namely approximately with the current speed of traffic, whereas
the speed or flow propagate with one out of the two characteristic speeds. The ASM in
its current version is thus not suitable for the estimation of multi-class traffic.

The L-EKF obeys shockwave theory, since the prediction step applies a traffic flow
model that is based on it. Since the correction step does not describe any vehicle dy-
namics, it is not affected by shockwave theory. The L-EKF adheres partially to the
conservation of vehicles; the underlying traffic flow model is based on the conserva-
tion of vehicles, therefore the prediction step adheres to it. The sensor model of the
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Category Criterion Adaptive Smoothing
Method

Localized Extended Kalman
Filter

Tr
af

fic
F

lo
w

Th
eo

ry

Shockwave theory yes prediction step: yes; correction
step: n/a

Conservation of vehi-
cles

no prediction step: yes; correction
step: no

Multi-class no traffic model a and sensor model h
can be expanded to multi-class

Generalization to other
models or theories

fixed to shock wave theory generic, any prediction and sensor
model can be used

A
pp

lic
at

io
n

an
d

Im
pl

em
en

ta
tio

n

Network topology freeway road stretch urban and freeway, any network

Data estimated flow, density or speed any, dependent on prediction
model

Calibration parameters characteristic speeds ccong

and cfree (Chapter 3), ker-
nel sizes σ and τ

prediction step requires calibrated
traffic flow model a, i.e. network
layout, fundamental diagram, fu-
ture network inflows and turn-
fractions, etc.; correction step re-
quires calibrated sensor model h;
noise covariance matrices Q and
R; influence radius r

Robustness to missing
data

data required (in practice
every few kilometers and
few minutes)

works without data by skipping
correction step, i.e. use only traf-
fic model a

Robustness to estima-
tion near capacity

smooth transition be-
tween free-flow and
congestion by weighting
function w (4.5)

strong non-linearity of fundamen-
tal diagram near capacity leads to
difficult estimation

C
om

pu
ta

tio
n

Ti
m

e

Complexity in road
length

slightly more than linear slightly less than cubical (4.35);
however, expensive matrix inver-
sion of Kalman Gain C (4.37) re-
duced to linear

Complexity in number
of measurements

constant linear

Real-time ability yes yes

Table 4.4: Qualitative comparison of characteristics between Adaptive Smoothing
Method and Localized Extended Kalman Filter
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correction step, however, is designed in such a way that the density is adjusted. In
essence, vehicles are added to or removed from the network, which is a violation of
the conservation of vehicles. Although the filter applied in the experiments is mixed-
class, the L-EKF can be applied to multi-class traffic by using a suitable traffic model
and a suitable sensor model. In fact, any prediction or sensor model can be used, which
renders the L-EKF very generic.

The second category deals with the application and implementation of the two estima-
tion techniques. Since the ASM assumes that the characteristics travel with either one
of the two characteristic shock waves, the ASM cannot take traffic lights into account
so that it is limited to freeways. Furthermore, only one spatial dimension is modeled,
so the ASM is limited to road stretches, and it estimates only one data type, commonly
the speed, flow or density. The ASM is calibrated by the two characteristic wave
speeds and by the sizes of the kernels. The former can, in fact, be calibrated automat-
ically by applying the Wave Speed Estimator developed in Chapter 3. The ASM is a
solely data-driven method; so it works only if the freeway is densely measured both in
space and time. Furthermore, the ASM is robust when traffic is flowing near capacity;
a smooth transition between the two traffic regimes ensures that the estimated traffic
state is close to the true traffic state.

The L-EKF can be applied to any road type and to any network layout. Furthermore,
any data types can be estimated. The L-EKF requires many parameters to be cali-
brated. Since it uses a traffic flow model and a sensor model, both of them have to be
calibrated, which entails the network topology, the fundamental diagram, the inflows
at the network boundaries and the turnfractions at bifurcation points. Furthermore,
in practice both the system and the sensor model are not perfect so that they exhibit
errors. The L-EKF models this error in a simplified way as additive white Gaussian
noise, which causes an estimation error. Moreover, the noise distributions are usually
unknown, which makes the noise covariance parameters difficult to calibrate. The fi-
nal calibration parameter is the influence radius, which in our experiments shows good
results when set to a few kilometers. Since the L-EKF entails a prediction compo-
nent, it provides results even if data are temporarily missing; however, that requires a
well-calibrated model and recurrent traffic conditions. Since the fundamental diagram
is strongly non-linear near capacity, a switch between traffic regimes can introduce
further estimation errors.

The third category compares the computation times of the two techniques. The com-
putation time complexity of the ASM is nearly linear in the road length and constant
in the number of measurements. The prediction step of the L-EKF performs in cubical
time; however, the correction step including the matrix inversion of the Kalman Gain,
which previously was the most time consuming operation, now runs in linear time.
Moreover, both the ASM and the L-EKF now run in real-time for realistic networks.
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Summary

Since the ASM has a low number of calibration parameters, which furthermore have
a physical meaning, it is easy to apply and calibrate in practice. In fact, the two most
important parameters, namely the characteristic shock wave speeds ccong and cfree, can
be calibrated by applying the Wave Speed Estimator of Chapter 3. Furthermore, the
ASM is robust if traffic is flowing near capacity, since it models a smooth transition
between the traffic regimes.

The L-EKF is very flexible, as it can be applied to any traffic network, including urban
networks, and any traffic flow model and any sensor model can be applied. Since the
L-EKF contains a prediction model, it even provides results if sensors temporarily fail
or if larger parts of the network are not observed, which make it robust to missing data.
A further advantage of the built-in traffic model is that the L-EKF is suitable for an
extension to model-predictive control.

Therefore, despite the built-in predictive qualities of the EKF, the ASM is easier to
apply and calibrate, and is furthermore more robust when traffic flows near capacity, we
choose the ASM as the estimation technique for the system BOS-HbR (Figure 2.11).
The ASM in combination with the WSE will be used in the case study of Chapter 7.
In Section 7.2, we will also show how to derive the class-specific density based on the
total density by means of the traffic flow model Fastlane, which will be defined in the
next chapter.

4.5 Conclusion

In this chapter, two advanced freeway traffic state estimation techniques were analyzed
and computationally improved. The first technique, the algorithm of the Adaptive
Smoothing Method (ASM) was reformulated in order to solve it using the Fast Fourier
Transform (FFT). Since the FFT is less complex than the conventional implementation
of the ASM, it now runs within a few seconds for realistic sized freeway stretches,
while fully preserving the estimation quality. The ASM technique is now applicable
both in real-time for online state estimation purposes as well as for offline purposes for
large batch analyses of historic traffic data.

As the second freeway state estimation technique, the Extended Kalman Filter (EKF)
was sped up by applying the data only in the physical vicinity of the sensors. Since
a measurement provides information only in its vicinity of a few kilometers, the mea-
surements are used to estimate the traffic state locally. This localization drastically
speeds up the computation of the correction step from an almost cubic time complex-
ity to a linear time complexity in network size while preserving the estimation quality,
so that the EKF is now applicable in real-time for realistically-sized networks.

Subsequently, the ASM and the Localized EKF were compared qualitatively. Although
the EKF technique is applicable to any network topology and has predictive capabili-
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ties, the ASM is much easier to calibrate due to its low number of calibration parame-
ters. The ASM is therefore better suited and is chosen as the state estimation technique
in the system BOS-HbR and is applied in the case study of this thesis.

This completes the Estimation component of the control loop of Figure 2.11. In the
next chapters, the Control component is developed. The Estimation component and
the Control component are then combined in a case study of the Dutch freeway A15 in
Chapter 7.
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Chapter 5

Multi-class Flow Analysis and
Modeling

The current traffic state estimated in the previous chapter is the basis for traffic con-
trol in real-time. As shown in the control loop of Figure 2.11, the controller uses the
current traffic state to compute the control signal, which is ultimately fed to the DTM
measures of the traffic system. In this chapter, the theoretical framework is developed
that shows how the vehicle-class specific properties affect the traffic state and the net-
work performance. In the following chapter, multi-class DTM measures are developed
to control vehicle classes individually in order to improve the network performance.

First, the multi-class traffic flow model Fastlane is presented in continuous form in
Section 5.1. It is then discretized in space and time in order to solve it numerically in
Section 5.2. With Fastlane, the traffic state of a network can be simulated and predicted
over time. In order to evaluate the performance of a network, the traffic network per-
formance functions of total time spent and total cost are defined in Section 5.3. Then,
it is shown that the factors that largely contribute to the total cost are the travel time
in free flow, the throughput at bottlenecks, and the spillback of congestion. In Sec-
tion 5.4, Fastlane is used to derive the effects of these vehicle-class specific properties
on the network performance. Finally, conclusions are presented in Section 5.5.
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5.1 Modeling Multi-class Traffic with Fastlane

Chapter 2 demonstrated that multi-class traffic flow models capture relevant traffic
phenomena by modeling multiple vehicle classes. For example, different free-speed
capabilities of vehicles lead to a distribution of travel times in free flow conditions,
or different vehicle lengths lead to variable capacities. The multi-class traffic flow
model Fastlane captures and reproduces these phenomena. It was first developed by
Van Lint et al. (2008b), and then analyzed by Van Wageningen-Kessels (2013) and
applied for traffic state estimation by Yuan (2013). In this section, the Fastlane model
is presented in its continuous form. In the section thereafter, the model is discretized in
space and time so that it can be solved numerically. In this thesis, the model is largely
used as described in the original paper. Only a part of the node model is adapted (see
Section 5.2.2).

5.1.1 Basics of Macroscopic Traffic Flow Modeling

Link Node

Origin-link
(demand)

Destination-link

1-1 Node

1-2 Node
(turnfraction)

2-1 Node

Figure 5.1: Elements of a traffic network modeled in Fastlane

The basic element of traffic flow modeling is the road network. Figure 5.1 shows
which network components are implemented in Fastlane. A network consists of links
representing a homogeneous stretch of the freeway, and nodes connecting these links.
At the boundaries of the network, traffic enters the network at origin links, and it
leaves the network at destination links. The amount of traffic that wants to enter the
network is also called inflow. Furthermore, at nodes with multiple out-going links, the
turnfraction describes what percentage of the traffic is flowing to what out-going link.

Fastlane is a macroscopic traffic flow model, i.e. the traffic state is described in aggre-
gated terms over space x and time t, namely by the flow q and the density k. These two
quantities determine the speed

v =
q
k
. (5.1)

Furthermore, the conservation equation states that no vehicle can be created or de-
stroyed:

∂k
∂ t

+
∂q
∂x

= 0 . (5.2)
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Given these three variables, to solve the system, a third equation is required. The
first-order traffic flow model LWR (Lighthill & Whitham, 1955; Richards, 1956) mod-
els traffic in an equilibrium, mapping a speed to each density, commonly called the
fundamental diagram vFD:

v = vFD(k) . (5.3)

One fundamental diagram is defined for each link. With the assumption of flow maxi-
mization, this system of equations is uniquely solvable (Ansorge, 1990).

Single-class models are able to reproduce important traffic phenomena like the emer-
gence, spreading and dissolution of congestion. However, they do not capture the
difference of vehicle properties, such as the vehicle length and the maximum speeds,
which affect the maximum throughput at a given location or the travel time, respec-
tively.

5.1.2 Multi-class Macroscopic Traffic Flow Modeling

Like many other multi-class traffic flow models (Wong & Wong, 2002; Benzoni-Gavage
& Colombo, 2003; Chanut & Buisson, 2003; Ngoduy & Liu, 2007; Logghe & Immers,
2008; Hoogendoorn, 1999), Fastlane is an extension of the LWR model. For a detailed
analysis of macroscopic multi-class traffic flow models, refer to Van Wageningen-
Kessels (2013).

The traffic state is modeled as class-specific density ku, whereby u denotes the vehicle
class. Both the speed (5.1)

vu =
qu

ku
(5.4)

and the conservation of vehicles (5.2)

∂ku

∂ t
+

∂qu

∂x
= 0 (5.5)

hold per class u.

The fundamental diagram (5.3) is class-specific, too. In free-flowing conditions, faster
vehicles can overtake slower ones. In congestion, however, the vehicles are forced to
travel at the same speed, so overtaking is not possible. The fundamental diagram in
Fastlane is based on the so-called total effective density Ktot, which will be defined
soon:

vu = vFD
u (Ktot) . (5.6)

An example of a fundamental diagram used in Fastlane for two classes (cars and trucks)
is presented in Figure 5.2. The free-flow speed vfree

1 of cars (class 1) is significantly
higher than free-flow speed vfree

2 of trucks (class 2). The higher the density on the
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Figure 5.2: Example of a fundamental diagram in Fastlane for trucks (red
dashed) and cars (blue solid)

road, the smaller the speed difference between the classes. At critical density Kcrit, all
classes travel with the same critical speed vcrit. In this example, the speed of trucks in
free flow is insensitive to the density, since vfree

2 = vcrit.

The critical speed vcrit and the critical density Kcrit define the (effective) capacity

C = vcrit ·Kcrit (5.7)

of the link. The capacity here refers to the maximum possible throughput in pce
h .

In congestion, the speed decreases vastly, until traffic stands still at the jam den-
sity Kjam. The fundamental diagram in Fastlane for each class u is defined as

vFD
u (Ktot) =


vfree

u − vfree
u − vcrit

Kcrit
·Ktot if Ktot ≤ Kcrit

1
Ktot
·
(
(vcrit ·Kcrit)−

vcrit ·Kcrit

Kjam−Kcrit
· (Ktot−Kcrit)

)
if Ktot > Kcrit

.

(5.8)

The total effective density Ktot is the aggregate of the class-specific effective densities:

Ktot = ∑
u

Ku . (5.9)

The class-specific effective density

Ku = πu(vu) · ku (5.10)

is based on the (vehicular) density ku and the passenger-car equivalent (pce) value πu

defined in (2.1). Recall that the pce value is the ratio between the spacing of a vehicle
of a class u and the spacing of a passenger car. The effective density is therefore
expressed in passenger-car equivalents per kilometer (pce

km ), whereas as the (vehicular)
density is expressed in vehicles per kilometer (veh

km ).
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5.1.3 Dynamic PCE Value

In Fastlane, the pce value πu (2.1) changes dynamically dependent on the traffic state.
As illustrated before in Figure 2.6, the relative spacing of a truck is correlated to the
traffic speed: the lower the speed, the higher the relative spacing of a truck with re-
spect to a car. The spacing ru(vu) at speed vu is modeled by a simple car-following
model (Pipes, 1967):

ru(vu) = rmin
u + vu ·hmin

u , (5.11)

parameterized with the spatial occupancy at standstill rmin
u and the minimum time head-

way hmin
u . The pce function of class u is then defined by (2.1) and (5.11) as

πu(vu) =
rmin

u + vu ·hmin
u

rmin
car + vcar ·hmin

car
. (5.12)

Figure 5.3 shows a typical pce function for trucks and cars.
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Figure 5.3: Typical pce function in Fastlane for trucks (red dashed) and cars (blue
solid)

Besides the conversion between vehicular and effective density (5.10), the pce value is
also used to convert the (vehicular) flow qu to the class-specific effective flow

Qu = πu ·qu (5.13)

and to the total effective flow

Qtot = ∑
u

Qu . (5.14)

5.2 Discretization of Fastlane

In order to use the Fastlane model in computer simulations, its analytical model of the
previous section is discretized in space and time. This section describes the link and
the node model of Fastlane.
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5.2.1 Link Model

Fastlane is discretized in space into so-called cells i with length ∆xi, and discretized
in time into time steps j with length ∆t. The class-specific density ki j

u of each cell i
evolves over the time steps j by the discretization of the conservation equation (5.2)
by

ki, j+1
u = ki j

u +
∆xi

∆t

(
q

i− 1
2 , j

u −q
i+ 1

2 , j
u

)
, (5.15)

denoting q
i− 1

2 , j
u as the flux of class u from cell i−1 to cell i (in veh

h ).

As in the Cell Transmission Model (Daganzo, 1994), the fluxes are solved by Go-
dunov’s minimum demand and supply scheme (Lebaque, 1996) (the time index is
omitted here for readability):

q
i− 1

2
u = min{di−1

u ,si
u} , (5.16)

with the class-specific demand di
u and the class-specific supply si

u of cell i (both in veh
h ).

The effective demand (Du) and supply (Su) quantities are defined similarly to the total
effective flow (5.14) and the class-specific flow (5.13):

di
u =

1
π i

u
·Di

u si
u =

1
π i

u
·Si

u (5.17)

Di
u = η

i
u ·Di

tot Si
u = η

i−1
u ·Si

tot (5.18)

with ηu as the share of class u of the total traffic flow (5.14):

ηu =
Qu

Qtot
, (5.19)

The total demand and total supply from (5.18) are finally defined by the traffic state Ki
tot

and Qi
tot:

Di−1
tot =

{
Qi−1

tot if Ki−1
tot ≤ Ki−1

crit

Ci−1 else
Si

tot =

{
Ci if Ki

tot ≤ Ki
crit

Qi
tot else

, (5.20)

with Ci as the total effective capacity and Ki
crit the total effective critical density of

cell i.

5.2.2 Node Model

To model on-ramps, off-ramps or junctions of a network, three node types are used in
Fastlane (Figure 5.4), which are explained in the following.

One-to-one nodes model a change in the network structure such as a lane drop, a
change in the speed limit, or an incident. One-to-one node therefore connect links that
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1-2 Node

iin
iout

i′out

2-1 Node

iout
iin

i′in

1-1 Node

ioutiin

Figure 5.4: Node types in Fastlane

are characterized by different fundamental diagrams. The logic of one-to-one nodes
is exactly the same as the one of the links, determining the flux between the links as
the minimum of the demand of the upstream link and the supply of the downstream
link (5.2.1).

Two-to-one nodes are used to model merges such as on-ramps. To determine the
fluxes (5.16) from cell iin to iout and from i′in to iout, the total effective supply Siout of
(5.18) is split according to the capacities Ciin and Ci′in of the incoming links. Therefore,
the supply for the incoming cells to the outgoing cells are

Siin→iout =
Ciin

Ciin +Ci′in
·Siout , (5.21)

Si′in→iout =
Ci′in

Ciin +Ci′in
·Siout . (5.22)

The remainder of the node logic is similar to one on the link level. In addition, if one
in-link’s demand is not completely served while the other in-link’s demand is, then the
remaining unused supply of the latter link is provided to the former one.

One-to-two nodes are used to model diverges such as off-ramps. The model of bifur-
cation nodes is modified with respect to the original Fastlane model by Van Lint et al.
(2008b). To determine the fluxes (5.16) from cell iin to iout and from iin to i′out, the
class-specific demand diin

u of (5.16) is split according to the specified turnfraction β
iin
u .

Therefore, the class-specific demands of the incoming cells are

diin→iout
u = a ·β iin

u ·diin
u , (5.23)

diin→i′out
u = a ·

(
1−β

iin
u
)
·diin

u . (5.24)

Furthermore, in order to ensure a proper modeling of spillback, the blocking factor a
describes what ratio of traffic cannot be served:

a = min

{
1,

(
Siin

tot

Diin
tot

)
,

(
Si′in

tot

D
i′in
tot

)}
. (5.25)

This is required to ensure the FIFO property at partially blocked diverges.

For details about Fastlane, refer to the original paper by Van Lint et al. (2008b) and to
the dissertation by Van Wageningen-Kessels (2013).
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5.3 Performance Indicators of Network Traffic

This section defines performance indicators of a traffic system. The total time spent
and the total cost are defined both by microscopic and by macroscopic variables in
Section 5.3.1. The significant contributing traffic phenomena to the performance indi-
cators are then presented in Section 5.3.2.

5.3.1 Definition of Total Time Spent and Total Cost

The goal of traffic management centers is to optimize the traffic performance of a
network. In this thesis, we are interested in the system optimum of a network. One
performance indicator to measure the system performance is the total time spent (TTS)

T = ∑
α

τα ·1veh , (5.26)

which is the sum of the travel time τα of each vehicle α . A second performance
indicator is the total cost

T C = ∑
α

ζατα ·1veh , (5.27)

which is a generalization of the total time spent, where the individual travel times are
weighted by the value of time ζα .

In later chapters, the controller is applied in computer simulations conducted with
Fastlane. The total time spent and the total costs will therefore be derived from macro-
scopic variables in discretized form. Based on the class-specific densities ki j

u for each
class u defined over a discretized space of size ∆xi for each cell i and discretized time
of size ∆t for each time step j, the total time spent is derived as

T = ∑
u

∑
j
∑

i
ki j

u ∆xi
∆t . (5.28)

Analogously, the total cost is derived as

T C = ∑
u

ζu ∑
j
∑

i
ki j

u ∆xi
∆t . (5.29)

Equations (5.28) and (5.29) are used in later chapters to evaluate the performance of
traffic conditions predicted by a traffic flow model.

5.3.2 Factors Contributing to the Total Cost

In order to control traffic towards the system optimum of a low total cost, the contribut-
ing factors that influence the total cost are derived.
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The total cost (5.27) and the total time spent (5.26) depend directly on the travel time
of each vehicle, which is directly related to the speed vα and the length L of a route by

τα =
L
vα

. (5.30)

In free flow, the speed is somewhat sensitive to the traffic conditions. The first con-
tributing factor to the total cost is thus the travel time spent in free-flow.

However, when congestion emerges at a bottleneck, the throughput becomes impor-
tant, which is the second contributing factors. The higher the throughput is, the fewer
vehicles get delayed at the bottleneck, and therefore the lower the total cost is. Hegyi
(2004) shows in a simple example how an increase of the throughput by 5% reduced
total time spent by 14%.

The third contributing factor to the total cost is spillback. When congestion emerges at
a bottleneck, a horizontal queue forms and spills back upstream. Figure 2.3 illustrated
that spillback can block upstream offramps and thereby hinder traffic that does not
want to pass the bottleneck that causes the congestion. Since this traffic gets congested
too, spillback is a self-perpetuating effect. It therefore affects the total costs in two
ways. Firstly, the vehicles that want to pass the bottleneck get delayed and increase
the total cost. Secondly, other traffic that get hindered by the blockage of upstream
infrastructure increases the total cost as well. Spillback thus has a large effect on the
total cost.

To summarize, the three factors contribute to the total cost. The travel time in free flow
is relevant for light traffic conditions, and can be optimized to some extent. As soon
as congestion emerges, the throughput of the bottleneck should be maximized, while
at the same time, the spillback of the congestion to other infrastructure like off-ramps
and the underlying networks should be prevented. Each of the contributing factors will
be analyzed in more detail in the following section.

5.4 Analysis of Class-specific Properties on Network
Traffic Flow

This section derives the effects of the class-specific properties of free-flow speed, pce
value and value of time on the network performance (Section 5.3) by means of the
Fastlane model (Section 5.1). The three significant contributing factors to the total
time spent and total cost are analyzed in order to derive which vehicle class has to be
prioritized under which circumstances to optimize the network performance. For the
sake of simplicity, the analyses are presented for the case of two classes. Furthermore,
examples with realistic parameter values are shown.
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5.4.1 Effects of Class-specific Properties on Throughput at an Ac-
tive Bottleneck

The easiest contributing factor to analyze is the throughput at a bottleneck. The premise
is that the bottleneck is active, i.e. congestion is prevalent upstream of the bottleneck,
whereas downstream traffic is in free flow, as it often occurs at lane drops, for example.

Let the bottleneck have a capacity of Cbn. Since the bottleneck is active, the total
effective flow Qtot through that bottleneck is fixed to that capacity, and it is distributed
to the class-specific flows qu according to (5.14) and (5.13):

Cbn = Qtot = π
cap
1 ·q1 +π

cap
2 ·q2 , (5.31)

with π
cap
u denoting the pce value at capacity, i.e. at critical speed: π

cap
u = πu(vcrit).

The objective in multi-class traffic control is to minimize the total cost by optimally
distributing the flow qu of each class. Minimizing the total cost leads to maximizing
the total monetary flow, which is defined as

QC
tot = ζ1 ·q1 +ζ2 ·q2 . (5.32)

(Note, that in order to minimize the total time spent, one would maximize the total
(vehicular) flow qtot = q1 + q2 of traffic. This is a special case of the total monetary
flow, by setting the value of time ζu in (5.32) to one.)

This is an optimization problem, whereby the objective is to maximize the total mon-
etary flow QC

tot (5.32), subject to the capacity of the bottleneck Cbn (5.31) and positive
class-specific flows qu. Class û then has to be prioritized exactly then if that class has
the highest positive impact on the objective

û = argmax
u

∂QC
tot

∂qu
. (5.33)

This optimization is solved by finding the derivative of the objective with respect to
the flow of each class:

∂QC
tot

∂q1
= ζ1 +ζ2 ·

dq2

dq1
. (5.34)

The derivative dq2
dq1

is inferred from the bottleneck capacity (5.31):

dq2

dq1
=

d
dq1

(
1

π
cap
2
· (Cbn−π

cap
1 ·q1)

)
=−

π
cap
1

π
cap
2

. (5.35)

Inserting (5.35) in (5.34) leads to a simple expression:

∂QC
tot

∂q1
= ζ1−ζ2 ·

(
π

cap
1

π
cap
2

)
; (5.36)
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and by symmetry

∂QC
tot

∂q2
= ζ2−ζ1 ·

(
π

cap
2

π
cap
1

)
. (5.37)

For two classes holds thus

prioritize û = 1 ⇔ ∂QC
tot

∂q1
>

∂QC
tot

∂q2
(5.38)

ζ1−ζ2 ·
(

π
cap
1

π
cap
2

)
> ζ2−ζ1 ·

(
π

cap
2

π
cap
1

)
(5.39)

ζ1

(
1+

π
cap
1

π
cap
2

)
> ζ2

(
1+

π
cap
2

π
cap
1

)
(5.40)

ζ1

ζ2
>

1+ π
cap
1

π
cap
2

1+ π
cap
2

π
cap
1

=

π
cap
2 +π

cap
1

π
cap
2

π
cap
1 +π

cap
2

π
cap
1

=
π

cap
1

π
cap
2

(5.41)

ζ1

π
cap
1

>
ζ2

π
cap
2

. (5.42)

Class 1 should thus be prioritized if the ratio of value of time per pce value is largest.

In a practical example, when regarding cars and trucks – with ζcar = 15 C
vehh , π

cap
car =

1 pce
veh , ζtruck = 45 C

vehh and π
cap
truck = 1.5 pce

veh – the relation of (5.42) shows:

15 C
vehh

1 pce
veh

<
45 C

vehh
1.5 pce

veh
; (5.43)

in this case, the right-hand side is largest and therefore trucks should be prioritized to
maximize the monetary flow QC and to minimize the total cost T C.

In conclusion, in order to maximize the monetary throughput at a bottleneck, prioritize
the vehicle class that has the highest ratio of monetary value per spacing.

5.4.2 Effects of the Class-specific Properties on Spillback

The second contributing factor to analyze is the spillback of congestion at a bottleneck.
As stated earlier, spillback can have a larger impact on the total cost, because it can
block other traffic and is a self-perpetuating effect. We analyze the growth rate of
the spillback, denoted as cgr, which is the speed of the shock wave that propagates
upstream at the tail of the congestion.

Figure 5.5 shows the setup for the analysis. Vehicles of two classes enter the road
stretch with constant flows qin

1 and qin
2 , respectively. A bottleneck is located down-

stream and has a sufficiently low capacity

Cbn = π
cap
1 ·qbn

1 +π
cap
2 ·qbn

2 (5.44)
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inflow qin
1 , qin
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bottleneck capacity
Cbn = π

cap
1 ·qbn

1 +π
cap
2 ·qbn

2

congestion growth rate cgr

congestion density K∗

with pce values π∗1 , π∗2

Figure 5.5: Setup for the analysis of spillback

to cause congestion to spill back. Since less traffic flows out of the bottleneck than
flows into the congestion, there is a surplus of effective flow:

Qgr = π
∗
1 ·q

gr
1 +π

∗
2 ·q

gr
2 (5.45)

with the class-specific (vehicular) flow surplus

qgr
u = qin

u −qbn
u . (5.46)

Since traffic in congestion is denser than traffic at capacity, the pce value π∗u in (5.45)
is larger than the pce value π

cap
u in (5.44). Its exact value depends on the total effective

density K∗ of the congestion. This density is defined by the fundamental diagram and
the bottleneck capacity. Assuming a linear flow-density fundamental diagram as in
Fastlane (5.8), the effective density of the congestion is then

K∗ =
Cbn−C

C
(Kcrit−Kjam)+Kcrit . (5.47)

This density defines the speed in the congestion by the fundamental diagram (5.3):

v∗ = vFD(K∗) , (5.48)

which, in turn, defines the pce value via the pce function (5.12):

π
∗
u = πu(v∗) . (5.49)

By applying the continuity equation (5.1), the growth rate is derived by

cgr =
Qgr

K∗
. (5.50)
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Substitute the flow surplus (5.45):

cgr =
π∗1 ·q

gr
1 +π∗2 ·q

gr
2

K∗
, (5.51)

substitute the class-specific flow surplus (5.46):

cgr =
1

K∗

[
π
∗
1 · (qin

1 −qbn
1 )+π

∗
2 · (qin

2 −qbn
2 )
]
, (5.52)

and finally substitute qbn
2 with the bottleneck flow (5.44) to derive a closed-form ex-

pression of the growth rate:

cgr =
1

K∗

[
π
∗
1 · (qin

1 −qbn
1 )+π

∗
2 ·

(
qin

2 −
Cbn−π

cap
1 ·qbn

1

π
cap
2

)]
. (5.53)

The class û that minimizes the spillback should be prioritized:

û = argmin
u

∂cgr

∂qbn
u

. (5.54)

For class 1, the derivative term in (5.54) leads to

∂cgr
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[
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∗
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∗
2

(
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cap
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)]
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=
1

K∗

[
π

cap
1

π
cap
2
·π∗2 −π

∗
1
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, (5.56)

and by symmetry:

∂cgr

∂qbn
2

=
1

K∗

[
π

cap
2

π
cap
1
·π∗1 −π

∗
2

]
. (5.57)

As a realistic example, let us again assume cars and trucks. The pce function of cars is
constant, and the truck’s pce function decreases with speed:

πcar ≡ 1 , π
∗
truck > π

cap
truck , (5.58)

then (5.56) reads

∂cgr

∂qbn
car

=
1

K∗

[
π∗truck

π
cap
truck︸ ︷︷ ︸
>1

−1
]
> 0 (5.59)

That means, the higher the flow at the bottleneck is assigned to cars, the larger the
spillback is.

In conclusion, to prevent spillback, or at least to minimize the growth rate of congestion
at a bottleneck, the largest vehicle class must be prioritized.
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5.4.3 Effects of the Class-specific Properties on the Total Cost in
Free Flow

The last contributing factor to the total cost are the travel times in free flow conditions.
This factor usually is relevant only if there is little or no congestion in the network.
Here, we will analyze the effects of the pce value and the class-specific fundamental
diagram on the total cost.

Lw Le

qtot
1 , qtot

2

qw
1 , qw

2 qe
1, qe

2

west east

Figure 5.6: Example network for the analysis of the total cost in free flow

Consider a simple network with two possible routes between the origin and the des-
tination, as shown in Figure 5.6. The western route is longer than the eastern route
(Lw > Le). Their are two classes, with different fundamental diagrams, whereby class 1
is faster than class 2 (given the same total density; vFD

1 (Ktot) ≥ vFD
2 (Ktot)). The in-

flow qin
u into the network is constant.

The objective is to minimize the total cost of the network. Since the inflow is steady,
we will look at the total cost per time, denoted as Ṫ C:

Ṫ C = ∑
u

ζu ∑
r

τ
r
uqr

u , (5.60)

which sums the product of travel times and flow for each class u and for each route r ∈
{w,e}. The traffic flow can be influenced by assigning the traffic classes to a route,
while preserving the inflow into the network:

qtot
u = qw

u +qe
u . (5.61)

The goal is thus to minimize (5.60) subject to (5.61) and positive flows qu.

The derivatives of the objective (5.60) with respect to the control variables will show
which class to prioritize. Since the derivatives are relatively complex, we assume that
the speed of class 2 is constant. Since the total cost per time consists of four summands
and there are two control variables (the flow qw

u to the western route per class), there are
eight derivatives, which are shown in the following. First, the derivatives with respect
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to class 1:
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and now the derivatives with respects to class 2
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To minimize the total costs, class 1 thus has to be sent to route r = w, if the derivative
of (5.60) is negative:

increase flow qw
1 ⇔ ∂ Ṫ C

∂qw
1

< 0 . (5.70)

The derivative of (5.70) is computed in (5.62) to (5.65); since some of them are zero,
only two components remain:
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?
< 0 (5.71)
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This equation can be solved analytically, however it contains the derivative of the
speed, which in turn depends on the effective density (5.3), which depends on the
pce value (5.9), which itself depends on the speed (5.12). We therefore provide here
a qualitative interpretation of this equation and its consequences for the total cost. To
support our arguments, the equations and the network were implemented in Matlab’s
Symbolic Toolbox to find a closed expression of the total cost. Since these expressions
are very long, results for realistic parameter values are presented in the following.

Interpretation of the derivatives based on realistic parameter values

The network is implemented for routes of lengths Lw = 6km and Le = 5km. The
capacity of each route is C = 2000 pce

h , with a critical speed of vcrit = 80 km
h and a

critical density of Kcrit = 25 pce
km . The free-speed of class 1 is vfree

1 = 120 km
h , the speed

of class 2 is constant, vfree
2 = vcrit. The inflow into the network is fixed to qin

1 = 1000 veh
h

and qin
2 = 700 veh

h ; the inflow is low enough so that the freeway stays in free-flow
conditions. The parameters of the pce function represent realistic cars and trucks with
hmin

1 = hmin
2 = 1s, rmin

1 = 7m and rmin
2 = 25m. Furthermore, the values of time are set

to ζ1 = ζ2 = 15 C
vehh .
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Figure 5.7: Total cost of the base case

Figure 5.7 shows the total cost dependent on the flow assignment to the western route
for each class. It shows that simply assigning all traffic to the shorter western route
leads to a low total cost, compared to assigning all traffic to the eastern route (at (0,0)).
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However, such an assignment is not optimal. Since the speed on the empty eastern road
is high, some benefits are gained when assigning some cars to the east. The black circle
indicates the optimum assignment: all trucks are assigned to the short western route,
whereas the cars are split between both routes (at (492,0)).

In the following, the sensitivity of the total cost with respect to some of the parameters
is analyzed.
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Figure 5.8: Total cost when increasing the length of the longer route

The lengths of the routes Lr have a large influence onto the total costs. For example, if
the western route is significantly longer than the eastern route (Lw� Le), then (5.71)
is lower than zero, so that traffic is routed to the west. In the example, the length of
the western route is increased to Lw = 8km. Figure 5.8 shows that the optimum has
significantly shifted towards the shorter eastern route (minimum at (169,0)).

The inflow qtot
u has a strong influence on the optimization of the total cost. The higher

the inflow, the more vehicles have to be rerouted in order to prevent congestion. On
the other hand, if inflow is low, then high speeds can be maintained even if all vehicles
use the shortest route. Figure 5.9 illustrates the latter case, where the optimum is to
reroute no vehicles (at (0,0)).

The speed of both routes can vary between the critical speed vcrit and the free speed vfree
u ,

in realistic setup thus between 80 km
h and 120 km

h (see fundamental diagram of Fig-
ure 5.2). This is some degree of variation, but it intuitively shows that it has a less
significant impact than the length of the routes. In the example, the free speed of
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Figure 5.9: Total cost when lowering the inflow

the cars was lowered to vfree
1 = 100 km

h . Figure 5.10 shows that the optimum has now
shifted to assigning more traffic to the east (at (322,0))), since there is less to gain
when traveling via the longer eastern route.

The derivative of the speed ∂vw
1

∂qw
1

in (5.71) is influenced by the pce function π (see (5.12),
(5.9), (5.3)). In the example, the pce function of the trucks is reduced to one, π2 ≡ 1.
Therefore, the capacity (in veh

h ) is slightly higher so that more vehicles can travel on the
shorter eastern route. As Figure 5.11 indicates, there is, however, only little difference
to the base case (minimum at (441,0)).

The value of time ζu has some effect on the total cost. Since ζu is a scalar factor of the
total cost (5.27), it can influence the optimal flow distribution severely. However, in
realistic cases, this effect is only little. In Figure 5.12, the value of time of trucks was
tripled to ζtruck = 45 C

vehh , but the optimum remains practically unchanged (minimum
at (492,0)).

Summary

To summarize, the effect of the multi-class parameters on the total cost in free flow
conditions is relatively low. The free-speed of each class has a relatively large influ-
ence, where the influence of the pce function is almost negligible. Furthermore, the
value of time has some effect on to the total cost. More important for the optimal rout-
ing is, however, the road layout, since the lengths of each route have a strong influence
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Figure 5.10: Total cost when decreasing the free speed cars

on the travel time. Furthermore, the inflow into the network is significant; if the inflow
is very low, then the speed of each route is almost the free speed, so an assignment to
the shortest route is optimal.

5.5 Conclusion

This chapter introduced the network performance indicators and the effects of multi-
class traffic on them. The focus was on the system optimum of a low total cost, which
is the sum of all vehicles’ travel costs. The total cost depends mainly on three fac-
tors, namely the travel time in free flow, the throughput at a fixed bottleneck and the
prevention of spillback.

To analyze the effects of these factors on the total cost, the macroscopic multi-class
traffic flow model Fastlane was presented. In Fastlane, the pce value of a class is
dynamic: the higher the (total effective) density, the higher the pce value. In addition,
in free flow, vehicles can travel with different speeds: each class is characterized by its
own free-flow speed.

Figure 5.13 summarizes which vehicle class should be prioritized in order to optimize
the effects of each factor. If traffic is in free-flow, there are some ways to steer the
traffic towards the system optimum of low total cost. If there are multiple routes from
an origin to a destination, and if these routes are approximately of the same length,
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Figure 5.11: Total cost when ignoring trucks dynamics: πtruck ≡ 1

then traffic can be split between these routes. The free-flow speed capabilities of each
class thereby have the strongest influence, which allows fast vehicles to use a longer
route but with a higher speed. Vehicle classes whose speed is little sensitive to the
traffic conditions usually can take the shortest route. Furthermore, the pce function and
therefore the vehicle length have a negligible influence on the optimal flow distribution
to minimize the total cost. All these effects, however, are relatively low.

If congestion builds up, it is more important to maximize the throughput at the bottle-
necks. We looked here at the monetary throughput, which is a generalization of the
flow, because it takes the value of time into account. In essence, in order to minimize
the total cost, the vehicle class with the highest ratio of value of time to pce value at
capacity has to be prioritized. In practice, this leads to a prioritization of trucks, since
they are about three times as valuable as a car but occupy only less than double the
amount of space.

If congestion grows long, it threatens to block other infrastructure such as off-ramps,
thereby blocking other traffic, which leads to a large degradation of the network per-
formance. The most important factor of the total cost is therefore to minimize the
spillback when it threatens to influence other parts of the network. In essence, the
longest vehicles have the strongest effect on the length of the congestion. For exam-
ple, the pce value of a truck increases to value between three and four in practice. It is
therefore important to prioritize trucks and keep them out of congestion, if spillback to
offramps is likely to occur.
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Figure 5.12: Total cost when increasing truck’s value of time

These results show that different vehicle classes have to be prioritized in order to op-
timize the network traffic performance, dependent on the current traffic state. In the
following chapter, three multi-class DTM measures will be developed and applied in
simple networks which show the benefits of multi-class traffic control. Firstly, a dy-
namic trucklane is analyzed to determine under which traffic conditions it should be
activated to optimize the network performance. Secondly, a ramp meter is generalized
to multiple vehicle classes; the experiments will illustrate again the tradeoff between
a high network throughput and a low spillback of congestion. Finally, route guidance
is generalized to multiple vehicle classes and applied in a model-predictive control
framework; among others the experiments will show that the vehicle class that has to
be rerouted depends on the underlying traffic conditions. Moreover, the experiments
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Figure 5.13: Overview of the contributing factors to the total cost and the optimal
prioritization of the classes
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for all three multi-class DTM measures will show that multi-class control outperforms
mixed-class control.



Chapter 6

Multi-Class Traffic Control Concepts

The previous chapter showed how the properties of the vehicle-classes affect the traffic
flow and which vehicle class has to be prioritized in order to optimize the network
performance of the total cost. In this chapter, we develop several multi-class DTM
measures in order to optimize the network performance and its contributing factors.
The performance of each measure is analyzed by experiments in simple networks. The
total cost is improved with up to 33% when using multi-class DTM measures with
respect to using their mixed-class counterparts.

In Section 6.1, a framework for multi-class traffic control is developed that provides an
overview of the three multi-class DTM measures that are discussed in the following.
The first multi-class DTM measure developed is the vehicle-class specific lane. Sec-
tion 6.2 analyzes under which conditions it is beneficial to activate class-specific lanes.
The next DTM measure expands conventional ramp-metering to multiple classes. In
Section 6.3, multi-class ramp metering is applied in a reactive controller setup. The
third DTM measure is multi-class route guidance, where each vehicle-class is guided
individually. The setup in Section 6.4 is the most realistic, with changing inflows and
the event of an accident; a model-predictive controller is applied to compute the opti-
mal route-guidance signals. Section 6.5 presents the conclusions.

Section 6.2 is based on Schreiter, Pel, Van Lint, & Hoogendoorn (2012): “Modeling
Monetary Costs of Multi-class Traffic Flow – Application to the Dynamic Manage-
ment of Truck Lanes” and Section 6.3 is an adapted version of Schreiter, Van Lint,
& Hoogendoorn (2011): “Multi-class Ramp Metering: Concepts and Initial Results”,
both presented at the at the IEEE Conference on Intelligent Transportation Systems.
Section 6.4 is a revised version of Schreiter, Landman, Van Lint, Hegyi, & Hoogen-
doorn (accepted): “Vehicle-class Specific Route-guidance of Freeway Traffic by Model-
predictive Control” accepted in Transportation Research Record.
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6.1 Conceptual Framework of Multi-class Traffic Con-
trol

The previous chapter showed that the network performance is influenced by three main
contributing factors: the travel time in free flow, the throughput at active bottlenecks,
and the spillback of congestion. In order to improve the network performance such
as the total cost, this chapter develops a framework for multi-class vehicle control as
shown in Figure 6.1.

There are two approaches to control traffic vehicle-class specifically. The vehicle
classes can be separated within the carriageway by assigning them different lanes, or
they can be separated across the network, i.e. across different links.

This chapter proposes three different vehicle-class specific control measures that apply
these two approaches. Firstly, vehicle-class specific lanes dedicate a lane of the free-
way to a vehicle class. In other words, one class is separated from the rest of the traffic
of the carriageway so that congestion on the remaining lanes can be bypassed by the
separated class.

Secondly, multi-class ramp metering combines a class-specific lane with a traffic sig-
nal: on an on-ramp of the freeway, the vehicles-classes are spatially separated into
class-specific lanes, whereby traffic lights grants access to the freeway separately for
each lane.

Thirdly, multi-class route guidance advises a route to each vehicle class individually
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Figure 6.1: Conceptual framework of multi-class traffic control
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at a bifurcation point in the network. This is therefore a measure to distribute traffic
across the network.

All of these three multi-class DTM measures affect the contributing factors of the net-
work performance. Since the factors also influence each other, a closed-form expres-
sion between the parameter values of the measure and the effects on the resulting total
cost is therefore hard to calculate, numerical experiments are conducted to evaluate the
performance of the DTM measures. However, in some cases, a closed-form expression
between model parameters and a contributing factor is possible.

In the experiments of this section, we assume that the spatial separation of vehicle
classes does not influence the capacity of the freeway. In general, we assume that
the capacity of a freeway stretch is represented in the fundamental diagram so that
weaving, merging and similar maneuvers are modeled in the fundamental diagram.

In the following sections, the three multi-class DTM measures are developed and val-
idated. For each of them, a layout is proposed. The traffic flow model Fastlane pre-
sented in Sections 5.1 and 5.2 is expanded by these DTM measures so that experiments
with simple networks can be conducted and their performance can be evaluated. In
Section 6.5, the results of the experiments are summarized and conclusions are drawn.

6.2 Vehicle-class Specific Lanes

The first vehicle-class specific DTM measure discussed in this chapter is the class-
specific lane. Such a lane may only be used by a specified vehicle class. The advantage
is that a vehicle class that is considered of high value may bypass a congested area. In
practice, commonly truck lanes or high occupancy vehicle (HOV) lanes are applied,
especially in the Unites States. Trucks are considered valuable due to their freight,
whereas vehicles with a high occupancy serving multiple people are valuable due to
their large number of passengers. In some instances, the HOV lane is extended to a
high-occupancy and toll (HOT) lane, where single drivers can buy access to it.

The traffic management center is assumed to strive for the system optimal network per-
formance and decides when to activate or deactivate the class-specific lane. In traffic
with many trucks, it is beneficial to activate a truck lane so that the valuable trucks can
bypass congestion. In contrast, in traffic with nearly no trucks, it is beneficial to de-
activate a truck lane and so that its capacity can be used by all traffic. The break-even
point is determined in the remainder of this section.

6.2.1 Layout

A layout of vehicle-class specific lanes is proposed in Figure 6.2(a). Only a specified
vehicle-class, in this case trucks, is allowed to use the dedicated lane. By installing the
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Figure 6.2: Vehicle-class specific lanes

truck-specific lane over lane drops and other bottlenecks, truck traffic can bypass the
congestion that potentially emerges there.

6.2.2 Experimental Setup

The network used in the experiments is the road stretch of Figure 6.2 with a bottleneck
located downstream in the form of a lane drop. The following two scenarios are con-
sidered. In scenario A, the class-specific lane is activated (Figure 6.2(a)) so that only
trucks are allowed to use that lane. In scenario B, the class-specific lane is deactivated
(Figure 6.2(b)) so that every vehicle class may use the lane.

If traffic is in undersaturated conditions, i.e. if no congestion is present at the bottle-
neck, then the throughput and therefore the performance of both scenarios is equal.

We therefore consider only oversaturated conditions, i.e. the bottleneck is active and
congestion is present. In this case, the goal is to optimize the monetary through-
put QC (5.32) at the bottleneck.

As a typical example, consider a situation with the following realistic parameter values
from the Dutch road authority (Rijkswaterstaat, 2011). Let there be a bottleneck with
three lanes, whereby one lane is a truck-specific lane; i.e. the capacity is Cbn = 6000 pce

h
and the dedicated-lane fraction λ = 1

3 . Let the pce values at capacity be π
cap
car = 1 and

π
cap
truck = 1.5, and let the values of time be ζcar = 15 C

vehh and ζtruck = 45 C
vehh .
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In these experiments, the spatial dynamical behavior of traffic such as the growth of
congestion is out of the scope. Since only the throughput at a point is of interest, the
Fastlane model (Section 5.1) here reduces to the effective flow equations (5.14) and
(5.13) and the pce value (5.12) at critical speed.

6.2.3 Results

This section presents first the analytical results, then the numerical results based on the
parameter values given above.

6.2.3.1 Analytical Results

The monetary throughput QC
A of scenario A is derived (5.32) by the sum of the class-

specific flows qu at the bottleneck, weighted by the value of time ζu:

QC
A = ζtruck ·qtruck +ζcar ·qcar . (6.1)

Since class 2 can flow unhindered, its bottleneck flow equals the inflow: qtruck = qin
truck.

Since class 1 is oversaturated, its flow is fixed to the capacity of the remaining lanes:
qcar =

(1−λ )Cbn

π
cap
car

. The monetary flow of scenario A is thus

QC
A = ζtruck ·qin

truck +ζcar ·
(1−λ )Cbn

π
cap
car

. (6.2)

Since empirical research has shown that the (effective) capacity increases if vehicle-
class are spatially separated (Cassidy et al., 2009), QC

A is a lower bound for the mon-
etary flow of scenario A, so the results in the remainder are also interpreted as lower
bounds.

The monetary throughput QC
B of scenario B is defined by the class-specific flows at the

bottleneck. Since traffic is oversaturated, the flows qu at the bottleneck are a fraction a
of the inflows qin

u :

QC
B = ζtruck ·qtruck +ζcar ·qcar (6.3)

= ζtruck ·aqin
truck +ζcar ·aqin

car (6.4)

= a · (ζtruck ·qin
truck +ζcar ·qin

car) , (6.5)

whereby the factor a in (6.5) is defined by the total flow at the bottleneck qtot and the
total inflow qin

tot:

a =
qtot

qin
tot

. (6.6)
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The total bottleneck flow qtot in (6.6) is derived from the bottleneck capacity Cbn,
whereby the vehicle classes share the total flow according to their inflow composition
ηu =

qin
u

qin
tot

:

Cbn = π
cap
truckqtruck +π

cap
car qcar (6.7)

= π
cap
truckηtruckqtot +π

cap
car ηcarqtot . (6.8)

The total flow in (6.8) is therefore

qtot =
Cbn

π
cap
truckηtruck +π

cap
car ηcar

. (6.9)

Combining (6.9), (6.6) and (6.5) leads to

QC
B =

qtot

qin
tot
·
(

ζtruck ·qin
truck +ζcar ·qin

car

)
(6.10)

=
1

qin
tot
· Cbn

π
cap
car

qin
car

qin
tot
+π

cap
truck

qin
truck
qin

tot

·
(

ζtruck ·qin
truck +ζcar ·qin

car

)
; (6.11)

the total inflow qin
tot in (6.11) gets neutralized so that the monetary flow of scenario B

is

QC
B =

ζcar ·qin
car +ζtruck ·qin

truck

π
cap
car ·qin

car +π
cap
truck ·qin

truck
·Cbn . (6.12)

The break-even point between the two scenarios is determined by the comparing the
monetary flows QC

A (6.2) and QC
B (6.12):

QC
A−QC

B = ζtruckqin
truck +ζcar

(1−λ )Cbn

πcar
−

ζcarqin
car +ζtruckqin

truck

π
cap
car qin

car +π
cap
truckqin

truck
Cbn (6.13)

= ζtruckqin
truck +

[
(1−λ )

ζcar

πcar
−

ζcarqin
car +ζtruckqin

truck

π
cap
car qin

car +π
cap
truckqin

truck

]
Cbn . (6.14)

A positive value of QC
A−QC

B (6.14) thus indicates that an activated truck lane is bene-
ficial.

6.2.3.2 Results Based on Realistic Parameter Values

Figure 6.3 presents the monetary flows over the class-specific inflows. If the truck lane
is activated (Figure 6.3(a)), then the monetary flow QC

A (6.2) increases linearly with
the truck inflow qin

truck; furthermore, QC
A is insensitive to the car inflow qin

car, since the
cars queue up at the end of the congestion and therefore do not influence the flow at
the bottleneck.
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A (truck lane activated)
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B (truck lane deactivated)
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Figure 6.3: Results of the trucklane experiments: total monetary flow for both
cases and the difference thereof
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If the truck lane is deactivated (Figure 6.3(b)), then the monetary flow QC
B increases

with the truck inflow qin
truck. In contrast, if the car inflow qin

car increases, then the cars
hinder valuable trucks so that the monetary flow decreases. Therefore, the more car
traffic there is, the more beneficial a truck lane is.

Figure 6.3(c) shows the difference of both scenarios QC
A−QC

B (6.14). Positive values
indicate that an active trucklane is beneficial. The yellow line indicates the break-
even point between both scenarios. As can be seen, the larger the inflow, the more
beneficial a truck lane is. In the case of heavy demand (the inflow exceeds the capacity
by approximately one third), a truck lane is beneficial if it is used to at least three
quarters of its capacity. Since the capacity of the bottleneck is likely to be higher if
vehicle-classes are spatially separated, the switching point is even slightly lower.

6.2.4 Conclusion

A dedicated truck lane is beneficial if congestion is emerging at a bottleneck and a high
percentage of trucks is present. It can even improve the performance if it is running
below capacity. Based on a realistic setup, the experiment showed that the total cost
is improved if the dynamic truck lane is activated when it is used at approximately
three-quarters of its capacity.

6.3 Multi-class Ramp Metering

The second vehicle-class specific DTM measure discussed in this chapter is multi-class
ramp metering (MCRM). In current practice, some on-ramps are metered to restrict
the inflow onto the freeway. The aims are to keep traffic in free-flow near capacity
without breaking down to congestion and to limit the growth of congestion on the
freeway. In current practice, ramp meter installations operate on all vehicles equally,
not distinguishing between vehicle classes.

This section extends the conventional ramp meter to a multi-class ramp meter that
controls the inflow of each vehicle class separately. The traffic management center can
specify the desired inflow composition η̂ . By this means, different objectives such as
maximizing the throughput of the on-ramp or minimized the spillback can be achieved.
In the following, Section 6.3.1 presents the layout, the algorithm and the effects of
the multi-class ramp meter, which are based on the theory of dynamic passenger-car
equivalence (pce) values. The experiment is set up in Section 6.3.2; its results are
discussed in Section 6.3.3. Finally, conclusions are presented in Section 6.3.4.

6.3.1 Layout and Implementation

This section presents the theory of multi-class ramp metering (MCRM): the layout of
physical implementation, the control algorithm and the implementation in the traffic
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Figure 6.4: Physical layout of ramp meters

flow model Fastlane.

6.3.1.1 Layout

The conventional ramp meter is illustrated in Figure 6.4(a). At an on-ramp, a traffic
signal is installed. The inflow into the freeway is controlled by setting the green and
red time of the traffic signal. The goal is usually to keep the traffic on the freeway in
free flow. Therefore, the traffic state of the freeway is measured and serves as feedback
to the ramp meter.

Figure 6.4(b) illustrates the physical layout of the multi-class ramp meter for two ve-
hicle classes. The metered on-ramp is split into multiple queuing lanes, one for each
vehicle class. Downstream of the queuing lanes, traffic signals supply green times
separately to each vehicle class.

The traffic state is observed at two locations. At the on-ramp, the demand drm
u of each

queue is observed. On the freeway, the traffic state is observed, for example in the form
of occupancy or total density.

6.3.1.2 Proposed Algorithm

The control algorithm consists of two parts:
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...
MCRM queue links

Upstream MCRM node

Downstream MCRM node

Upstream MCRM link (1 cell)

Downstream MCRM link (1 cell)

Freeway node

Figure 6.5: Implementation of multi-class ramp meter in Fastlane

1. Calculation of the total ramp supply Srm
tot based on the freeway traffic state

2. Distribution of the ramp supply to the vehicle classes in the waiting queues ac-
cording to the desired share η̂

In the first part – the calculation of the total ramp supply Srm
tot – a conventional mixed-

class ramp meter algorithm is used. The implicit goal is to control the traffic flow
towards a set-point density K̂tot, which is usually slightly below the critical density in
order to keep traffic in free-flow conditions and to prevent it from breaking down.

In the second part, the ramp supply Srm
tot is distributed to each vehicle class proportion-

ally on the specified desired share η̂ specifying the desired inflow composition:

Srm
u (t) = η̂u ·Srm

tot(t) , (6.15)

which denotes the supply for each vehicle class u in pce
h . This class-specific effective

supply is then converted into veh
h by the current pce value πu(t) of the freeway:

srm
u (t) =

Srm
u (t)

πu(t)
. (6.16)

The class-specific fluxes qrm
u (t) are determined by the class-specific demand drm

u (t) and
the class-specific supply srm

u (t) (6.16):

qrm
u (t) = min{srm

u (t),drm
u (t)} . (6.17)

If the supply srm
u (t) exceeds the corresponding demand drm

u (t), then the remaining
supply srm

u (t)−drm
u (t) is redistributed to the other vehicle classes at the ramp according

to the desired share. The resulting class-specific flux is finally converted to green and
red times of the traffic signals.

6.3.1.3 Implementation in Fastlane

Fastlane is expanded to simulate multi-class ramp metering. Figure 6.5 shows the
network layout for a multi-class ramp meter. The metered ramp is split into multiple
links and nodes.
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Figure 6.6: Experimental setup of multi-class ramp meter

Each waiting queue lane is modeled by a link. Since Fastlane does not model nodes
with more than three adjacent links, a special node model for MCRM is developed. At
the upstream node, the vehicle classes are distributed into the queuing links according
to their class. The downstream node handles the actual MCRM logic as presented
above, computing the flux between the queue links and the downstream cell. The ramp
meter supply is based on the traffic state of the first cell downstream of the freeway
node.

6.3.2 Experimental Setup

The multi-class ramp meter is tested in a network with one on-ramp as in Figure 6.4(b).
The length of the freeway section is 4 km; the on-ramp is located halfway. To prevent
congestion spilling back to the boundary of the network, the on-ramp is 5 km long. The
inflow composition is 50% trucks and 50% cars. Figure 6.6(a) plots the pce function
used.

An adjusted version of the Alinea ramp meter algorithm (Papageorgiou et al., 1991) is
used as the first part of the control algorithm to determine the total ramp supply by

Srm
tot( j) = Srm

tot( j−1)+κ ·
(
Ktot( j)− K̂tot

)
. (6.18)

It is based on the observed downstream freeway effective total density Ktot(t) and the
previous on-ramp supply Srm

tot(t−1). The variable κ is a parameter to adjust the stability
and reaction speed of the controller. The set-point density K̂tot is set slightly below the
critical density of the freeway. The original Alinea controller is based on occupancies
instead of total effective densities.
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No. Remark η̂car η̂truck

1 absolute priority trucks MCRM 0 1
2 absolute priority cars MCRM 1 0
3 mixed priority MCRM 0.2 0.8
4 conventional mixed-class RM n/a n/a

Table 6.1: Ramp meter policies applied in both experiments

The inflows into the network over the one hour of simulation time are shown in Fig-
ure 6.6(b). In the first half hour, the traffic conditions are oversaturated at the on-ramp
so that the ramp meter has to be activated and a queue has to build up. After 00:30, the
traffic on the freeway is reduced, allowing for a higher ramp supply and the dissolution
of the congestion built up.

The desired share η̂ =
[
η̂car η̂truck

]
at the ramp meter is varied in four scenarios.

Table 6.1 presents three MCRM policies and, for comparison, one policy with conven-
tional mixed-class ramp metering that are simulated.

Each policy is evaluated by the class-specific queue length, the class-specific travel
time, the total time spent T (5.26), and the monetary costs T C (5.27), where the loss
of one vehicle hour of a car counts for ζcar = 15 C

vehh , and that of a truck for ζtruck =

45 C
vehh .

6.3.3 Results

Figure 6.7 and Figure 6.8 present the results of all four policies in terms of the outflow
of the ramp per vehicle class over time, the queue length at the on-ramp, the number
of vehicles on the on-ramp, the travel times of both classes and the total time spent and
the total cost.

Figure 6.7(a) shows the class-specific outflow over time for each policy. Due to the
different prioritization policies, different outflows at the ramps do emerge. If trucks
are prioritized (policy 1), then the truck flow (dark blue) reaches a maximum quickly.
Since downstream of the on-ramp the freeway is operating near capacity, some traffic
has to be held back at the on-ramp. Since trucks are prioritized, the flow of the cars
(light blue) dies out. The total ramp flow at that point is 380 veh

h . When the traffic
situation gets lighter, first all trucks are served; then, at 00:30, the car queue is served
and the car outflow increases sharply. After 00:45, all traffic demand is served.

Analogously, if cars are prioritized (policy 2), first the car flow stays high, then the
built-up truck queue is served. Since cars are shorter than trucks, more vehicles can be
served (490 veh

h at 00:30). Since all the car demand is served, some of the truck traffic
can flow onto the freeway as well.
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In the mixed priority policy (policy 3), the results are between the previous policies.
Both trucks and cars can flow into the highway, preventing any vehicle-class from
starving on the on-ramp. The total ramp flow at 00:30 is 430 veh

h .

Finally, the conventional, mixed-class ramp meter (policy 4) serves all vehicles with
the same priority; since the traffic composition is half cars and half trucks, their ramp
flows are equal; the total ramp flow is 470 veh

h .

The length of the waiting queue and the number of vehicles on the on-ramp are pre-
sented in Figure 6.7(b) and Figure 6.7(c), respectively. Depending on the policy, not
only the composition of the queues differ, but also their joint length. In the truck pri-
oritization policy, the queue consists almost exclusively of cars, its length at 00:30 is
0.6 km, consisting of 170 vehicles. In the car prioritization policy, the queue consists
of trucks only, with a length of 1.25 km and 115 vehicles. Notice that there are two im-
portant differences between these policies. Firstly, when cars are prioritized, the queue
is significantly longer. This is due to the differences in vehicle lengths and therefore to
the growing pce value of trucks when the speed decreases. Secondly, however, at the
same time fewer vehicles are queued. The reason is that cars are significantly shorter
than trucks, and therefore the vehicular capacity of car traffic is naturally higher than
the truck’s capacity. The other two policies are in between the previous two. (In the
figures, the mixed-class plots show only one class, which contains both trucks and
cars.)

The prioritization of cars leads to several consequences. Since more vehicles are served
compared to the other policies, fewer vehicles are delayed, which results in a lower
travel time (Figure 6.7(d)). Furthermore, the total time spent is lower (Figure 6.8(a)).
A car-prioritization policy therefore is favored if many cars have to be served and the
total time spent has to be minimized. Figure 6.8(b) shows the monetary cost. Although
fewer vehicles are served, the truck-prioritization policy outperforms the other policies.
For example the car-prioritization policy causes 75% higher total costs than the truck-
prioritization policy.
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6.3.4 Conclusion

Multi-class Ramp Metering enables class-specific control of the inflow into the free-
way. A parameter of the MCRM is the desired inflow composition, which can be set
by the traffic management center. Simulations with three different inflow composi-
tion policies of MCRM and one conventional, mixed-class ramp meter showed large
differences in the outflow of the ramp, the number of queuing vehicles and the queue
lengths. Consequently, the travel times, the total time spent and the total cost differ
significantly. This enables the traffic management center to set the control policy in
order to reach certain objectives. If the objective is to minimize the total time spent,
then cars should be prioritized, since they enable a higher throughput. If the total cost
is to be minimized, then trucks should be prioritized; as a positive side effect, the total
queue length is reduced, which reduces spillback to the underlying network.

6.4 Multi-class Route Guidance

The third vehicle-class specific controller discussed in this chapter is multi-class route
guidance (MCRG). A route-guidance controller advises traffic to take a specified route.
In common practice, traffic is controlled regardless of the vehicle-class. In this sec-
tion, the conventional route-guidance controller is expanded to multi-class route guid-
ance, where each vehicle class is guided separately. To analyze the multi-class route-
guidance controller thoroughly, an optimal and predictive control approach is chosen.
By applying model-predictive control (MPC), the route guidance controller optimizes
the signal over a short period of time.

The remainder of this section is structured as follows. Section 6.4.1 presents the layout
of MCRG and the implementation in the traffic flow model Fastlane. Experiments
are set up in Section 6.4.2. The results are presented and discussed in Section 6.4.3.
Finally, conclusions are drawn in Section 6.4.4.

6.4.1 Layout and Implementation

Figure 6.9 shows the layout of a route guidance controller in a freeway network. At
a bifurcation point in the network, a fraction of traffic can be rerouted by advising a
route. In mixed-class route guidance (Figure 6.9(a)), all reroutable traffic is advised the
same route. Multi-class route guidance (Figure 6.9(b)) advises a route advice to each
vehicle class individually. If a variable message sign is used, then each vehicle class
is assigned a route in an all-or-nothing way. By using in-car navigation, each vehicle
is advised individually, which enables the rerouting of fractions of each vehicle-class
specific flow.



126 Vehicle-class Specific Control of Freeway Traffic

 

North

Mixed-class 
Routing

East

25%  
 

 

(a) Mixed-class route guidance

 

North

Multi-class 
Routing

East

 

 

 

cars 
100% 

trucks  
75% 

(b) Multi-class route guidance

Figure 6.9: Layout of a multi-class route guidance controller

Multi-class route guidance is implemented in Fastlane by setting the class-specific
turnfraction at bifurcation points in the network. The turnfraction of each controlled
class is simply set to the route guidance advice.

6.4.2 Experimental Setup

To compare the performance of multi-class control against mixed-class control, several
experiments based on computer simulations are conducted.

6.4.2.1 Traffic Setup

The network shown in Figure 6.10(a) is used. It has one origin in the south and two
destinations, one in the north with two possible routes, and one in the east with one
possible route. The main route to the north has a large capacity of Cmain = 5610 pce

h
so that in normal conditions traffic can flow unhindered without causing congestion.
However, an incident with strength ω occurs so that the capacity is reduced to Cinc =

(1−ω) ·Cmain. Dependent on ω , congestion can occur and spill back which threatens
to block the off-ramp to the east. Different incident strengths are simulated within a
range of ω ∈ [0,0.9]. The incident occurs at the beginning of the simulation and lasts
through the whole simulation period.

The alternative route is used to guide the northbound traffic around the incident. It is
5 km longer than the main route and has a capacity of Calt = 1870 pce

h . On both main and
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alternative route, vehicles can overtake each other as long as the traffic conditions are in
free flow. The fundamental diagram for the alternative route is shown in Figure 6.10(c).
For different capacities, the fundamental diagram is simply scaled. The network is
modeled in Fastlane (Sections 5.1 and 5.2) with a discretization of ∆x = 500m and
∆t = 15s).

To guide the vehicles, route-guidance is applied at the bifurcation to the alternative
route where each vehicle is advised individually. Every vehicle complies to the advice
given.

The demand pattern over the Tsim = 3h of simulation is shown in Figure 6.10(b). The
values of time are based on the values from the Dutch road authority (Rijkswaterstaat,
2011), with a car’s VOT of ζcar = 15 C

vehh and a truck’s VOT of ζtruck = 45 C
vehh . The

pce function πu (5.12) is parameterized with hmin
truck = 1.2s, hmin

car = 1.2s, rmin
truck = 25m

and rmin
car = 6m (Figure 6.10(d)).

6.4.2.2 Model-predictive Control

The model-predictive control loop is shown in Figure 6.11. Sensors observe the traf-
fic process to gather data that are used to estimate the current traffic state, which is
fed into the control component. The control component computes the optimal control
signal w∗, which is applied to the DTM measures to influence the traffic process. A
control signal w is a (column) vector that defines the action for each controlled pa-
rameter of a DTM measure. In the example of route guidance measures, a controlled
parameter is the turnfraction of a vehicle class. The DTM measures are actuated at
every control interval ∆tc, usually in the order of several minutes. This (outer) loop of
the MPC scheme is thus executed every ∆tc.

The optimal control signal w∗ is found based on the predictions by a traffic flow model,
which predicts the traffic state over a horizon Tp, usually in the order of one hour. Since
the prediction horizon is larger than the control interval, multiple signals are optimized
for each controlled parameter. These signals are called the optimal signal trajectory w∗
and take the form of a matrix with Tp

∆tc
columns, whereby the l-th column denotes the

control signals at time (l−1)∆tc.

The optimal control signal trajectory w∗ is the control signal trajectory that minimizes
the objective function J:

w∗ = min
w

J(w) . (6.19)

The objective function J defines how the performance of the system is evaluated. In
this thesis, the total cost (5.27).

This optimization is usually solved in a iterative procedure, where a control signal
trajectory w is selected and fed into the traffic prediction model. The model then
predicts the future traffic state based on these DTM actions and the current traffic
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Figure 6.11: The model-predictive control loop

state. The resulting class-specific spatiotemporal density ki j
u (w) is used to evaluate the

objective function J(w).

Many optimization algorithms have been developed. In this experiment, we use the
active-set method as it implemented by the fmincon function of Matlab. This optimiza-
tion method determines the optimal control signals based by an iterative approach. The
(local) optimum is found, when the difference between the solutions of two iterations
is close to zero and lower than a specified stopping criterion.

The optimal control signal w∗ is the first sample of the optimal control signal trajec-
tory w∗. In other words, the first column vector of w∗ is applied to the controlled
parameters of the DTM measures and the remaining signals are discarded. This com-
pletes one cycle of the MPC loop. It is repeated every ∆tc.

For computation time efficiency, a socalled control horizon Tc < Tp can be defined that
declares that the control signals only until the period to Tc are optimized, whereas the
control signals between Tc and Tp are held constant. The control signal trajectory then
reduces to a matrix with only Tc

∆tc
columns, which speeds up the optimization procedure.

For a formal definition of MPC for these cases refer to Hegyi (2004).

6.4.2.3 Controller Setup

The following four controllers are simulated and compared:
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1. Multi-class model-predictive control (MC MPC): Cars and trucks are controlled
separately.

2. Mixed-class model-predictive control (SC MPC): All traffic is controlled by one
signal.

3. Mixed-class reactive control by measured travel times (SC TT): The fastest route
is advised to all vehicles

4. No Control: All traffic uses the main route.

Due to the network layout, only traffic that flows from south to the north can be
rerouted, i.e. the eastbound traffic is not guided.

Multiple scenarios with different objective functions J are simulated. The first objec-
tive is to minimize the total time the vehicles spent in the network as defined in (5.29)
based on the class-specific spatio-temporal densities ki j

u :

JTTS = T = ∑
u

∑
j
∑

i
ki j

u ∆xi
∆t j . (6.20)

The second objective is to minimize the monetary costs as defined in (5.28):

J C = T C = ∑
u

ζu ∑
j
∑

i
ki j

u ∆xi
∆t j . (6.21)

For the MPC parameters, calibration and testing have shown that a prediction horizon
length of Tp = 60min and a control interval of ∆tc = 10min are sufficient. Each control
signal is bound by 0, indicating the main route, and 1, indicating the alternative route.

6.4.3 Results

This section presents the results and a discussion of the experiments, split into three
topics. First, the performance of the four controllers is compared. Second, the influ-
ence of the value of time onto the multi-class MPC is presented. Third, the influence
of the incident strength ω onto the multi-class MPC is analyzed.

6.4.3.1 Comparison of the Controllers

The four controllers are compared for both objective functions and for multiple differ-
ent incident strengths. Example simulation results of all four controllers for the case of
an incident strength of ω = 0.64 and the optimization of the total time spent JTTS (6.20)
are shown in Figure 6.12. In these simulations, the incident strength is large enough to
let congestion emerge at its location at Km 14.
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(a) Multi-class MPC, main route
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(b) Multi-class MPC, Control signal
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(c) Mixed-class MPC, main route
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(e) Mixed-class reactive TT, main route
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(f) Mixed-class reactive TT, Control signal
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(g) No Control, main route

Figure 6.12: Results of multi-class route guidance of the four controllers (incident
strength ω = 0.64, objective function total time spent JTTS)
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Figure 6.13: Difference of total vehicle count at northern exit between MC MPC
and SC MCP

The multi-class MPC reroutes some of the traffic via the alternative route, as the control
signal in Figure 6.12(b) shows (“rg truck” is the routing signal for trucks, “rg car” the
one for cars). Between 08:30 and 09:30 the traffic demand exceeds the joint capacity of
the main road and the alternative road. Congestion therefore emerges at the bottleneck,
as the spatio-temporal density plot in Figure 6.12(a) shows. However, the congestion
stays at the bottleneck and does not affect other parts of the network. Both routes
are used at their respective capacities. The performance of the multi-class MPC is
JTTS

MC MPC = 1950vehh.

As can be seen in the control signals, the share of traffic being rerouted is not equally
distributed between the vehicle classes. Significantly more cars were rerouted via the
alternative route, whereas only a few truck were rerouted during peak traffic. Later in
this paper, we will analyze the effect of the traffic state and the incident strength in
more detail.

The mixed-class MPC performs slightly worse with JTTS
SC MPC = 2040vehh. As with

the MC MPC, the alternative route is used at capacity during the congestion. The
congestion pattern (Figure 6.12(c)) is similar to the one of the MC MPC.

The difference in performance between the MC MPC and the SC MPC can therefore
only be explained by the traffic composition of the two routes. Due to the nature
of the SC MPC, it guides the traffic to the alternative route regardless of class (Fig-
ure 6.12(d)). The MC MPC, however, sends more cars than trucks via the alternative
route. This is because during congestion, the travel time of the alternative route is
shorter than that of the main road. Furthermore, since cars are shorter than trucks,
more cars than trucks can flow through any given bottleneck. In other words, the
throughput in veh

h is higher the more the traffic is composed of cars. Guiding cars via
the faster, alternative route therefore leads to a higher total throughput. Figure 6.13
shows the difference of the cumulative vehicle count between the MC MCP and SC
MPC scenario at the northern exit over time. For example, at 09:00, 60 more vehicles
more had arrived at the northern exit in the MC MPC than in the SC MPC. The vehi-
cles in the MC MPC therefore arrived faster at the destinations. A faster arrival means
a lower total time spent and a better performance.

The reactive mixed-class controller can guide the traffic only in an all-or-nothing way.
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Figure 6.14: Performance of the four route-guidance controllers for varying inci-
dent strengths

If the travel time on the alternative route is shorter, then all traffic is advised to use that
route, as it happens at 08:30, as Figure 6.12(f) shows. Since the demand exceeds the
alternative route’s capacity, congestion emerges at Km 5 (Figure 6.12(e)). Since no
traffic then uses the main road, the congestion at the incident location dissolves. This
causes the travel time to decline, and the controller switches back to the main route at
09:00. This effect repeats multiple times, leading to oscillations in the control signal.

The total time spent JTTS
SC TT = 3750vehh of the reactive controller is significantly higher

than the one of the predictive controllers. One reason for this is that the reactive con-
troller always acts delayed, not being able to anticipate the future traffic state. Another
reason is the binary zero-one signal, which always leads to an underutilization of the
infrastructure. Finally, since congestion emerges at the bifurcation to the alternative
road, the eastbound traffic is blocked as well, which drastically increases the TTS.

Although a zero-one signal is not very realistic, this scenario shows the disadvantage
of the oscillations of the control signal. Furthermore, the controller only reacts on the
travel time and does not directly optimize the objective of total time spent. It therefore
cannot take the eastbound traffic into account and is insensitive to its amount.
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For comparison, the base case of no control is shown in Figure 6.12(g). Since the
traffic is not guided at all, the alternative route is not used. The traffic therefore queues
up at the bottleneck and severe congestion emerges. The performance with JTTS

NoCtrl =

6260vehh is therefore inferior to the other scenarios.

In summary, the multi-class MPC performs slightly better than the mixed-class MPC.
Both MPC controllers outperform the reactive controller. (Note that the comparison
with the reactive control is somewhat simplified, since the reactive controller is rela-
tively simple, such as rerouting in an all-or-nothing fashion, or reacting with relatively
large control intervals.) The no-control case is the worst.

This trend is also visible for other incident strengths and for the objective of min-
imizing the monetary costs, especially for the cases in which congestion cannot be
prevented (ω ≥ 0.6). Figure 6.14 shows the performance of the controller over dif-
ferent incident strengths ω for the total time spent JTTS (5.29) and for the monetary
costs J C (5.28). (For readability, the performance results of the non-MPC controllers
have been omitted for heavy incidents, which led to a very high objective values.)

6.4.3.2 The Influence of the Value of Time

This section analyzes the results of the multi-class MPC for the two objective func-
tions, aiming at the minimization of the total time spent JTTS (6.20), and the minimiza-
tion of the monetary costs J C (6.21). Note that the difference between these two is only
the class-specific value of time ζu. In the following, four example simulation runs are
presented and compared. Figure 6.15 shows the control trajectories of the MC MPC
for both objective functions and for different incident strengths.

Let us first analyze the control signal during a light incident (ω = 0.4). Congestion is
prevented by rerouting some of the traffic via the alternative route. For the objective
of total time spent (essentially, a truck is as a valuable as a car), trucks are rerouted
via the slower alternative route, as shown in Figure 6.15(a). Therefore, there are many
short vehicles (cars) on the main route, which leads to a high throughput on the main
route, and thus to a low TTS.

In contrast, for the objective of total cost (essentially, a truck is three times as valuable
as a car), cars are rerouted instead, as Figure 6.15(b) shows. Then, trucks experience a
short travel time. The loss of throughput (in veh

h ) on the main route is compensated for
by the higher value of time of the trucks, which thus leads to low costs.

Let us now analyze the control signal during a heavy incident (ω = 0.7). In this case,
congestion is severe and leads to long travel times on the main road. In the case of
the objective of total time spent, cars are guided via the alternative route. Since the
alternative route is faster, throughput is maximized there by using it for short vehicles,
which leads to a low TTS.
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(a) light incident ω = 0.4, objective JTTS
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(b) light incident ω = 0.4, objective J C
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(c) heavy incident ω = 0.7, objective JTTS
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(d) heavy incident ω = 0.7, objective J C

Figure 6.15: Control signals of the multi-class MPC for different values of time
and different incident strengths for trucks (rg truck) and cars (rg car)

In contrast, for the objective of total cost, the valuable trucks are rerouted instead.
Similarly to the case of the light incident, to minimize the costs it is advantageous to
enable a short travel time for the valuable vehicles.

In summary, the multi-class controller uses the ability of realizing different prioritiza-
tions depending on the value of time ζu. The more valuable a vehicle is, the faster it
should travel through the network. The control signals therefore can change drastically
if the value of time is changed.

6.4.3.3 The Influence of the Incident Strength

This sections analyzes the influence of the incident strength ω on the control sig-
nals of the multi-class MPC. The objective function used is the total cost with an
adjustment: the eastbound traffic is considered very important (ζtruck,east = 10ζcar,
ζtruck,north = ζcar), and delays of it lead to a sharp increase of the total cost.

In the case of no incident (ω = 0), the capacity of the main route is sufficiently large so
that the traffic can flow freely without causing congestion (Figure 6.16(a)) and (almost)
no rerouting is necessary (Figure 6.16(b)).

In the case of a tiny incident (ω = 0.3), some of the traffic is rerouted (Figure 6.16(d))
via the alternative route to prevent congestion. Figure 6.16(c) presents the travel times
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Figure 6.16: Results of multi-class MPC for different incident strengths for trucks
(rg truck) and cars (rg car), including travel time on both the main route (main)
and the alternative route (alt)

for both vehicle classes on both routes. As can be seen, cars traverse the alternative
route in 7.5min (blue dashed line), whereas trucks need 10min (red dashed line). Cars
are thus much faster than trucks on that route. Rerouting cars via the fast alternative
route therefore leads to the optimal TTS.

In the case of a light incident (ω = 0.4), more vehicles have to be rerouted to prevent
congestion. Since many vehicles now have to use the alternative route, the density is
nearly critical so that all vehicles drive at nearly the same speed. As Figure 6.16(e)
shows, at 08:30, the travel time for cars is 9min, and for trucks it is 10min. The travel
times are thus almost equal on that route. Therefore, it is optimal to keep the small
vehicles on the fastest route in order to maximize the throughput (Figure 6.16(f)). The
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(a) medium incident (ω = 0.66), main
route
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(b) medium incident (ω = 0.66), Control
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(c) medium-heavy incident (ω = 0.68),
main route
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(d) medium-heavy incident (ω = 0.68), Con-
trol signal
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(e) heavy incident (ω = 0.7), main
route
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Figure 6.17: Results of multi-class MPC for different incident strengths (cont.)

fastest route is the main route, where the travel is 5min for both classes.

In the case of a medium incident (ω = 0.66), the demand exceeds the joint capacity of
both routes, and congestion emerges at the incident location (Figure 6.17(a)). Since the
alternative route is now faster than the main route, more cars than trucks are rerouted
via the alternative route (Figure 6.17(b)).

The more the congestion increases, the more cars are expected to be rerouted via the
alternative route. However, another effect becomes decisive in the case of a medium-
heavy incident (ω = 0.68). The congestion threatens to spill back over the off-ramp
at Km 10 (Figure 6.17(c)), and thereby blocking the eastbound traffic. The controller
manages to prevent such a spillback by rerouting more trucks via the alternative route
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Incident strength Class rerouted Reason

no incident — no delay

tiny incident cars on alternative route, much shorter
TT for cars compared to trucks

light trucks same TT on alternative route, while
higher throughput on faster main
route

medium cars alternative route faster than main
route

medium-heavy trucks prevent spillback

heavy cars cannot prevent spillback, alternative
route faster than main route

Table 6.2: Rerouting of the vehicle class by the multi-class MPC dependent on the
incident strength

(Figure 6.17(d)) and instead placing short cars into the congestion. The reason for this
is the dynamic pce value of the trucks: as illustrated earlier, in congestion, a truck oc-
cupies significantly more space than a car; in free-flow (as is present on the alternative
route), a truck occupies only slightly more space than a car. Consequently, the through-
put of the alternative route decreases. In other words, the prevention of spillback to the
off-ramp outweighs the reduction of throughput of the alternative route.

In the case of a heavy incident (ω = 0.70), congestion reaches back to the on-ramp and
spillback can no longer be prevented after 09:00 (Figure 6.17(e)) so that all vehicles
including the eastbound traffic experience congestion. Since the eastbound traffic is
now delayed, the total time spent increases severely. The throughput is maximized by
rerouting the small cars via the alternative route (Figure 6.17(f)). Given the constraints
by this heavy incident, the solution is optimal, when the controller puts the conges-
tion at the bifurcation point. It controls the traffic in such a way that the downstream
congestion does not block the off-ramp.

In summary, the rerouting of the vehicle classes by the controller depends on the sever-
ity of the incident. The rerouting thereby is not monotonically related to the incident
strength, but varies for different scenarios. Table 6.2 summarizes the results of the
rerouting of the multi-class MPC dependent on the incident strength.

6.4.4 Conclusion

This section generalized route guidance to multiple vehicle classes and tested it in
simulations with a model-predictive controller. The multi-class MPC outperforms the
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mixed-class MPC with up ten percent. Especially during congestion, the multi-class
controller is able to distribute the vehicle classes over different routes, in order to en-
able a short travel time for one of the classes and to reduce spillback effects. Further-
more, both the multi-class and the mixed-class MPC outperform a reactive controller
based on measured travel times that does not take the value of time and the pce value
into account.

The control signal of the multi-class MPC is sensitive to the value of time (VOT). If
the total time spent is optimized (equal VOT for each class), then cars are prioritized
because the throughput is maximized in terms of vehicles per hour. In contrast, if the
monetary costs are optimized (high VOT of truck), then trucks are prioritized because
the throughput is maximized in terms of Euros per hour.

Furthermore, the multi-class control signal is sensitive to the incident strength. In
cases of light incidents, a low total time spent is achieved by routing the shortest ve-
hicles (cars) to the fastest route. If the incident is very light so that no congestion
emerges, cars are therefore guided via the main route, whereas trucks are rerouted via
the alternative. If the incident is stronger so that congestion emerges, then cars are
rerouted via the alternative, since it is faster than the main route. In the case of a heavy
incident with severe congestion, the minimization of spillback of congestion to up-
stream infrastructure is crucial so that long vehicles should be kept out of congestion
and therefore should be rerouted.

6.5 Conclusion

In this chapter, we developed multi-class DTM measures and showed in experiments
that they improve the traffic performance. We focused here on traffic flow, notably the
effects on throughput, spillback and travel time, and ultimately on the total cost of the
traffic.

The DTM measures were first categorized into two approaches. A DTM measure
can separate the vehicle classes within a carriageway, or it can distribute the vehicle
classes across the network. Given these approaches, three multi-class DTM measures
were developed, tested and analyzed based on the traffic flow model Fastlane.

The first multi-class DTM measure developed was vehicle-class specific lanes, which
separates the classes on the carriageway by dedicating a lane to a specified class. Here,
we looked at the effects on the monetary throughput of truck lanes. Analytic experi-
ments with realistic parameter values based on the values of the Dutch road authority
showed that truck lanes are beneficial if the truck lane is used to at least three quarters
of its capacity.

The second multi-class DTM measure developed was multi-class ramp metering, which
separates the vehicle classes by using dedicated lanes and controls the access to the
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freeway by a traffic signal. The traffic management center is able to optimize dif-
ferent objective by specifying a desired vehicle-class composition that flows into the
network. By prioritizing cars, the throughput at the on-ramp, the number of vehicles
delayed and therefore the total time spent are optimized. In contrast, by prioritizing
trucks, the spillback of congestion on the on-ramp and the total costs are optimized.
In the experiments, the multi-class ramp metering reduced the total cost by 33% com-
pared to mixed-class ramp metering.

The third multi-class DTM measure developed was multi-class route guidance, which
separates the classes across the network by advising a route to each vehicle class at a
bifurcation point. Experiments with a model-predictive controller show that the per-
formance of the network is slightly improved if class-specific routing is applied. The
multi-class controller is able to distribute the vehicles in order to leverage the differ-
ences in travel time and to minimize spillback. We found performance improvements
of up to 10%.

The experiments showed that all of the multi-class DTM measures developed here
improve the traffic flow and the network performance and outperform their mixed-
class counterparts. Moreover, we showed that the traffic management center can de-
cide which objective to optimize by specifying the inflow composition in the case of
multi-class ramp metering, or by specifying the turnfraction of the multi-class route
guidance. Furthermore, the multi-class route-guidance was implemented in a model-
predictive control framework so that a given network performance function of total
cost was optimized.

Other costs like the implementation of the control devices or externalities like emis-
sions or safety were beyond the scope, since they do not influence the traffic flow. A
further assumption is that the (effective) capacity is modeled statically in the funda-
mental diagram, i.e. weaving and similar vehicle maneuvers do not further affect the
capacity, although empirical research has shown that the spatial separation of vehicle
classes by a dedicated lane leads to an increase of capacity (Cassidy et al., 2009). The
results obtained are thus a lower bound so that the benefits of multi-class control might
potentially even be higher.

This concludes the Control component of BOS-HbR (Figure 2.11). The following
chapter combines the multi-class control concepts developed and tested in this chapter
with the state estimator computationally optimized in Chapter 4. In a case study, the
multi-class route guidance controller and the multi-class ramp meter are applied to
a model of the Dutch A15 in order to optimize traffic during an incident and under
regular conditions.



Chapter 7

Case Study: Multi-class Control of the
Dutch Freeway A15

In this chapter, we evaluate how multi-class control improves the traffic performance of
a realistic freeway . The three components of the control loop outlined in Figure 2.11
– Estimation, Prediction and Control – are combined into the system BOS-HbR and
applied to the Dutch freeway A15. In a case study, the effects of the multi-class DTM
measures developed in the previous chapter are simulated in regular and in incidental
traffic conditions, and are then compared to their mixed-class counterparts. The results
show that the total costs of traffic is slightly reduced if predictive multi-class control is
applied.

The site of the Dutch A15 eastbound near the harbor of Rotterdam is presented in
Section 7.1. The Estimation component of the control loop is set up in Section 7.2 and
an example result is presented. For the Prediction component, the traffic flow model
Fastlane shown in Sections 5.1 and 5.2 is used to simulate the traffic conditions of
the A15. Its parameters are calibrated based on historic data in Section 7.3; it is then
validated both under regular and under incidental conditions in Section 7.4. The multi-
class Control component is set up in Section 7.5. The case study is prepared both for
normal and incidental conditions in Section 7.6. The results in Section 7.7 show that
multi-class control improves the traffic performance. In these experiments, the setup
is chosen in such a way that the accuracy of the controller is high, at the expense of
the computation time. Nevertheless, Sections 7.8 and 7.9 discuss ways to improve the
performance and the computation time of BOS-HbR, respectively. This chapter closes
with conclusions in Section 7.10.

This chapter is an extended version of Schreiter, Van Lint, & Hoogendoorn (2013):
“Vehicle-class Specific Control of Freeway Traffic” presented at the 92nd Annual
Meeting of the Transportation Research Board.
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Figure 7.1: The network of the A15 site for the case study

7.1 A15 Site Description

BOS-HbR is developed for the A15 near the harbor area of Rotterdam and is used in
this case study. This section describes the network of the site, the traffic problems that
often arise there, and the data sources that observe the traffic.

7.1.1 Network of the Site

Figure 7.1 shows the network that is used in this case study. The main route is the free-
way A15 eastbound near the harbor of Rotterdam, the Netherlands. This freeway is the
main connection between the harbor and the hinterland. Because of the harbor, many
trucks travel via the A15. Figure 7.2 shows the median truck percentage over time,
based on three weeks of working days. Ten to fifteen percent of the traffic is composed
of trucks during peak hours; this share is even higher during the off-peak hours in the
early afternoon. Furthermore, the narrow bandwidth of the truck percentage during
the day (the quartiles are close to the median) indicates that this truck percentage is
fairly stable over multiple working days. The remaining traffic is mostly composed of
cars, while the share of the other vehicle classes like buses or motorbikes is negligibly
small.

The highest traffic demand is observed between the Km 32 near Rozenburg and Km 58
near the interchange Vaanplein. In fact, the traffic demand is so high that congestion
emerges at Km 44 near Spijkenisse and at Km 56 near Charlois on a regular basis
during the evening peak of a normal workday.

There is an alternative route via the underlying road structure. The route from Spij-
kenisse via the Botlek bridge (Botlekbrug) provides one lane. This alternative route
connects again to the A15 after the bridge. Furthermore, the alternative route also
continues via the Vondelingenweg, which is first one and then two lanes wide. The
alternative route finally connects back to the A15 at the on-ramp Charlois. The main
purpose of the alternative route is to connect the surrounding harbor area to the road
network. Nevertheless, especially during off-peak hours, the alternative route can be
used for rerouting traffic if an accident blocks the traffic on the A15.
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Figure 7.2: Truck percentage of the A15, median (thick black) and quartiles (thin
gray) of the workdays observed at Km 45 near Spijkenisse

7.1.2 Recurring and Nonrecurring Traffic Problems on the Site

The A15 is subject to three major problems. The first problem is the recurrent conges-
tion that emerges at the two bottlenecks at Km 44 (Spijkenisse) and Km 56 (Charlois).
The congestion lasts for several hours during the evening peak and leads to high total
costs of traffic.

The second problem is incidents. On average, incidents occur every three days on the
A15 (Van Zuylen et al., 2007) and are sometimes so severe that congestion emerges. If
these occur between Spijkenisse and Charlois, then some of the traffic can be rerouted
via the alternative route.

The third problem is caused by construction. Over the next years, the A15 will be ex-
panded to increase the capacity, which aims at improving the traffic conditions. During
the construction, however, the network structure is changing, which will affect the traf-
fic flow; it can even create new bottlenecks.

The model-predictive control approach chosen in Section 2.1 is suitable to work under
incidental conditions, since their effects on traffic flow are directly taken into account
by the Prediction component. It furthermore is flexible to deal with the changing in-
frastructure that will occur in the coming years.

7.1.3 Data Sources for Estimation and Calibration

Multiple sensors are installed on the site to collect traffic data. Table 7.1 lists the sensor
types that are used in this thesis. (Note that there are more data sources available in
the harbor area such as Bluetooth sensors or weigh-in-motion detectors, which are
applicable for Dynamic Traffic Management, too, although they are out of the scope of
this thesis. The Port of Rotterdam Authority operates a number of these data sources
and provides information in real-time on the website of Roportis (2012).)
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Sensor type Data provided Data availability

induction loops RWS normal aggregated speed and flow online, offline
induction loops HbR individual vehicle data online, offline
induction loops RWS detailed individual vehicle data offline
camera from helicopter video offline

Table 7.1: Sensors providing traffic data of the site

The induction loops by the Dutch road authority Rijkswaterstaat (RWS) cover the free-
way of the A15 to provide speed and flow information. These data are aggregated over
one minute. The distance between the detectors is half a kilometer on average so that
a close estimation of the traffic state is possible. These data are available in real-time;
the data base Regiolab Delft (2012) operated by the Delft University of Technology
provides this information within a few minutes.

The induction loops by the Port of Rotterdam authority (HbR) observe the traffic state
at some locations of the underlying network structure. These sensors provide individ-
ual vehicle data such as the vehicle length and the passing time, which allows estimat-
ing class-specific data such as the traffic composition. These data are gathered by the
data base Roportis (2012) by the Port of Rotterdam in real-time.

To calibrate the prediction model well (Section 7.3), the vehicle-class specific data
such as the traffic composition of the A15 are required. For that purpose, the induction
loops by Rijkswaterstaat can be run in a detailed mode so that they provide individual
vehicle data, similar to the HbR induction loops. We gathered offline data at some
locations of the A15 over a period of a few weeks.

Furthermore, to gather detailed data, we captured videos from a helicopter perspective.
Among other data, the spacings of the vehicles and the trajectories can be estimated.
Figure 2.5 shows a frame a video of the A15.

7.1.4 Multi-class DTM Measures Used in the Case Study

Three DTM measures are simulated in this case study to test the potential benefits of
multi-class control. One multi-class route guidance measure (MCRG, Section 6.4) is
set up at the bifurcation point between the main route and the alternative route near
Spijkenisse. A second MCRG is located at the alternative route after the Botlekbridge,
where the alternative route is connected to the main route. The turnfractions for both
vehicle classes are controlled.

Furthermore, a multi-class ramp meter (MCRM, Section 6.3) is set up at the on-ramp
connecting the A4 to the A15. The desired share η̂ and the set point density K̂tot (6.18)
of the ramp meter algorithm Alinea are controlled.
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7.1.5 The System BOS-HbR Applied to the A15

The goal of the system BOS-HbR (Figure 2.11) is to gather sensor data, estimate the
current traffic state, and optimize the control signals for the three DTM measures by
an model-predictive control approach.

In practical application, the control signals computed by BOS-HbR can be advised to
an operator in a traffic management center. The operator then can decided whether
to implement the signals or not. In addition, the future traffic states both under the
optimal control case and under the no-control case can be shown to the operator.

In the case study of this chapter, the traffic process is simulated by a traffic flow model,
and the control signals are directly applied to the DTM measures and the traffic process.
In the following sections, the components of BOS-HbR are set up and then the case
study is performed.

7.2 Setup of Estimation Component

The Estimation component is the first part of BOS-HbR. It collects the data from the
sensor data bases and fuses them to calculate the current traffic state. Only those
sensors that gather the data online are used as data sources for the state estimation
process, namely the inductive loops of Rijkswaterstaat and of the Port of Rotterdam.

As traffic state estimator, we apply the computationally improved version of the Adap-
tive Smoothing Method (ASM) described in Section 4.2. Its kernels defined by (4.4)
are parameterized with sizes of σ = 300m and τ = 30s. Furthermore, the character-
istic wave speeds ccong and cfree are estimated online by the Wave Speed Estimator
developed in Chapter 3.

To illustrate an example result of the Estimation component, Figure 7.3 shows the spa-
tiotemporal speed plot of a working day at 16:15. The figure shows that both regular
bottlenecks at Km 56 (Charlois) and at Km 44 (Spijkenisse) are active so that conges-
tion emerged. Furthermore, a heavy incident occurred at Km 41 at 16:05 so that the
capacity is significantly reduced there. In the figure, the emerging congestion is visi-
ble, as the speed suddenly drops to nearly zero. Due to the low capacity at the incident
site, the congestion at the regular bottleneck at Km 44 dissolved.

Conversion from mixed-class to multi-class traffic state

Since the online loops of Rijkswaterstaat do not measure the truck percentage, only
mixed-class data are available. However, since the variation of the truck share η varies
little over the working days (see Figure 7.2), it can be estimated by historic data. This
part shows in four steps how the estimated mixed-class traffic state expressed in speed v
and flow qtot is combined with the truck share η to compute the multi-class traffic state
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Figure 7.3: Result of the Estimation component for a day (06-07-2011 at 16:15),
speed contour over space and time; clearly visible are the recurrent congestions
at Km 44 (Spijkenisse) and Km 56 (Charlois); an incident occurred at Km 41 at
16:05

in terms of the class-specific effective densities Ku for each class u. In the follow-
ing, only the algorithm for the conversion is shown, whereas the proof is shown in
Appendix B.

In the first step, the estimated average speed v and the total vehicular flow qtot of
the most recent data, i.e. the state vector over space at 16:15 in case of Figure 7.3,
determine the total vehicular density by

ktot =
qtot

v
. (7.1)

In the second step, the total effective density Ktot is determined by the solution of[
η

1−η
vFD

car(Ktot)+ vFD
truck(Ktot)

]
Ktot

−
[

η

1−η
πtruck(Ktot)vFD

car(Ktot)+ vFD
truck(Ktot)

]
ktot = 0

(7.2)

for Ktot ∈ [0,Kjam], based on the fundamental diagram vFD
u (5.8) and the pce func-

tion πtruck (5.12).

In the third step, the class-specific speeds vu are determined by the fundamental dia-
gram:

vu = vFD
u (Ktot) . (7.3)

In the fourth and final step, the class-specific vehicular densities are calculated by

kcar =
vtruck

η

1−η
vcar + vtruck

ktot , (7.4)

ktruck = ktot− kcar . (7.5)
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Parameter Data source Section

Network topology
map

7.3.1
Flow of user classes 7.3.2

Total inflow into network loops RWS, HbR
7.3.3Total turnfraction at bifurcation nodes loops RWS, HbR

Traffic composition loops RWS detailed

Pce function video 7.3.4

Capacity at non-bottlenecks areal map 7.3.5
Capacity at regular bottlenecks loops RWS 7.3.6

Table 7.2: Calibration parameters of the Predictions component of the case study

The current traffic state defined by the class-specific vehicular densities ku is used in
the Prediction component to initialize the traffic flow model. Before the Prediction
component can be used, however, its parameters must be calibrated so that the traffic
state predicted by the model matches the true traffic state as closely as possible. This
is the topic of the following section.

7.3 Setup and Calibration of the Prediction Compo-
nent

In the Prediction component of BOS-HbR, the multi-class traffic flow model Fast-
lane explained in Sections 5.1 and 5.2 is used to simulate and reproduce the traffic
conditions of the site. This section describes how Fastlane is calibrated to the A15.
Section 7.4 validates the model.

Table 7.2 summarizes which parameters have to be calibrated. The network topology
is modeled based on maps of the area. Section 7.3.1 provides the network used in
Fastlane. Since some of the traffic can be rerouted via the alternative route, the flow of
traffic is distinguished by modeling multiple user classes in Section 7.3.2.

Traffic enters the network at its boundaries via the origin links, which are modeled by
class-specific inflows over time. These are calibrated based on historic data gathered
by induction loops. Similarly, traffic is split at bifurcation nodes, which are modeled by
class-specific turnfractions. Analogously to the inflows, the turnfractions are estimated
based on historic loop data. Since the RWS loops provide only quantities aggregated
over all vehicle classes, individual loop data are required to estimate the traffic compo-
sition and thereby the class-specific inflows and turnfractions. Section 7.3.3 calibrates
both the inflow and the turnfractions for each user class.

The pce function of Fastlane requires detailed data about the spacings of the vehicles.
Loop data provide information only about the time headway, and only with a resolution
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Figure 7.4: Network model of the site; the width of each line indicates the number
of lanes modeled, the stars indicate the location of the regular bottlenecks

of 1s, which is too coarse to estimate the pce function well. Video data, however, di-
rectly provide spatial information with a high resolution. The pce function is calibrated
in Section 7.3.4.

Finally, the fundamental diagram of each part of the network is estimated. Since
the capacity can only be observed at bottlenecks, the fundamental diagram at non-
bottlenecks is based on the number of lanes at that location (Section 7.3.5). The
capacity of the regular bottlenecks is estimated by an iterative optimization method
(Section 7.3.6). The remainder of this section shows the calibration procedure for each
of these parameters. The parameter values found are then validated in Section 7.4.

7.3.1 The Network Model

The network layout is directly visible in maps, for example in the ones provided by
Google Maps (2012). Figure 7.4 shows the network model. The width of the lines
indicates the number of lanes modeled, varying from one lane for most of the on- and
off-ramps to four lanes between the on-ramp Charlois and the bottleneck Charlois.
Each on-ramp is modeled as an origin-link, for which the inflow has to be calibrated.
Each of the off-ramps is modeled as a destination-link, for which the turnfraction of
the adjacent bifurcation node has to be calibrated (Section 7.3.3).

The alternative route is shown in blue. To abstract from all inflows and outflows on
the alternative route, its background traffic is summarized in the following way: back-
ground traffic enters the alternative route at the on-ramp near the beginning and leaves
it at the next off-ramp near its end. Since the alternative route consists of the two parts
of the Botlekbrug and the Vondelingenweg, two pairs of such on- and off-ramps are
modeled. Furthermore, since Fastlane models only nodes with at most three adjacent
links, the off-ramp Spijkenisse and the on-ramps Heijplaat and Charlois are modeled
as part of the alternative route. The following section explains in detail how the traffic
flows of both routes are modeled by user classes.
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Figure 7.5: Modeling of destination classes: Traffic passing Charlois is reroutable
(green solid), traffic that leaves the network earlier is not reroutable (red dashed);
furthermore, there is background traffic on the alternative route (red dashed)

7.3.2 Model of the User Classes and Their Flow Through the Net-
work

Multiple user classes are modeled in the case study. In the following, they are distin-
guished by vehicle classes and by destination classes.

The traffic of the A15 is composed of multiple vehicle classes. We distinguish two ve-
hicle classes, namely cars and trucks. As Figure 2.6 illustrated, trucks are significantly
longer than cars, and the relative spacing between them is dynamically dependent on
the traffic conditions. As explained in Section 5.1, the traffic behavior of the vehicle
classes is modeled by the pce function π (5.12); it is calibrated in Section 7.3.4.

A further distinction is made dependent on the destination. Traffic either passes the
point where the alternative route connects back to the A15 at Charlois or it leaves the
network before that point. This leads to multiple destination classes, as Figure 7.5
illustrates. Traffic that passes Charlois can be rerouted via the alternative route (green
solid). Conversely, traffic that leaves the network before Charlois cannot be rerouted
(red dashed). Furthermore, there is background traffic on the alternative route, which
is another destination class. However, since this background traffic of the alternative
route does not interfere with the non-reroutable traffic of the main route, it is modeled
by the non-reroutable destination class (red dashed) as well.

In total, there are thus two vehicle classes and two destination classes. We model
all combinations thereof by four user classes. Table 7.3 summarizes these four user
classes. The state of the network traffic, the inflows and the turnfractions are thus
defined for each of the four user classes.

7.3.3 Calibration of Inflows and Turnfractions

Traffic is entering the network at its boundaries via the origin-links, and it is split at
bifurcation nodes of the network. These are modeled by class-specific inflows and
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User class Vehicle class Destination class Reroutable

1 car after Charlois yes
2 truck after Charlois yes
3 car before Charlois or background traffic no
4 truck before Charlois or background traffic no

Table 7.3: User classes in the case study
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loop detector

Downstream
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On-ramp
loop detector

(a) Observe Inflow at On-ramps

Upstream
loop detector

Downstream
loop detector

Off-ramp
loop detector

(b) Observe Turnfraction at Bifurcation
Points

Figure 7.6: Detector configuration for calibrating inflow and turnfraction

class-specific turnfractions, respectively. They are calibrated based on offline data
from induction loops.

The calibration of the inflows and turnfractions is divided into two steps. First, the
inflow and turnfraction per location are calibrated in total, i.e. as the sum of all classes.
Then, they are split into multiple user classes.

Calibration of Total Inflow and Total Turnfractions

The total inflows and total turnfractions are calibrated by offline loop data, based on
the total flow. Both inflow and turnfractions can be observed in two different ways,
dependent on the detector configuration. Figure 7.6 shows detector configurations at
on-ramps and bifurcation points occurring in practice.

Figure 7.6(a) shows a detector configuration to observe the inflow at an on-ramp. If a
loop-detector is placed on the on-ramp, then the inflow is directly measurable. If the
on-ramp is not equipped with a detector, then the inflow is observed indirectly as the
difference of flows between the downstream and the upstream detector.

Figure 7.6(b) shows a detector configuration to observe the turnfraction at a bifurcation
point, such as an off-ramp or an interchange. If the off-ramp is equipped with a detector
then the turnfraction is calculated directly by the off-ramp flow divided by the upstream
flow. If the off-ramp is not equipped, then the turnfraction is determined by one minus
the downstream flow divided by the upstream flow.

For either case, data form the whole year of 2010 are used to calibrate the total inflows
and turnfractions. First, the data are aggregated into intervals of 15min. Then the data
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are categorized into seven categories, one for each day of the week. Finally, for each
of the 15-min-intervals and for each weekday, the median is applied. This result is the
total inflow or turnfraction, respectively.

Two examples of calibrated total inflows and total turnfractions are shown in Fig-
ure 7.7. The inflow pattern for each weekday of the on-ramp from the A4 is shown
in Figure 7.7(a). The thin grey lines are the observed aggregated data (i.e. one line for
each of the 52 weeks of the year). The thick black line is the median, which is used as
the calibrated total inflow. Clearly visible is the typical bimodal M-shape of the work-
ing days, indicating the morning and the evening peak caused by the commuter traffic.
During the weekend, traffic demand is much lower and practically no commuting traf-
fic is present. Similarly, Figure 7.7(b) shows the turnfraction for off-ramp to the A4.
Since the turnfraction is a relative measure, the commuting traffic is not visible there.

Calibration of Class-Specific Inflows and Class-specific Turnfractions

The class-specific inflows and class-specific turnfraction are determined based on their
total quantities estimated above. They depend both on the user class and on the location
in the network.

At some locations, vehicle-class specific data where gathered from the RWS loops
which provide the truck share ηtruck at that section of the road. If no truck share is
available for some locations, then a default truck share of ηtruck = 15% is used in the
calculations below.

Furthermore, the classes are split according to their destination, as was illustrated
above in Figure 7.5. A part of the total flow estimated at the bifurcation point to
the alternative route (at Km 44 at Spijkenisse) wants to pass Charlois. We assume that
this part is at least η̄ = 18%, i.e. in the model at most 18% of the traffic is reroutable.

In the following, the user-class specific inflow compositions and user-class specific
turnfractions are calculated based on their location, given the truck percentage ηtruck

and the reroutable share η̄ . Table 7.4 summarizes how the inflow composition and
turnfraction for all user-classes are calculated.

Outside of the reroutable area, i.e. before the bifurcation at Spijkenisse, all four user
classes flow into the freeway. The inflow composition there is split according to the
reroutable share η̄ and the truck percentage ηtruck.

On the main route, no reroutable traffic enters the network so that the inflow composi-
tion of these classes is set to 0. The remaining two classes share the inflow according
to the truck percentage ηtruck.

On the alternative route, only background traffic is entering the network. Therefore,
only non-reroutable classes enter the network so that the inflow composition on the
alternative route is defined the same as the one on the main route.
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Figure 7.7: Example of calibrated total inflow and total turnfraction for the case
study; thin grey lines: observed quantities gathered each week; thick black lines:
median thereof

The class-specific turnfractions outside of the reroutable area are the same as the total
turnfraction. If no class-specific data are available, then the results from the loop data
are used directly. If class-specific turnfraction data βtruck and βcar are available, then
these are used.

On the main route, the destination classes are distinguished. Those classes who pass
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Location User class Inflow composition Turnfraction

outside of reroutable area

1 η̄ · (1−ηtruck) βcar

2 η̄ ·ηtruck βtruck

3 (1− η̄) · (1−ηtruck) βcar

4 (1− η̄) ·ηtruck βtruck

on main route

1 0 0
2 0 0
3 1−ηtruck β

adjusted
car

4 ηtruck β
adjusted
truck

on alternative route

1 0 0
2 0 0
3 1−ηtruck 1
4 ηtruck 1

Table 7.4: Calibration of the user-class specific inflows and turnfractions the case
study

Vaanplein and are therefore reroutable do not take any off-ramps; therefore their turn-
fractions are set to 0. The turnfractions of the non-reroutable classes are determined
based on the total turnfraction and the base share η̄ . To keep the focus on the calibra-
tion in general, the detailed calculations of the adjusted turnfractions for cars β

adjusted
car

and trucks β
adjusted
truck are presented in Appendix A.

On the alternative route, the reroutable classes stay in the network; their turnfractions
are therefore set to 0. The other classes model the background traffic of the alternative
route. Since the alternative route is modeled in such a way that its on- and off-ramps
are summarized by one on-ramp in the beginning and one off-ramp at the end, all
background traffic leaves the alternative route at the bifurcation node; therefore, the
turnfractions of the reroutable traffic are set to 1.

Summary

In summary, the inflows and turnfractions are based on historic data gathered from in-
duction loops. Data of one year provide the historic patterns, categorized into the seven
days of the week. Since four user classes are modeled, the total inflows and turnfrac-
tions are split to generate the user-class specific patterns. These patterns depend on
the vehicle class, the availability of vehicle-class specific data and on the location in
the network. These patterns are then directly applied in the Prediction component to
simulate the class-specific inflows at origin-links and the class-specific turnfractions at
bifurcation nodes.
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Figure 7.8: PCE function used in case study

7.3.4 Calibration of the PCE Function

The videos gathered by the helicopter camera provide data about the relation between
the two vehicle classes of cars and trucks. Figure 2.5 shows a frame of a video of the
A15. Clearly visible are the different spacings between cars and trucks. Such videos
are used to calibrate the parameter values of the pce function πtruck (5.12).

At standstill, the vehicle classes showed average spacings of rmin
car = 7m and rmin

truck =

25m. The relative spacings at capacity showed an average pce value of πtruck = 1.5 pce
veh .

Minimum headways of hmin
car = 1s and hmin

truck = 1s lead to a realistic pce function. Fig-
ure 7.8 shows the pce function calibrated with these parameter values, which is used
in the case study.

7.3.5 Calibration of the Fundamental Diagram at Non-bottleneck
Locations

The fundamental diagram vFD Fastlane was defined in (5.8); an example of a funda-
mental diagram was shown in Figure 5.2. Since the capacity at non-bottlenecks cannot
be observed directly, we chose a heuristic approach that defines the effective capacity
and the effective jam density based on the number of lanes nlane. We calibrated the
effective capacity as

C = nlane ·2250
pce
h

, (7.6)

and the jam density as

Kjam = nlane ·
1

rmin
car

. (7.7)

Areas with a merge lane such as off-ramps are not accounted for in the fundamental
diagram, since vehicles tend to merge as soon as merging is allowed. Furthermore,
weaving lanes have a lower capacity than normal lanes; we model them as half a nor-
mal lane. For example, the section of the A15 between the A4 and off-ramp Heijplaat
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consists of three main lanes and two weaving lanes, which is therefore modeled as four
lanes.

Finally, the free-flow speeds of the classes are modeled as vfree
car = 110 km

h and vfree
truck =

85 km
h .

7.3.6 Calibration of the Fundamental Diagram at Active Bottle-
necks

The remaining parameters to calibrate are the capacities of the regular bottlenecks.
Since these have a large effect on the traffic conditions, a different calibration approach
than for the other parameters is chosen. The capacities are calibrated by automatic
iterative optimization with the goal that the predictions of the Prediction component
closely match the true traffic conditions.

The optimization objective is that the predicted congestion γ is at the same location
and at the same time as the true congestion γ̃:

Jreg = ∑
i

∑
j

∣∣γ i j− γ̃
i j∣∣∆xi

∆t (7.8)

whereby the γ i j indicates the traffic regime of cell i at time step j:

γ
i j =

{
1 if vi j < vi j

crit

0 else
(7.9)

In other words, the difference between predicted and true traffic regime in space and
time is minimized. We chose the traffic regime, since the correct location of the traffic
jams is the most relevant criterion for the control with the objective to minimize the
total cost presented later in Section 7.5. Moreover, the traffic regime is not sensitive to
short-term traffic phenomena. Optimizing the speed, for example, is very sensitive to
stop-and-go waves, which often occur during congestion. However, the exact location
of stop-and-go waves does not much affect the total cost; instead, the location and
duration of the congestion is essential.

Calibration Procedure

A training data set of 25 days during the evening peak was selected, with starting
times at 15:30, 16:00, 16:30 and 17:00, leading to 100 calibration data sets. For each
data set, the capacities of both regular bottlenecks were optimized by applying the
built-in optimization of Matlab. In all simulation in this chapter, the Fastlane model is
discretized (5.15) with an approximate cell length of ∆x≈ 100m and a time step length
of ∆t = 2.7s.

For each of the data sets, the calibration of the capacity can either succeed or fail. A
calibration is successful if the predicted traffic conditions closely match the true traffic
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(a) Predicted Traffic State (b) Ground Truth

Figure 7.9: Example of a successful capacity calibration of a data set (24-01-2011
at 15:30)

conditions. Figure 7.9 shows an example of a successfully calibrated data set. Fig-
ure 7.9(a) shows the speed prediction of the model over space and time; congestion
is predicted at both regular bottlenecks at Km 56 and Km 44, respectively. For com-
parison, Figure 7.9(b) shows the true traffic conditions. The capacity values of the
successful data sets are then used for further calibration.

However, the calibration of some data sets failed. Figure 7.10 shows an example of
a failed case, where the jam predicted at Km 56 is much stronger then the true con-
gestion. The capacity value calculated is much lower than a realistic value. The op-
timization algorithm thus did not find the optimal capacity value. Reasons for these
calibration failures are due to the local minimum being small so that the optimization
algorithm did not find it. Furthermore, the objective function is not continuous, but
step-wise constant; i.e. a small change in capacity may not change the spatiotemporal
traffic regime, thereby falsely indicating that the local minimum is found. In either
case, a manual classification in successful and failed calibrations for each data set is
therefore necessary. The capacity values of the failed data sets are then discarded in
the remaining calibration procedure.

Finally, the capacity values of the successful data sets were averaged and used as the
calibrated capacities in the Prediction component. These values are 4200 pce

h for the
bottleneck at Km 44 (Spijkenisse) and 4800 pce

h for the bottleneck at Km 56 (Charlois).

This concludes the calibration of the Prediction component. The following section
validates the Prediction component with a different data set, to test whether it predicts
the true traffic conditions well.



7. Case Study: Multi-class Control of the Dutch Freeway A15 157

(a) Predicted Traffic State (b) Ground Truth

Figure 7.10: Example of a failed capacity calibration of a data set (24-01-2011 at
16:00)

7.4 Validation of the Prediction Component

The previous section determined the values of the parameters of the Prediction com-
ponent. This section validates whether these values lead to realistic predictions of the
traffic conditions of the A15. For this purpose, a validation data set of 20 days is used
that is disjunct from the calibration data set used to determine the capacity values in
Section 7.3.6.

In the following, the Prediction component is validated for regular congestion emerg-
ing on normal weekdays during the evening peak, and for incidental conditions where
an accident occurred so that the freeway was partially blocked. Thereafter, the vali-
dation results are discussed. The performance measure is the difference of the traffic
regime between predicted and true traffic Jreg (7.8), as it was used to calibrate the
capacities as bottlenecks (Section 7.3.6).

7.4.1 Validation During Regular Congestion

First, the Prediction component is validated during regular traffic conditions during the
evening peak, i.e. congestion emerged at the two bottlenecks. Ten days combined with
four different starting times at 15:30, 16:00, 16:30 and 17:00 are selected for the test,
resulting in 40 data sets.

Figure 7.11 shows the validation of one data set. The congestion of both regular bottle-
necks are at the correct locations. Furthermore, the length of the congestions is close
to the true congestion lengths.
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(a) Predicted Traffic State (b) Ground Truth

Figure 7.11: Validation of the Prediction component during regular conditions
(30-03-2011 at 15:30)
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Figure 7.12: Performance Jreg of the validation

Out of the 40 validation data sets, 31 of them show a good match with reality, whereby
six out of them closely match the true traffic conditions. In nine cases, the prediction
results were far off the true traffic conditions. Figure 7.12 shows the histogram of
the performance of the data sets. For comparison, the performance of the data set of
Figure 7.11 is 6.1kmh.

7.4.2 Validation During Incidental Conditions

Next, the Prediction component is validated for incidental conditions. Ten days where
an incident occurred were selected as validation data sets. The location of the incident,
the remaining capacity and the duration of it were fed into the Prediction component.

Figure 7.13 shows the results for of a data set (06-07-2011 at 16:15) where an incident
occurred at Km 41 and lasted until 16:40. As can be seen, the congestion caused by the
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(a) Predicted Traffic State (b) Ground Truth

Figure 7.13: Validation of the Prediction component during incidental conditions
(06-07-2011 at 16:15)

accident is predicted accurately. Furthermore, when the accidents clears, the resulting
regular congestion emerging at Km 44 (Spijkenisse) is predicted well. (Note that the
incident in the ground truth appears to be located further downstream. This is due to
the finite acceleration, which need some hundreds of meters to accelerate to a high
speed. This finite acceleration is not modeled in the Prediction component where the
vehicles immediately reach a high speed.)

Six out of the ten data sets are predicted well, only one was far off, and three showed
a mediocre prediction quality. The histogram in Figure 7.12 shows the performance of
the validation date sets. For comparison, the performance of the data set of Figure 7.13
is 7.3kmh.

7.4.3 Discussion of Validation

To conclude, the validation of the Prediction component shows sufficiently accurate
results under many conditions. For the validation during incidents, the location, the
remaining capacity and the duration of the accident was fed into the model. The lo-
cation of the incident can directly be seen in the spatiotemporal plots produced by the
Estimation component (Figure 7.3). The remaining capacity can be measured imme-
diately downstream of the accident. Though the duration of the accident is unknown
beforehand, we used the true duration to validate the model. The results show that the
model predicts the congestion caused by incidents well. With the Prediction compo-
nent, a traffic management center can thus predict what the traffic state will be if the
accident is expected have a certain duration.

Since the main objective of BOS-HbR is to predict the congestion well, this validation
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was evaluated by the difference of predicted and true traffic regime, i.e. the predicted
congestion is at the right place at the right time. We did not analyze the difference of
speeds, for instance, because it fluctuates in congested conditions due to stop-and-go
waves and therefore provides only limited information about the location of conges-
tion.

The capacity values calibrated in Section 7.3.6 are relatively low, especially the one at
Km 56 (Charlois). Because this bottleneck is caused by a lane drop from four to three
lanes, we therefore expected an effective capacity of around 6000 pce

h . The calibrated
value of 4800 pce

h is significantly lower than the value we expected. Nevertheless, the
validation shows that the realistic traffic conditions are predicted so that using these
capacity values in the prediction model is justified.

Therefore, under the objective of providing a realistic prediction, we regard the Pre-
diction component to be validated. Now we are therefore ready to perform the actual
case study, where multi-class control of the site is simulated.

7.5 Setup of the Control Component

This section describes the setup of the Control component of the control loop of Fig-
ure 2.11. The objective of the controller is to minimize the total cost (5.27) during the
prediction horizon. Since there is no simple way of converting the traffic state in the
form of the class-specific densities to the control objective in the form of the total cost,
we only use the running costs that occur within the prediction horizon, and ignore any
terminal costs at the end of it.

As explained in Section 7.1.4, three DTM measures are used to control the traffic of
the A15. The signals of the two multi-class route guidance controllers represent the
turnfraction. They can assume values between 0, indicating to stay on the route, and
1, indicating to use the off-ramp. The multi-class ramp meter at the A4 is controlled
by the desired share of the ramp outflow and the set point density. The signal for the
desired share can vary between 0, indicating full priority to trucks, and 1, indicating
full priority to cars. The set point density for the freeway traffic state can vary between
0 and 200 pce

km , whereby the critical density of the link is 112 pce
km . The control interval

is set to ∆tc = 10min.

The optimization is solved by the interior-point algorithm implemented in Matlab. This
algorithm is a gradient-based method that always respects the boundaries of the control
signal range, i.e. this method avoids signals that have no physical meaning and would
lead to undefined prediction model behavior, such as negative turnfractions.

The setup for the values of the prediction horizon Tp and the control horizon Tc deter-
mine the quality of the controller both in terms of performance and computation time.
In general, the more control signals have to be optimized, the finer-grained and the
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more precise the traffic system can be controlled and therefore the better the perfor-
mance will be. However, at the same time, the control problem becomes more difficult
to solve since the objective function might then contain multiple local optima. Since
we use a gradient-based method, the global optimum might not be found if many con-
trol signals are used. A further drawback of using a long prediction and a long control
horizon is the computation time.
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Figure 7.14: Performance and computation time of the controller dependent on
the lengths of the prediction horizon and the control horizon

The effects of the length of the prediction horizon and the control horizon on the per-
formance and the computation time is shown in Figure 7.14. Intuitively, increasing
the control horizon Tc leads to a better performance (Figure 7.14(a)). Furthermore,
increasing only the prediction horizon deteriorates the performance. This counter-
intuitive result is due to the setup: the simulation time was fixed, and the controller
was activated only if the remaining simulation time was longer or equal to the predic-
tion horizon time. For example in the case, of (Tp,Tc) = (60min,10min), the DTM
measures where controlled only for the first 10min; its performance is therefore rela-
tively bad. A very good performance is achieved in the cases where the control horizon
equals the prediction horizon. However, as can be seen in the case of Tc = Tp = 60min,
the performance is worse than for shorter horizons. In this case, the controller did
not find the global optimum. When taking the computation times into account (Fig-
ure 7.14(b)), shorter horizons are preferable. We therefore choose a trade-off between
performance and computation time in the form of Tp = Tc = 30min.

The number of signals being optimized in the prediction horizon thus is the number of
input signals times the number of control intervals. Since there are six input signals
(two turnfractions for each of the two MCRG, and the share and the density for the
MCRM) and three control intervals, 18 signals are optimized in the case of the multi-
class controller.

Since the prediction model is validated for a period of one hour, the simulation time of
the experiment is set to that value.
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7.6 Setup of the Case Study

In the following sections, the control loop of Figure 2.11 is applied to simulate traffic
control of the A15. This case study applies a multi-class controller in both regular and
incidental conditions to minimize the total cost of the traffic of the A15. The multi-
class controller is compared to a mixed-class controller and to the default no-control
situation.

The experiment consists of multiple scenarios. Firstly, the multi-class controller is
compared to the mixed-class controller and the no-control case. Secondly, different
values of time are used for the truck class: ζtruck ∈ {1

3 ,1,3,100} ·ζcar, with a value of
time for cars of ζcar = 15 C

vehh . Thirdly, the controllers are applied to multiple data sets:
ten days were selected for the experiments under incidental conditions, and two days
with four different starting times were selected for the experiments under regular traffic
conditions. The performance is compared in terms of total costs and the computation
time is measured.

7.7 Results of the Case Study

This section presents the results for regular conditions in Section 7.7.1 and for inciden-
tal conditions in Section 7.7.2.

7.7.1 Results of Multi-class Control Under Regular Conditions

This section presents the results of the experiments performed under regular condi-
tions. The results are illustrated in the figures by the data set of 30-03-2011 at 15:30,
for a value of time of ζtruck = 3ζcar. In the following, the results for the no control
case, for the mixed-class controller and for the multi-class controller are shown. For
comparison, Table 7.5 summarizes the performance of all examples.

Regular Conditions Incident Conditions

Multi-class Control 43 800 C 39 800 C
Mixed-class Control 44 200 C 40 000 C

No Control 47 900 C 45 500 C

Table 7.5: Results of the case study, comparison of total cost of example cases

No Control Under Regular Conditions

Since the dataset is the same as in the example of the validation in Section 7.4.1, the
predicted traffic conditions were already shown in Figure 7.11; the two bottlenecks at
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Km 44 and Km 56 are active so that congestion emerges and grows at these locations.
The performance of the no control case is 47 900 C.

Mixed-Class Control Under Regular Conditions

The results of the mixed-class controller are shown in Figure 7.15. The spatio-temporal
speed plot shows that the congestion is significantly shorter.

The reasons is that the route guidance measure at the first bottleneck guided a part of
the reroutable traffic via the alternative route. As a result, fewer traffic has to pass the
bottleneck at Spijkenisse so that the congestion is shorter there. Since the traffic stays
on the alternative route (the route-guidance signal after the Botlekbridge is zero), less
traffic is flowing into the congestion at Charlois. Of course, this congestion is only
relocated to the alternative route. The ramp meter at the A4 is not activated.

Since the congestion at Spijkenisse is reduced, fewer vehicles are queued so that the
performance of the mixed-class controller is better than that of the no control case. The
performance of the mixed-class controller is 44 200 C, which is a relative improvement
of 9.2%.

Multi-class Control Under Regular Conditions

Figure 7.16 presents the results of the multi-class controller. The congestion at both
bottlenecks are shorter than in the no control case, and even slightly shorter than in the
mixed-class controller case.

Traffic is rerouted via the underlying network, again leading to less congestion on the
main route compared to the no-control case. In contrast to the mixed-class controller,
the multi-class controller splits the routing dependent on the vehicle class. Only cars
are rerouted; furthermore, a small part of the rerouted cars is sent back to the main
route after the Boktlekbrug. By these measures, the more valuable trucks stay on the
main route, and the less valuable cars take the alternative route to reduce the demand
at the bottleneck, which reduced the congestion at Km 44. Here, too, the ramp meter
at the A4 is not activated.

Since the vehicles can be guided class-specifically, the valuable trucks stay on the main
route, which improves the performance. The performance of the multi-class controller
is 43 800 C, which is an improvement of 9.1% compared to the no-control case, and
1.0% compared to the mixed-class case.

7.7.2 Results of Multi-class Control Under Incidental Conditions

This section presents the results of the experiments performed under incidental con-
ditions. During the morning of 18-04-2011, an incident occurred at Km 54, which
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Figure 7.15: Results of mixed-class control during regular conditions
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Figure 7.16: Results of multi-class control under regular conditions

caused congestion. In the following, the results for the no control case, for the mixed-
class controller and for the multi-class controller are shown for a value of time of
ζtruck = 3ζcar.
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No Control Under Incidental Conditions

The predicted traffic conditions of the no-control case are shown in Figure 7.17. The
congestion caused by the incident grows heavily during the duration of the incident.
The spillback partially blocks upstream off-ramps, which worsens the congestion even
more. When the incident clears at 09:45, the congestion dissolves slowly over more
than 20min. The incident thus affects the traffic on the A15 long after is has been
cleared. The performance of the no control case is 45 500 C.

Figure 7.17: Results of no control under incidental conditions; spatiotemporal
speed

Mixed-Class Control Under Incidental Conditions

Figure 7.18 shows the results for the mixed-class control case. The congestion caused
by the incident is significantly shorter than in the no-control case. This reduces the
spillback and the blocking of the off-ramps so that the congestion stays short. Conse-
quently, the congestion dissolves within a few minutes after the incident is cleared.

All of the reroutable traffic is guided via the alternative route. Since the congestion
spills back over the on-ramp of the A4, the ramp meter is activated and holds back
traffic from the A4. After the incident is cleared and the congestion is dissolved, the
ramp meter releases the congestion from the A4.

The performance of the mixed-class control case is 40 000 C, which is an improvement
of 11.9% compared to the no-control case.

Multi-class Control Under Incidental Conditions

The results of the multi-class controller are shown in Figure 7.19. The traffic state
on the A15 is very similar to that of the mixed-class controller. Here, too, traffic is
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Figure 7.18: Results of mixed-class control at an incident

rerouted via the underlying road and the ramp meter is activated due to the congested
A15.

However, the multi-class controller improves the traffic conditions when congestion
on the A15 is dissolved and the congestion from the A4 is released. The share of the
MCRM is set to 0, which means that trucks are prioritized. As a consequence, first
the valuable trucks are released from the queue and thereafter the less valuable cars, as
shown in Figure 7.19(c) by means of the number of queued vehicles.

The performance of the multi-class controller is 39 800 C, which is an improvement of
12.5% with respect to the no-control case and 0.7% with respect to the mixed-class
controller.

7.8 Discussion of the Performance

This section first analyzes the performance of the controllers applied in the case study.
Then, directions for improving the performance are outlined.

7.8.1 Analysis of the Performance

The performance of the controllers under regular and under incidental conditions is
similar. To illustrate this, the performance of all scenarios of the incident experiment
is shown in Figure 7.20. The absolute performance (Figure 7.20(a)) suggests that the
performance of the controllers differs only little. A comparison of the performance
differences with respect to the no-control case (Figure 7.20(b)) reveals, however, that
predictive control substantially improves the traffic conditions on the site. Dependent
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Figure 7.19: Results of multi-class control at an incident

on the location and strength of the incident, the network can perform substantially
better if control is applied, as is the case for data set 1, which was presented in Sec-
tion 7.7.2. The performance is even more improved if traffic is controlled user-class
specifically.

These improvements are due to two reasons. Firstly, the capacity of the alternative
route is not fully used, so that rerouting can substantially reduce the demand at the
bottleneck and therefore decrease the congestion. Secondly, the ramp meter at the A4
can decrease spillback on the A15 so that upstream off-ramps are not blocked, or at
least that the blocking is delayed. Since the on-ramp of the A4 is multiple kilometers
long, it offers a lot of buffer space so that (multi-class) ramp metering is possible there
without congestion spilling back to upstream infrastructure.

If the DTM measures are expanded to multi-class measures, then the properties of the
vehicle classes can be exploited accordingly. For example, if only a part of the traffic
can be rerouted, then leaving the valuable vehicles on the fastest route and rerouting
the less valuable ones via the longer route improves the traffic performance. Another
example is multi-class ramp metering, where first the queue of the valuable vehicle
class is dissolved and then the queue of the less valuable one.

These different performances show that predictive control can substantially improve
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Figure 7.20: Comparison of performance during incidental conditions for differ-
ent data sets and different values of time (in C)

the traffic on the A15. Dependent on the strength, time and location of the incident,
these improvements can vary largely. In the experiments, we found values between 0
and 25%. The application of multi-class control improves the traffic state even more,
whereby these improvements are in the order of 1%.

This improvement is relatively low compared to the values of up to 33% of the ide-
alized experiments in Chapter 6. Several reasons may explain this small difference.
Firstly, the location of the bottlenecks, especially the one at Km 56 (Charlois) is lo-
cated far downstream, where no alternative enables a rerouting around the bottleneck
location.

Secondly, the truck percentage in the experiments of Chapter 6 is significantly higher
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than in the case of the A15. Naturally, the higher heterogeneity of those experiments
lead to a larger improvement of the traffic performance than this case study.

Finally, the network of the previous experiments was smaller than the one of the case
study. The relative improvements of the small networks are therefore stronger pro-
nounced. A remedy of this last point is to increase the number of DTM measures in
the network so that more control of the network traffic is possible. For example, all
on-ramps of the A15 could be equipped with multi-class ramp meters.

7.8.2 Potential Approaches for Improving the Performance

In the following, several ways to improve the performance quality of the control loop
are outlined. The ideas outlined here suggest to use existing scientific methods that
might improve the quality of the controller. Later, in the conclusions chapter of this
thesis, Section 8.2 outlines general directions for further research.

Improving the State Estimation

Improve sensors The current sensor configuration outlined in Section 7.1.3 densely
covers the freeway of the A15 but provides only mixed-class data. Conversely, the
sensors on the alternative route gather individual data, but only at a few locations. A
sensor configuration that both observes vehicle-individual data and densely covers the
network will therefore improve the quality of the estimation. By those means, the
multi-class traffic state of both the freeway and the alternative route can be estimated
with a high precision. Such multi-class data could furthermore be stored in a data base,
which would provide historical multi-class data. These would be valuable for the ex-
post evaluation of the traffic performance of the network and could further be used for
better calibration of the prediction component.

Use information about sensor noise The Estimation component can further be ex-
panded to use more avalilabe information, such as the noise distribution of the sen-
sors. If the sensor data and their noise distributions are combined with a prediction
by a traffic flow model and its noise distributions, then the estimation quality could
be improved. A recursive Bayesian estimator as outlined in Section 2.3 provides a
framework for this. A current challenge is, however, to calibrate such an estimator
well.

Improving the Prediction Model

Adjust calibrated inflows and turnfractions online Currently, the inflows and turn-
fractions applied in the prediction model are the medians of historic data patterns, i.e.
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they only depend on the day of the week and the time, but not on the traffic conditions.
To improve the quality, these could be adjusted based on the current traffic state (see
e.g. Smith et al. (2002)).

Calibrate fundamental diagram online Currently, the parameter values of the Pre-
diction component stay fixed one they have been calibrated offline. Alternatively, the
parameter values could be estimated online. An example of a joint estimation of the
parameters of the fundamental diagram and the traffic state with Fastlane is shown by
Van Lint et al. (2008a).

Reduce discretization cell lengths of Fastlane The prediction quality of Fastlane
can be improved if the cell size ∆x and the time step length ∆t in (5.15) are reduced.
By this means, the numerical diffusion is reduced, which means that the result of the
discretized model is closer to the continuous model (Leclercq et al., 2007). A drawback
of this approach is that the computation time increases quadratically in the inverse of
the cell length.

Replace Euler coordinate system with Laplace coordinate system Fastlane is cur-
rently used in Eulerian coordinates, i.e. the cells are fixed with respect to the road
(Sections 5.1 and 5.2). Another way to reduce the numerical diffusion is to use a La-
grangian formulation of Fastlane, i.e. where the cells (or “platoons”) comprise a fixed
number of vehicles and travel downstream with the traffic. Van Wageningen-Kessels
et al. (2010) and Van Wageningen-Kessels (2013) reformulate Fastlane to Lagrangian
coordinates; Yuan et al. (in press) and Yuan (2013) apply the Lagrangian Fastlane
model to recursive traffic state estimation.

Improving Traffic Control Component

Reduce control interval for finer-grained control Currently, the controller is set up
in such a way that the DTM measures are controlled every ∆tc = 10min (Section 7.5).
A finer-grained control by reducing the control interval would yield a better control
performance, although the improvement is likely to be only little. Similarly, the pre-
diction horizon and the control horizon can be increased to cover the whole one hour
hour the prediction model is validated for. All of these measures have the potential
to improve the performance of the controller, however, these also would increase the
computation time.

Use multiple starting points for optimization Since the optimization algorithm is
not guaranteed to find the global optimum, running multiple optimizations with differ-
ent starting points increases the chances of finding a better local optimum and therefore
increasing the performance.
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Figure 7.21: Average computation time of the Control component

Summary

This section outlined approaches to improve the performance quality of BOS-HbR.
Some of the approaches named require an extensive calibration of the parameters,
others are the subject of current research. Most of the approaches, however, pose a
dilemma between a high performance quality and a low computation time.

7.9 Discussion of the Computation Time

This section first analyzes the computation time of the case study. Then, it outlines
directions to improve the computation time.

7.9.1 Analysis of the Computation Time

Figure 7.21 shows the average computation time of the different controllers used in the
case study, as they are implemented in Matlab and executed on a laptop with 3.5GB
memory and a 2.5GHz dual-core processor. The multi-class controller computes the
signals within one hour. The mixed-class controller is significantly faster, since fewer
control signals are optimized. In the case of no control, only the Prediction component
and the file handling and visualization are executed. These procedures take one minute.

The high computation times of the predictive controllers are due to the setup of the
experiment. The experiment was very detailed, including a lot of signals to optimize
and an optimization stopping criterion that requires small changes of the results of the
iterations (Section 6.4.2.2). The result is that the computation time of the optimization
is relatively high, so that this setup is not suitable for online applications in practice.
The following section outlines steps to improve the computation time. Section 8.5
presents a setup of BOS-HbR where a cycle of the inner control loop performs within
a few minutes and runs online.

7.9.2 Potential Approaches for Improving the Computation Time

This section discusses potential ways to improve the computation time of BOS-HbR.
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Improving the State Estimation

Deactivate calibration of Adaptive Smoothing Method by Wave Speed Estimator
The Estimation component now consists of the Adaptive Smoothing Method (Sec-
tion 4.2) and the Wave Speed Estimator (Chapter 3), which calibrates the ASM pa-
rameters online. Instead, typical values for the characteristic wave speed, for example
estimated by historic averages, can be used as parameter values so that the WSE can
be deactivated. This would reduce the computation time of the Estimation component
from one minute to a few seconds.

Reduce time horizon of Adaptive Smoothing Method Furthermore, the time hori-
zon of the ASM is now set to 4h, mainly for visualization purposes. However, only
data of a few minutes have a significant effect on the current traffic state. A reduction
of the horizon to, say, 5min would therefore speed up the Estimation component even
more. Though, since the ASM already runs within a few seconds, this measure would
only have a marginal effect.

Improving the State Prediction

Increase discretization cell lengths of Fastlane The discretization parameters of
Fastlane (notably the cell length as described earlier) and the number of user classes
affect the computational speed. Reducing the number of user classes linearly decreases
the computation speed. The network model is currently discretized with cells of circa
∆x = 100m and a time step of circa ∆t = 3s. Increasing the length of a cell would
automatically increase the time step length (Courant et al., 1928)). This increase would
thus decrease the computation time quadratically. The maximum length of a cell is
limited by the length of the shortest link of the network, however.

Replace Euler coordinate system with Laplace coordinate system A Lagrangian
formulation of the Fastlane model reduces and simplifies the scheme. Currently, in
Eulerian coordinates, the traffic state of a cell in the next cell depends on the traffic
state of three cells, namely itself and its two neighbors, since traffic characteristics
can propagate both upstream and downstream. In Lagrangian formulation, the traffic
state of a cell (or “platoon”) in the next time steps depends on only two cells, namely
itself and it downstream neighbor, since the characteristics propagate only upstream.
Van Wageningen-Kessels et al. (2010) developed the Lagrangian link model and Yuan
et al. (in press) developed a multi-class Lagrangian node model for Fastlane.

Replace traffic flow model with a simpler one A simpler traffic flow model could
be applied altogether (see Section 2.2). However, this approach, too, poses a trade-off
between computational speed and quality of the controller.
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Improving the Traffic Control Component

Limit the computation time of the optimization procedure In the case study, the
optimization procedure is set up to find the optimal control signals with a high pre-
cision (Section 6.4.2.2). For online applications, a low computation time is crucial,
so that a more relaxed stopping criterion can be chosen. In addition, the number of
iterations of the optimization procedure can be capped, effectively limiting the compu-
tation time of the control component. Furthermore, the initial value of the optimization
procedure can be set to the optimal signal found in the previous iteration of the control
loop.

Use a faster optimization algorithm Another approach to improve the computation
time is to use a different optimization algorithm altogether. The active-set algorithm is
usually faster than the interior-point algorithm used in the case study, but sometimes
evaluates points outside of the specified bounds (such as negative turnfractions) which
causes the prediction model to crash. Another optimization algorithm is the feasible
direction method; Kotsialos et al. (2002) apply this method to optimize traffic network-
wide within a few seconds.

Reformulate the control problem A reformulation of the control problem can lead
to a faster optimization. Reformulating it to the optimization by the co-state problem
(Wang et al., 2012), or optimizing the marginal costs (Zuurbier, 2010) can lead to a
faster optimization. Approximating the optimization problem by a piece-wise linear
model (e.g. Lin et al. (2009)) usually leads to a much faster optimization, though the
performance can decrease since the prediction model might no longer incorporate non-
linear traffic phenomena any more.

Increase control interval for coarser-grained control The computation time de-
pends significantly on the number of signals that are optimized. To lower the number
of control signals, the control interval length of the model-predictive controller can be
increased to and the control horizon can be decreased (Section 7.6).

Decrease the number of DTM measures A further way to lower the number of
signals is to remove some of the DTM measures. For instance, currently there is no
ramp meter installed at the interchange with the A4; removing this ramp meter from the
experiments reduces the number of DTM measures to the two route guidance measures
that guide the traffic via the alternative route.

Combine model-predictive control and rule-based control We chose model-pre-
dictive control to find the optimal signals that minimize the total cost. However, MPC
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can be combined with other control approaches, such as the one discussed in Sec-
tion 2.1. For example, the high performance of MPC can be combined with the com-
putation speed of a rule-based system. The MPC is used to develop and validate the
rules offline. These rules are then applied in the rule-based controller in operation.
The drawback of such an approach is, however, that it is not applicable to inciden-
tal conditions if these are not represented in the rule base. Nevertheless, applying a
validated rule-based controller during regular conditions would free up computation
time. The model-predictive controller would then only be used online under incidental
conditions, and offline for the development of the rule base.

Improving the Program Implementation

Since the purpose of the BOS-HbR prototype is to show that the concept of multi-class
DTM improves the traffic conditions, little attention has been paid to optimizing the
computation time of the non-traffic related parts of BOS-HbR. There are thus many
parts of the prototype which can be implemented more efficiently.

Parallelize control optimization procedure The control loop can be parallelized in
several ways so that multiple processors or even multiple machines solve the control
loop. One way is to parallelize the optimization procedure, as the gradients can be
computed simultaneously. In an extreme case, only one optimization iteration would
be executed so that the whole objective function is evaluated at specified sampling
points at once, whereby one machine evaluates one sampling point. Of course, the
larger the sample set is, the more machines are required.

Parallelize components of the control loop A different method of parallelization is
to run the different processes of BOS-HbR independently of each other. For example,
the data gathering, the Estimation component and the Control component can each
run on a dedicated machine. Then, the Control component would use the most recent
traffic state provided by the Estimation Component, but would further not interfere
with it.

Improve communication with data base, file handling and input/output proce-
dures The gathering of the data from the data bases and sensors can be improved,
or the saving of the results to files and visualizations can be optimized or even par-
tially omitted. A large part of the computation time of the no-control case shown in
Figure 7.21 is due to these input and output operations.

Use a programming language that is more computation time efficient The cur-
rent implementation environment is Matlab. Its strength is the easy manipulation and
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visualization of matrix data, which makes it very suitable for scientists and engineers
to create prototypes. To produce a fast version of BOS-HbR, the implementation envi-
ronment can be changed to a more runtime-efficient language.

Professional implementation with focus on online application Further large im-
provements of computation time are expected if BOS-HbR is implemented by a profes-
sional software engineering approach with the goal of developing an online application
that is deployed in a traffic management center. Such a professional implementation
would also include a more stable execution and better error handling. Furthermore, a
graphical user interface (GUI) would enable easy interaction with the traffic operators.
Such an interface would also include an intuitive way to modify the configuration, such
as implementing new (multi-class) DTM measures at different locations.

Summary

This section presented approaches to improve the computation time of BOS-HbR.
Some of them affect only the values parameters, others change the approach or model
that was used in the components of the control loop, whereas some suggest a better
implementation of the BOS-HbR.

While all of the adjustments have the potential to increase the computational speed,
they also have potential drawbacks. If they do affect the model or approach, usually the
validity and the performance of the controller will decrease. A new implementation of
the prototype by a professional software development approach, however, will increase
the computation speed, and preserve or even increase the performance quality.

General directions for further research are outlined in the conclusions chapter of this
thesis in Section 8.2.

7.10 Conclusion

This chapter combined the components developed in the previous chapters of this the-
sis to the system BOS-HbR and applied it to the Dutch freeway A15 and a part of
the underlying road network. The data from the road-side sensors are gathered and
fused by the Estimation component to estimate the traffic state of the A15 in real-time.
Subsequently, this current traffic state is used to initialize the Prediction component,
which predicts the traffic state of the following hour in real-time. These predictions
are the basis for the Control component, where the control signals of multi-class DTM
measures like route guidance and ramp metering are optimized to reduce the total cost
of traffic.

The experiments show that a predictive control approach with two route guidance and
one ramp meter measure outperforms the no-control case. The total cost of traffic is



176 Vehicle-class Specific Control of Freeway Traffic

reduced up to the order of 10%. Furthermore, if cars and trucks are controlled class-
specifically, the performance is improved even further within the order of 1%.

Currently, BOS-HbR has been developed as a prototype to estimate and predict the
traffic state of the A15 in real-time. We outlined ways to improve its performance
quality and its computation time. Whereas most ways pose a dilemma between those
two goals, the estimation of the traffic state with a recursive Bayesian model, an imple-
mentation of Fastlane in Lagrangian coordinates, the replacement of the optimization
procedure with a genetic algorithm, and a professional implementation of BOS-HbR
have the potential to improve both goals. The challenge of these approaches is, how-
ever, that they require a long development or a long calibration due to their complexity.

This chapter showed that multi-class control, including all three components of the
control loop, has the ability to improve the performance of traffic in a real network.
The final chapter summarizes the ideas developed in this thesis and gives recommenda-
tions for practice and science. Furthermore, it shows an example of BOS-HbR applied
online.



Chapter 8

Conclusions and Recommendations

In this thesis, we developed multi-class Dynamic Traffic Management (DTM) for free-
way traffic. In the first part, we reformulated existing traffic state estimators so that
they run efficiently in real-time, and we developed a method to calibrate them auto-
matically. In the second part, multi-class control concepts were developed to improve
the traffic performance of freeways. Based on the multi-class traffic flow model Fast-
lane, the three class-specific properties of vehicle length, free-flow speed and value of
time were analyzed to quantify their impact on the traffic flow and the network perfor-
mance. Then, existing DTM measures were generalized so that they can influence each
vehicle class individually. Finally, the estimation and control concepts of multi-class
DTM were combined in a case study based on simulations of the Dutch A15.

In this final chapter, we first summarize the main findings and conclusions of each of
the previous chapters in Section 8.1. Then, directions for future research are outlined
in Section 8.2. Recommendation for practical use are presented in Section 8.3. In
Section 8.4, we propose a workflow that moves from the current state-of-the-practice
of case-based traffic control to multi-class proactive traffic control. In Section 8.5, this
thesis finishes with an example of multi-class DTM in the form of the system BOS-
HbR as it is currently running online.
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8.1 Main Findings and Conclusions

This section summarizes the main findings and conclusions of each chapter.

In Chapter 2, we studied the state of the art of estimating, predicting and controlling
the traffic flow of freeways. Most of the existing methods pose a dilemma between
accuracy and computational speed. We concluded that an model-predictive control ap-
proach is the best one suited for analyzing the effects of controlling vehicle classes
individually. To predict the effects of multi-class traffic and multi-class control accu-
rately and quickly, we decided to use a macroscopic multi-class traffic flow model.
We use the model Fastlane, which furthermore captures the dynamics of the spacings
between different classes. For the traffic state estimation, we decided on two candi-
date methods. Firstly, the Adaptive Smoothing Method is a data-driven method that
interpolates the traffic data in space and time according to the propagation speed of
the traffic characteristics. Secondly, the Extended Kalman Filter is a model-driven ap-
proach that optimally combines the sensor data with the prediction of a traffic flow
model. The final decision of a suitable estimation method was made in favor of the
ASM later in Chapter 4. The estimation, prediction and control methods were then
combined to form the control loop for multi-class DTM.

In Chapter 3, we analyzed spatiotemporal traffic data to extract the propagation speeds
of shock waves. We found that treating spatiotemporal traffic data as a two-dimensional
image and analyzing it by image processing tools enables the estimation of shock
waves and their propagation speeds with high accuracy. This method can be used
to automatically estimate shock waves and their speeds from both empirical and syn-
thetic data, and can be used to support the calibration of traffic state estimators that
are parameterized by characteristic shock wave speeds, the partial calibration of the
fundamental diagram, and the evaluation of traffic flow models that reproduce shock
waves. Furthermore, the experiment showed that the characteristic shock wave speed
of congested traffic of the Dutch A13 ranges between −16 km

h and −23 km
h . This con-

firms the findings of previous empirical studies that this characteristic speed is within
that range.

The goal of Chapter 4 was to estimate the traffic state within a few seconds given raw
sensor data. Reformulating two well-known traffic state estimation techniques resulted
in significant efficiency gains without a proportional loss of estimation accuracy. The
main conclusions are, firstly, that the Adaptive Smoothing Method can be reformulated
to employ the Fast Fourier Transform. This speeds up its computation by nearly two
orders of magnitude so that it now estimates the traffic state within a few seconds.
Secondly, localizing the Extended Kalman Filter so that sensor data are used to correct
the traffic state in their physical vicinity reduces the computation time complexity. The
Extended Kalman Filter method now estimates the traffic state within a few seconds,
too. We then qualitatively compared the ASM and the EKF in order to decide on a
traffic state estimator for the case study. We decided to use the ASM, because currently
it is easier to calibrate and more robust when traffic is switching between free-flow and
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congestion.

In Chapter 5, the traffic flow model Fastlane was outlined first in continuous and then
in discretized form. Then, the network performance indicator of total cost was an-
alyzed, which is a generalization of the total time spent, whereby the travel time of
each vehicle is weighted by its value of time. We found that the total cost is signifi-
cantly influenced by the traffic throughput at bottlenecks, the spillback of congestion,
and the travel time in free flow. To reduce the total cost, short and valuable vehicles
must be prioritized at bottlenecks to increase the throughput, long vehicles must be
rerouted around congestion to reduce spillback, and fast vehicles must be routed via
non-congested routes to use their high speed in free flow. The prioritization of vehicle
classes therefore cannot be determined in general, but instead poses a dilemma. An
example of such a dilemma arises when prioritizing cars at a bottleneck, which leads
to a high throughput at bottlenecks, but also to large spillback of congestion due to
queued trucks.

In Chapter 6, multi-class DTM measures were developed and their impact on the traffic
flow and the network performance was analyzed. We found that conventional, mixed-
class ramp meters and route guidance measures can be generalized to control each
vehicle class individually. A multi-class ramp meter provides a dedicated queuing lane
for each vehicle class and grants access to the freeway vehicle-class specifically. It is a
measure to increase the vehicular throughput and reduce the number of queued vehicles
by prioritizing cars, or to decrease the total cost and decrease the spillback on the on-
ramp by prioritizing trucks. Experiments showed reductions of total cost of 33% for
the multi-class controller with respect to the mixed-class controller. A multi-class
route guidance measure controls the turnfraction of each vehicle class individually. It
is used, for example, to keep trucks out of congestion or to steer cars via a longer
but non-congested route. Experiments show improvements in the order of 10%. We
furthermore found that the prioritization of the vehicle classes depends on the traffic
state. In addition, we analyzed a dynamic truck lane. In the case of using realistic
values of time and realistic demands, we found that a trucklane is beneficial in terms
of total costs if it is used at at least three quarters of its capacity. We conclude that the
generalization of mixed-class DTM measures to multiple vehicle classes significantly
improves the traffic performance.

The case study in Chapter 7 combined the methods developed in the previous chapter
and applied the control loop for multi-class DTM to the Dutch A15 near the harbor
of Rotterdam. The traffic state of the Dutch A15 can be estimated within one minute,
including the download of the sensor data and the calibration of the estimator, using
the state estimation approach put forward in this thesis. We furthermore found that
the traffic state can be predicted one hour ahead both under regular conditions and
under incidental conditions. The prediction itself is computed within a few seconds.
Furthermore, control advice for three multi-class DTM measures can be determined
within one hour. In simulations, we found that multi-class control improves the traffic
performance of total cost of the A15 compared to mixed-class control. We therefore
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conclude that multi-class DTM is beneficial for optimizing the total cost of traffic.

The setup of the case study of Chapter 7 is not feasible for traffic control in real-time,
however, since the computation time is too high. Nevertheless, Section 8.5 shows
a real-time application, where the number of DTM measures is reduced and other
parameter values are adjusted so that a cycle of the control loop takes approximately
five minutes and is therefore feasible for real-time applications in a traffic management
center.

8.2 Recommendations for Further Research

This section outlines directions for further research, split for estimation, prediction and
control.

8.2.1 Traffic State Estimation

Estimation of traffic composition from mixed-class data Many freeways are set up
with sensors that measure only mixed-class data, which excludes the traffic composi-
tion. Yuan et al. (2012) developed a method to extract multi-class data from aggregate
data; however, this method requires calibration based on historical data. Another ap-
proach that would not require calibration is to use the shock wave speeds of traffic.
As shown by (3.3), the truck percentage influences the shock wave speeds. The Wave
Speed Estimator of Chapter 3 is able to identify the shock wave speeds from spatiotem-
poral traffic and can therefore be used to infer the truck percentage. The major question
is with what precision the truck percentage can be estimated.

Generalization of the Adaptive Smoothing Method to multi-class data The Adap-
tive Smoothing Method currently takes the traffic data of speed, flow and density into
account; those propagate mainly with one of two possible characteristic speeds. To
increase the estimation quality of the ASM, it could be generalized to take multi-class
data such as the truck percentage into account as well. In contrast to speed or flow, the
truck percentage propagates always downstream, but mainly with the speed of traffic
itself. They propagate therefore within a large range between zero and free-flow speed,
which would require a large number smoothing kernels. A reformulation of the ASM
to take multi-class traffic into account might therefore be necessary.

Calibration of recursive Bayesian estimators The calibration of recursive Bayesian
estimators is essential for an accurate estimation of the traffic state. Besides the cali-
bration of the underlying traffic flow model, the noise distributions of the system and
the measurement model, or more precisely the covariance matrices thereof are essen-
tial. The actual noise distribution of practical systems are usually unknown, however,
which makes an estimation of them difficult.
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Improvement of the memory efficiency of recursive Bayesian estimators Recur-
sive Bayesian estimators such as the Extended Kalman Filter require a quadratic space
complexity in the network size, namely for the storage of the covariance matrices.
Similarly to the computation time reduction of Section 4.3, a partial storage of the
covariance matrices to avoid large regions of near-zero covariance values could be suf-
ficient, since the errors of the estimated traffic state of network parts that are far away
from each other are not correlated. This would drastically reduce the computation
space complexity and would allow for the traffic state estimation of large networks.

Quantitative comparison of Adaptive Smoothing Method with Kalman filter tech-
niques In Chapter 4, we compared the ASM and the Localized EKF qualitatively.
Comparing both estimators quantitatively would answer under which circumstances
which methods performs better and is therefore is more suitable for DTM applica-
tions. Similarly, other Kalman filter techniques should be included in this quantitative
comparison.

8.2.2 Traffic State Prediction

Modeling of the capacity drop in multi-class traffic flow models The capacity
drop reduces the throughput at active bottlenecks and therefore has an effect on the
network performance. In order to reproduce traffic flow and the network performance
more realistically, multi-class traffic flow models like Fastlane could be expanded to
reproduce the capacity drop and therefore describe traffic even more realistically.

Fastlane solved in Lagrangian coordinates for faster and better predictions The
numerical diffusion and the computational speed of macroscopic traffic flow models
can be improved by replacing the Eulerian formulation, which is a coordinate sys-
tem fixed to the road, by a Lagrangian formulation, which is a coordinate system that
travels with the vehicles. Currently, the Lagrangian formulation for Fastlane is being
developed by Van Wageningen-Kessels (2013) and applied for traffic state estimation
by Yuan (2013). The Lagrangian formulation could therefore lead to a better and faster
prediction of the traffic state. Due to its simpler numerical scheme, it can also improve
the optimization for traffic control.

8.2.3 Traffic Control

Analysis of the effects of the capacity drop on the network performance The
capacity drop is caused by congestion and has a negative effect on throughput and
therefore on the traffic performance. The analysis of the effects of delaying or omitting
the capacity drop by multi-class control measures could lead to class-specific control
strategies that improve the network performance.



182 Vehicle-class Specific Control of Freeway Traffic

Analysis of other traffic performance functions Traffic management centers, pol-
icy makers or travelers may strive for other objectives than the minimization of the
total cost of traffic. The analysis of other performance functions such as emissions, as-
phalt degradation, safety or travel time guaranties could lead to class-specific control
strategies that improve the network performance defined in these terms.

Analysis of other vehicle-class specific properties In this thesis, we analyzed the
effects of vehicle-class specific characteristics of speed, spacing and value of time.
The analysis of other class-specific characteristics such as fuel consumption, weight
and acceleration would make it possible to address the total cost or other performance
functions in more detail.

Development and analysis of other multi-class DTM measures Traffic is also in-
fluenced by other mixed-class DTM measures that could be expanded to multi-class
measures to improve the traffic performance. Examples are dynamic road pricing, mo-
bility management, lane-change prohibitions or carpooling.

Expansion of the case study The case study of Chapter 7 included two multi-class
route guidance measures and one multi-class ramp meter. More DTM measures could
be used to improve the traffic conditions. For example, multi-class ramp meters could
be installed on all on-ramps. Coordinating them might make it possible to reduce a
large part of the congestion by preventing spillback, thereby significantly decreasing
the total cost.

Improvement of the optimization procedure for faster computation The opti-
mization of the control signal trajectory is currently performed by Matlab’s built-in
optimization algorithms. These use the traffic prediction model Fastlane in its cur-
rent form. A reformulation of Fastlane and the control problem might lead to a faster
solution algorithm of the control problem. A further direction is to assess the per-
formance of fast optimization algorithms for Fastlane such as the feasible direction
method, which was already applied by Kotsialos et al. (2002) for the Metanet model.

Distribution of the controller In the case study, the control signals for all DTM
measures were computed globally. As the computation times showed, this approach
does not scale well in the number of control signals and quickly becomes infeasible
for practical applications. This problem can be remedied by splitting the network into
multiple sub-networks and solving their control problems locally. The main question
of this approach is how to enable the communication between the sub-networks and
how to achievement the global optimum of such a distributed controller.
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Avoidance of latent effects by anticipatory control Travelers adapt to regular con-
gestion on a day-to-day basis and change their behavior; they therefore adapt to the
control signals, which could lead to unexpected latent effects such as rat running. The
application of anticipatory control which would take the travelers’ decision into ac-
count could therefore prevent unexpected latent effects.

Effects of partial compliance The compliance of the travelers was assumed to be
perfect in this research. Analysis of the acceptance of the travelers towards multi-
class DTM measures and therefore the partial compliance of them would lead to more
realistic results.

Coordination of traffic control with underlying network The underlying network,
such as arterial roads and the their traffic lights are usually controlled independently
of the freeway network and its DTM measures. A coordination of these two systems
can improve the network performance. For example, the traffic lights of the arterial
can be coordinated with the ramp meter rate of the freeway to influence the length of
the waiting queue at the ramp and to prevent it from spilling back to the underlying
network.

Implementation issues To move towards implementation of multi-class traffic con-
trol, practical topics like the installation and maintenance of multi-class DTM mea-
sures, and the conversion of the traffic management centers and the education of traffic
operators should be addressed.

8.3 Recommendations for Practical Use

This thesis showed that multi-class DTM improves the traffic conditions of freeway
networks. The application of class-specific DTM requires an adjustment of the existing
infrastructure. This thesis showed that multi-class ramp metering can be installed by
providing a lane for each vehicle class. Multi-class route guidance is even easier to
implement, as in-car devices become more and more popular, which makes them both
easier to localize and easier to advise. This enables a fine-grained route advice for
many different classes. With such an infrastructure, a road authority can manage the
usage of its roads and the service it offers to its travelers in a fine-grained manner.

Besides these general remarks, more recommendation for practice are given for each
component of the control loop.
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8.3.1 Traffic State Estimation

Since both reformulated versions of the Adaptive Smoothing Method and the Extended
Kalman Filter are now able to estimate the traffic state of realistic networks within a
few seconds and they take the propagation of traffic flow characteristics into account,
they can be used in practice.

Shock wave speeds can be extracted automatically by the Wave Speed Estimator both
from empirical and synthetic data. Applications are the automatic calibration of traffic
state estimators and the automatic evaluation of traffic flow models. The latter can
be used in the automatic calibration of traffic flow models, for example, if the correct
modeling of stop-and-go waves is an objective.

During the calibration of the prediction model and the estimation of the traffic state
for the case study, valuable data could not be observed online. On the freeway, the
traffic composition is not measured online. On the underlying road, the traffic state
is observed only at a few locations. The traffic state thus cannot be estimated pre-
cisely. Therefore, probably the most important comment for practice is if traffic should
be improved by the means of Dynamic Traffic Management, then sufficient traffic
data have to be gathered, archived and be made available. The project of the Na-
tional Data Warehouse that is currently being set up archives the traffic data of the
Netherlands, including multi-class information at some locations (Nationale Databank
Wegverkeergegevens, 2012).

8.3.2 Traffic State Prediction

We recommend the use of a multi-class prediction model for traffic networks that are
subject to multiple vehicle classes. This enables the prediction of congestion, its spill-
back, the travel time, the expected costs and many other variables. Furthermore, it is
a crucial component for a proactive multi-class controller. Nevertheless, multi-class
prediction can also be used for mixed-class DTM.

The validated prediction model of the A15 of Section 7.4 can be used in a traffic man-
agement center to predict the traffic state one hour ahead. Based on this predictions,
information can be used to inform travelers or companies in the harbor area about the
expected short-term traffic conditions of the freeway.

Furthermore, the validated model can support the development of control rules for
the A15. It can be used to simulate control scenarios or to test rules for a rule-based
controller. In addition, this system is flexible for the expansion of the infrastructure of
the network, such as the reconstruction that is currently in progress or the installation
of new DTM measures.
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8.3.3 Traffic Control

The use of multi-class control improves the traffic conditions, as was shown in the
case study. We developed concepts for multi-class ramp metering and multi-class route
guidance and showed their benefits for DTM.

Furthermore, proactive control greatly improves the traffic conditions. The case study
showed improvements in the order of 10%. It coordinates the DTM measures and is
able to predict traffic conditions caused by rare events, such as incidents or a platoon
of trucks. It also predicts the effects of DTM measures and is therefore capable of
optimizing the signals for the DTM measures in order to optimized a given objective.

The next section outlines how the concepts developed in this thesis could be imple-
mented in practice for application in a traffic management center. Section 8.5 shows
an example for multi-class control for the A15.

8.4 Workflow Towards Implementation of Multi-class
Dynamic Traffic Management in Practice

Current state of the practice: reactive rule-based control with triggers The cur-
rent state of the practice of traffic management centers is a two-layered system. The
top layer uses a rule-based controller, where traffic control scenarios are activated or
deactivated based on simple triggers, such as the presence of congestion at specified
locations. Instead of estimating the traffic state completely, the sensor data are used
directly to trigger the control scenarios. In the bottom layer, local DTM measures are
activated or deactivated. The DTM measures themselves are controlled locally without
communicating to other DTM measures.

Here, we present a workflow towards an implementation of the system presented in
the case study of Chapter 7 for use in traffic management centers in practice. The
result of each step of the workflow itself contributes to the state of the practice. The
following workflow therefore presents an incremental path towards proactive optimal
vehicle-class specific traffic control where the product of each step itself can be applied
in practice.

Implementation of a traffic state estimator for the whole network The first step
is to estimate the current traffic state over the whole network in real-time. The current
traffic state includes the traffic density over the whole network, which is required to
initialize a traffic flow prediction model. Example traffic state estimators are the ones
developed and validated in Chapters 3 and 4, which are able to estimate the traffic state
in real time; Section 7.2 showed an example for the A15.
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Calibration and validation of a traffic flow model for short-term traffic flow pre-
diction The next step is to implement a traffic flow model that predicts how the traffic
conditions will develop over the next hour. This allows for prediction of the effects of
incidents and the resulting traffic conditions like congestion, spillback, travel time or
throughput. Most traffic flow models represent the traffic in the form of density; such
a model is therefore initialized with the current estimated traffic density. The imple-
mentation of a traffic flow model includes its calibration and validation, i.e. the tuning
of its parameters so that the predicted traffic state is close to the true traffic state. Sec-
tions 7.3 and 7.4 showed how the Fastlane model presented in Sections 5.1 and 5.2 was
calibrated and validated for the A15.

Application of predictive rule-based control Instead of activating the scenarios of
the rule-based controller based on the current traffic state, they can be activated based
on future traffic state predicted by the validated traffic flow model. By these means,
the negative effects of congestion can be anticipated, and traffic control scenarios can
be activated earlier than in a reactive approach in order to counter the congestion.

Application of model-predictive control Once optimal control proves to yield a
better traffic performance than rule-based control, it can be implemented in a traffic
management center. This requires the application of the control signals to the actual
DTM measures. Since the feedback loop of the control loop would then be closed,
this approach is a full-fledged model-predictive controller. Online model-predictive
control requires a fast optimization of the control problem, so that the control signals
are computed within a few minutes. Paths towards a fast optimization include the
reformulation of the control problem, the limitation of the number of DTM measures
to a few, or the usage of efficient hardware to solve the control problem.

Generalization to vehicle-class specific control Finally, the mixed-class DTM mea-
sures can be generalized to multi-class DTM measures to optimize the traffic perfor-
mance as shown in this thesis. This requires the installation and operation of multi-
class DTM measures like the ones in Sections 6.3 and 6.4 so that multi-class control
can be performed.

Result: proactive optimal vehicle-class specific traffic control The result is a
proactive traffic controller that coordinates multiple multi-class DTM measures and
computes the optimal control signals individually for each vehicle class. The case
study of Chapter 7 shows the application of a simulation of such a controller and its
positive effects on the traffic performance of the network. The next section shows an
example of how the developed system of the case study can be used in real-time.
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8.5 Application of BOS-HbR in Practice

This thesis concludes with an example of multi-class optimal control as it can be ap-
plied in practice. The system BOS-HbR was developed as a prototype to estimate,
predict and control the traffic of the A15 near the harbor of Rotterdam. It is currently
running online on a dedicated computer at Delft University of Technology. The results
including the optimal control signals are computed in real-time and are presented on
the BOS-HbR Website (2012), a screenshot is shown in Figure 8.1.

Figure 8.1: Screenshot of the BOS-HbR Website (2012)

It is a simplified version of the case study presented in Chapter 7. Only the two multi-
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class route-guidance measures are simulated to reroute traffic via the alternative route
parallel to the A15. Furthermore, the control interval is increased to 15min, and the
number of control intervals in the horizon is reduced to two, leading to eight control
signals being optimized so that the computation time is significantly lower than in the
case study. The average computation time of a cycle of the control loop of BOS-HbR
is 6min.

BOS-HbR can be the basis for further development. For example, its performance can
be compared with that of the current state of the practice, further DTM measures can be
simulated and optimized, the network of the harbor or the freeway ring of Rotterdam
can be implemented to optimize traffic streams during regular and incidental condi-
tions, or further vehicle classes such as empty and loaded trucks could be simulated
to optimize the logistics of the harbor. If extended with vehicle emissions model, the
system can also be used to minimize the total emission of the network.
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der mathematischen Physik, Mathematische Annalen, 100(1), pp. 32–74.

Daganzo, C. F. (1994) The Cell Transmission Model: A dynamic representation of
highway traffic consistent with the hydrodynamic theory, Transportation Research
Part B: Methodological, 28(4), pp. 269 – 287.

Dahlkamp, H., A. Kaehler, D. Stavens, S. Thrun, G. Bradski (2006) Self-supervised
monocular road detection in desert terrain, in: Proc. of Robotics: Science and Sys-
tems (RSS).



Bibliography 191

De Palma, A., M. Kilani, R. Lindsey (2008) The merits of separating cars and trucks,
Journal of Urban Economics, 64(2), pp. 340 – 361.

De Schutter, B., S. P. Hoogendoorn, H. Schuurman, S. Stramigioli (2003) A multi-
agent case-based traffic control scenario evaluation system, in: Intelligent Trans-
portation Systems, 2003. Proceedings. 2003 IEEE, vol. 1, pp. 678 – 683 vol.1.

Dijker, T. (2002) FOSIM (Freeway Operations SIMulation), URL www.fosim.nl.

Edie, L. (1965) Discussion of traffic stream measurements and definitions, in: Pro-
ceedings, Organisation for Economic Co-operation and Development, p. 139.

Elefteriadou, L., D. Torbic, N. Webster (1997) Development of passenger car equiv-
alents for freeways, two-lane highways, and arterials, Transportation Research
Record: Journal of the Transportation Research Board, 1572, pp. 51–58.

Evensen, G. (2003) The Ensemble Kalman Filter: Theoretical formulation and practi-
cal implementation, Ocean dynamics, 53(4), pp. 343–367.

Google Maps (2012) http://maps.google.com/.

Graves, T., A. Karr, N. Rouphail, P. Thakuriah (1998) Real-time prediction of incipient
congestion on freeways from detector data, Technical Report, National Institute of
Statistical Sciences, ResearchTriangle Park, NC.

Hegyi, A. (2004) Model predictive control for integrating traffic control measures,
Ph.D. thesis, Delft University of Technology; Netherlands Research School for
Transport, Infrastructure and Logistics.

Hegyi, A., B. De Schutter, H. Hellendoorn (2005) Model predictive control for optimal
coordination of ramp metering and variable speed limits, Transportation Research
Part C: Emerging Technologies, 13(3), pp. 185 – 209.

Herrera, J. C., A. M. Bayen (2010) Incorporation of Lagrangian measurements in free-
way traffic state estimation, Transportation Research Part B: Methodological, 44(4),
pp. 460 – 481.

Hodge, V., R. Krishnan, T. Jackson, J. Austin, J. Polak (2011) Short-term traffic pre-
diction using a binary neural network, in: 43rd Annual UTSG Conference, Open
University, Milton Keynes, UK.

Homepage Texas Transportation Institute (2012) http://tti.tamu.edu/2011/03/
01/the-wsdot-express-lanes-project-research-into-practice.

Hoogendoorn, S. P. (1999) Multiclass continuum modelling of multilane traffic flow,
Ph.D. thesis, Delft University of Technology; Netherlands Research School for
Transport, Infrastructure and Logistics, Delft.

www.fosim.nl
http://maps.google.com/
http://tti.tamu.edu/2011/03/01/the-wsdot-express-lanes-project-research-into-practice
http://tti.tamu.edu/2011/03/01/the-wsdot-express-lanes-project-research-into-practice


192 Vehicle-class Specific Control of Freeway Traffic

Hoogendoorn, S. P., B. De Schutter, H. Schuurman (2003) Decision support in Dy-
namic Traffic Management. Real-time scenario evaluation, European Journal of
Transport and Infrastructure Research, 3(1), pp. 21–38.

Hough, P. (1962) Method and means for recognizing complex patterns, US Patent
3069654.

Huber, M., U. Hanebeck (2007) The hybrid density filter for nonlinear estimation based
on hybrid conditional density approximation, in: Information Fusion, 2007 10th
International Conference on, pp. 1 –8.

Inter Visual Systems (2012) Traffic management center Rhoon, Source:
http://www.inter.nl/upload/Image/Control_Room_Systems/Groot/

rijkswaterstaat_3_l_Large.jpg.

Jazwinski, A. (1970) Stochastic processes and filtering theory, Academic Pr.

Julier, S., J. Uhlmann (1997) A new extension of the Kalman Filter to nonlinear sys-
tems, in: Int. Symp. Aerospace/Defense Sensing, Simul. and Controls, vol. 3, Spie
Bellingham, WA, p. 26.

Kalman, R. (1960) A new approach to linear filtering and prediction problems, Journal
of basic Engineering, 82(1), pp. 35–45.

Kastrinaki, V., M. Zervakis, K. Kalaitzakis (2003) A survey of video processing tech-
niques for traffic applications, Image and Vision Computing, 21(4), pp. 359 – 381.

Kerner, B. S. (1998) Experimental features of self-organization in traffic flow, Physical
Review Letters, 81(17), pp. 3797–3800.

Kerner, B. S., H. Rehborn (1997) Experimental properties of phase transitions in traffic
flow, Physical Review Letters, 79(20), pp. 4030–4033.

Kesting, A., M. Treiber (2008) Calculating travel times from reconstructed spatiotem-
poral traffic data, in: Proceedings of the 4th International Symposium Networks for
Mobility, Stuttgart, iSBN: 978-3-921882-24-5.

Knoop, V. L., S. P. Hoogendoorn, H. J. Zuylen (2009) Empirical differences between
time-mean speed and space-mean speed, Traffic and Granular Flow07, pp. 351–356.

Kotsialos, A., M. Papageorgiou, M. Mangeas, H. Haj-Salem (2002) Coordinated and
integrated control of motorway networks via non-linear optimal control, Transporta-
tion Research Part C: Emerging Technologies, 10(1), pp. 65 – 84.

Laval, J. (2010) Hysteresis in the fundamental diagram: Impact of measurement meth-
ods, in: Transportation Research Board 89th Annual Meeting, 10-1597.

Lebacque, J. (2003) Two-phase bounded-acceleration traffic flow model. Analytical
solutions and applications, Transportation Research Record, 1852, pp. 220–230.

http://www.inter.nl/upload/Image/Control_Room_Systems/Groot/rijkswaterstaat_3_l_Large.jpg
http://www.inter.nl/upload/Image/Control_Room_Systems/Groot/rijkswaterstaat_3_l_Large.jpg


Bibliography 193

Lebaque, J. (1996) The Godunov scheme and what it means for first order traffic flow
models, in: Proceedings of the 13th International Symposium on Transportation and
Traffic Theory. JP Lesort (ed.) Pergamon, Pergamon Press, pp. 647–677.

Leclercq, L., J. Laval, E. Chevallier (2007) The Lagrangian coordinates and what it
means for first order traffic flow models, in: Allsop, R., M. Bell, B. Heydecker, eds.,
Transportation and Traffic Theory 2007, Elsevier, Oxford, UK, pp. 735–753.

Leutzbach, W., R. Wiedemann (1986) Development and applications of traffic sim-
ulation models at the Karlsruhe Institut für Verkehrswesen, Traffic engineering &
control, 27(5), pp. 270–278.

Lighthill, M., G. Whitham (1955) On kinematic waves. II. A theory of traffic flow on
long crowded roads, Proceedings of the Royal Society of London. Series A, Mathe-
matical and Physical Sciences (1934-1990), 229(1178), pp. 317–345.

Lin, S., B. De Schutter, Y. Xi, J. Hellendoorn (2009) A simplified macroscopic urban
traffic network model for model-based predictive control, in: Proceedings of the
12th IFAC Symposium Control Transportation Systems, pp. 286–291.

Logghe, S., L. Immers (2008) Multi-class kinematic wave theory of traffic flow, Trans-
portation Research Part B: Methodological, 42(6), pp. 523 – 541.

Lou, Y., Y. Yin, J. A. Laval (2011) Optimal dynamic pricing strategies for high-
occupancy/toll lanes, Transportation Research Part C: Emerging Technologies,
19(1), pp. 64 – 74.

Malinovskiy, Y., J. Zheng, Y. Wang (2009) Model-free video detection and tracking
of pedestrians and bicyclists, Computer-Aided Civil and Infrastructure Engineering,
24(3), pp. 157–168.

Mammar, S., A. Messmer, P. Jensen, M. Papageorgiou, H. Haj-Salem, L. Jensen (1996)
Automatic control of variable message signs in Aalborg, Transportation Research
Part C: Emerging Technologies, 4(3), pp. 131 – 150.

Masher, D., D. Ross, P. Wong, P. Tuan, H. Zeidler, S. Petracek (1975) Guidelines
for design and operation of ramp control systems, Tech. rep., Stanford Research
Institute, Menid Park, CA.

Messmer, A., M. Papageorgiou (1990) METANET: A macroscopic simulation pro-
gram for motorway networks, Traffic Engineering and Control, 31, pp. 466–70.

Messmer, A., M. Papageorgiou, N. Mackenzie (1998) Automatic control of variable
message signs in the interurban Scottish highway network, Transportation Research
Part C: Emerging Technologies, 6(3), pp. 173 – 187.

Mihaylova, L., R. Boel, A. Hegyi (2007) Freeway traffic estimation within Particle
Filtering framework, Automatica, 43(2), pp. 290 – 300.



194 Vehicle-class Specific Control of Freeway Traffic

Munroe, R. (2012) xkcd Nr. 1007: ”Sustainable”, URL http://xkcd.com/1007/.

Nationale Databank Wegverkeergegevens (2012) http://www.ndw.nu.

Newell, G. F. (2002) A simplified car-following theory: A lower order model, Trans-
portation Research Part B: Methodological, 36(3), pp. 195 – 205.

Ng, M., S. T. Waller (2010) A computationally efficient methodology to characterize
travel time reliability using the Fast Fourier Transform, Transportation Research
Part B: Methodological, In Press, Corrected Proof.

Ngoduy, D. (2008) Applicable filtering framework for online multiclass freeway net-
work estimation, Physica A: Statistical Mechanics and its Applications, 387(2-3),
pp. 599 – 616.

Ngoduy, D., R. Liu (2007) Multiclass first-order simulation model to explain non-
linear traffic phenomena, Physica A: Statistical Mechanics and its Applications,
385(2), pp. 667 – 682.

Papageorgiou, M., H. Hadj-Salem, J. Blosseville (1991) ALINEA: A local feedback
control law for on-ramp metering, Transportation Research Record, 1320(1320), pp.
194–198.

Papamichail, I., A. Kotsialos, I. Margonis, M. Papageorgiou (2010) Coordinated ramp
metering for freeway networks – A model-predictive hierarchical control approach,
Transportation Research Part C: Emerging Technologies, 18(3), pp. 311 – 331, 11th
IFAC Symposium: The Role of Control.

Papamichail, I., M. Papageorgiou (2008) Traffic-responsive linked ramp-metering con-
trol, Intelligent Transportation Systems, IEEE Transactions on, 9(1), pp. 111 –121.

Payne, H. (1971) Models of freeway traffic and control, Mathematical Models of Pub-
lic Systems, 1(1), pp. 51–61.

Pipes, L. (1967) Car following models and the fundamental diagram of road traffic,
Transportation Research, 1(1), pp. 21–29.

Qing, O. (2011) Fusing Heterogeneous Traffic Data: Parsimonious Approaches using
Data-Data Consistency, Ph.D. thesis, Delft University of Technology; Netherlands
Research School for Transport, Infrastructure and Logistics.

Regiolab Delft (2012) http://www.regiolab-delft.nl/.

Richards, P. (1956) Shock waves on the highway, Operations research, 4(1), pp. 42–
51.

Rijkswaterstaat (2011) Economische kengetallen, URL http://www.

rijkswaterstaat.nl/kenniscentrum/economische_evaluatie/

kengetallen/index.aspx.

http://xkcd.com/1007/
http://www.ndw.nu
http://www.regiolab-delft.nl/
http://www.rijkswaterstaat.nl/kenniscentrum/economische_evaluatie/ kengetallen/index.aspx
http://www.rijkswaterstaat.nl/kenniscentrum/economische_evaluatie/ kengetallen/index.aspx
http://www.rijkswaterstaat.nl/kenniscentrum/economische_evaluatie/ kengetallen/index.aspx


Bibliography 195

Roportis (2012) http://www.roportis.com/default.aspx.

Schönhof, M., D. Helbing (2009) Criticism of three-phase traffic theory, Transporta-
tion Research Part B: Methodological, 43(7), pp. 784 – 797.

Schreiter, T., R. L. Landman, J. W. C. Van Lint, A. Hegyi, S. P. Hoogendoorn (ac-
cepted) Vehicle-class-specific route guidance of freeway traffic by model-predictive
control, Transportation Research Record.

Schreiter, T., A. J. Pel, J. W. C. Van Lint, S. P. Hoogendoorn (2012) Modeling monetary
costs of multi-class traffic flow – application to the dynamic management of truck
lanes, in: Intelligent Transportation Systems (ITSC), 2012 15th International IEEE
Conference on.

Schreiter, T., J. W. C. Van Lint, S. P. Hoogendoorn (2011) Multi-class ramp metering:
Concepts and initial results, in: Intelligent Transportation Systems (ITSC), 2011
14th International IEEE Conference on, pp. 885 –889.

Schreiter, T., J. W. C. Van Lint, S. P. Hoogendoorn (2013) Vehicle-class specific control
of freeway traffic, in: Transportation Research Board 92nd Annual Meeting, 13-
0585.

Schreiter, T., J. W. C. Van Lint, M. Treiber, S. P. Hoogendoorn (2010a) Two fast im-
plementations of the Adaptive Smoothing Method used in highway traffic state esti-
mation, in: Proceedings of IEEE ITSC, Funchal, Portugal, pp. 1202–1208.

Schreiter, T., J. W. C. Van Lint, Y. Yuan, S. P. Hoogendoorn (2010b) Propagation wave
speed estimation of freeway traffic with image processing tools, in: in proceeding of
the Transportation Research Board, 89th Annual Meeting, Washington, D.C., DVD.

Shapiro, V., G. Gluhchev, D. Dimov (2006) Towards a multinational car license plate
recognition system, Machine Vision and Applications, 17(3), pp. 173–183.

Smith, B. L., B. M. Williams, R. K. Oswald (2002) Comparison of parametric and
nonparametric models for traffic flow forecasting, Transportation Research Part C:
Emerging Technologies, 10(4), pp. 303 – 321.

Sorenson, H. (1985) Kalman filtering: theory and application, IEEE.

Strassen, V. (1969) Gaussian elimination is not optimal, Numerische Mathematik,
13(4), pp. 354–356.

Taale, H., S. P. Hoogendoorn (2012) Network-wide traffic management with integrated
anticipatory control, in: Transportation Research Board 91st Annual Meeting, 12-
3654.

Taale, H., F. Middelham (2000) Ten years of ramp-metering in the Netherlands, in:
Road Transport Information and Control, 2000. Tenth International Conference on
(Conf. Publ. No. 472), pp. 106 –110.

http://www.roportis.com/default.aspx


196 Vehicle-class Specific Control of Freeway Traffic

Tampère, C. M. J., L. H. Immers (2007) An Extended Kalman Filter application
for traffic state estimation using CTM with implicit mode switching and dynamic
parameters, in: Intelligent Transportation Systems Conference, 2007. ITSC 2007.
IEEE, pp. 209 –216.

Treiber, M., D. Helbing (2002) Reconstructing the spatio-temporal traffic dynamics
from stationary detector data, Cooper@tive Tr@nsport@tion Dyn@mics, 1(3), pp.
3.1–3.21.

Treiber, M., A. Hennecke, D. Helbing (2000) Congested traffic states in empirical ob-
servations and microscopic simulations, Physical Review E, 62(2), pp. 1805–1824.

Treiber, M., A. Kesting (2012) Validation of traffic flow models with respect to the
spatiotemporal evolution of congested traffic patterns, Transportation Research Part
C: Emerging Technologies, 21(1), pp. 31 – 41.

Treiber, M., A. Kesting, R. E. Wilson (2011) Reconstructing the traffic state by fusion
of heterogenous data, Computer-Aided Civil and Infrastructure Engineering, 26:6,
pp. 408–419.

Tyburski, R. (1988) A review of road sensor technology for monitoring vehicle traffic,
ITE (Institute of Transportation Engineers) Journal;(USA), 59(8).

UJMP (2010) http://www.ujmp.org.

Van Hinsbergen, C. P. I. (2010) Bayesian Data Assimilation for Improved Modeling of
Road Traffic, Ph.D. thesis, Delft University of Technology; Netherlands Research
School for Transport, Infrastructure and Logistics.

Van Hinsbergen, C. P. I., T. Schreiter, F. S. Zuurbier, J. W. C. Van Lint, H. J. Van Zuylen
(2012) Localized Extended Kalman Filter for scalable real-time traffic state estima-
tion, Intelligent Transportation Systems, IEEE Transactions on, 13(1), pp. 385–394.

Van Hinsbergen, C. P. I., F. S. Zuurbier, J. W. C. Van Lint, H. J. Van Zuylen (2008)
Using an lwr model with a cell based extended kalman filter to estimate travel times,
in: Third International Symposium of Transport Simulation, 65, Surfers Paradise,
QLD, Australia.

Van Lint, J. W. C. (2010) Empirical evaluation of new robust travel time estimation
algorithms, Transportation Research Record, 2160 / 2010(2160), pp. 50–59.

Van Lint, J. W. C., S. P. Hoogendoorn (2010) A robust and efficient method for fus-
ing heterogeneous data from traffic sensors on freeways, Computer-Aided Civil and
Infrastructure Engineering, 25(8), pp. 596–612.

Van Lint, J. W. C., S. P. Hoogendoorn, A. Hegyi (2008a) Dual EKF state and parameter
estimation in multi-class first-order traffic flow models, in: Proceedings of the 17th
IFAC World Congress.



Bibliography 197

Van Lint, J. W. C., S. P. Hoogendoorn, M. Schreuder (2008b) Fastlane: New multi-
class first-order traffic flow model, Transportation Research Record: Journal of the
Transportation Research Board, 2088, pp. 177–187.

Van Lint, J. W. C., N. J. Van der Zijpp (2003) An improved travel-time estimation
algorithm by using dual loop detectors, Transportation Research Record: Journal
of the Transportation Research Board, 1855, pp. 41–48.

Van Wageningen-Kessels, F. L. M. (2013) Multi class continuum traffic flow mod-
els: Analysis and simulation methods, Ph.D. thesis, Delft University of Technology;
Netherlands Research School for Transport, Infrastructure and Logistics, Delft, The
Netherlands.

Van Wageningen-Kessels, F. L. M., J. W. C. Van Lint, S. P. Hoogendoorn, C. Vuik
(2010) Lagrangian formulation of a multi-class kinematic wave model, Transporta-
tion Research Record: Journal of the Transportation Research Board, 2188, pp.
29–36.

Van Zuylen, H. J., F. Viti, V. L. Knoop, H. Tu (2007) Analysis of accidents for the a15
Dutch motorway, Tech. rep., Delft University of Technology.
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Appendix A

Calculation of the Class-specific
Turnfraction on the Main Route

The calibration of the Fastlane model for the Prediction component requires the turn-
fractions of the user classes. Section 7.3.3 presented the calibration of both inflows
and turnfraction. This appendix shows how the turnfractions on the main route are cal-
culated (c.f. Figure 7.5 and Table 7.4). The goal is thus to determine the class-specific
turnfractions of the reroutable destination classes βr and non-reroutable destination
clasees βnr at a bifurcation point.

Let the following traffic variables be given: total turnfraction βtot and total flow qtot at
that bifurcation point, the base share η̄ of the reroutable class, and the total flow before
the bifurcation to the alternative route qSp. The following system of equations is given:

total outflow qout
tot = βtot ·qtot (A.1)

class-specific turnfraction βu =
qout

u
qu

(A.2)

flow of reroutable class qr = η̄ ·qSp (A.3)

flow of non-reroutable class qnr = qtot−qr (A.4)

by definition of the classes from Figure 7.5 follows

qout
r = 0 (A.5)

qout
nr = qout (A.6)

The class-specific turnfraction are thus

βr = 0 (A.7)

βnr =
qout

nr
qnr

(A.8)

The two terms of the right-hand side of (A.8) are then

qout
nr = qout

tot −qout
r = qout

tot = βtot ·qtot (A.9)

qnr = qtot−qr = qtot− η̄qSp (A.10)



202 Vehicle-class Specific Control of Freeway Traffic

so that (A.8) leads to

βnr =
qtot

qtot− η̄qSp
·βtot (A.11)

To calculate the user-class specific turnfractions β
adjusted
car and β

adjusted
truck , respectively,

apply the vehicle-class specific turnfractions βcar and βtruck, respectively, as the total
turnfraction βtot in (A.1).



Appendix B

Conversion of Traffic Data to Initialize
Fastlane

B.1 Problem Description

Traffic data are given in the form of total vehicular densities and flow shares per class.
From this data the class-specific vehicular densities have to be derived. This will be
shown for the case of two classes. In the following we will use these symbols:

ktot total vehicular density
Ktot total effective density
ku vehicular density of class u
vu speed of class u
qu vehicular flow of class u
vFD

u (Ktot) fundamental diagram for class u
ηu share of class u
π∗u pce value of class u
πu(v1,vu) pce function of class u (function of speeds)
π̄u(Ktot) pce function of class u (function of effective density)

B.2 Solution Procedure

The traffic data are converted from total vehicular density and share to class-specific
densities in the following three steps.

step 1 Solve for Ktot ∈ [0,Kjam]:[
η2

η1
vFD

1 (Ktot)+ vFD
2 (Ktot)

]
Ktot−

[
η2

η1
π̄2(Ktot)vFD

1 (Ktot)+ vFD
2 (Ktot)

]
ktot = 0 . (B.1)
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step 2 Use the fundamental diagram to find the speeds:

v1 = vFD
1 (Ktot) and v2 = vFD

2 (Ktot). (B.2)

step 3. Find k1 and k2 by using:

k1 =
v2

η2
η1

v1 + v2
ktot and k2 = ktot− k1. (B.3)

B.3 Proof

The following relations are used:

ktot = k1 + k2 , (B.4)

η1 =
q1

q1 +q2
, (B.5)

η2 =
q2

q1 +q2
, (B.6)

q1 = k1v1 , (B.7)

q2 = k2v2 , (B.8)

v1 = vFD
1 (Ktot) , (B.9)

v2 = vFD
2 (Ktot) , (B.10)

π
∗
2 = π2(v1,v2) , (B.11)

Ktot = k1 +π
∗
2 k2 . (B.12)

Equations (B.9)–(B.11) refer to modeling functions in Fastlane. Their parameters are
supposed to be known. Furthermore, the total density ktot and the shares η1 and η2 are
supposed to be known.

Proof of step 2 Trivial.

Proof of step 3 Once v1 is known (from step 1 and 2), equations (B.4)–(B.8) can be
used to find k1 and k2. From (B.5) and (B.6) it follows that:

from (B.5): q1 = η1(q1 +q2)

from (B.6): q1 +q2 =
q2
η2

}
⇒ q1 =

η1

η2
q2 . (B.13)

We now substitute (B.7) on the left-hand side of (B.13) and (B.8) on the right-hand
side:

k1v1 =
η1

η2
k2v2 . (B.14)
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Substituting (B.4) on the right-hand side gives:

k1v1 =
η1

η2
(ktot− k1)v2 . (B.15)

Rewriting ((B.15) gives:

k1 =
η1

η2
(ktot− k1)

v2

v1
⇔ (B.16)(

1+
η1

η2

v2

v1

)
k1 =

η1

η2
ktot

v2

v1
⇔ (B.17)

k1 =

η1
η2

ktot
v2
v1

1+ η1
η2

v2
v1

⇔ (B.18)

k1 =
v2

η2
η1

v1 + v2
ktot . (B.19)

In the last step the nominator and denominator of the right-hand side were both multi-
plied with η2

η1
v1. Once k1 is known, k2 is defined by (B.4).

Proof of step 1 Substituting (B.4)) into (B.12)) and subsequently rewriting gives:

Ktot = k1 +π
∗
2 (ktot− k1) ⇔ (B.20)

Ktot =−(π∗2 −1)k1 +π
∗
2 ktot ⇔ (B.21)

(π∗2 −1)k1−π
∗
2 ktot +Ktot = 0 . (B.22)

Substituting (B.19) and subsequently rewriting gives:

(π∗2 −1)
v2

η2
η1

v1 + v2
ktot−π

∗
2 ktot +Ktot = 0 ⇔ (B.23)[

(π∗2 −1)
v2

η2
η1

v1 + v2
−π

∗
2

]
ktot +Ktot = 0 . (B.24)

Multiply both sides with η2
η1

v1 + v2:[
(π∗2 −1)v2−π

∗
2

(
η2

η1
v1 + v2

)]
ktot +Ktot

(
η2

η1
v1 + v2

)
= 0 . (B.25)

Rearrangement gives:[
π
∗
2 v2− v2−π

∗
2

η2

η1
v1−π

∗
2 v2

]
ktot +

[
η2

η1
v1 + v2

]
Ktot = 0 ⇒ (B.26)[

η2

η1
v1 + v2

]
Ktot−

[
η2

η1
π
∗
2 v1 + v2

]
ktot = 0 . (B.27)

Rewriting the pce function as a function of the effective density by substituting (B.9))
and (B.10) in (B.11) and defining the new function gives:

π
∗
2 = π2

(
vFD

1 (Ktot),vFD
2 (Ktot)

)
, (B.28)

π̄2(Ktot)
def
= π2

(
vFD

1 (Ktot),vFD
2 (Ktot)

)
. (B.29)
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This new function expresses the pce value as a function of the effective density.

Substituting (B.29) and (B.9) and (B.10) into (B.27) gives:[
η2

η1
vFD

1 (Ktot)+ vFD
2 (Ktot)

]
Ktot−

[
η2

η1
π̄2(Ktot)vFD

1 (Ktot)+ vFD
2 (Ktot)

]
ktot = 0 .

(B.30)

The only unknown in (B.30) is the effective density Ktot.



Summary

The increase of mobility of the past decades has led to substantial congestion on the
freeways. Traffic jams emerge both on a daily basis at the same location, as well as
during accidents when a part of the freeways is temporarily blocked. In those cases,
traffic management centers intervene into traffic in order to reduce or even dissolve
congestion. This is called Dynamic Traffic Management (DTM). Common DTM mea-
sures are rerouting traffic, ramp metering at the on-ramps of freeways and opening
peak-hour lanes.

DTM is performed in two steps. First, the current traffic state is estimated by fusing
sensor data, usually from dual-inductive loops or from in-car sensors. The traffic state
describes where the traffic is located in the network and how fast it travels. Second,
based on the current traffic state, a controller determines appropriate actions for each
DTM measure in order to improve the traffic performance.

In current practice, DTM controls traffic as a whole, not differentiating between the
different vehicle classes. However, vehicles can be classified according to length, max-
imum speed or value of time. The vehicle classes therefore have different effects on
the network performance. For example, short vehicles can travel with a shorter time
headway than longer ones. Consequently, more short vehicles can pass any given lo-
cation than long one. The capacity for shorter vehicles is therefore larger than for long
ones.

In this thesis, Dynamic Traffic Management is generalized to take the properties of dif-
ferent vehicle classes into account. The effects of the vehicle classes on the traffic flow
and the network performance are analyzed based on the macroscopic multi-class traffic
flow model Fastlane. Furthermore, existing DTM measures are generalized in order to
control traffic vehicle-class specifically. A multi-class ramp meter is developed that is
able to meter each vehicle class individually. Prioritizing short vehicles increases the
network throughput; conversely, prioritizing valuable vehicles decreases the total cost.
Multi-class route guidance enables the routing of a vehicle class around a congested
area. At bottleneck locations, a class-specific lane makes it possible to keep a specified
vehicle class in free-flow.

In order to apply DTM in real-time, two existing traffic state estimators are analyzed
and reformulated so that they now estimate the traffic state of realistically-size free-
ways within a few seconds. The Adaptive Smoothing Method is reformulated to use
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the Fast Fourier Transform. The Extended Kalman Filter technique is localized so
that measurements are used to correct the system state only in the vicinity of the mea-
surement instead of correcting the state of the whole network. Furthermore, a tool
is developed that extracts the position and speed of shock waves from spatiotemporal
traffic data, which are used to calibrate traffic state estimators or traffic flow models.

The developed components of estimation and control are then combined in a case study
to optimize class-specific control advices for the Dutch freeway A15 near the harbor of
Rotterdam. The case study shows that multi-class DTM improves the network perfor-
mance compared to conventional, mixed-class DTM. Currently, those control advices
are calculated continuously and are published at a website in real-time. In addition, the
current traffic state, the future traffic for the next hour without control, and the future
traffic with multi-class control are published.



Samenvatting

De mobiliteitstoename in de afgelopen decennia heeft tot veel congestie op de snel-
wegen geleid. Files ontstaan zowel dagelijks op dezelfde locatie als bij ongelukken
waarbij een gedeelte van de weg tijdelijk geblokkeerd is. In zulke gevallen grijpen
verkeersmanagementscentra in om de congestie te verminderen of zelfs op te lossen.
Dit wordt Dynamisch Verkeersmanagement (DVM) genoemd. Veel gebruikte DVM-
maatregelen zijn het herrouteren van verkeer, toeritdosering bij toeritten van snelwegen
en het openen van spitsstroken.

DVM bestaat uit twee stappen. Ten eerste wordt de huidige verkeerstoestand geschat
door het fuseren van data, meestal afkomstig van inductielussen en van sensoren in
voertuigen. De verkeerstoestand beschrijft waar het verkeer zich in het netwerk bevindt
en hoe snel het reist. Ten tweede bepaalt een regelaar gepaste acties voor iedere DVM-
maatregel. Dit gebeurt op basis van de huidige verkeerstoestand en met als doel om de
prestatie van het verkeer te verbeteren.

In de huidige praktijk wordt het verkeer als geheeld geregeld door DVM-maatregelen,
zonder rekening te houden met de verschillende voertuigklassen. Echter, voertuigen
kunnen geclassificeerd worden volgens hun lengte, maximum snelheid en tijdswaarde.
De voertuigklassen hebben daarom verschillende effecten op de netwerkprestatie. Er
kunnen bijvoorbeeld meer korte voertuigen voorbij een bepaalde locatie rijden dan
lange. De capaciteit voor korte voertuigen is daarom groter dan voor lange voertuigen.

In dit proefschrift wordt Dynamisch Verkeersmanagement gegeneraliseerd om reke-
ning te houden met de eigenschappen van verschillende voertuigklassen. De effecten
van de voertuigklassen op de verkeersstroom en de netwerkprestatie worden geana-
lyseerd op basis van Fastlane, een macroscopisch verkeerstroommodel met meerdere
klassen. Bovendien worden bestaande DVM-maatregelen gegeneraliseerd om het ver-
keer klasse-specifiek te regelen. Een toeritdosering wordt ontwikkeld voor meerdere
klassen die in staat is om iedere klasse apart te regelen. Het prioriteren van korte voer-
tuigen verhoogt de netwerkdoorstroom. Anderzijds, het prioriteren van waardevolle
voertuigen verlaagt de totale kosten. Routegeleiding voor meerdere klassen maakt het
mogelijk om een bepaalde voertuigklasse om een gebied met congestie te leiden. Op
flessenhalslocaties zorgt een strook voor een specifieke klasse er voor dat deze klasse
in vrije afwikkeling blijft.

Om DVM in real-time toe te passen, worden twee bestaande verkeerstoestandschatters
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geanalyseerd en geherformuleerd zodat ze nu de verkeerstoestand van een snelweg van
realistische afmetingen binnen een paar seconden schatten. De Adaptive Smoothing
Method word geherformuleerd om gebruik te maken van snelle Fouriertransformatie.
De Extended Kalman Filter-techniek wordt plaatsgebonden gemaakt zodat metingen
alleen gebruikt worden om de systeemtoestand te corrigeren in de nabijheid van de
meting in plaats van het corrigeren van de toestand van het gehele netwerk. Bovendien
wordt er een gereedschap ontwikkeld die de positie en snelheid van schokgolven uit
ruimte-tijd-verkeersdata haalt. De positie en snelheid worden gebruikt om verkeers-
toestandschatters en verkeerstroommodellen te kalibreren.

De ontwikkelde componenten van schatting en regeling worden dan gecombineerd in
een gevalsanalyse voor het optimaliseren van de klasse specifieke-regeladviezen voor
de Nederlandse snelweg A15 bij de haven van Rotterdam. De gevalsanalyse laat zien
dat DVM voor meerdere klassen de netwerkprestatie verbetert in vergelijking met con-
ventionele DVM voor gemengde klassen. Momenteel worden deze adviezen continu
berekend en in real-time gepubliceerd op een website. Bovendien worden de hui-
dige verkeerstoestand, de toekomstige verkeerstoestand voor het komende uur zonder
regeling en de toekomstige verkeerstoestand met regeling voor meerdere klassen ge-
publiceerd.



Zusammenfassung

Die starke Zunahme der Mobilität führte dazu, dass heutzutage viele Autobahnen von
Staus betroffen sind. Diese Staus treten sowohl regelmäßig jeden Tag an der gleichen
Stelle auf, als auch unregelmäßig an verschiedenen Stellen wie sie zum Beispiel durch
Unfälle verursacht werden. Verkehrszentralen greifen in diesen Fällen in den Verkehr
ein, um die auftretenden Staus aufzulösen oder zumindest zu verkleinern. Dies wird als
Dynamisches Verkehrsmanagement (DVM) bezeichnet. Übliche DVM-Maßnahmen
umfassen das Umleiten des Verkehrs, das Einschränken des Zuflusses an den Auto-
bahnauffahrten oder das Öffnen eines zuätzlichen Fahrstreifens.

DVM erfolgt in zwei Schritten. Zuerst wird der aktuelle Verkehrszustand auf Grund
von Sensordaten geschätzt, die üblicherweise von Induktionsschleifen oder von den
Fahrzeugen selbst gewonnen werden. Der Verkehrszustand beschreibt die Position
des Verkehrs im Netzwerk und seine aktuelle Geschwindigkeit. Danach werden über
eine Regelung auf Basis des aktuell geschätzten Verkehrszustands geeignete DVM-
Maßnahmen ausgewählt um die Verkehrslage zu verbessern.

Momentan bezieht sich diese Regelung auf den gesamten Verkehr, ohne zwischen ver-
schiedenen Fahrzeugklassen zu unterscheiden. Fahrzeuge können jedoch nach Länge,
Maximalgeschwindigkeit oder Zeitwert unterschieden werden und haben daher unter-
schiedliche Einflüsse auf die Netzwerkeffizienz. Kurze Fahrzeugen können zum Bei-
spiel mit einem kürzeren zeitlichen Abstand fahren. Bei gleichen Umständen können
daher mehr kleine Autos eine Stelle passieren als große. Die Kapazität für kleine Fahr-
zeuge ist daher höher als für große.

In dieser Dissertation wird Dynamisches Verkehrsmanagement für mehrere Fahrzeug-
klassen verallgemeinert. Unter anderem werden die Effekte der Fahrzeugeigenschaften
auf den Verkehrsfluss untersucht. Dazu wird das makroskopische Verkehrsflussmodel
Fastlane herangezogen, das zwischen mehreren Fahrzeugklassen unterscheidet. Wei-
terhin werden bestehende DVM-Maßnahmen verallgemeinert um den Verkehr klassen-
spezifisch zu regeln. Die hier entwickelte klassenspezifische Zuflusskontrolle ermög-
licht, dass Fahrzeuge je nach ihrer Klasse unterschiedlich starken Zufluss zur Auto-
bahn bekommen. Das Priorisieren von kurzen Fahrzeugen erhöht den Netzwerkdurch-
satz. Umgekehrt vermindert das Priorisieren von wertvollen Fahrzeugen die totalen
Kosten. Klassenspezifische Umleitung ermöglicht das Umleiten einer Fahrzeugklasse
um einen Stau. Klassenspezifische Fahrstreifen ermöglichen hohe Geschwindigkeiten
für eine Fahrzeugklasse.
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Um DVM möglichst schnell ausführen zu können, werden außerdem zwei bestehen-
de Methoden der Verkehrszustandsschätzung analysiert und so umformuliert, dass sie
den Zustand von Autobahnenabschnitten realistischer Größe innerhalb von wenigen
Sekunden berechnen können. Die Adaptive Smoothing Method wird so umformu-
liert, sodass die Schnelle Fourier-Transformation benutzt werden kann. Das Exten-
ded Kalman-Filter wird lokalisiert, sodass die Messdaten dazu benutzt werden um nur
den Verkehrszustand in der Nähe des Sensors korrigiert wird, anstatt des Zustands des
gesamten Netzwerks. Weiterhin wird eine Methode entwickelt, die die Position und
die Geschwindigkeit von Schockwellen auf Basis von raumzeitlichen Verkehrsdaten
schätzt. Diese Merkmale werden unter anderem benutzt, um Zustandsschätzer oder
Verkehrsflussmodelle zu kalibrieren.

In einer Fallstudie werden die beiden hier entwickelten Elemente Schätzung und Re-
gelung kombiniert, um fahrzeugklassenspezifische Regelsignale für die Regelung der
niederländischen Autobahn A15 in der Nähe des Rotterdamer Hafens zu optimieren.
Die Fallstudie zeigt, dass klassenspezifische Regelung die Kosten des Verkehrs im
Vergleich zu konventioneller, nicht-klassenspezifischer Regelung verringert. Zur Zeit
werden diese Regelsignale kontinuierlich berechnet und auf einer Webseite in Echtzeit
veröffentlicht. Zu sehen sind außerdem der aktuelle Verkehrszustand der Autobahn,
der erwartete Zustand in einer Stunde ohne Regelung, und der erwartete Zustand mit
Regelung.
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Propositions

Pertaining to the dissertation
Vehicle-class Specific Control of Freeway Traffic

Thomas Schreiter
18 March 2013

1. Congestion on freeways is reduced by extending Dynamic Traffic Management
with user-class specific measures.

2. The Adaptive Smoothing Method is more suitable than Kalman Filtering for
Dynamic Traffic Management applications. (Chapter 4)

3. The more car traffic there is, the more a truck lane reduces the total cost of traffic.
(Chapter 6)

4. Mobile phones and social networks play a key role in reducing congestion.

5. If one thinks a program is bug-free, then one has not analyzed the code long
enough.

6. Affirmative action is unjust.

7. Laziness in combination with foresight leads to prosperity.

8. In Europe “freedom” is interpreted as safety and equality, whereas in the Unites
States “freedom” is interpreted as the ability to act without restriction.

9. The writing of a thesis takes longer than expected, independent of the current
point of progress.

10. The lingua franca of the world is not English. The lingua franca of the world is
bad English.

These propositions are considered opposable and defendable and have been approved
as such by the promotor Prof. dr. ir. S.P. Hoogendoorn.



Stellingen

Behorend bij het proefschrift
Vehicle-class Specific Control of Freeway Traffic

Thomas Schreiter
18 Maart 2013

1. Congestie op snelwegen wordt verminderd door het uitbreiden van Dynamisch
Verkeersmanagement met klassespecifieke maatregelen.

2. De Adaptive Smoothing Method is beter geschikt dan Kalmanfiltertechnieken
voor Dynamisch Verkeersmanagementtoepassingen. (Chapter 4)

3. Hoe meer autoverkeer, hoe meer een vrachtwagenrijstrook de totale verkeerskosten
vermindert. (Chapter 6)

4. Mobiele telefoons en sociale netwerken spelen een sleutelrol in het verminderen
van congestie.

5. Als je denkt dat een programma geen bugs bevat, dan heb je de code niet lang
genoeg geanalyseerd.

6. Positieve discriminatie is onrechtvaardig.

7. Luiheid in combinatie met vooruitziendheid leidt tot voorspoed.

8. In Europa wordt “vrijheid” gëınterpreteerd als veiligheid en gelijkheid, daarente-
gen wordt “vrijheid” in de Verenigde Staten gëınterpreteerd als de mogelijkheid
zonder beperking te handelen.

9. Het schrijven van een proefschrift duurt langer dan verwacht, onafhankelijk van
de huidige voortgang.

10. De lingua franca van de wereld is niet Engels. De lingua franca van de wereld is
slecht Engels.

Deze stellingen worden opponeerbaar en verdedigbaar geacht en zijn als zodanig goed-
gekeurd door de promotor Prof. dr. ir. S.P. Hoogendoorn.
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