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ABSTRACT
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longer packings for n ≥ 4, but there are analogues of most of the properties in parts I and II
for such ensembles of n-dimensional Descartes configurations. An Apollonian sphere ensemble
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Apollonian Circle Packings: Geometry and Group Theory
III. Higher Dimensions

1. Introduction

In parts I and II we studied Apollonian packings of circles in two-dimensional Euclidean space

in terms of the Descartes configurations they contain. A Descartes configuration is an arrange-

ment of four mutually tangent circles on the Riemann sphere which have disjoint interiors.

We identify Apollonian packings P with the set D(P) of all ordered Descartes configurations

they contain. We studied various groups acting on the ensemble of Descartes configurations,

one action coming from the conformal group Möb(2) acting on the Riemann sphere, inducing

an action on Descartes configurations, and a linear action on Descartes configurations repre-

sented by 4 × 3 matrices in “curvature-center coordinates”, as described in part I. The group

associated to the latter is the group Iso↑(Q2) which is a subgroup of index 2 in the group

Iso(Q2) of real automorphs of the Descartes quadratic form Q2 = I4 − 1
21

T
4 14. A certain dis-

crete subgroup of the group Iso↑(Q2), which we called the Apollonian group, leaves Apollonian

packings invariant. We also considered a larger group, the super-Apollonian group, that can

be used to define super-Apollonian packings. These groups had a representation using 4 × 4

integer matrices, and we found there were distiguished circle packings in which all curvatures

were integral, which we called integral Apollonian circle packings, and other packings where

the curvatures were integral and the centers×curvatures were also integral vectors, which we

called strongly integral Apollonian packings.

In this paper we generalize these results to higher dimensions. We call any set D =

(C1, C2, ..., Cn+2) of n + 2 mutually tangent spheres in n-dimensions, having disjoint interiors,

an n-dimensional Descartes configuration. Given any set of n + 1 mutually tangent (n-1)-

spheres having disjoint interiors, there are exactly two spheres tangent to all of them, cf.

Pedoe [25]. Such a set gives rise to two n-dimensional Descartes configurations. There is an

inversion operation, given by an n-dimensional Möbius transformation in the n-dimensional

conformal group Möb(n), mapping one to the other, cf. Pedoe [25, pp. 630-631]. Starting with
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an initial Descartes configuration, we can now obtain an ensemble of spheres in n-dimensions

by successively adding spheres by such reflection operations. We call the completed set of

spheres an Apollonian sphere ensemble. It is a sphere packing in dimensions 2 and 3, but for

n ≥ 4 the spheres overlap and it is not a packing, cf. Boyd [3]. However the Apollonian cluster

ensemble consisting of all n-dimensional Descartes configurations generated by the underlying

group of inversions, makes sense in all dimensions. We show that most of the results which

hold for 2-dimensional Descartes configurations and Apollonian circle packings viewed as sets

of Descartes configurations have n-dimensional analogues.

In §2 we prove characterizations of n-dimensional Descartes configurations which gener-

alize the Descartes circle theorem. We use the n-dimensional version of the curvature-center

coordinates introduced in parts I and II. For related results in spherical and hyperbolic space,

see [21].

In §3 we show that the group-theoretic constructions of parts I and II have n-dimensional

analogues, even though the associated collections of Descartes configurations no longer corre-

spond to packings. We call them Apollonian sphere ensembles. We construct the n-dimensional

analogues of the Apollonian group, and super-Apollonian group. These groups consist of in-

teger matrices in dimensions 2 and 3 but not for dimensions 4 and higher. However a related

group, the dual Apollonian group, is a group of integer matrices in all dimensions. Given a

finite set of primes S, an S-integer is any rational number whose denominator is divisible only

by powers of primes in S. The entries of the Apollonian group and super-Apollonian group

are S-integers where S consists of the prime divisors of n − 1 if n is even and 1
2(n − 1) if n is

odd.

In §4 we consider integral and rational Apollonian sphere ensembles. In all dimensions

n ≥ 2 there exist Apollonian sphere ensembles in which all spheres have curvatures which are

S-integers, where S consists of the prime divisors of n − 1 if n is even and 1
2(n − 1) if n is

odd. An Apollonian sphere ensemble is strongly rational if the curvature of every sphere in

the packing is rational, and the center of every sphere is a rational vector. We show that a

necessary and sufficient condition for a strongly rational Apollonian sphere ensembles to exist

in dimension n is that n = 2k2 or n = (2k+1)2 for some positive integer k. In these dimensions

there exist Apollonian sphere ensembles in which all curvatures and curvature-center quantities
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are S-integers for some fixed S. We do not determine an explicit choice of S, for allowable

n > 2, however.

In §5 we consider a higher-dimensional analogue of the duality operation introduced in part

II. The two-dimensional duality operator studied in part II was a geometric operation which

led to a symmetry relating the generators of the super-Apollonian group under the transpose

operation. In dimensions 3 and higher the “duality” operation no longer respects packings, and

the generators of the associated super-Apollonian group are not preserved by the transpose

operation. We show however that in higher dimensions the geometric analogue of the duality

operation encodes an “equiangularity” property instead.

In §6 we briefly study the n-dimensional variant of Coxeter’s study of loxodromic sequences

of tangent spheres, inside an Apollonian sphere ensemble.

In the conclusion §7 we state some open problems.

Notation. In this paper, following earlier notation, the symbol C refers to an n-dimensional

sphere (“n-dimensional circle”). The notion of augmented matrix ÑD introduced in §2 adds the

augmentation in the last column, while that used in [21] adds the augmentation as the second

column of the matrix. For a row vector x in Rn, its squared norm is |x|2 = xxT =
∑n

i=1 x2
i .

2. Generalized Descartes Theorem

The Descartes circle theorem generalizes to n-dimensional Euclidean space. A 3-dimensional

analogue of the Descartes formula was found in 1886 by Lachlan [19, p. 498] and rediscovered

in 1936 by Soddy [28]. The result of Soddy was extended to n-dimensions by Gossett [14].

It relates the (oriented) curvatures of n + 2 mutually tangent n-spheres, forming an oriented

Descartes configuration. Here an orientation of a sphere consists of a unit normal direction,

pointing inward or outward. The oriented curvature of an oriented sphere is ai = 1
ri

if it is

inwardly oriented and is ai = − 1
ri

if it is outwardly oriented. We define the interior of an

oriented sphere to be either its interior or exterior according to the orientation being inward

or outward, respectively.

Definition 2.1. An oriented Descartes configuration is a set of n + 2 oriented spheres in Rn,

which are mutually tangent, such that either (i) each pair of oriented interiors are disjoint, or
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(ii) each pair of oriented interiors intersect. We call these two cases (i) the positively oriented

case and (ii) the negatively oriented case.

Given a positively oriented Descartes configuration, one obtains a negatively oriented

Descartes configuration by reversing all orientations, and vice versa.

Theorem 2.1 (Soddy-Gossett Theorem) Given an oriented Descartes configuration D
in Rn, its oriented curvatures {ai : 1 ≤ i ≤ n + 2} satisfy

n+2
∑

i=1

a2
i =

1

n
(

n+2
∑

i=1

ai)
2. (2.1)

A proof of (2.2) can be found in Pedoe [25]; it also follows from Theorem 3.3 of [21]. This

result can be rewritten as

aTQna = 0, (2.2)

where a := (a1, . . . , an+2) and Qn is the symmetric matrix of the Descartes quadratic form,

given by

Qn := In+2 −
1

n
1n+21

T
n+2, (2.3)

with 1n+2 denoting a column of n + 2 1’s.

Theorem 2.2 (Converse to Soddy-Gossett Theorem) (i) Each nonzero real column vec-

tor a = (a1, ..., an+2) that satisfies the Descartes relation

n+2
∑

i=1

a2
i =

1

n
(
n+2
∑

i=1

ai)
2. (2.4)

is the set of oriented curvatures of some oriented Descartes configuration D in Rn.

(ii) Any two oriented Descartes configurations with the same curvature vector are congru-

ent, i.e. there is a Euclidean motion taking one to the other.

We will prove this result at the end of this section, after we have established some more

general characterizations of oriented Descartes configurations.

For the next result we let D denote a general configuration of n+2 oriented spheres in Rn,

not necessarily an oriented Descartes configuration. If it is an oriented Descartes configuration
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with
∑n+2

i=1 ai > 0, then one of the following holds. (i) all of a1, a1, ..., an+2 are positive; (ii)

n + 1 are positive and one is negative; (iii) n + 1 are positive and one is zero; or (iv) n are

positive and equal and the other two are zero. These four cases correspond respectively to the

following configurations of mutually tangent spheres: (i) n + 1 spheres, with another in the

curvilinear simplex that they enclose; (ii) n + 1 spheres inscribed inside another larger sphere;

(iii) n spheres with a common tangent plane (the (n + 1)-st “sphere”), with another sphere

between them; (iv) n equal spheres with two common parallel tangent planes.

Definition 2.2. (i) Given an oriented sphere C in Rn with oriented curvature a = a(C), and

center (x1, x2, ..., xn) its curvature-center coordinates w(C) are given by the row vector

w(C) := (a, c) = (a, ax1, ax2, ..., axn). (2.5)

where c = (a(C)x1, ..., a(C)xn).

(ii) We regard a hyperplane as a “degenerate” sphere. Given an oriented hyperplane H

with specified unit normal vector h := (h1, h2, . . . , hn), its curvature-center coordinates w(H)

are given by

w(H) := (0, h1, h2, . . . , hn). (2.6)

Definition 2.3. Given a configuration D = (C1, C2, ..., Cn+2) of n + 2 oriented spheres in Rn

(allowing some to be hyperplanes), define its curvature-center matrix ND to be the (n + 2)×
(n + 1) matrix whose rows are

(ND)i := w(Ci) = (a(Ci), a(Ci)xi,1, ..., a(Ci)xi,n). (2.7)

It is easy to see that the matrix N = ND determines the oriented sphere configuration D
uniquely.

Theorem 2.3 (n-Dimensional Euclidean Descartes Theorem) An (n+2)×(n+1) real

curvature-center matrix N has N = ND for some oriented Descartes configuration D if and

only if

NTQnN =

[

0 0
0 2In

]

= diag(0, 2, 2, ..., 2). (2.8)
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Futhermore this Descartes configuration is positively oriented if and only if

n+2
∑

i=1

Ni,1 > 0. (2.9)

Remark. The Soddy-Gossett theorem (2.1)appears as the (1, 1)-entry of the matrix equation

(2.8). Note that in (2.9) the value Ni,1 = ai is the oriented curvature of the i-th sphere in the

oriented Descartes configuration.

Proof. Let D be an oriented Descartes configuration, and we must prove (2.8). We first treat

the case where no curvature vanishes, i.e. the Descartes configuration contains no hyperplanes.

Later we obtain the remaining cases by a limiting process. We use matrix notation. Recall

that J = 11T , where 1 = (1, 1, ..., 1)T is an (n + 2) × 1 column vector. Let X = [xi,j ] be

the (n + 2) × n matrix of sphere centers, and set R = diag(r1, r2, · · · , rn+2), where the ri

are the oriented radii of the spheres. We are assuming that all radii ri are finite, so R is

invertible. Note that one radius is assigned a negative sign if the sphere corresponding to it

encloses the other spheres. Then A := R−1 is the diagonal matrix of curvatures. and we have

ND = [R−11, R−1X] = [A1, AX].

Without loss of generality we may rescale all coordinates by a positive constant factor λ,

sending xj to λxj and rj to λrj. This rescales the first column of ND, leaving the other columns

unchanged, and the relation (2.8) is preserved because the first column is an isotropic vector

with respect to the indefinite bilinear form given by Qn, i.e. it has inner product zero with all

vectors. We choose the rescaling to make

1T A1 =

n+2
∑

i=1

1

ri

= n. (2.10)

The Soddy-Gossett relation, which is the (1, 1)-entry of (2.8), then implies that

1T AT A1 =

n+2
∑

i=1

1

r2
i

=
1

n
(

n+2
∑

i=1

1

ri

)2 = n, (2.11)

see Theorem 3.3 of [21].

We next note that (2.8) is preserved under a translation of all sphere centers, because

this subtracts a multiple of the first column of ND from each other column, and this leaves
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NT
DQnND unchanged, again because the first column is an isotropic vector. Without loss of

generality we may now translate all the spheres to make

aT X = 1T AX = 0T , (2.12)

and since the curvatures don’t change, (2.10) and (2.11) still hold. It therefore suffices to prove

the theorem in this special case.

Assuming that (2.10)- (2.12) all hold, we have

NT
DQnND = [A1, AX]T

(

I − 1

n
11T

)

[A1, AX]

=





1T AT A1− 1
n
(1T A1)2 1T AT AX − 1

n
(1T AT1)(1T AX)

XT AT A1 − 1
n
(XT A1)(1T AX) XT AT AX − 1

n
(XT A1)(1T AX)





=

[

n − 1
n
(n2) 1T AT AX

XT AT A1 XT AT AX

]

. (2.13)

The upper left corner of this block-partitioned matrix is zero, so to prove that it equals

diag(0, 2, 2, . . . , 2) it remains to prove that

1T AT AX = aT AX = 0T , (2.14)

and

XT A2X = 2In. (2.15)

The condition that two spheres with radii ri and rj touch is that

|xi − xj |2 = (ri + rj)
2. (2.16)

If we set

D = diag(XXT ) = diag(|x1|2, ..., |xn+2|2). (2.17)

then the condition that all the spheres mutually touch is the matrix equality

D11T − 2XXT + 11T D = R211T + 2R11T R + 11T R2 − 4R2, (2.18)
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in which the (i, j)-th entry is (2.16). Multiplying by A :=R−1 on the left and on the right, we

may rewrite this as

AD1aT − 2AXXT A + a1T DA = A−11aT + 211T + a1T A−1 − 4I. (2.19)

Note that from (2.10),

f :=
1√
2
(1− a); g :=

1√
n

a (2.20)

are orthogonal unit vectors. Now define

α := 1T R1 = 1T A−11. (2.21)

Pre-multiplying (2.19) by 1T and post-multiplying by 1, and using (2.10) and (2.12), we find

that

aT D1 = α + n + 2. (2.22)

Similarly, pre-multiplying (2.19) by 1T and post-multiplying by a, we obtain

aT D1 + 1T DAa = α + 3n + 2. (2.23)

and pre-multiplying (2.19) by aT and post-multiplying by a, we obtain

aT AD1 − 1

n
aT AXXT Aa = 2n. (2.24)

From (2.22) and (2.23), we obtain

1T DAa = 2n, (2.25)

so from (2.24) we get aT AXXT Aa = 0, i.e.

aT AX = 0T . (2.26)

Now post-multiplying (2.19) by 1, we find

A−11− AD1 =
n + 2

n
a − 2 1, (2.27)

whence from (2.19), we have

AXXT A = 2In+2 − (1 − a)(1T − aT ) − 2

n
aaT = 2(In+2 − ffT − ggT ). (2.28)
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Thus 1√
2
AX is a (n + 2) × n section of an orthogonal matrix, so

XT A2X = 2In, (2.29)

which completes the proof that an n-dimensional Descartes configuration satisfies (2.8), when

all curvatures are nonzero.

It remains to consider the limiting cases of configurations in which one sphere has curvature

zero, say a = 0, i.e. it is a hyperplane H, with equation xTh = p, where h is the oriented unit

normal vector, pointing to the correct half-space. Choosing x ∈ H, one can obtain H as a limit

of a sequence of spheres with radius r centered at x + rh as r → ∞. The curvature×center

of these spheres converges to (0, h1, . . . hn), independent of the choice of x. Thus all is well

provided we define aT A := hT . If two curvatures a = b = 0, then the remaining sphere centers

must lie at the vertices of a regular simplex (with side 2
c
) and (2.8) is trivial in this case.

If a Descartes configuration is inwardly oriented, then either all curvatures are nonnegative,

or exactly one is negative, corresponding to one sphere enclosing the others. Certainly if D
has all (oriented) curvatures are positive or zero, then (2.9) holds. If one is negative, i.e. its

sphere encloses the others, then the sphere having negative oriented curvature has the smallest

curvature in absolute value, so condition (2.9) is satisfied. An outwardly oriented configuration

reverses all signs of an inward one, so (2.9) does not hold.

That the conditions (2.8) and (2.9) always yield an n-dimensional Descartes configuration

follows by reversing the above argument. First assume the first column of ND has no zero

entries. Given (2.8) holds, the curvatures satisfy the Soddy-Gossett relation (2.1), and by

rescaling and translating as necessary we may assume (2.10) and (2.12) both hold. Here the

rescaling is by a positive λ since (2.9) holds. Then f and g are orthogonal unit vectors. We

now need to prove (2.19). From (2.8) we have (2.26), so that

fTAX = gT AX = 0. (2.30)

From (2.8) again we have (2.29), so that the (n + 2) × (n + 2) matrix

[f , g,
1√
2
AX ] (2.31)

is orthogonal, hence (2.28) holds. The diagonal of the matrix AXXT A is

ADA = 2In+2 − 2 · 1

2
(In+2 − A)2 − 2 · 1

n
A2 (2.32)
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and it follows that

AD1 = A−11 + 2 1 − n + 2

n
a, (2.33)

as required. This proves (2.19) in the case that no curvature vanishes.

In the remaining case where an element in the first column of ND vanishes, any solution

M satisfying (2.8) and (2.9) arises as a limit of such ND in which all elements of the first

column are nonzero. The limit of the corresponding Descartes configuration exists and gives

the Descartes configuration corresponding to ND.

Theorem 2.3 has a further generalization, which extends the (n + 2) × (n + 1) matrix ND

to an (n + 2) × (n + 2) augmented matrix ÑD obtained by adding an additional column. The

augmented matrix ÑD involves information concerning two (oriented) Descartes configurations,

the original one and one obtained from it by inversion in the unit sphere, as we now explain.

This construction, which appears unmotivated here, was originally discovered in generalizing

the Descartes theorem to spherical and hyperbolic geometry, as described in Lagarias, Mallows

and Wilks [21, Section 4].

In n-dimensional Euclidean space, the operation of inversion in the unit sphere replaces

the point x by x/|x|2, where |x|2 =
∑n

j=1 x2
j . Consider a general sphere C with center x

and oriented radius r. Then inversion in the unit sphere takes C to the sphere C̄ with center

x̄ = x/(|x|2 − r2) and oriented radius r̄ = r/(|x|2 − r2). Note that if |x|2 > r2, C̄ has the same

orientation as C. The inversion may take some spheres to hyperplanes, and vice-versa, as well

as sending some hyperplanes to hyperplanes. In all cases,

x

r
=

x̄

r̄
.

Definition 2.4. (i) Given an oriented sphere C with oriented curvature a = a(C) and center

(x1, ...xn), with inverse oriented sphere C̄ having oriented curvature ā = a(C̄). Then its

augmented curvature-center coordinates are

w̃(C) := (a(C), c(C), a(C̄)) = (a(C), a(C)x1, ..., a(C)xn, ā). (2.34)

(ii) Given an oriented hyperplane H, with inverse H̄ in the unit sphere, its augmented

curvature-center coordinates w̃(H) are given by

w̃(H) := (a(H), c(H), a(H̄ ) = (0, h1, ..., hn, a(H̄)). (2.35)
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Definition 2.5. Given a configuration D = (C1, C2, ..., Cn+2) of (n + 2) oriented spheres in

Rn, in which some spheres may be hyperplanes, its augmented curvature-center matrix is the

(n + 2) × (n + 2) matrix ÑD with rows

(ÑD)i := ( (ND)i, āi), (2.36)

in which āi is the signed curvature of the inverse sphere C̄i to Ci.

Given an oriented sphere C, we have

ā =
|x|2
r

− r, c(C̄) = c(C) =
x

r
. (2.37)

Notice that the relation w̃(C̄) = (ā, c(C), a(C)) enables us to extend the definition of w(C)

to degenerate spheres with infinite radius; simply find w(C̄) and interchange the first and last

coordinates. If H is a hyperplane containing the origin, then H = H̄, a = ā = 0 and c is a

unit vector orthogonal to H.

Theorem 2.4 (Augmented Euclidean Descartes Theorem) An (n + 2) × (n + 2) real

matrix Ñ is the augmented curvature×center matrix ÑD of some oriented Descartes configu-

ration D in Rn if and only if

ÑTQnÑ =





0 0 −4
0 2In 0
−4 0 0



 . (2.38)

The augmented Euclidean Descartes Theorem implies one direction of the n-dimensional

Euclidean Descartes Theorem, namely that all oriented Descartes configurations satisfy (2.8).

The converse direction, that all sphere configurations satisfying (2.8) are oriented Descartes

configurations, requires an additional argument, given in the proof of Theorem 2.3.

We proceed to prove the augmented Euclidean Descartes theorem, via a preliminary lemma.

Given a real number λ, define the matrix

Kn(λ) :=





0 0 −λ
0 2In 0
−λ 0 0



 , (2.39)

Note that Kn(4) appears in the theorem above, and a calculation reveals that

Kn(λ)−1 =
1

4
Kn(

4

λ
). (2.40)
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Lemma 2.5. (i) For any (n + 2)-vector w̃, there is a sphere (or hyperplane) C in Rn with

w̃(C) = w̃ if and only if

w̃Kn(1)w̃T = 2.

(ii) The oriented spheres C and C ′ are externally tangent if and only if

w̃(C)Kn(1)w̃(C ′)T = −2.

Proof. . (i) This restates the relation bb̄ = (|x|2 − r2)/r2 = |c|2 − 1.

(ii) This is an immediate consequence of |x − x′|2 = (r + r′)2.

Proof of the Augmented Euclidean Descartes Theorem. Suppose Ñ = ÑD for some

configuration of (n+2) oriented spheres. From Lemma 2.5(ii), if the spheres all touch externally,

we have

ÑKn(1)ÑT = 4In+2 − 21n+21
T
n+2 = 4(Qn)−1 (2.41)

Next, recall the the matrix identity that if A,B are symmetric non-singular n × n matrices

satisfying WAW T = B, then 2

W TB−1W = A−1. (2.42)

Apply this identity with A = Kn(1) and W = Ñ noting that

4Kn(1)−1 = Kn(4), (2.43)

to obtain (2.38).

For the converse direction, suppose Ñ satisfies (2.38). This matrix equation implies (2.41),

using the identity (2.42). The diagonal terms in (2.41) imply, using Lemma 2.5(i), that Ñ = ÑD

for some configuration of oriented spheres D. Then Lemma 2.5(ii), implies that the spheres

touch externally pairwise.

Proof of Converse to Soddy-Gossett Theorem. (i) We start from a standardized

Descartes configuration, which is the one with two parallel hyperplanes at distance 2 from each

other, and n-unit spheres in between them, whose centers form a regular (n− 1)-simplex lying

2Clearly W must be nonsingular. Invert both sides, and multiply on the left by W T and on the right by W .
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in the hyperplane parallel to the two hyperplanes in the configuration and halfway between

them. Let its augmented matrix be W0, and oriented curvature vector be a0. The automor-

phism group Aut(Qn) is the set of all (n+2)×(n+2) matrices U such that UT QnU = Qn. The

matrix UW0 clearly satisfies (2.38) since W0 does, so by the augmented Euclidean Descartes

Theorem, the matrix UW0 is itself the augmented matrix of some oriented Descartes configura-

tion. In particular its first column Ua0 are the oriented curvatures of some oriented Descartes

configuration.

Now since Qn has signature (1, n + 1), there exists a real matrix V such that

VT QnV = QL := diag(−1, 1, 1, ..., 1).

This quadratic form, the (n + 2)-dimensional Lorentzian form, has automorphism group

O(1, n + 1), and it is known that O(1, n + 1) acts transitively on the nonzero elements of the

null cone (or light cone)

bT QLb = 0

of the Lorentzian form. Pulling back to Qn, we find that

Aut(Qn) = VO(1, n + 1)V−1

and that the action of Aut(Qn) acts transitively on the nonzero solutions to aTQna = 0. That

is, for any non-zero vector a satisfying aTQna = 0, there exists a matrix U ∈ Aut(Qn) such

that a = Ua0. Then by the argument at the beginning of the proof, UW0 is the augmented

matrix of an oriented Descartes configuration whose vector of oriented curvatures is a.

(ii) We may assume that the two Descartes configurations with the same curvature vector

a are positively oriented. This is because the orientation of a Descartes configuration is de-

termined by the signs of the ai’s, and any negatively oriented Descartes configuration can be

obtained from a positively oriented one by reversing all orientations. By Definition 2.1, one of

the following holds for a = (a1, a2, . . . , an+2). (a) all of a1, a2, . . . , an+2 are positive; (b) n + 1

are positive and one is negative; (c) n + 1 are positive and one is zero; or (d) n are positive

and equal and the other two are zero. For case (d), the theorem holds trivially. For cases (b)

and (c), suppose a1 ≤ 0. Let C ′ be the sphere that is tangent to C2, . . . , Cn+2 but not equal to
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C1. By Soddy-Gossett Theorem, the curvature a′ of C ′ equals 2(a2 + · · · + an+2)/(n − 1)− a1

which is positive and finite. Thus C ′ is positive oriented with finite radius. Since the position

of C1 is uniquely determined by that of C2, . . . , Cn+2, C
′, cases (b) and (c) are reduced to (a).

Now we treat the case (a) in which all spheres have finite radius and positive oriented

curvatures. We use the fact that an n-simplex is completely determined, up to congruence,

by the lengths of its n(n−1)
2 edges (between labelled vertices). Any set of n + 1 externally

touching spheres is rigid, because the set of sphere centers forms an n-simplex in which the

distance along the edge from center of Si to center of Sj is ri+rj. Given two oriented Descartes

configurations that have the same oriented curvature vector, the simplices determined by the

first n+1 sphere centers are congruent, hence there is a Euclidean motion taking the first n+1

spheres of one to the first n + 1 spheres of the other. Euclidean motions preserve tangencies,

and the remaining sphere of the initial configuration must therefore be mapped to a sphere

tangent to the other’s first n + 1 spheres. There are only two choices for the image sphere,

and the Euclidean motion can map to the wrong image only if the second configuration has

two tangent spheres of equal size. But if this happens, there is also a reflection of the second

configuration taking this image configuration into the other. This finishes the proof.

3. n-Dimensional Apollonian Ensembles and Group Actions

The n-dimensional (generalized) Möbius group Möb(n) is the set of conformal isomorphisms of

the n-sphere R̂n = Rn∪{∞} to itself, allowing orientation-reversing maps of the n-sphere. This

notion of orientation is unrelated to the notion of an oriented Descartes configuration in §2; in

fact the action of the n-dimensional Möbius group preserves orientation of Descartes configura-

tions. In this section all Descartes configurations will be given the positive orientation 3 unless

otherwise noted. Each group element g acts as a permutation of individual (n − 1)-spheres,

and also induces a permutation action on the set Dn of all n-dimensional positively oriented

Descartes configurations.

The following result is a straightforward generalization of Theorem 2.9 of part I. Given an

oriented Descartes configuration D, let ND denote the (n + 2) × (n + 1) matrix assigned to it

3This conforms with the notation in parts I and II, which treated positively oriented Descartes configurations
only.
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in Theorem 2.3, and let ÑD denote the (n + 2)× (n + 2) augmented matrix associated to D in

Theorem 2.4.

Theorem 3.1. There is a representation ρn : Möb(n) → GL(n + 2, R) with each ρn(g) = Gg

having determinant ±1, such that for all n-dimensional oriented Descartes configurations D,

Ñg(D) = ÑDGT
g . (3.1)

Proof. It suffices to verify Theorem 3.1 on a set of generators of Möb(n). A general element

of Möb(n) is either a similarity of Rn or the product of an inversion and an isometry of Rn,

cf. Wilker [31, §5, Corollary 1]. That is, Möb(n) is generated by the following operators:

dilatations dk(v) = kv where k ∈ R, k 6= 0, translations tv0
(v) = v + v0, where v0 ∈ Rn is a row

vector, rotations rO(v) = Ov, where O is an orthogonal matrix of size n, and the inversion in

the unit circle jC(v) = v
|v|2 .

Direct computation shows that formula (3.1) holds for dk, tv0
, rO, and jC , where the right

multiplication are given by the matrices

GT
dk

:=





1
k

0 0
0 In 0
0 0 k



 ,

GT
tv0

:=





1 v0 |v0|2
0 In 2vT

0

0 0 1



 ,

GT
rO

:=





1 0 0
0 O 0
0 0 1



 ,

and GT
jC

:= P1,n+2, the permutation matrix which permutes the first and (n + 2)th entries.

Given an n-dimensional Descartes configuration D = {C1, C2, . . . , Cn+2} one can generate

new Descartes configurations using reflection operators si = si[D] ∈ Möb(n) for 1 ≤ i ≤ n + 2,

in which si is the unique Möbius transformation that maps the sphere Ci to the other sphere

C
′

i which is tangent to all the remaining Cj, while leaving the other Cj invariant, cf. Pedoe [25,

p. 630] and Wilker [31, Theorem 3]. The Möbius transformation si[D] := jC⊥

i

is inversion with

respect to the unique (n−1)-sphere C⊥
i which passes through the n(n+1)

2 points of tangency of

the other n + 1 circles {Cj : j 6= i}. The existence of C⊥
i is given by the following well-known

result.
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Proposition 3.2. Given n + 1 mutually tangent (n − 1)-spheres {Ci : 1 ≤ j ≤ n + 1} in Rn

having disjoint interiors, there exists a unique (n − 1)-sphere C⊥ passing through the n(n−1)
2

tangency points of these spheres. At each such tangency point the normal to the sphere C⊥ is

perpendicular to the normals of the two spheres Ci and Cj tangent there.

Proof. The assumption of disjoint interiors (we allow interior to be defined as “exterior” for one

sphere) is equivalent to all n(n−1)
2 tangency points of the spheres being distinct. For dimension

n = 2 there is a unique circle through any three distinct points. For n ≥ 3 the conditions are

over-determined, since n + 1 distinct points already determine a unique (n − 1)-sphere, and

the main issue is existence.

Both assertions of the theorem are invariant under Möbius transformations (which preserve

angles), and there exists a Möbius transformation taking a set of n+1 mutually tangent (n−1)-

spheres in Rn having disjoint interiors to any other such set, cf. Wilker [31, Theorem 3]. Thus

it suffices to prove the result for a single such configuration, and we consider the configuration

of n + 1 mutually touching spheres of equal radius whose centers are at the vertices of a

regular n-simplex, and tangency points of the spheres are the midpoints of its edges. The first

assertion of the theorem holds in this case because there is an (n − 1)- sphere whose center is

at the center of gravity of this simplex, which passes through the midpoints of every edge of

the simplex. Indeed the isometries preserving an n-simplex fix the center of gravity and act

transitively on the edges. Note that for n = 2 the simplex is an equlateral triangle and C⊥ is

the inscribed circle; however for n ≥ 3 the sphere C⊥ is neither inscribed nor circumscribed

about this simplex.

For the second assertion of the proposition, in this configuration the sphere C⊥ has each

edge of the n-simplex lying in a tangent plane to the sphere; so the normal to C⊥ at the

midpoint of an edge is perpendicular to that edge. Two spheres Ci and Cj intersect at the

midpoint of an edge, and the normal to their tangent planes points along this edge; thus this

normal is perpendicular to the normal to C⊥ there.

The second assertion in Proposition 3.2 explains why the sphere C⊥ is termed “ orthogonal.”

In §5 we give formulas for the curvature and center of C⊥.

Definition 3.1. (i) The the configuration group G0
D of the Descartes configuration D is the
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group generated by the operators si associated to D, i.e.

G0
D := 〈s1[D], . . . , sn+2[D]〉 ⊆ Möb(n) . (3.2)

(ii) The ordered configuration group GD of D is the group obtained from G0
D by adjoining

as generators the set of (n + 2)! different Möbius transformations that permute the spheres in

D.

The configuration group G0
D satisfies the relations

si[D]2 = I, for 1 ≤ i ≤ n + 2 , (3.3)

but may satisfy additional relations for certain n ≥ 3. For n = 3 it satisfies the extra relations

(sisj)
3 = 1, when i 6= j. (3.4)

Definition 3.2. Given an n-dimensional Descartes configuration D = {C1, C2, . . . Cn+2}, the

n-dimensional Apollonian sphere ensemble PD is the set of (n − 1)−spheres,

PD := {s(Ci) : s ∈ G0
D and Ci ∈ D, 1 ≤ i ≤ n + 2} . (3.5)

The n-dimensional Apollonian cluster ensemble D(PD) associated to D is the set of Descartes

configurations

D(PD) = {s(D) : s ∈ GD}. (3.6)

Boyd [3, Theorem 5] observed that the Apollonian sphere ensemble has spheres with disjoint

interiors, thus giving an Apollonian sphere packing, if and only if the dimension is 2 or 3. The

spheres overlap in higher dimensions, which motivates calling it an “ensemble”, rather than a

packing. In certain dimensions n ≥ 3 Boyd [5] constructs configurations of n + 2 spheres, not

all touching, in which an associated group of inversions generates a packing of disjoint spheres.

He finds examples up to dimension 9. Later Maxwell [24] classified the possible reflection

groups involved.

On the level of Descartes configurations the Apollonian cluster ensembles D(PD) above

make sense 4 in all dimensions. Furthermore we can recursively calculate the spheres appearing
4The set D(PD) is contained in the set D′(PD) of all Descartes configurations that consist of n + 2 spheres

from the set PD, but it remains to be decided whether it is the entire set of such configurations.
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in such an ensemble using the tree structure enumerating the elemants of GD. That is, given

a Descartes configuration D we can go to a neighboring configuration D′ in the ensemble by

deleting one sphere and adding a new sphere. The coordinates of the new sphere are easily

calculated by linear operations, using the following result, derived from the n-dimensional

Euclidean Descartes theorem 2.3.

Theorem 3.3. (i) Given a configuration of n + 1 tangent spheres (C1, C2, ..., Cn+1) in Rn,

with all tangents distinct, there are exactly two spheres, call them Cn+2 and C
′

n+2, tangent to

each of the n + 1 spheres.

(ii) Let D and D′

denote the positively oriented Descartes configurations associated to

(C1, C2, ..., Cn+1) with Cn+2 and C
′

n+2 added, respectively. Then the curvatures a, a′ and cen-

ters x and x
′

of Cn+2 and C
′

n+2 are related by

a + a
′

=
2

n − 1
(a1 + ... + an+1) (3.7)

and

ax + a′x
′

=
2

n − 1
(a1x1 + ... + an+1xn+1). (3.8)

Proof. (i) This result is established in Pedoe [25], who gives references to earlier work, and

who observes that in dimensions n ≥ 3 it is a result in real algebraic geometry, rather than

complex algebraic geometry. (In dimension n ≥ 3 there may be more than two complex circles

tangent to such a configuration.

(ii). This follows from the n-dimensional Euclidean Descartes theorem 2.3. If N and N ′

are the matrices corresponding to D and D′, then Theorem 2.3 gives

NTQnN = (N ′)T QnN ′ = diag(0, 2In),

and their first n + 1 rows agree.

Suppose, more generally, that y, z,g1, . . . ,gn+1 are row vectors in Rn+1, and define the

(n + 2) × (n + 1) matrices Y and Z by

Y T := [gT
1 , . . . ,gT

n+1,y
T ],

ZT := [gT
1 , . . . ,gT

n+1, z
T ].
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Then we claim that

Y TQnY = ZTQnZ (3.9)

if and only if either y = z or

y + z =
2

n − 1
(g1 + · · · + gn+1). (3.10)

To see this, let f be an arbitrary n + 1 row vector. Then fY T QnY fT = fZTQnZfT = c

where c is a constant, so that

n((fTy)2 +

n+1
∑

i=1

(fT gi)
2) − (fTy +

n+1
∑

i=1

fTgi)
2 = c,

n((fTz)2 +

n+1
∑

i=1

(fT gi)
2) − (fTz +

n+1
∑

i=1

fTgi)
2 = c.

That is, both fTy and fTz are solutions of the equation

n(x2 +

n+1
∑

i=1

(fT gi)
2) − (x +

n+1
∑

i=1

fTgi)
2 = c.

It follows that either fTy = fTz or

fT (y + z) =
2

n − 1
fT (g1 + · · · + gn+1).

for all f ∈ Rn+1. For n ≥ 2 this is possible if and only if either y = z or the equation (3.10)

holds.

This theorem shows that starting with the curvatures and centers of a set of n+2 mutually

tangent spheres, we can step along a sequence of spheres, each tangent to some set of n + 1 of

the preceding spheres, simply by updating the a’s and ax’s using this linear recurrence. The

special role of dimensions n = 2 and n = 3 is apparant here, in terms of integrality properties

of this recurrence. In two or three dimensions, if we start with integer values of a and AX

then all succeeding values will be integers. This fails to hold in higher dimensions, because

then 2
n−1 is not an integer.

Most results in parts I and II for Apollonian packings have n-dimensional analogues for

Apollonian sphere ensembles. By definition the elements of G0
D leave the Apollonian sphere
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ensemble PD invariant. If a Descartes configuration D′ ∈ PD then PD = PD′ . The automor-

phism group Aut(P) ⊆ Möb(n) acts sharply transitively on the set D(P) of ordered Descartes

configurations in the Apollonian cluster ensemble D(P) in Rn. Under Möbius transformations

all Apollonian sphere ensembles (resp. cluster ensembles) in Rn are the same: there exists

g ∈ Möb(n) with g(P) = P ′, and g(D(P)) = D(P ′). This follows from Wilker [31, Theorem

3,p. 394].

One can also define Möbius transformations that move between Apollonian ensembles,

which have natural geometric meanings. The inversion operators s⊥i := jCi
are the inversions

with respect to the circles Ci, for 1 ≤ i ≤ n+2. The dual operator does not generalize to n ≥ 3

as a Möbius transformation, however.

We next consider the n-dimensional analogue of the Apollonian group. Recall that the

Descartes quadratic form Qn is

Qn(x) := xTQnx = xT (In+2 −
1

n
1n+21

T
n+2)x (3.11)

where 1T
n+2 = (1, 1, . . . , 1). This is a rational quadratic form with det(Qn) = − 2

n
(see

Lemma 4.3 below) and it has signature (1, n + 1). Let Iso↑(Qn) denote the group

Iso↑(Qn) := {M ∈ GL(n + 2, R) : MTQnM = Qn, and 1T
n+2M1n+2 > 0} . (3.12)

Theorem 2.3 shows that “curvature-center coordinates” describe an (oriented) Descartes con-

figuration D in R̂n by an (n + 2) × (n + 1) matrix ND. Theorem 2.6 of part I generalizes as

follows.

Theorem 3.4. The group Iso↑(Qn) is sharply transitive on the set Dn of all ordered (positively

oriented) n-dimensional Descartes configurations D.

This result is analogous to that of Wilker [31, Theorem 3, p.394], and we omit a proof.

The action of Iso↑(Qn) can be extended to the augmented matrices ÑD by left linear

multiplications. Similar to the 2-dimensional case, we have

Theorem 3.5. The actions of Iso↑(Qn) and Möb(n) on the set {ÑD : D ∈ Dn } commute

with each other.

The proof is similar to that of Theorem 2.8 of part I, and follows from Theorem 3.1.
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Definition 3.3. The (unordered) n-dimensional Apollonian group A0
n is the group of

(n + 2) × (n + 2) matrices generated by

A0
n = 〈S1, S2, . . . , Sn+2〉, (3.13)

in which

S1 =















−1 2
n−1

2
n−1 . . . 2

n−1

0
0
... In+1

0















(3.14)

and Si = P(1i)S1P(1i), where P(1i) is the permutation matrix for (1i).

The action of S1 on a Descartes configuration D = {C1, C2, . . . , Cn+2} is to send it to the

unique Descartes configuration D′ = {C ′
1, C2, . . . , Cn+2} having C ′

1 6= C1, i.e. S1ND = ND′ . It

is easy to check that

ST
i QnSi = Qn , (3.15)

and 1T Si1 > 0, so that

A0
n ⊆ Iso↑(Qn) .

The group A0
n preserves all Apollonian cluster ensembles in the sense that if M ∈ A0

n and

D is a Descartes configuration, then

M(D(PD)) = D(PD) . (3.16)

As in the two-dimensional case, one can find “integral” n-dimensional Apollonian ensembles

all of whose curvature×center coordinates lie in Z[ 2
n−2 ]. It remains to study number-theoretic

properties of such packings, generalizing §5 and results in [18].

The n-dimensional Apollonian group A0
n satisfies different relations than the two-dimensional

case. For n = 3 its generators satisfy relations associated to the “Hexlet” noted by Soddy [29],

[30]:

(SiSj)
3 = I for i 6= j. (3.17)
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The results of Maxwell [24, Table I, p. 91] imply that for n = 3 the Apollonian group is a

Coxeter group with the defining relations above. As far as we know it is an open problem to

determine a complete set of relations for the generators of A0
n for n ≥ 4.

Definition 3.4. The (unordered) inverse-Apollonian group (A0
n)⊥ on Rn is the group of

(n + 2) × (n + 2) matrices

(A0
n)⊥ = 〈S⊥

1 , S⊥
2 , . . . S⊥

n+2〉 (3.18)

in which

S⊥
1 =















−1 0 0 . . . 0

2
2
... In+1

2















(3.19)

and S⊥
i = P T

(1i)S
⊥
1 P(1i), where P(1i) is the permutation matrix for (1i).

The action of S⊥
1 on the Descartes configuration D = {C1, C2, . . . , Cn+2} is to send it to

D′′ = {C1, C
′′
2 , . . . , C ′′

n} where C ′′
j denotes the inversion of Cj in the circle C1, i.e.

S⊥
1 ND = ND′′ .

One can directly check that

(S⊥
i )T QnS⊥

i = Qn (3.20)

and 1T Si1 > 0, so that (A0
n)⊥ ⊆ Iso↑(Qn).

In dimension n = 2 one has the special relation

S⊥
i = ST

i for 1 ≤ i ≤ 4,

so that (A0
2)

⊥ = (A0
2)

T . This symmetry, given by the transpose, no longer holds for n ≥ 3. We

also note that (A0
n)⊥ is a group of integer matrices in all dimensions, while A0

n is a group of

integer matrices only for n ≤ 3.

22



Definition 3.5. (i) The (unordered) n-dimensional super-Apollonian group Ã0
n is the group

generated by A0 and (A0
n)⊥, with generators

Ã0
n := 〈S1, S2, . . . , Sn+2, S

⊥
1 , S⊥

2 , . . . , S⊥
n+2〉 . (3.21)

(ii) The (ordered) n-dimensional super-Apollonian group Ãn is obtained by adjoining to

Ã0
n the permutation matrices {Pσ : σ ∈ Sym(n + 2)}.

The super-Apollonian group Ã0
n is contained in the group of automorphs Aut(Qn, Z[ 2

n−2 ])

of Qn with coefficients in the ring Z[ 2
n−2 ] by (3.15) and (3.20). It is natural ask whether it is a

finite index subgroup of Aut(Qn, Z[ 2
n−2 ]) and, if so, to determine its index. It is also an open

problem to find a complete set of relations among the generators of Ã0
n, for n ≥ 3.

Finally, one may consider n-dimensional super-packings, which we define to be the set of

n-dimensional Descartes configurations in the orbit of a single Descartes configuration under

the action of the super-Apollonian group. The n-dimensional super-Apollonian group Ãn

lies in Mat(n+2)×(n+2)(Z[ 2
n−2 ]). Considering curvatures alone, we can start with a Descartes

configuration having curvatures (0, 0, 1, 1, . . . , 1) and construct a super-packing from it under

the action of Ã0
n. We conjecture that this super-packing contains Descartes (n + 2)-tuples

similar to all integral Descartes (n + 2)-tuples.

4. Integral and Rational Apollonian Sphere Ensembles

We now consider integrality and rationality properties for Apollonian sphere ensembles. The

Apollonian group has an integral structure in dimensions 2 and 3, and retains an S-integral

structure in all dimensions. Here S is a given finite set of primes and a rational number is

S-integral if its denominator is divisible only by powers of primes in S.

Definition 4.1. An Apollonian sphere ensemble is S-integral if the curvature of every sphere

in the ensemble is S-integral.

The recurrence relation between curvatures of two adjacent Descartes configurations, given

in Theorem 3.3 as

a1 + a
′

1 =
2

n − 1
(a2 + ... + an+2).
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shows that S-integrality is preserved under this operation, for any S containing all primes

dividing the denominator of 2
n−1 . More generally all entries of all matrices in the Apollonian

group are S-integral, where S consists of the primes dividing the denominator of 2
n−1 . The same

property persists for the super-Apollonian group in n-dimensions, since its extra generators

are all integral matrices.

Theorem 4.1. In each dimension n ≥ 2 there exists an S-integral Apollonian sphere en-

sembles with S being the set of primes dividing n − 1 if n is even and dividing n−1
2 if n is

odd.

Proof. It suffices to show that the Descartes equation

aTQna = 0 (4.22)

has a non-zero S-integral solution a for each n ≥ 2. There is such a configuration D which

is not only S-integral, but integral, with curvatures (0, 0, 1, 1, ..., 1). It consists of two parallel

hyperplanes separated by distance 2 together with n unit spheres whose centers comprise the

vertices an (n− 1)-dimensional simplex in a hyperplane parallel to the two hyperplanes in the

configuration, and lying midway between them.

The other Descartes configurations in the Apollonian sphere ensemble and super-Apollonian

sphere ensemble generated by this configuration are S-integral, where S is the set of primes

dividing the denominator of 2
n−1 , since they have associated matrices GND for some G in the

Apollonian group.

The Apollonian group and super-Apollonian group act on the set of S-integral Apollonian

packings. For dimension n = 2 various number-theoretic questions related to the integers ap-

pearing in such packings were studied in [18]; in dimensions n ≥ 3 the corresponding problems

all remain open.

Next we consider S-integrality involving the sphere centers as well.

Definition 4.2. (i) An oriented Descartes configuration is strongly S-integral if if its associated

matrix ND has all entries S-integers.

(ii) An oriented Descartes configuration D is super-strongly S-integral if its associated

augmented matrix ÑD is S-integral.
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We extend these definitions to Apollonian packings.

Definition 4.3. (i) An Apollonian sphere ensemble is strongly S-integral if every Descartes

configuration D in the packing has S-integral matrix ND.

(ii) An Apollonian sphere ensemble is super-strongly S-integral if every Descartes configu-

ration D in the packing has S-integral augmented matrix ÑD.

If a single Descartes configuration is strongly (resp. super-strongly) S-integral, then the

Apollonian packing it generates is strongly (resp. super-strongly) S′-integral, where S′ consists

of S together with all primes dividing the denominator of 2
n−1 . For this reason it suffices to

consider S-integrality for individual Descartes configurations.

For dimension n = 2, in part II we showed that strongly S-integral Descartes configurations

existed, with S= 1, and that strongly integral Apollonian packings also existed. We also

completely classified them, in the sense that we showed [17, Theorem 3.5] that under the

action of the super-Apollonian group, the set of all strongly integral Descartes configurations

formed exactly eight orbits ([17, Theorem 3.5]) .

In dimension n = 2, every strongly integral Descartes configuration is actually super-

strongly integral! To show this it suffices to consider one Descartes configuration in each of

the eight orbits above and verify that it has an integral augmented matrix ÑD, because the

super-strong integrality property is preserved under the action of the super-Apollonian group

(n = 2). For example, the strongly integral Descartes matrix

ND =









−1 0 0
2 −1 0
2 1 0
3 0 2









,

extends to the augmented Descartes matrix

ÑD =









−1 0 0 1
2 −1 0 0
2 1 0 0
3 0 2 1









.

Similar integrality formulae hold for the other seven cases.

The existence of stongly S-integral Descartes configurations for some S is the same as the

existence of Descartes configurations D having a rational augmented matrix ÑD.
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Definition 4.4. A Descartes configuration D is rational if and only if its non-augmented

matrix ND is a rational matrix.

In this definition we could, alternatively, require that the augmented matrix ÑD be rational,

because the matrix ND is rational if and only if the augmented matrix ÑD is rational. Indeed,

the last column of ÑD is calculated from the entries of ND using inversion in the unit circle,

and this map sends the set of spheres with rational centers and rational curvatures into itself.

According to the augmented Euclidean Descartes theorem 2.4, rational Descartes configu-

rations occur exactly in those dimensions n in which there exists an invertible rational matrix

Ñ such that

ÑTQnÑ = Q̃n :=





0 0 −4
0 2In 0
−4 0 0



 , (4.23)

that is, the quadratic form Qn is rationally equivalent to the form Q̃n. We use this fact to

show that in most higher dimensions rational Descartes configurations do not exist.

Theorem 4.2. A necessary condition for a rational Descartes configuration to exist in di-

mension n is that n = 2k2 or (2k − 1)2 for some positive integer k.

To establish this result, we use the following lemma.

Lemma 4.3. Given a Descartes configuration D in Rn its associated augmented matrix ÑD

has determinant satisfying

det(ÑD)2 = n2n+3. (4.24)

Proof. This follows from taking determinants in (2.38), since the right side has determinant

−2n+4 while the left side has determinant det(ÑD)2 det(Qn) and

det(Qn) = − 2

n
. (4.25)

To verify this last statement, we apply the following row operations to the matrix Qn. Add

rows 2 through n + 2 to the first row, to get a new first row that has all entries − 2
n
. Then add

this row multiplied by −1
2 to each of the other rows. Aside from the first row, the first column

is zero, and the lower right (n + 1) × (n + 1) matrix is the identity. But this matrix obviously

has determinant − 2
n
.
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Proof of Theorem 4.2. A necessary condition for the existence of a Descartes configuration

D whose augmented matrix ÑD has rational entries is that det(ÑD) be rational. This requires

that n2n+3 be the square of a rational number. By Lemma 4.3, this holds for even n if and

only if n is twice a square, and for odd n if and only if n is an (odd) square.

We now prove the converse to Theorem 4.2.

Theorem 4.4. In each dimension n ≥ 2 which has n of the form n = 2k2 or (2k − 1)2 for

some positive integer k, there exists a rational Descartes configuration.

This theorem is proved using the well-developed theory of equivalence of rational quadratic

forms, cf. Cassels [6] or Conway [8]. We write Q ≃Q Q′ to mean that the (rational) quadratic

form Q is rationally equivalent to Q′. To apply the decision procedure, we first diagonalize

Qn over the rationals, which we do for all n ≥ 2.

Lemma 4.5. For each n ≥ 2, the Descartes quadratic form Qn = In+2 − 1
n
1n+21

T
n+2 has

Qn ≃Q diag(
n − 1

n
,
n − 2

n − 1
, · · · ,

2

3
, 2, 2, 2,−2). (4.26)

Proof. We diagonalize the quadratic form as in Conway [8, pp. 92–94]. Set

M (n+2) := Qn = (x0 + y0)In+2 − y01n+21
T
n+2 ,

where x0 = n−1
n

, y0 = 1
n
. At the j-th stage of reduction we will have

Qn ≃Q diag(d1, d2, . . . , dj ,M
(n+2−j)) ,

where

M (n+2−j) = (xj + yj)In+2−j − yj1n+2−j1
T
n+2−j (4.27)

for certain xj , yj . The reduction step is

(W (j))T M (n+2−j)W (j) = diag(dj+1,M
(n+1−j)) . (4.28)

To specify W (j) we first let Wm(α) be the m × m real matrix

Wm(α) =





1 α · · ·α

0 Im−1



 .
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and we set

W (j) := Wm+2−j

(

yj

xj

)

. (4.29)

Substituting this in (4.28), its left side yields a matrix with the form of the right side with

dj+1 = xj ,

and with xj+1, yj+1 given by the recursion

yj+1 = yj +
y2

j

xj

, (4.30)

xj+1 + yj+1 = xj −
y2

j

xj

. (4.31)

Solving this recursion, by induction on j, one obtains

xj =
n − j − 1

n − j
, 0 ≤ j ≤ n − 2,

yj =
1

n − j
, 0 ≤ j ≤ n − 2 .

This yields the diagonal elements

dj =
n − j − 1

n − j
, 1 ≤ j ≤ n − 3 , (4.32)

with

Qn ≃Q diag(
n − 1

n
, . . . ,

2

3
, d2,M

(4)) .

We find d2 = x3 = 2
3 and

M (4) = (xn−2 + yn−2)I4 − yn−2141
T
4 =

1

2









1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1









= Q2 .

For the final step in the reduction we use

W T (Q2)W = diag(2, 2, 2,−2) (4.33)

with

W =









1 −1 −1 1
−1 1 −1 1
−1 −1 1 1

1 1 1 1









.
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This completes the reduction.

Proof of Theorem 4.4. The theorem is equivalent to proving that if n = 2k2 and n = (2k−1)2

then

Qn ≃Q Q̃n :=





0 0 −4
0 2In 0

−4 0 0



 .

We begin by noting the rational equivalence

Q̃n ≃Q diag(2, 2, · · · , 2,−2) = diag(2In+1,−2) (4.34)

via the matrix

W0 =
1

2





1 0 1
0 2In 0
1 0 1



 .

Thus the theorem is equivalent to showing that Qn is rationally equivalent to diag(2, 2, 2, ...,−2).

Lemma 4.5 gives

Qn ≃Q (
n − 1

n
,
n − 2

n − 1
, . . . ,

3

2
, 2, 2, 2,−2) ,

≃Q (n(n − 1), (n − 1)(n − 2), . . . , 3 · 2, 2, 2, 2,−2) , (4.35)

using at the last step a conjugacy by W = diag(n, n − 1, . . . , 2, 1, 1, 1, 1).

The Hasse-Minkowski theorem says that two rational quadratic forms of the same dimension

are equivalent if and only they have the same signature, the ratio of their determinants is a

nonzero square, and they are p-adically equivalent for all primes p, cf. Conway [8, p. 96ff].

Lemma 4.5 shows that the signatures of Qn and diag(2, 2, 2, ..., 2,−2) agree, and the hypothesis

n = 2k2 or n = (2k − 1)2 is exactly the condition that the ratio of their determinants is a

square of a rational, and it remains to check the p-adic invariants.

The p-adic invariants σp(Q) are defined ( mod 8), and for a diagonal form Q = diag(d1, d2, . . . , dn),

one has

σp(Q) ≡
n

∑

j=1

σp(dj) (mod 8) . (4.36)

We recall formulas for σp(d) when d ∈ Z, cf. Conway [8, pp. 94–96]. Writer d = bpl with

(b, p) = 1. For p ≥ 3, and an even power l = 2j,

σp(d) ≡ p2j ≡ 1 (mod 8) , (4.37)
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while for an odd power l = 2j + 1,

σp(d) ≡







p (mod 8) if
(

b
p

)

= 1 ,

p + 4 (mod 8) if
(

b
p

)

= −1 .
(4.38)

If p = 2 then for an even power l = 2j,

σ2(d) ≡ b (mod 8) , (4.39)

while for an odd powerl = 2j + 1,

σ2(d) ≡
{

b if b ≡ ±1 (mod 8) ,

b + 4 if b ≡ ±3 (mod 8) .
(4.40)

Now (4.35) gives

σp(Qn) ≡
n−3
∑

j=0

σp((n − j)(n − j − 1)) + 3σp(2) + σp(−2) (mod 8)

while (4.34) gives

σp(Q̃n) ≡
n−3
∑

j=0

σp(2) + 3σp(2) + σp(−2) (mod 8) .

To show equality of these, it suffices to show that for all p,

n−3
∑

j=0

σp(2) ≡
n−3
∑

j=0

σp((n − j)(n − j − 1)) (mod 8) (4.41)

holds whenever n = 2k2 or n = (2k − 1)2.

Consider first the case that p ≥ 3 is odd. Then each σp(2) = 1, so

n−3
∑

j=0

σp(2) ≡ n − 2 (mod 8) . (4.42)

Now if p ∤ (n − j)(n − j − 1) then σp((n − j)(n − j − 1)) = 1. The terms divisible by p occur

in blocks of two consecutive terms, and we claim that if p divides j then

σp((j + 1)j) + σp(j(j − 1)) ≡ 2 (mod 8). (4.43)

Suppose j = bpl, with where (b, p) = 1 and l ≥ 1. If l is even, both terms on the left side of

(4.43) are 1 (mod 8) by (4.37), while if K is odd, then if p ≡ 1 (mod 4), then
(

−1
p

)

= 1, so
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the two terms both have values p (resp. p + 4) according as
(

b
p

)

= 1 (resp. -1), and their sum

is 2p ≡ 2 (mod 8). If p ≡ 3 (mod 4), then
(

−1
p

)

= −1, so exactly one of
(

±b
p

)

takes the value

−1, and the two terms add up to 2p + 4 ≡ 2 (mod 8). Thus (4.43) follows. Thus adding up

the right side of (4.41) and grouping terms divisible by p in consecutive pairs gives

n−3
∑

j=0

σp((n − j)(n − j − 1)) ≡
n−3
∑

j=0

1 ≡ n − 2 (mod8) . (4.44)

There remains an exceptional case where p|n, in which case n(n − 1) is divisible by p and is

an un-paired term. Since n = 2k2 or (2k − 1)2, thus pl‖n with l even, hence σp(n(n − 1)) = 1

in this case, and (4.44) holds. This establishes (4.41) for p ≥ 3.

Now consider the case p = 2. Certainly σ2(2) = 1 so (4.42) holds. We claim that

σ2((2j + 1)2j) + σ2(2j(2j − 1)) ≡ 0 (mod 8) . (4.45)

Write 2j = 2lb with b odd, and by checking all possible cases using (4.39) and (4.40), one

verifies (4.45). Suppose n = 2k2. Then in the right side of (4.41) all terms pair except the first

and last, and (4.45) yields

n−3
∑

j=0

σ2((n − j(n − j − 1)) ≡ σ2(n(n − 1)) + σ2(3 · 2)

=

{

−1 + −1 if k ≡ 0 (mod 2) ,

1 + −1 if k ≡ 1 (mod 2)

= n − 2 (mod 8) ,

so (4.41) holds. If n = (2k − 1)2 ≡ 1 (mod 8) then all term pair except the last term, and

(4.45) yields
n−3
∑

j=0

σ2((n − j)(n − j − 1)) = σ2(3 · 2) ≡ −1 (mod 8) ,

so (4.41) holds in this case.

In the dimensions covered by Theorem 4.4, rational Descartes configurations exist. There-

fore there exist finite sets S for which S-integral configurations exist. As long as such an S

is enlarged to include all prime divisors of n − 1, all configurations in the Apollonian cluster

ensemble generated by such a configuration will also be S-integral. One can then raise the

question of classifying such ensembles; this appears difficult.
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Theorem 4.4 establishes the existence of rational Descartes configurations in the given

dimensions, but does not give a bound for the denominators of the rationals appearing in these

configurations, i.e. an explicit value for S. As far as we know, it could be that in dimensions

n = 2k2 and (2k + 1)2 there exist super-strongly integral Descartes configurations, i.e. one

could take S = 1. (Note that, if such configurations exist for n > 2, the Apollonian packing

containing them would not inherit the super-strong integrality property.) We leave this as an

open problem; results on it should be attainable using the theory of integral quadratic forms.

5. Duality Operator

In two dimensions we studied in part II a duality operation d based on orthogonal spheres.

This operator had an analogue operator D which was contained in the normalizer of the super-

Apollonian group.

The duality operation based on orthogonal spheres generalizes to higher dimensions as

follows. Given n + 1 mutually tangent spheres in n dimensions, there is a unique sphere

through their points of tangency, and this sphere is orthogonal to each of the given n + 1

spheres, see Proposition 3.2. Thus, given a Descartes configuration of n + 2 spheres Ci, we get

a system of n + 2 “orthogonal” spheres

D⊥ := {C⊥
1 , . . . , C⊥

n+2},

where C⊥
i is associated to the n + 1 spheres obtained by deleting Ci. When n = 2 the new

spheres are mutually tangent and give a new Descartes configuration; this gives the “duality”

operation D studied in parts I and II. For n ≥ 3, however, the spheres are not mutually

tangent. In fact for all n their curvatures satisfy a relation similar in form to the original

(two-dimensional) Descartes relation, namely

n+2
∑

i=1

q2
i =

1

2
(
n+2
∑

i=1

qi)
2, (5.1)

and not the Soddy-Gossett relation (2.1). (We omit a proof of this formula.) In particular, for

n ≥ 3 given a Descartes configuration D, the set D⊥ := {C⊥
1 , . . . , C⊥

n+2} of orthogonal spheres

is not a Descartes configuration, and the duality operation is not in Iso↑(Qn).
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The question arises, are these n + 2 “orthogonal” spheres in any special relation to one

another? We answer this in terms of an inversive invariant of two arbitrary (not necessarily

tangent) oriented spheres.

Definition 5.1. (i) The separation between two oriented spheres C1 and C2 with finite radii

r1 and r2, and with centers distance d apart, as

∆(C1, C2) :=
d2 − r2

1 − r2
2

2r1r2
. (5.2)

provided both spheres are inwardly oriented or outwardly oriented, and is otherwise the nega-

tive of the right side of this formula.

(ii) The separation of an oriented sphere C1 of finite radius r1 and an oriented hyperplane

C2 is

∆(C1, C2) :=
d

r1
. (5.3)

where d is the (signed) distance from the center a1 of C1 to C2, measured so that d ≥ 0 if a1

is not in the interior of C2 and C1 is inwardly oriented, or if a1 is in the interior of C2 and C1

is outwardly oriented, and d < 0 otherwise.

(iii) The separation between two oriented hyperplanes C1 and C2 is

∆(C1, C2) := − cos θ. (5.4)

where θ is the dihedral angle between the designated normals at a point of intersection.

The separation of two spheres is an inversive invariant ; that is,

∆(g(C1), g(C2)) = ∆(C1, C2), (5.5)

holds for any Möbius transformation g. This concept appears in Boyd [3], who introduced

the term separation for it, but the concept 5 was used earlier by Mauldon [23] in 1962, who

used the term inclination to mean the negative of ∆(C1, C2), and showed it was an inversive

invariant.
5 The idea of considering such an inversive invariant traces back to work of Clifford [7] in 1868 and of Darboux

[13] in 1872. However, neither Clifford’s nor Darboux’ definition was precisely ∆(C1, C2). Clifford defines the
power of two spheres to be the square distance of their centers less the sum of the squares of their radii, i.e.,
d2

− r2

1 − r2

2 , and Darboux also uses the same quantity, [13, p.350].
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The separation ∆(C1, C2) of two spheres can be expressed in terms of their augmented

curvature-center coordinates as

∆(C1, C2) =
1

2
w̃(C1)

T Kn(1)w̃(C2)

= −1

2
(ā(C1)a(C2) + a(C1)ā(C2)) + a(C1)a(C2)

n
∑

j=1

xj(C1)xj(C2), (5.6)

where Kn(1) is given in (2.39). This formula can be proved by a simple algebraic calculation,

cf. [20]. Using it, one can check that for two tangent spheres C1 and C2, ∆(C1, C2) = 1, if

(1) C1 and C2 are externally tangent, and both are inwardly oriented or outwardly oriented,

or (2) C1 and C2 are internally tangent and one is inwardly oriented, the other is outwardly

oriented. In all other cases two tangent spheres have ∆(C1, C2) = −1, and orthogonal spheres

are those with ∆(C1, C2) = 0.

From Proposition 3.2 one obtains

∆(C⊥, Cj) = 0 for 1 ≤ j ≤ n + 1, (5.7)

using (5.4), and these relations determine C⊥ up to orientation. It can also be shown that if a

set of tangent spheres {C1, ..., Cn+1} have oriented curvatures an+1 = (a1, ..., an+1), and centers

xj , then for either orientation the orthogonal sphere C⊥ has oriented curvature q satisfying

q2 =
1

2





1

n − 1
(

n+1
∑

j=1

aj)
2 −

n+1
∑

j=1

a2
j



 , (5.8)

and (oriented) center x satisfying

qx = −an+1(
1

2
Qn−1)C, (5.9)

in which C is an (n + 1) × n matrix whose j-th row is ajxj , and Qn−1 is the Descartes form.

An oriented Descartes configuration in Rn is characterized in terms of separation as a set

of n + 2 oriented spheres each pair of which has ∆(Ci, Cj) = 1, when i 6= j. Thus such a

configuration has the following property.

Definition 5.2. A collection of oriented spheres is equiseparated if all values ∆(Cj, Ck) with

j 6= k are equal.
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The equiseparation property can also be viewed as an equiangularity property, because for

two oriented circles that intersect or touch one has

∆(C1, C2) = − cos θ, (5.10)

where θ is the angle between oriented normals at a point of intersection of the two circles.

We now show the duality operation preserves equiseparability in all dimensions; a further

generalization appears in [20].

Theorem 5.1 (Equiseparation Theorem) Given an oriented Descartes configuration D =

(C1, C2, ..., Cn+2) in Rn, if the dual spheres are properly oriented then the (oriented) dual

configuration (C⊥
1 , C⊥

2 , ..., C⊥
n+2) is equiseparated, with

∆(C⊥
j , C⊥

k ) =
1

n − 1
if j 6= k. (5.11)

Proof. In this result, the orientation assigned to the dual spheres in the theorem depends on all

n + 2 spheres in the Descartes configuration, and the orientation of C⊥
j cannot be consistently

assigned from the n+1 oriented spheres {Ci : i 6= j} alone. If all n+2 spheres Cj are inwardly

oriented, then n + 1 of the spheres C⊥
j will be inwardly oriented and one outwardly oriented,

the last being the one of largest radius. If all but one of the n+2 spheres are inwardly oriented,

and one outwardly oriented, then all n + 2 spheres C⊥
j will be inwardly oriented.

Since the result is invariant under inversion, it suffices to prove it for a single Descartes

configuration. We consider the special oriented Descartes configuration where the curvatures

are (0,0,1,1, . . . , 1). Here we have two parallel planes, which we take as x1 = ±1, and n unit

spheres, all with centers on the plane x1 = 0. Their centers form a regular simplex in this

plane. We may take one of these centers at (0, ξ, 0, 0, . . . ) where ξ2 = 2(n − 1)/n. Consider

the “orthogonal” spheres that pass through the point T = (1, ξ, 0, 0, . . . , 0). There are n such,

and all but one of them is a plane containing T , (−1, ξ, 0, 0 . . . , 0), and the centers of all but

one of the original unit spheres. Since these centers are the vertices of a regular simplex, these

n − 1 “orthogonal” planes are equiangular satisfying (5.10), where θ is the angle between the

normals of two facets of a regular n-simplex. It follows that these orthogonal planes satisfy

(5.11). The final “orthogonal” sphere through T is orthogonal to the plane x1 = 1 and all

the n original unit spheres. Its center is thus (1, 0, 0, . . . ) and its radius is ξ. Hence it is also
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equiangular with the n − 1 “orthogonal” planes, with cos θ = − 1
n−1 . (These angles are all

eaqual to the one formed by connecting the vertices of a regular simplex to its center, i.e. the

angle in a triangle of sides ξ, ξ and 2.) Finally, the last two “orthogonal” spheres meet at the

same angle in the plane x1 = 0.

6. Loxodromic Sequences of Tangent Spheres

As our final topic we turn to a concept studied by Coxeter [11], concerning loxodromic sequences

of tangent spheres. Coxeter defines a loxodromic sequence of spheres as being a sequence where

each successive set of n + 2 spheres are mutually tangent. Thus if the sequence of curvatures

is

. . . a−2, a−1, a0, a1, a2, . . .

then each successive set of n + 2 spheres satisfies the Soddy relation aT Qna = 0, so that by

Theorem 2.3 they also satisfy a linear recurrence

ai + ai+n+2 =
2

n − 1
(ai+1 + . . . + ai+n+1). (6.1)

For n = 3, Coxeter proves in [12] that the sequence

. . . ∆0,−2 , ∆0,−1 , ∆0,0 , ∆0,1 , ∆0,2 , . . .

where ∆ij = ∆(Ci, Cj) is the separation between circles Ci and Cj, also satisfies the linear

recurrence (6.1). This is slightly unexpected, since while ∆ is dimensionless, it involves the

square of the distance between the centers, while the other quantities that obey the recurrence

are the curvatures ai and aixi, which is the product of curvatures and centers. We prove a

slightly more general result.

Theorem 6.1 (Separation Formula) Given n + 1 mutually tangent spheres C1, . . . Cn+1

with disjoint interiors, let C0 and Cn+2 be the two spheres that are tangent to each of these.

Let C ′ be an arbitrary sphere, and let ∆i be the separation between Ci and C ′. Then

∆0 + ∆n+2 =
2

n − 1
(∆1 + . . . + ∆n+1). (6.2)
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Proof. Without loss of generality, we may assume that all the curvatures qare non-zero, be-

cause the separation is invariant under inversions. Furthermore, we may assume that the center

of C0 is the origin, and that its curvature a0 is not zero. Let the curvatures of C1, . . . , Cn+2, C
′

be a1, . . . , an+2, a
′, and let their centers be x1, . . . ,xn+2,x

′. Then

∆i =
1

2

(

aia
′|xi − x′|2 − ai

a′
− a′

ai

)

=
1

2

(

a′
(

ai|xi|2 −
1

ai

)

+ ai

(

a′|x′|2 − 1

a′

)

− 2a′aix
T
i x′

)

.

We know that each of the sequences (a0, . . . , an+2), (a0x0, . . . , an+2xn+2) satisfy the linear

recurrence, so it is sufficient to prove that the quantities

ti = ai|xi|2 −
1

ai

do also. Notice that the dependence on a′ and x′ has been eliminated. Thus t0 = −1/a0, and

for i > 0,

ti = ai(
1

a0
+

1

ai

)2 − 1

ai

=
ai + 2a0

a2
0

.

Therefore the vector tT = (t0, t1, . . . , tn+1) is given by

t =
1

a2
0

(a + 2a0(1n+2 − 2e0)),

where aT = (a0, . . . , an+1), e0
T = (1, 0, . . . , 0). Simple algebra now verifies that tT Qnt = 0.

Hence the t’s also satisfy the linear recurrence (6.1).

As Coxeter (1997,[12]) points out, if we are in two dimensions and S′ = S0, then

(∆0,∆1,∆2,∆3) = (−1, 1, 1, 1) and the sequence extends uniquely to

−1, 1, 1, 1, 7, 17, 49, 145, 415, 1201, 3473, 10033, 28999, 83809, 242209, 700001, 2023039, . . .

(sequence A045821 in Sloane [27]). In three dimensions the corresponding (unique) sequence

is

−1, 1, 1, 1, 1, 5, 7, 13, 25, 49, 89, 169, 319, 601, 1129, 2129, 4009, . . .

(this is sequence A027674 [27]).
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7. Conclusion

This series of papers studied various group theoretic problems raised by geometrically de-

fined groups associated to Apollonian packings. It obtained fairly complete answers when the

dimension n = 2, but left many open problems, particularly in dimensions n ≥ 3.

In the case of the Apollonian group and super-Apollonian groups in n-dimensions there

remain a number of open questions. One is the problem of determining their exact normalizers.

Another is that of establishing the index of the super-Apollonian group in the automorphism

group Aut(Qn, Z[ 2
n−1 ] ). It is also an open problem to obtain finite presentations for these

groups, for n ≥ 3. We noted that for n ≥ 4 the Apollonian group no longer produced a

sphere-packing. Is this related to the non-integral nature of the matrices in the Apollonian

group, for n ≥ 4? Can one define a discontinuous action of this group on a real space ×
p-adic spaces corresponding to primes dividing the denominator of 2

n−1? There also remain

open questions connected with the fact that these groups are integral over the ring Z[ 2
n−1 ].

Various number-theoretic questions in this direction are raised in the concluding section of

the companion paper [18]. Finally, in §4 we showed that S-integral Descartes configurations

exist in dimensions of the form n = 2k2 or (2k − 1)2, for some finite set S of primes, which

depends on the dimension, but we did not determine an explicit set S that can be used in

such dimensions. It is an open problem to find a minimal set S. In particular do there exist

Descartes configurations which are super-strongly integral (S = {1}) in all such dimensions?

This paper treated Apollonian packings in Euclidean space. Such packings can also be

constructed in spherical n-space (positive curvature), and in hyperbolic n-space (negative cur-

vature). In spherical and hyperbolic space the notion of center and radius of a sphere change,

but there exist suitable analogues of (augmented) curvature-center coordinates for Descartes

configurations, see [21]. Various questions raised in this paper may have interesting analogues

in these geometries.
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