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Abstract- The trade-off between obtaining a well-
converged and well-distributed set of Pareto optimal
solutions, and obtaining them efficiently and automat-
ically is an important issue in multi-objective evo-
lutionary algorithms (MOEAs). Many studies have
depicted different approaches that evolutionary algo-
rithms can progress towards the Pareto optimal set
with a wide-spread distribution of solutions. However,
most mathematically convergent MOEAs desire certain
prior knowledge of the solution space in order to ef-
ficiently maintain widespread solutions. In this pa-
per, we propose, based on the E-dominance concept, an
Adaptive Rectangle Archiving (ARA) strategy that over-
comes this practically crucial problem. The MOEAs
with this archiving technique provably converge to well-
distributed Pareto sets without a priori. ARA comple-
ments the existing archiving techniques, and is useful to
both researchers and practitioners.

1 Introduction

Most real-life optimization problems or decision-making
problems are multi-objective in nature, since they normally
have several (possibly conflicting) objectives that must be
satisfied at the same time. Multi-Objective Evolutionary
Algorithms (MOEAs) have been gaining an increasing at-
tention among researchers and practitioners mainly because
of the fact that they can be suitably applied to find multi-
ple Pareto-optimal solutions in a single run [2]. This fact
alone enables a user to have a less-subjective search in the
first phase of finding a set of well-distributed solutions. Be-
cause of inherent cooperation among evolutionary search
procedure, MOEAs are computationally promising for si-
multaneous discovery of multiple trade-off solutions. The
features has attracted numerous researchers to develop dif-
ferent MOEAs — from MOGA [7], NPGA [9], and NSGA
[15] with skillful fitness assignment and nondominated sort-
ing, to SPEA [20], PESA [1], NASA–II [4], SPEA2 [19],
IMOEA [16], and DMOEA [18] with elitism, diversity es-
timation and maintenance; to PAES [11] (based on AGA
[10]) and ε-MOEA [3] (based ont-dominance [12]) with
sound diversity and convergence guarantee.

Despite the great success of these MOEAs, there has
been little successful attempt ofconvergence-guaranteed
and computationally efficient maintenance awell-
distributed Pareto-optimal setwith little prior knowledge
of search space. Most MOEAs may get widespread so-

lutions using different diversity exploitation mechanisms
[1, 4, 9, 17, 18, 20, 19], but little of them have conver-
gence guarantee. Some early theoretical work has pointed
out some approaches to enable MOEAs converge to Pareto
optimal sets [8, 14], but little consider the distribution of the
Pareto solutions obtained [12]. Several recent studies have
made a big pace to generate diversified and Pareto optimal
solutions [3, 10, 12]. The archiving techniques in [12], as
well as [3], desire the distribution knowledge of the Pareto
front beforehand. If the parameters are not set appropri-
ately, in some extreme cases, only a solution is archived
because itt-dominates all the others [10]. The adaptive grid
archiving (AGA) strategy has been proved to converge to a
Pareto optimal set of bounded size under certain condition
[10]. Unfortunately, this condition is not easily satisfied.
The solution oscillation problem has happened in practical
applications [10] or been demonstrated empirically [6].

The basic idea of these efficient and successful diver-
sity preserving mechanisms is to partition the whole objec-
tive space into mutually excluded regions, and then consider
the diversity and Pareto optimality locally in these regions.
Each region is of limited volume while the objective space is
unknown in advance. This collision makes it difficult to ex-
plore the whole solution space, and results in the unexcep-
tional difficulties in the recent work [12, 10]. Our proposal
in the work is to introduce some “open” (hyper) rectangles
in the space partitioning, such that the coverage of the “infi-
nite” search space only required limited ones. We introduce
an extended Pareto dominance (E-dominance) to achieve
this point. In addition, the search space partition is adjusted
adaptively based on the solutions found so far. The “crucial”
regions will maintain more Pareto optimal solutions, while
the “open” rectangles have choices to keep some acciden-
tal solutions. Therefore, our Adaptive Rectangle Archiving
(ARA) technique can explore the whole search space and
maintain the representative solutions automatically without
any prior knowledge.

In the rest of the paper, we give the general MOEAs with
archiving techniques. Then, we shortly review the existing
MOEAs and discuss why they, if no prior knowledge avail-
able, do not have sound convergence and diversity guaran-
tee. In section 4, E-dominance concept and E-Pareto set
are introduced, and their corresponding archiving strategy,
ARA, is established. The theoretical analysis of ARA, both
iteration-based and infinite treads, is given. In section 6,
conclusive comments and possible future research are dis-
cussed.
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Procedure 1. MOEA with Archiving

1. t := 0, A(0) := ∅;
2. Repeat:

3. t := t + 1;

4. y(t) := EVOLUTION(); /* Generates a new
solution */

5. A(t) := ARCHIVE(A(t−1),y(t)); /*
Updatesarchive*/

6. Termination: Until stopping criterion fulfilled;

7. Output: A(t), t.

2 Preliminaries

We assume, without loss of generality, minimization multi-
objective problems in this work. For a multiobjective func-
tion Γ from X(⊂ <d) to a finite setY ⊂ <m(m ≥ 2), an
objective vectory(1) = [y(1)

1 , y
(1)
2 , · · · , y

(1)
m ]T ∈ Y domi-

natesanother oney(2) = [y(2)
1 , · · · , y

(2)
m ]T , if and only if

{
y
(1)
i ≤ y

(2)
i , ∀i ∈ {1, · · · ,m}

y
(1)
j < y

(2)
j , ∃j ∈ {1, · · · ,m}. (1)

We also denote it asy(1) ≺ y(2). For convenience, we
also denote¬ (

y(1) ≺ y(2)
)

asy(1) ⊀ y(2). y(1) is said to
benondominated(or incomparable) with y(2) if ¬(y(1) ≺
y(2) ∨y(2) ≺ y(1) ∨ y(1) = y(2)). It is denoted asy(1) ∼
y(2). Therefore,y(1) ⊀ y(2) meansy(1) = y(2) or y(2) ≺
y(1) or y(1) ∼ y(2).

Likewise, thedominatesandnondominatedrelations can
be defined between a vectory(∈ Y ) and a setA(⊆ Y ):

y ≺ A ⇐⇒ ∃a ∈ A, y ≺ a (2)

A ≺ y ⇐⇒ ∃a ∈ A, a ≺ y (3)

y ∼ A ⇐⇒ ∀a ∈ A, y ∼ a (4)

y ⊀ A ⇐⇒ ∀a ∈ A, y ⊀ a. (5)

Given the set of vectorsY , its Pareto setY ∗ contains
all vectorsy∗ ∈ Y that are not dominated by any vector
y ∈ Y . That is,Y ∗ = {y∗ ∈ Y |@y ∈ Y,y ≺ y∗}, which
is also known as thePareto front. Eachy∗ ∈ Y ∗ is called
Pareto optimal, or a nondominated solution. A Pareto opti-
mal solution reaches a good tradeoff among these conflict-
ing objectives: one objective cannot be improved without
worsening any other objectives. In this paper, we assume,
valid to almost all multiobjective problems, at least two dif-
ferent values for each objective inY ∗.

For many multiobjective optimization problems, the
unique Pareto setY ∗ is of substantial size. Thus, the de-
termination ofY ∗ is computationally prohibitive, andY ∗

as a result of an optimization is not easy to maintain and is
questionable [6, 12]. Furthermore, the value of presenting
such a large set of solutions to a decision maker is doubt-
ful in the context of decision support, instead one should

provide him with a set of the best representative solutions.
Finally, in limiting the size of solution set, preference in-
formation could be used to steer the process to certain parts
of the search space. Therefore, all practical implementa-
tions of MOEAs have maintained (off-line) an archive of
best (nondominated) solutions found so far, and the archive
is of bounded size [10].

In order to facilitate our analysis on archiving strategies,
we separate the evolutionary procedure and the archiving
procedure. Procedure 1 gives an abstract description of a
general MOEA with archive. The integert denotes the it-
eration count, them-dimensional vectory ∈ Y is the solu-
tion generated at iterationt, and the setA(t) will be called
the archive at iterationt and should contain a representa-
tive subset of the points in the objective spaceY . The
functionEVOLUTION represents an evolutionary algorithm,
where the evolutionary operator is associated with variation
(recombination, mutation, and selection). It can generate
a population of points, possibly using the contents of the
old archive setA(t−1). However, for convenience, it only
outputs a new solution in each iterationt. The function
ARCHIVE gets the new solutiony(t) and the old archive set
A(t−1) and determines the updated oneA(t). Its purpose
is to gather useful information about the underlying search
problem during the run. The use of archive is usually two-
fold: on one hand, it is used to store the best solutions found
so far; on the other hand, the search operator exploits this
information to steer the search to promising regions.

This paper mainly deals with the functionARCHIVE, i.e.,
how to appropriately update the archive. For eachy, its ad-
ditional information about the corresponding decision val-
ues could be associated to the archive but will be of no con-
cern in this paper. We also refer to an objective vector as
a solution. According to requirements of MOEAs, an ideal
archive strategy should maintain solutions having the fol-
lowing properties:

Pareto optimal: Converge to Pareto optimal solutions in
each run;

Well distributed: Solutions are uniformly distributed in
the whole objective space;

Computational Efficiency: The time and memory com-
plexity should be low;

Little Prior Knowledge: Little knowledge about the mul-
tiobjective problem is desired beforehand.

This last property may facilitate users greatly, since most
of time, we have to make decisions on some conflicting
problems with little prior knowledge. As mentioned above,
some information about the objective space has been stored
in the archive during search. Thus, we may adjust our
archive adaptively without any prior information. We will
construct such an algorithm in Section 4, after the discus-
sion of the existing approaches in next section.
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Figure 1: Illustration of E-dominance,t-dominance, and
Pareto dominance. The regions dominated byy under three
different dominance relations are visualized. The calcula-
tion of vectorsyE andyt is illustrated in bottom right cor-
ner.

3 MOEAs and their Limitations

We discuss a number of archiving or elitism strategies that
appeared in the literature of MOEAs.

Early theoretical work of MOEAs mainly concentrates
on convergence. Hanne [8] gave a convergence proof for a
(µ + λ)-MOEA with Gaussian mutation distributions over
a compact real search space by the application of a (nega-
tive) efficiency preservation selection scheme, which only
accepting new solutions that dominate at least one of the
archived solutions. There is no assumption on the dis-
tribution of solutions, and arbitrary regions may become
unreachable with (negative) efficiency preservation [12].
Rudolph and Agapie [14], using stochastic process tech-
niques, developed several sophisticated selection operators
to precludes the problem of deterioration. Their algo-
rithms with evolutionary operators having a positive tran-
sition probability matrix provably converge to the Pareto
optimal set, but they do not guarantee a good distribution
of the solutions archived.

A number of elitist MOEAs have been developed to es-
pecially address diversity of the archived solutions using
different mechanisms. The diversity exploitation mecha-
nisms include mating restriction, fitness sharing (NPGA
[9]), clustering (SPEA [20], SPEA2 [19]), nearest neigh-
bor distance (NAGA-II [4]), crowding count (DMOEA [18],
PESA [1]), or some preselection operators [2]. Most of
them have been more or less successful, but little of them
have convergence guarantee.

Recently, Laumannset al. [12] proposed several archiv-
ing strategies that guarantee both progress towards the
Pareto front and covering the whole range of nondomi-
nated solutions. The algorithms maintain a finite-sized
archive of nondominated solutions that is iteratively up-
dated in the presence of a new solution based on the con-

cept of t-dominance. However, thet value, which deter-
mines solution resolution, must either be pre-set or be deter-
mined adaptively. In the former case, the size of the archive
is bounded only by some function of the objective space
ranges, which usually unknown in advance. Whereas in the
latter case,t may become arbitrarily large and so finally,
only a poor representation of the sequence of solutions pre-
sented to the archive are stored. In some extreme cases, only
one solution is archived since itt-dominates all other Pareto
solutions [10].

More recently, Knowles and Corne [10] has analyzed a
metric-based archiving and an adaptive grid archiving one.
The metric-based strategy requiresS-metric which assigns a
scalar value to each possible approximation set reflecting its
quality and fulfilling certain monotonicity conditions. Con-
vergence is then defined as the achievement of a local op-
timum of the quality function. However, its computational
overhead is prohibitively high for more than a few objec-
tives. The adaptive grid archiving strategy implemented in
PAES [10] provably maintains solutions in some “critical”
hyperboxes of the Pareto set once they have been found.
The strategy is provably convergent when the Pareto opti-
mal set spans the feasible objective space in all objectives.
This condition is not true for many optimization problems
with more than two objectives. Thus, the oscillation prob-
lem of the archive has happened in practical applications
[10] or been demonstrated empirically [6].

In order to diversify the solutions, the density estima-
tion or diversity preservation has been locally made in some
boxes for computational efficiency. However, the objective
space is unknown in advance, and it is sometimes imprac-
tical to use restricted volumed boxes to envelop it appro-
priately. This point results in oscillation of AGA [10] and
probably poor representation of Pareto set in [12], though
they can generate widespread solutions.

4 Adaptive Rectangle Archiving Strategy

In this section, we present an Adaptive Rectangle Archiving
(ARA) algorithm that address some of problems with the
existing ones. In ARA, we use a self-adaption mechanism
to preserve diversity according to the archived information
about the objective space. In the “crucial” regions, a solu-
tion is allowed to preserved in a narrow (hyper-)rectangle,
and then more Pareto solutions are archived. In the un-
known, even infinite, regions, some “open” rectangles are
used to envelope. This “open” rectangle even may envelop
the infinite objective values. Within this “open” rectangles,
some Pareto solutions have choices to be archived. The
“open” rectangles are specified based on an extended Pareto
dominance concept. We define these terminology below,
followed by the ARA algorithm.

4.1 Extended Pareto Dominance

Since we need to use an archive of points to approximately
dominate the whole objective space, one intuitive solution
is allowing some tolerance on dominance. We extend the
Pareto dominance to reach this as follows.
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Figure 2: 2-D Adaptive Rectangle Partition. The dashed
line segments indicate “open” rectangles. The gray rect-
angle indicates the crucial region indicated bya(min) and
a(M). The bold line segments indicate the region E-
dominated by a solution indicated by a pentagram.

Definition 1 (E-dominance). Let y(1) and y(2) be in
Y . Theny(1) is said toE-dominatey(2) for some transfer-
ring function, FUN, and a constant vectore(> 0), if and
only if for all i ∈ {1, . . . , m}

FUN(y(1)
i )− ei ≤ FUN(y(2)

i ). (6)

It is denoted asy(1) ¹E y(2).
Then transferring function has better be continuous, and

monotonously increase. This ensures that E-dominance
may be implied by the traditional dominance, i.e., ify(1) ≺
y(2), theny(1) ¹E y(2). Furthermore, it is easy to see that
E-dominance relation is transitive.

E-dominance generalizes several existing dominance re-
lations. It becomest-dominance in [12] asFUN(yi) =
ln(yi) and ei = ln(1 + t), the additivet-dominance in
[12, 13] asFUN(yi) = yi andei = t, and the Pareto domi-
nance asFUN(yi) = yi andei = 0.

In order to envelop unknown, possible infinite, objec-
tive value, we may employ a nonlinear transferring function,
e.g.,FUN(yi) = tan(yi ∗ scalei). Thus, the infinite point
is transferred toπ

2 , and may be E-dominated by a limited

value, say,arctan( π
2−ei)

scalei
. In the following discussion, we

assume E-dominance with such atan function. Thescalei

will be specified adaptively according to the solutions found
so far. The comparison among E-dominance,t-dominance,
and Pareto dominance is visualized in Fig. 1. Based on
E-dominance relation, we have following definitions.
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Figure 3: How the adaptive rectangle changes its location
and shape in objective space as the vectors in the archive
A(t) change through iterationsti < tj < tk. The bold line
indicates the Pareto front, and pentagrams denotes archived
solutions.

Definition 2 (E-approximate Pareto Set).Let Y ⊆
<m be a set of vectors,FUN a monotonically increasing
function, and constant vectore > 0. Then a setYE is called
an E-approximate Pareto setof Y , if any vectory ∈ Y is
E-dominated by at least one vectora ∈ YE , i.e.,

∀y ∈ Y : ∃a ∈ YE such thata ¹E y. (7)

The set of all E-approximate Pareto sets ofY is denoted as
EP (Y ).

Definition 3 (E-Pareto Set). Let Y ⊆ <m be a set of
vectors, and a vectore > 0. Then a setY ∗

E ⊆ Y is called a
E-Pareto setof Y , if

1. Y ∗
E is an E-approximate Pareto set ofY , i.e., Y ∗

E ∈
EP (Y ), and

2. Y ∗
E only contains Pareto optimal points ofY , i.e.,

Y ∗
E ⊆ Y ∗

The set of all E-Pareto sets ofY is denotes asEP ∗(Y ).
Since finding the Pareto set of an arbitrary setY is usu-

ally not practical because of its size, one needs to be less
ambitious in general. Therefore, the E-approximate Pareto
set is a practical solution concept as it not only represents all
vectorsY but also consists of a smaller number of elements.
Of course, a E-Pareto set is more attractive as it consists of
Pareto vectors only.

4.2 Archiving Procedure

Our adaptive archiving strategy basically have two con-
cerns. First, we determine the “crucial” solution region
adaptively. The second is to find an E-Pareto set based on
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Procedure 2. ARA(y, A) /* Adaptive Rectangle
Archiving*/

1. if (y ≺ A(min) ∨ a(min) ⊀ y) then

2. for all i ∈ {1, · · · , m} do

3. if (a(i)
i > yi) then

4. a(i) := y; /* Recedes*/

5. else if(y ≺ a(i))

6. a(i) := y; /* Dominates*/

7. end if

8. end do

9. A(ar2) := ∅; /* Re-formsA(ar) */

10. for all ((a ∈ A(ar)) ∧ (A(min) ⊀ a)) do

11. INSERTINRECTANGLES
(
a, A(ar2), A(min)

)
;

12. end do

13. A(ar) := A(ar2);

14. else if(A(min) ⊀ y) /* UpdatesA(ar) */

15. INSERTINRECTANGLES
(
y, A(ar), A(min)

)
;

16. end if

17. A := {A(min), A(ar)};

the E-dominance. For the sake of description, we partition
the archive in ARA into two parts :A = {A(min), A(ar)}
(A(t) = A(min,t), A(ar,t)). The purpose ofA(ar) is to main-
tain an E-Pareto set according to the solution space infor-
mation collected inA(min). A(min) is an array,A(min) =
[a(1),a(2), · · · ,a(m)]. Each member is initialized to be in-
finite, and has the minimal objective value found so far,
i.e., a(i)

i = min
a∈A

{ai}. Furthermore, we introduce two vec-

tors associated withA(min) to describe the “crucial” re-
gion: a(min) with a

(min)
i = mina∈A{ai} anda(M) with

a(M)
i = max

a∈A(min)
{ai}. The region whose member domi-

natesa(M) but is dominated bya(min) contains most Pareto
optimal solutions generated so far, and it iscrucial for
archiving. For example, all solutions dominated bya(M)

are not Pareto optimal. Especially, all Pareto optimal solu-
tions are located in the crucial region in 2-D case. The gray
rectangle in Fig. 2 indicates the crucial region, and envelops
all four Pareto solutions, indicated by pentagram.

The pseudo code of ARA is given in Procedure 2. At east
step, the algorithm first check whether the crucial region
should be updated. If the new objective value is less than
the archived one,Recedeswill accept the new vector; If the
new vector dominates a vector inA(min), Dominateswill
replace the old vector with the new one. If the crucial region

Procedure 3. INSERTINRECTANGLES(y, A(ar), A(min))

1. D := {a ∈ A(ar)|RECT(a, A(min)) ≺
RECT(a, A(min))};

2. if D 6= ∅ then

3. A(ar) := A(ar)
⋃

y\D; /* Inter RectDom */

4. else if ∃a ∈ A(ar) : (RECT(a, A(min)) =
RECT(y, A(min))) ∧(y ≺ a) then

5. A(ar) := A(ar)
⋃{y}\{a} /* Intra RectDom */

6. else if ∀a ∈ A(ar) : RECT(a, A(min)) ∼
RECT(y, A(min))

7. A(ar) := A(ar)
⋃{y} /* Occupiesa rectangle */

8. else

9. A(ar) := A(ar); /* Steadystate*/

10. end if

is updated, the solutions inA(ar) have to be archived again
(Re-forms A(ar)). Thus, the less minimal objective value
is certainly archived, and the solutions inA(ar) are chosen
based on the currentA(min).

There is little choice that, when the condition in Line
1 of Procedure 2 holds, neitherRecedesnor Dominates
is executed. In fact, the unique exception is that(y =
a(min)) ∧ (a(i) = y∀i). However, the exception is rare,
since multiobjective problems normally have more than one
solution.

If the new vectory neither has less objective values nor
dominates any vector inA(min), it is input into the proce-
dure INSERTINRECTANGLE, as described in Procedure 3.
The procedure mainly chooses representative Pareto opti-
mal solutions according to the crucial region specified by
A(min). It has a two level concept. On the coarse level,
the search space is discretized by a division into (hyper-
)rectangles (see Function 4), where each vector uniquely
belongs to one rectangle. Using the proposed E-dominance
relation on these rectangles, the algorithm always maintains
a set of nondominated rectangles (Inter Rect Dom andOc-
cupies), thus guaranteeing the E-approximation property.
On the fine level, at most one element is kept in each rect-
angle. Within a rectangle, each representative vector can
only be replaced by a dominating one (Intra Rect Dom)
(similar tot-Pareto set algorithm in [12]), thus guaranteeing
convergence.

Now let us see how the functionRECT, given in Func-
tion 4, partition the crucial region finely while place the un-
known regions into “open” rectangles. Since it is difficult
to automatically detect the maximal objective values in the
Pareto front [10], we simply view it as infinite. As shown in
Lines 2∼4 in RECT, a

(min)
i and+∞ are mapped into 1 and⌊

π
2
ei

+ 1.5
⌋
. The scale calculated in Line 2 reflects the dis-

tance betweena(M)
i anda

(min)
i . The farther awaya(M)

i is
5



Function 4. RECT(y, A(min))

1. for all i ∈ {1, · · · , m} do

2. scalei =
arctan(π

2−ei)
a
(M)
i −a

(min)
i

;

3. αi := tan
((

yi − a
(min)
i

)
∗ scalei

)
;

4. ri :=
⌊

αi

ei
+ 1.5

⌋
;

5. end do

6. output: return r = [r1, · · · , rm]T .

from a
(min)
i , the larger the scale value is. Furthermore, this

scale, together with the value 1.5 in Line 4, enablea
(M)
i to

be mapped into
(⌊

π
2
ei

+ 1.5
⌋
− 1

)
, which is next to that cor-

responding to+∞. Therefore, ifei < π
4 , a(min)

i , a(M)
i , and

+∞ are located in different rectangles. Furthermore, there

are
(⌊

π
2
ei

+ 1.5
⌋
− 2

)
rectangles betweena(min)

i anda
(M)
i .

Lessei is, more finely the crucial region is partitioned. An
example withei = π

10 is illustrated in Fig. 2. The unknown
region is enveloped by some “open” rectangles, as indicated
by dashed line segments. Clearly, the crucial region is finely
divided, and more Pareto optimal solutions will be archived
in A(ar).

5 Convergence analysis

We now give some theorems to support that our archiving
strategy converges to the Pareto set while preserving diver-
sity of solution vectors at the same time. We first give theo-
retical analysis on each iteration of Procedures 2 and 3.

We first show that the lower boundaries of archiveA(t),
i.e.,a(min,t), can retain the minimal objective values gener-
ated so far.

Theorem 1. Let Y (τ) =
τ⋃

t=1
{y(t)} be the set of ob-

jective vectors created inEVOLUTION. Then the archive
A(τ) contains the minimal objective values ofY (τ). That is,

a
(min,τ)
i =

τ
min
t=1

{y(t)
i }.

Proof. We need to prove two cases:Case 1. the mini-
mal objective values generated-so-far will enter the archive;
Case 2. the objective vectors with the minimal objective
values will not lose.

Case 1. To prove this point, we only to provea(min,t)
i =

y
(t)
i when a less objective value is generated for some

i ∈ {1, . . . , m} and t < τ , i.e, wheny
(t)
i < a

(min,t−1)
i .

We haveyt ≺ a(min,t−1) or yt ∼ a(min,t−1). Since
a
(min,t−1)
i = a

(i,t−1)
i ), we have eitheryt ≺ a(i,t−1) or

yt ∼ a(i,t−1). For the former,yt ≺ A(min,t−1) and the
rule, Dominates, will execute. For the latter, ify(t) ≺
a(min,t−1), theny(t) ≺ a(min,t−1) ≺ a(i,t−1). It contra-
dicts yt ∼ a(i,t−1). So, yt ∼ a(min,t−1), andRecedes
executes. For both,a(i,t) = y(t). Thus,a(min,t)

i = y
(t)
i .

Case 2. We have to provea(min,t)
i = a(min,t−1)

i if

a(min,t−1)
i < y

(t)
i . Sincea(min,t−1)

i < y
(t)
i , we know

a(i,t−1)
i < y

(t)
i andy(t) ⊀ a(i,t). So, bothDominatesand

Recedeswill not execute, anda(i,t) = a(i,t−1).
As described in Procedures 2 and 3, one solution dom-

inated by archived solutions is impossible to enter the
archive. Furthermore, as required in Lines 10 and 14, if a so-
lution dominatesA(min), it cannot enterA(ar). In addition,
since solutions inA(min) must have one minimal objective
value generated so far, the solution inA(ar) also cannot
dominateA(min). Thus, we have the following nondomi-
nated relations among between the solutions in the archive.

Lemma 1. Members inA(t) are either nondominated or
equal to one another, i.e.,∀a0,a1 ∈ A(t), (a0 ∼ a1) ∨
(a0 = a1).

Similar with Theorem 1,A(ar,t) also collects the Pareto
solutions iteratively, as stated in the following theorem.

Theorem 2. The archiveA(ar,τ)( 6= ∅) is an E-Pareto

set of Y (τ0,τ) =
τ⋃

t=τ0

{y(t)}⋃
A(ar,τ0) if A(min,τ0) =

A(min,τ).
Due to the space limitation, we only sketch the proof.

WhenA(min,t) does not change, the generated solutions are
input toINSERTINRECTANGLE. Any solutiony must be E-
dominated byA(ar,t), or enters the archive. Once archived,
it will not be deleted only if it is replaced by a new one
that E-dominated it. The solutions E-dominated byy are
transitively E-dominated by the new one. So,A(ar,t) still E-
dominates these solutions. Similarly, if an archived solution
a is not Pareto optimal, it always be replaced by a Pareto op-
timal one by executeInter Rect Dom or Intra Rect Dom.
So, A(ar,t) must be an E-Pareto set of the solutions input
into INSERTINRECTANGLE.

Proof. First, we consider an extreme situation:a(1,t) =
. . . = a(m,t) = a(min,t). At this time, A(ar,t) can only
contain y = a(min,t). Otherwise, ify(∈ A(ar,t)) 6=
a(min,t), then (y ∼ a(min,t)). The condition in Line 1
satisfies,UpdatesA(ar) will not execute, andy cannot en-
ter A(ar,t), which contradictsy ∈ A(ar,t). According to
Theorem 1,a(min,t) dominates all solutions generated-so-
far. So,A(ar,t) dominates, then E-dominates, the solutions
generated-so-far. The theorem is correct.

Except the extreme case above, we have, if neither
(Dominatesnor Recedes) execute,Update A(ar) must ex-
ecute. SinceA(min,τ0) = A(min,τ), there is no change in
A(min,t) for t = {τ0, . . . , τ}. That is, neitherDominates
nor Recedesexecute. So, for ally(t)(t = {τ0, . . . , τ}),
Procedure 3 must be called.

Note that each update onA(min,t) (Dominatesor Re-
cedes), A(ar,t) will be updated using Procedure 3 with the
newA(min,t) (Re-forms A(ar)). So we can only consider
Procedure 3 withA(ar,τ0) = ∅.

If the conclusion is not correct, i.e.,A(ar,τ) ∈
EP ∗(Y (τ0,τ)) is not true, for somet. According to Def-
inition 3, this occurs only if somey(τ)(τ < t) is not E-
dominated by any member ofY (τ0,τ) and not inA(ar,τ)

(Case 1), or in A(ar,t) but not in the Pareto set ofY (τ0,τ)

(Case 2).
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Case 1. For y(τ) not being inA(ar,τ), it can either
have been rejected att = τ or accepted att = τ and re-
moved later on. However,y(τ) will only be rejected if there
is anothery(0) ∈ A(ar,t) with RECT(y(0), A(min,τ)) ≺
RECT(y(τ), A(min,τ)) or the same rectangle value and that
is not dominated byy(τ) (Steadystate). Since both rela-
tions are transitive, and since they both imply E-dominance,
y(0), E-dominatesy(τ), and can only be replaced by accept-
ing elements that also E-dominatey(τ). There will always
be an element inA(ar,t) that E-dominatesy(τ), which con-
tradicts the assumption. On the other hand, removal only
takes place when some newy entersA(ar,t), which domi-
natesy(τ) (Intra Rect Dom) or whoseRECT value domi-
nates that ofy(τ) (Inter Rect Dom). Since both relations
are transitive, and since they both imply E-dominance, there
will always be an element inA(ar,t) that E-dominatesy(τ),
which contradicts the assumption.

Case 2. Since y(τ) is not in the Pareto set of
Y (τ0,τ), there existsy(τ1)(τ0 ≤ τ1 6= τ ≤ τ ) in
the Pareto set ofY (τ0,τ) with y(τ1) ≺ y(τ). This im-
plies RECT(y(τ1), A(min,τ)) ≺ RECT(y(τ), A(min,τ)) or
RECT(y(τ1), A(min,τ)) = RECT(y(τ), A(min,τ)). Hence, if
τ1 < τ , y(τ) would not have been accepted (Steadystate).
If τ1 > τ , y(τ) would have been removed fromA(ar,τ1)

(Inter Rect Dom or Intra Rect Dom). Thus,y(τ) is not
in A(ar,τ), which contradicts the assumption. This com-
pletes the proof.

Theorems 1 and 2 states that, in ARA, the archive re-
tains the lowest objective values and the E-Pareto solutions
of the objective vectors generated so far. The archive retains
some best-so-far solutions, and this point allows the MOEA
with the proposed archiving technique stops anytime. Us-
ing these properties for iterations, we give the convergence
results based on an assumption of theEVOLUTION, that
the archiving algorithm may reach the crucial region of the
whole objective space, and then approximately dominate it.

Theorem 3. If the EVOLUTION procedure gives every
possible solution in the search space with a positive mini-
mum probability, then

1. the lower boundaries of archiveA(t), a(min,t), converge
to the global minimal objective values,

2. A(min,t) converges to a Pareto optimal set

{a ∈ Y |ai = min
y0∈Y

{y0
i }∧(a≺y∧yi = ai) for an i} (8)

with probability 1 ast →∞.
Proof. 1. Since theEVOLUTION can generate every pos-

sible solution with a positive minimum probability, accord-
ing to the Borel-Cantelli Lemma (see e.g., [5, p. 201]), it
is guaranteed that arbitrary solution will be generated in-
finitely often and that the waiting time for the first occur-
rence as well as for the second, and so forth will be finite
with probability 1. Thus, there existsti < +∞ such that
y
(ti)
i = min

y∈Y
{yi}. According to Lemma 1,a(min,t)

i =

min
y∈Y

{yi} for all t > ti. Therefore, whent > τc1

4
=

max
i=1,...,m

{ti}, each element ofa(min,t) reaches the minimal

objective value and will not change.
2. If A(min,t)(t > τc1) is not Pareto optimal inY , there

must existy∗(∈ Y ∗) such thaty∗ ≺ a(i,t)∧y∗i = min
y0∈Y

{y0
i }

for somei. There existsti2(> t) such thaty(ti2 ) = y∗.
y(ti2 ) ≺ a(i,ti2−1), theny(ti2 ) ≺ A(ti2−1). Thus,Domi-
natesexecutes, anda(i,ti2−1) is replaced byy(ti2 ). Once

t > τc2

4
= max

i={1,...,m}
{ti2}, A(min,t) reaches a set as given

in Eq.(8).
OnceA(min,t), as in Eq.(8), is Pareto optimal inY and

each member at least has a minimal objective value, there is
not a vectory that either dominatesA(min,t) or yi < a

(i,t)
i .

The condition in Line 1 of Procedure 2 is not satisfied.
NeitherDominatesnor Recedeswill execute. Therefore,
A(min,t) will not change. This completes the proof.

The assumption aboutEVOLUTION is quite common in
theoretical analysis of evolutionary computation [10, 14]. It
is true whenever, for example, a mutation is applied to ev-
ery bit in a binary string with some small probability, the
standard method of generating a new point in a random mu-
tation hillclimber [10]. Based on this weak assumption, we
give another convergence property of our archiving strategy
below.

Theorem 4. If the EVOLUTION procedure gives every
possible solution in the search space with a positive mini-
mum probability, the archive sequence{A(ar,t)} converges
to a well-distributed E-Pareto set of the search space with
bounded size with probability one ast −→ +∞, i.e.,

• A(ar,t) ∈ EP ∗(Y );

• 2 ≤ |A(ar,t)| ≤
m∏

i=1

⌊
π
2
ei

+1.5

⌋

max
i={1,...,m}

⌊
π
2
ei

+1.5

⌋ for any givene with

0 < ei < π
4 .

Proof. According to Theorem 3,A(min,t) converges to
a Pareto optimal set whent > τc2 . According to Theo-

rem 4,A(ar,τ) is an E-Pareto set of
τ⋃

t=τc2

{y(t)}⋃
A(ar,τc2 ).

EVOLUTION generates any solution infinitely often and that
the waiting time for the first occurrence as well as for the
second, and so forth will be finite with probability 1, so,
for each solutiony ∈ Y , there existsty(τc2 < t < +∞)
such thaty(ty) = y. ThenA(ar,ty+1) must E-dominatesy.
SinceY is finite, τc3 , max

y∈Y
{ty} < +∞. Thus,A(ar,t) is

an E-Pareto set ofY ast > τc3 .
We considert > τc2 (Theorem 3). The rectangles en-

velop the archived vectors inA(min,t) must envelop a so-
lution in A(ar,t) as t increases (Otherwise, the solution in
A(min,t) will occupy the rectangle.). For each objectivei,
the coordinates of these rectangles must have two different

values: 1 and
⌊

π
2
ei

+ 1.5
⌋
− 1, because they corresponds

a
(min,t)
i anda

(M,t)
i . So,|A(ar,t)| ≤ 2 ast −→∞.

As we can observed inRECT (Function 4), theith objec-

tive value is divided into
⌊

π
2
ei

+ 1.5
⌋
. The objective space

7



is divided into
m∏

i=1

⌊
π
2
ei

+ 1.5
⌋

hyper-rectangles. From each

hyper-rectangle, at most one solution can be inA(ar,t) at the
same time. Now consider the equivalence classes of hyper-
rectangles where, without loss of generality, in each class
the hyper-rectangles have the same coordinates in all but

one dimension. There are at mostmax
i={1,...,m}

⌊
π
2
ei

+ 1.5
⌋

dif-

ferent hyper-rectangles in each class constituting a chain of
dominating boxes. Hence, only one solution from each of
these classes can be a member ofA(ar,t) at the same time.
This completes the proof.

This theorem states that the size of E-Pareto set is
bounded, given the constant vectore. In addition, there are
at least two vectors in the archive. This point is different
from t-Pareto set, which may retain only one solution [12].

6 Conclusion

In this paper, we have introduced the E-(approximate)
Pareto set as a novel solution concept for evolutionary mul-
tiobjective optimization. It is

• theoretically attractive as it helps to construct algorithms
with the desired convergence and distribution properties,
and it generalizes the Pareto dominance concept in the
MOEAs literature,

• It practically important as it works with a solution set
with bounded size and with little prior knowledge about
the target multiobjective problem.

• We have constructed the adaptive archiving strategy that
can be used in any evolutionary algorithms and allow
for the desired convergence properties, while at the same
time, guaranteeing an optimal distribution of solutions
(Theorems 1 and 2.

• Our archiving strategy, with appropriate assumption on
the solution generation procedure, can retain the minimal
objective value and a well distributed approximate of the
whole Pareto front with probability 1 (Theorem 3 and 4).

When the distribution knowledge of the multiobjective
values is available, the archiving strategy in the work [12]
is a good choice. Otherwise, the user can set the vector
e and the adaptive archiving strategy may provide a repre-
sentative, well-distribution Pareto optimal set. In our future
work, we will give some guidance on how to set the param-
eter. We may apply other transferring function, instead of
tan, in order to treat different solution regions more fairly.
Our theoretical analysis is based on the assumption of finite
search space, however, the E-Pareto set concept is applica-
ble to more complicated situations. We also leave these for
future work.
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