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Abstract

A video server normally targets at providing abundant bandwidth access and massive storage in supporting large-scale video

archival applications. Its performance is sensitive to the deployment of the stored contents. In this paper, we propose a video caching

policy for a video server, based on the knowledge of video profiles, namely: access rate, video size and bandwidth, tolerable rejection

probability, and rental price. We consider the video server as having a hierarchical architecture which consists of a set of high-speed

disk drives located in the front end for caching a subset of videos, and another set of high-capacity tertiary devices located in the

back end for archiving the entire video collection. The front-end disks particularly, are organized together by employing a proposed

data striping scheme, termed the adaptive striping (AS), which is flexible on heterogeneous disk integration. The proposed policy

determines what video set should be cached, and how to arrange them in the front-end disks with two objectives in mind: (1) offering

differentiated service grades conforming to the video profiles as well as (2) maximizing the overall system revenue. We simulate the

system with various configurations, and the results affirm our effective approach.

� 2003 Elsevier Inc. All rights reserved.
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1. Introduction

It has been one of the major design goals for video

servers to provide abundant bandwidth access and

massive storage in supporting large-scale video archival

applications. Take a 100-min MPEG-1 compressed

video for example. We need about 1 Gbyte storage space

and a 1.5 Mbps bandwidth access respectively, to store
and play it. Offering 1000 concurrent accesses on 1000

videos, we will need at least 1 Tbyte storage space and a

1.5 Gbps bandwidth access. Facing such enormous

performance requirements, a video server is usually built

in a two-layer hierarchical architecture, as shown in

Fig. 1. It consists of a set of high-speed disk drives,
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collectively called a cache, deployed in the front end, and

a set of high-capacity tape drives, CD towers or juke-

boxes, collectively called an archive, deployed in the

back end. A high-speed LAN connects both ends. The

cache further connects to a group of subscribers (or

clients) by LAN or WAN. When a client requests a vi-

deo from the video server, the request is first submitted

to the cache. The video stream is then delivered to the
client right away, if it is present in the cache and a video

channel between the cache and the client is available. If

the video channel is available, but the video is absent

from the cache, the archive has to pre-load the video

into the cache. After waiting for a small initial amount

of data to build up, the cache starts to deliver the video

stream to the client simultaneously. With this architec-

ture, the server can support both high bandwidth access
and massive storage at the same time.

However, in order to take full advantage of these

resources, many management issues need to be taken

good care of (Lee, 2002; Ramakrishnan et al., 1995). In
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Fig. 1. The hierarchical architecture of a video server in a video

archival application.
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this paper, we particularly deal with the cache organi-

zation and video caching policies in this hybrid archi-

tecture. In the current technology, there is no single

commercial disk drive that can support such a high

bandwidth as required by the applications, as far as

cache organization is concerned. Thus many disks are

likely to be deployed. How to organize them to effec-

tively scale up the bandwidth access is an important is-
sue. One possible approach is to allow the disks to

operate independently. A single disk can only drive a

limited number of video streams (e.g. around 15 1.5

Mbps video streams for a SCSI-II disk). If the load of a

specific disk is getting closer to its limit, we can divert

the load to other lighter-loaded disks by replicating the

same videos on them. A number of previous works

(Brubeck and Rose, 1996; Dan and Sitaram, 1995;
Federighi and Rowe, 1994; Yu et al., 2000; Lie et al.,

2000; Wolf et al., 1997; Won and Srivastava, 1999; Su-

mari et al., 2002) have elaborated on this issue in detail,

with the objectives of maximizing the video accepting

rate or minimizing the pre-load overhead by balancing

the disk load. However, the cost of such replicas is

considered to be high, due to large video sizes. Dan and

Sitaram (1995) further proposed a scheme which allows
dynamically replicating partial videos to reduce this

cost.

Another cache organizing technique frequently men-

tioned in the literature is employing a set of disks which

are interconnected through an internal disk bus in a

single cabinet or an external high speed network (e.g.

high performance fiber channel arbitrated loop (FC-AL)

or serial storage architecture (SSA)) to create a striping
group (Tong and Huang, 1998; Tang et al., 2001;

Gemmell et al., 1995; Ghandeharizadeh et al., 1994;

Kim et al., 1997; Lee, 2001; Zhou and Xu, 2002). A

video is divided into small and regular sized striping

units, which are striped across the striping group in a

round-robin fashion. A video is re-constructed by

retrieving striping units from disks either in sequence or

in parallel. Theoretically, the number of video streams
that can be delivered by a striping group is linearly

proportional to the disk number in it. The disks in the
same striping group prefer to be homogeneous if strip-

ing units have a fixed size, because the fixed-size con-

straint forces all disks to use the same amount of

bandwidth and storage. A system with heterogeneous

disks can be partitioned into several striping groups with

homogeneous disks in each of them. Each striping group
can be externally treated as a large single disk. With

such an integrated view, data replication and striping

can be applied in various ways. Hsieh et al. (1995) and

Wang et al. (1997) examined such a combination and

showed how to decide on the number of disks, the way

of organizing a striping group, and the number of video

replicas. However, the fundamental weakness of data

striping is that a single-disk failure risks the entire
striping group. Therefore, some fault-tolerance mecha-

nisms (Chen et al., 1997) have to be cooperatively em-

ployed.

The video caching policy is to determine which videos

should be stored in the cache. Taking the commercial

video rental, for example, a number of video profiles are

usually collectable or policy-dependent, such as access

rate, video size and bandwidth, tolerable rejection
probability and rental price. The ultimate objective that

we are interested in is maximizing the overall revenue.

That is, whether videos should be cached or not, should

depend on their revenue contribution formulated by

these video profiles. Several works have been done with

different objectives in mind, such as minimizing pre-load

overhead (Brubeck and Rose, 1996), maximizing hit-

ratios (Federighi and Rowe, 1994; Li et al., 2001), disk
load balancing (Hwang and Chi, 2001; Brubeck and

Rose, 1996; Chan and Tobagi, 1999, 2001; Dan and

Sitaram, 1995; Lee, 2002; Ramakrishnan et al., 1995;

Wolf et al., 1997; Won and Srivastava, 1999) and sup-

porting a given video profile (Wang et al., 1997). How-

ever, these objectives do not necessary lead to revenue

maximization.

In addition to revenue maximization, offering differ-
entiated service grades is another important design

concern. Video requests arrive in a stochastic process

(Tang et al., 2001; Ramakrishnan et al., 1995; Sonah

and Ito, 2000). Each video playback takes a long time

period. If resources are unavailable for serving requests

at this moment, people usually give up the requests and

then check back some other times, rather than tolerating

a long wait. The perceivable rate of rejecting a request
on a video thus means the service grade/quality of that

video. Of course, such a value should not be more than

the tolerable rejection rate associated with that video.

Once the request is admitted, the server plays the video

by allocating the requested bandwidth and storage to it.

Videos of different categories are usually intentionally

assigned with different service grades, in accordance

with a specific pricing policy. For realizing various ser-
vice grades, we need to devise some resource reservation

plan based on the video profiles to set up the cache so
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that, during runtime, requests receive a deserved service

quality.

Therefore, our aim is to look for a server framework

that can achieve both objectives: (1) maximizing the

system revenue and (2) providing differentiated service

grades, at the same time. We particularly propose a
data-striping scheme, termed the adaptive striping (AS),

for organizing heterogeneous disks together and inves-

tigate how to take full advantage of it in this framework.

In principle, AS, different from the previous striping

schemes, allows striping groups to be logically con-

structed upon disks in an arbitrary way (i.e. striping

groups do not have to be mutually exclusive). These

particular striping groups are also called logical servers
(LSs). Such a feature offers us a flexible way to divide

the cache into sub-caches with different capacities for

realizing different service grades. That is, videos stored

in the archive are categorized into various video clusters

based on the similarity of their profiles. Each video

cluster is dedicated with an LS, which is superimposed

on the cache using the AS scheme. All requests to a

specific video cluster compete for the resource of the
same LS with equal opportunity. An LS is equipped

with sufficient bandwidth and storage to guarantee a

level of service grade which conforms to the profiles of

all videos in that video cluster. Based on this framework,

several questions need to be answered.

• What is the minimum amount of resource dedicated

to each LS in order to guarantee its desired service
grade?

• How to formulate the system revenue?

• What is the best deployment of LS in terms of

exploiting the maximum system revenue?

The first two questions are not unique to the AS-based

system, but are also generally for any system that intends

to reserve resources for satisfying specific service grades.
To answer the first question, we model the stochastic

process of serving requests in a queuing model. Based on

the model, we derive a formula for the probability of

rejecting a request as a function of bandwidth and stor-

age. To answer the second question, we further establish

a total system revenue model that consists of two parts.

The first part is for the revenue earned from successful

admissions, and the second part is the penalty paid for
pre-loading videos from the archive to the cache.

Regarding the third question, we show that the LS

deployment problem faced here is more complicated

than the problem of filling up multiple knapsacks with

integral objects. The latter problem has been known to

be NP-complete. We hence take a heuristic approach for

solving our problem. Basically, all LSs start with a

minimum configuration. And then they progressively
extend their scales by competing with each other, based

on two different arbitration rules applied in two sub-
sequent phases, service-grade assurance and revenue

maximization. In the service-grade assurance phase, the

highest priority is given to the logical server which is the

farthest away from the goal of satisfying its service

grade. When all logical servers meet their own service

grades, we move toward the next phase. In the next
(revenue maximization) phase, the highest priority is

given to the LS which has the maximum contribution to

the revenue. This phase is terminated when all disks

reach their physical limits. Regarding the issue of where

LSs should be deployed in disks, it has to do with the AS

scheme itself (which will be explained in detail later). In

principle, the deployment should be continuously ad-

justed in a way that each disk intends to maintain a
balance on its bandwidth and storage utilization. With

this strategy in mind, we try to unleash the maximum

cache resource for accommodating LSs, which, as a re-

sult, gives us the best revenue.

In order to affirm the effectiveness and flexibility of

our approach, we simulate caches equipped with

homogeneous and heterogeneous disks. From the sim-

ulation results, we observe that the proposed scheme can
effectively achieve the design objectives in either plat-

form. For comparison purposes, we also simulate a

system with one single disk, which has resources

equivalent to all disk resources, to obtain a theoretical

performance upper bound. In spite that separated disks

inherently cannot share their resources as effectively as a

single disk, our scheme is able to alleviate this limit and

gives a performance very close to this theoretical bound.
To our knowledge, this work done here is one of the

few results which have been presented so far, regarding

achieving the objectives of offering differentiated service

grades and maximizing the system revenue with a tight

correlation to the cache organization (such as AS) under

such a hierarchical server architecture. For practical use,

the proposed scheme is suitable for planning a system

with stable profiles. If the actual traffic access pattern or
pricing policy is changed as time goes on, the resource

reservation has to be re-tuned periodically. To reduce

this tuning frequency, we can either over-engineer the

system plan, or adopt some other dynamic replication

schemes (Dan et al., 1995; Wolf et al., 1997).

The rest of the paper is organized as follows. Section

2 sketches out our system model and design objectives.

Rejection probability and revenue models are devel-
oped to give a quantitative measurement of the system.

Section 3 describes the AS scheme. An optimization

framework is proposed for solving the resource allo-

cation problem which arises in employing the AS

scheme in our system. Section 4 presents our simula-

tion results for various cache platforms. Section 5

discusses several practical management issues, followed

by the final conclusion. Appendix A summarizes the
important symbols and their descriptions used in this

paper.
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2. System model and design objectives

2.1. Video clustering

Asking a video server to serve video requests exactly

following their respective profiles incurs cumbersome
management tasks and complicates the server design.

We therefore take a clustering approach, that is, we

logically group videos stored in the archive with similar

video profiles into the same video cluster (or VC). The

profile associated with a video is defined as ða; b; s; r; pÞ
where

• a denotes the expected access rate,
• b denotes the stream bandwidth,

• s denotes the video size,
• r denotes the tolerable rejection probability, and
• p denotes the price paid for viewing the video.

The values of b and s are fixed and pre-knowledge.
The value of a can be estimated by observing the access
pattern over peak hours (e.g. 7 pm to 12 pm) in the past.
Or it can be borrowed from other videos of the same

type. The values of r and p depend on a company’s
service policy. (How to establish a reasonable pricing

structure based on service policy is beyond the scope of

this paper. However, it is an interesting and important

issue worthy of further study.)

The value ranges of each profile item are divided into

several levels. Two videos are said to be similar (i.e.
belonging to the same video cluster) if each of their

profile items falls into the same level. To be more spe-

cific, let VC be the video set of a VC and ðai; bi; si; ri; piÞ
the profile of video vi. The symbol xn represents the nth
level of item x and xa < xb if a < b. Then we say

vi; vj 2 VC if and only if the level value LxðxiÞ
¼ LxðxjÞ;

where LxðxiÞ ¼ xn, xn�1 < xi 6 xn for x ¼ a, s and b; and
LxðxiÞ ¼ xn, xn 6 xi < xnþ1 for x ¼ p and r.
Note that we round up the original value into the

nearest level value for items a, s and b, because if the
level value can be satisfied, the original value can also be

satisfied. For the same reason, we truncate the original

value into the nearest level value for items p and r. As a
result, we have a set of video clusters, each of which is

associated with a unique leveled (quantized) profile. The

video cluster is the entity which is entitled to be allocated
with cache resources (bandwidth and storage). All vid-

eos in the same video cluster enjoy the same service

grade specified by the corresponding leveled r. 1 There is
1 A video can be included in different VCs at the same time for being

served in different service grades. However, here we assume each video

can only participate in one VC to simplify our discussion.
no specific rule of defining ‘‘levels’’. On the one hand,

they should be fine enough to give ‘‘close’’ approxima-

tions to the real values; on the other hand, they should

be coarse enough to prevent too many VCs. In the rest

of this paper, unless explicitly specified, the profiles refer

to the leveled ones.
2.2. Admission control model

Cache resources are allocated to VCs in terms of

logical servers (LSs) by employing the AS scheme (which

will be described in Section 3.1). Suppose a VC is des-

ignated with an LS which is capable of delivering k video
streams (channels) and storing m video copies, where
k;mP 1. Let LS denote the video set temporarily stored

in an LS, where certainly LS � VC. The flow chart of

the admission control is illustrated in Fig. 2. Upon

receiving a request on a video v 2 VC, the system first

checks with the LS for an idle channel to deliver the

requested video stream. If none, the request is rejected.

Otherwise, the system further checks whether v 2 LS or
not. If yes, v is delivered to the client right away.
Otherwise, the system further checks whether the LS has

any free space to store v or not. If yes, the system pre-

loads v from the archive into the LS. Otherwise, the

system further checks whether there is any video in LS

currently idle (i.e. not being viewed by any client). If

there is no idle video, the request is rejected. Otherwise,

we download v from the archive to the LS by replacing

the video which has not been accessed for the longest
time. After a small initial data build-up, the LS starts to

deliver the video stream. (We assume the network

channel between the cache and archive runs much faster

than a video channel between the LS and the client.)
Play v  

Fig. 2. The flow chart of admission control.
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2.3. Rejection probability model

From the above scenario, we are interested in mod-

eling the service grade, that is, the rejection probability

of a request on a VC with n videos, provided an LS,
equipped with k channels and m copies, is associated
with that VC. We assume requests of each video arrive

in a Poisson process with arrival rate a. So the aggre-
gated requests to the LS are also in a Poisson process

with arrival rate k ¼ n� a. Each admitted request de-
mands a constant service time of 1=l ¼ s=b. At most k
requests can be served simultaneously (one for each

channel). No request is allowed to wait, if no LS re-

sources are available. This model is equivalent to a
M=D==k=k queuing model. Since this model is a semi-
Markov process, it is quite complicated to solve the

stationary probability Pi, where i means the number of
busy servers (running streams). Fortunately, it has been

proven that Pi has nothing to do with the service time
distribution but only its mean in this model (Gross and

Harris, 1998). In other words, we can assume the service

time is exponentially distributed (with a mean of s=b),
and then Pi is solved by using a Markov chain technique.
Fig. 3 shows the corresponding Markov chain (state-

transition-rate diagram). The number in each state refers

to the number of running streams. (Note that there is no

state beyond k, since it is impossible for the LS to accept
any request when it has already had k running streams.)
Having a number of running streams that is less than m,
the LS has enough channels to accept any new request.
So the arrival rate equals k. But if the LS has m or a

higher number of running streams, the request has a

chance of being rejected due to lack of storage. To be

more specific, a new request on a video, say v, is rejected
when (1) v 62 LS, and meanwhile, (2) each cached video
is presently being viewed by at least one client (i.e. if

there is no idle video for replacement). The probability

for the former condition equals 1� m=n. The probabil-
ity of the latter condition corresponds to the probability

of putting i balls (clients) into m boxes (videos) with all

boxes being occupied. It equals
Pm

j¼0ð�1Þ
j m

j

� �
1� j

m

� �i
(Hoel et al., 1971). As a result, the probability of the LS
0 1 m +1m2 k
...

λ λ λ λ λ φ (m ) λ φ (m +1)  λ φ (k- 1)

µ 2 µ 3 µ m µ  (m +1) µ k µ(m +2) µ

… . … .

Fig. 3. The state-transition-rate diagram of an LS with capacity of m
copies and k channels.
with i (Pm) running streams accepting a new request,

denoted by /ðiÞ, is given as follow:
/ðiÞ ¼ 1� Prðv 62 LSÞ � Prðno idle video existingÞ

¼ 1� 1
�

� m
n

�
�
Xm
j¼0

ð�1Þj m
j

� �
1

�
� j
m

�i

: ð1Þ

That is to say, the arrival rate of state iPm should be

equal to k � /ðiÞ. As for the service rate, since streams
get service without waiting, its value equals i� l for

state i.
Our next step is to calculate Pi, that is, the stationary

probability of observing i streams running in the system.
Based on the above queuing model, this can be done by

solving the following equilibrium equations:

Pj ¼

P0
Qj�1
i¼0

k
ðiþ1Þl ¼ P0 k

l

� �j
1
j!

� �
; 06 j6m0;

P0
Qm0�1

i¼0

k
ðiþ1Þl

Qj�1
i¼m0

k/ðiÞ
ðiþ1Þl

¼ P0 k
l

� �j
1
j!

� �Qj�1
i¼m0

/ðiÞ; m0 þ 16 j6 k;

8>>>>>>>>><
>>>>>>>>>:

ð2Þ

and

Xk
j¼0

Pj ¼ 1; ð3Þ

where m0 ¼ minfk;mg.
We solve P0 as follows:

P0 ¼
1

1þ
Pm0

j¼1
k
l

� �j
1
j!

� �
þ
Pk

j¼m0þ1
k
l

� �j
1
j!

� �Qj�1
i¼m0 /ðiÞ

:

ð4Þ
Pi can thus be obtained by substituting P0 into (2).
Concerning the formula for the rejection probability,

first of all, no rejection ever occurs prior to state m. Next,
for states m to k � 1, the rejection probability equals
Pi � ð1� /ðiÞÞ. Finally, since all channels are used in
state k, any new request will be absolutely rejected. In

summary, the rejection probability, denoted as R, can be
expressed in terms of a function of m and k as follows:

Rðm; kÞ ¼
Xk�1
i¼m

Pi � ð1� /ðiÞÞ þ Pk: ð5Þ
2.4. System revenue model

With the knowledge of rejection probability, we de-

rive the total system revenue model in this section. First,

we express X, the expected net revenue of an individual
VC, in terms of a function of m and k as follows:

Xðm; kÞ ¼ n� a � ð1� Rðm; kÞÞ � ðprofit� penaltyÞ
¼ n� a � ð1� Rðm; kÞÞ � ðp � ð1� m=nÞ � p � sÞ:

ð6Þ
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The product of the first three terms corresponds to the

expected number of successful admissions. The last term

describes the net revenue earned for each successful

admission. The net revenue, which we consider here,

accounts for two parts: the price paid for each admission

(i.e. p), and the penalty incurred by pre-loading. For the
latter part, we need to pre-load a video only if this video

is not in LS. The chance of this situation happening

equals ð1� m=nÞ. We assume where videos are actually
located in the archive makes no difference to the cache

to pre-load them, and the pre-loading penalty equals

p � s, where p means the unit network transmission

cost. So the latter part equals ð1� m=nÞ � p � s. 2

Suppose we have t VCs (LSs) in total, which are
numbered from 0 to t � 1. Let symbols, say x, associated
with VC i be denoted as xi. The expected system revenue

H is then equal to the summation of individual expected

net revenue of the VCs. That is,

Hðm̂; k̂Þ ¼
Xt�1
i¼0

Xiðmi; kiÞ; ð7Þ

where m̂ ¼ hm0;m1; . . . ;mt�1i and k̂ ¼ hk0; k1; . . . ; kt�1i.
As mentioned before, our objective is twofold:

• The rejection probability should not be more than a

pre-determined tolerable value for each VC. That is,

Riðmi; kiÞ6 ri for i ¼ 0; . . . ; t � 1.
• The system revenue H should be maximized subject

to the physical limits of the disks.
 1

LS cycle for v1

LS cycle for v2

LS cycle for v3

: :
3. Cache organization

3.1. Proposed adaptive striping (AS) scheme

We first describe the adaptive striping (AS) scheme,

which will serve as the fundamental scheme for con-

structing LSs. Suppose the system consists of u disks,
numbered from 0 to u� 1, and Bj and Sj respectively
denote the bandwidth (the maximum data transfer rate)

and storage of disk j. All disks synchronously perform a

periodic task with a cycles length equal to D. We also
call such a cycle the disk cycle. A disk is said to allocate

a video channel to an LS i, if a size of D � bi data block
is permitted to be retrieved from the disk in every disk
2 Note that the pre-loading penalty does not necessarily refer to the

actual charge of transmission data. For instance, in the case that a

LAN is dedicated between the archive and cache, there is no additional

charge after the initial deployment. So the penalty could be interpreted

as the loss of future business, due to the frustration of a long pre-

loading time. The pre-loading time, consisting of times for waiting the

availability of network and archive and transmitting data, can be

modeled in a queuing model subject to the service discipline. However,

instead of doing so, we use this simple form to illustrate our

optimization process.
cycle. Let dbij denote the number of video channels

allocated to LS i by disk j. Thus, ki ¼
Pu�1

j¼0 db
i
j. We also

say a disk j is associated with an LS i if dbij 6¼ 0. To strip
a video over LS i, the video is segmented into many
striping units (data blocks) with a uniform size of D � bi,
and these striping units are placed in the associated disks

in a round-robin fashion with one unit per ‘‘channel’’

(instead of ‘‘disk’’). That is to say, a number of dbij
striping units are placed in disk j in one round. To
reconstruct the video stream, the channels, involved in

striping, take turns retrieving striping units, one unit per
channel. We call an entire round of delivering striping

units from all involved channels the LS cycle; its length

equals ki � D LS i can achieve 100% bandwidth utiliza-

tion most of the time (i.e. drive ki video streams con-
currently), where LS cycles of individual videos are

staggered with one disk cycle time apart. Fig. 4 illus-

trates the history of video channels through which

striping units of a video are delivered if an LS is
equipped with five channels, where 3 and 2 channels are

respectively contributed by disks 1 and 2. The vertical

axis means ‘‘channel’’, and the horizontal axis ‘‘disk

cycle’’. Each block represents a specific channel is enti-

tled to retrieve one striping unit in a specific disk cycle.

The blocks associated with the same video stream are

linked together by a dotted line (labeled with the same

id). Clearly, at most 5 video streams can be delivered in
parallel (but with different starting times).

Each disk has to complete retrievals of all scheduled

striping units in a disk cycle. In practice, each of such

retrievals unfortunately incurs an extra time of disk

seeking and rotating for locating data. (Such a time

overhead has to do with how data are physically placed

in the disk (Gemmell et al., 1995). This topic is beyond

the scope of this paper.) As a result, only a part of the
disk cycle D is really used for transmitting data. That is
to say, the only partial of the disk bandwidth can be

exploited for transmitting data. In general, the larger the

D is, the larger the striping unit size is and the better the
C
ha

nn
el

s

D
is

k
D

is
k 

2

Time →

1 2 323 14 45

∆

5

Fig. 4. The history of channels through which striping units are

delivered. The blocks associated with the same video are linked to-

gether by a dotted line (labeled with the video id).
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disk efficiency is. However, a large D leads to a long LS
cycle, which implies a long initial waiting time. Thus a

balance between these two concerns usually gives a

typical D value in the range of few seconds (Tang et al.,
2001). For simplifying the discussion, we shall, however,

refer to the disk bandwidth as the sustainable one.
Therefore, for each disk j,

Pt�1
i¼0ðdb

i
j � biÞ6Bj.

Since a number of dbij striping units (out of ki striping
units) are placed in disk j in each round, the percentage
of a video copy to be stored in disk j equals dbij=ki. For
mi copies in total, the number of copies stored in disk j
equals mi � dbij=ki, denoted by ds

i
j. Also for each disk j,Pt�1

i¼0ðds
i
j � siÞ6 Sj.

One important observation is that the ratio of band-
width-to-storage (BSR) contributed by disk j for con-
structing LS i equals

BSR ¼ ðbi � dbijÞ=ðsi � ds
i
jÞ ¼ ðki � biÞ=ðmi � siÞ: ð8Þ

This ratio is the same for all associated disks (including

LS i itself). In other words, we have many alternative
ways of constructing an LS as long as the BSRs of all

associated disks are equal to the LSs BSR.

This scheme has the property that disk resources
participating in constructing an LS do not have to be

uniform, but adaptive to the available system resource.

To show the significance for resource utilization of do-

ing so, we consider two possible cases for deploying two

LSs over two disks (shown in Fig. 5). LSs and disks are

presented in terms of bandwidth-storage blocks. The

height means the bandwidth, and the width means the

storage. The slope of dotted lines means the corre-
sponding BSR. In the first case, LS 1 is entirely deployed

in disk 2 and LS 2 in disk 1. In the second case, LS 1 is

split into two parts, LS 1.1 and LS 1.2 (with the same

BSR), which are respectively deployed in disks 1 and 2,

and LS 2 into two parts, LS 2.1 and LS 2.2 (also with the

same BSR), which are respectively deployed in disks 2

and 1. In the first case, disk 1 leaves a lot of bandwidth

but has a small amount of storage. On the other hand,
disk 2 has an opposite situation. Such an unbalanced

situation may prevent a disk from participating resource
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Fig. 5. Two possible cases of depl
allocation prematurely. It is because one of its

resources is too limited to be utilized, in spite of the

other resource is still having plenty. On the other hand,

in the second case, after allocation, the utilization of

bandwidth and storage is about the same in both disks 1

and 2. So the previously mentioned out-of-balance sit-
uation is less likely to occur. It turns out that more disk

resources can be exploited for accommodating more

LSs. In principle, a disk with a high disk bandwidth

should share more bandwidth load and a disk with a

large storage more storage load. Or, more specifically,

we intend to find an LS deployment which can balance the

bandwidth and storage utilization in each disk. For this

purpose, we define the utilization difference of a disk j,
denoted by dj, as follow:

dj ¼
Pt�1

i¼0 db
i
j � bi

Bj

����� �
Pt�1

i¼0 ds
i
j � si

Si

�����; ð9Þ

where the first term in the absolute bracket is the

bandwidth utilization, and the second term the storage

utilization of disk j. Therefore, our goal for deploying
LSs is to minimize

Pu�1
i¼0 di. A similar BSR-balanced

policy was also proposed by Dan et al. (1995) (but in a

different cache context). Compared with our utilization

difference, they considered minimizing the BSR differ-

ence. However, BSR difference is sensitive to the mea-

suring scale, so we suggest using utilization differences

instead, to avoid this problem altogether.

3.2. Optimization framework

The problem of allocating cache resources to imple-

ment LSs with the maximum system revenue, in some

sense, is comparable to the traditional integral multi-

knapsack problem. In that problem, we have several

knapsacks of fixed capacity and a set of objects with

different sizes and revenues. The objective is finding a
subset for the objects (LS) (without fractions) that can

be accommodated by the knapsacks (disks) and achieve

the maximum total revenue. However, our problem is
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oying two LSs in two disks.
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much more complicated due to the following facts.

Firstly, ‘‘capacity’’ is presented in two dimensions,

‘‘bandwidth’’ and ‘‘storage’’. Secondly, accommodation

of ‘‘objects’’ has various implications, namely, channels

have to be deployed with disks with integrity; whereas

video copies are striped across the associated disks.
Thirdly, our revenue dominated by the rejection prob-

ability is not a linear function of LS size. Finally, our

other important objective is guaranteeing a tolerable

rejection rate. It is well known that the integral knap-

sack problem is NP-complete (Papadimitriou and Stei-

glitz, 1982), so our LS resource allocation problem is

also expected to be NP-complete. Therefore, we take a

heuristic approach as follows.
Basically, we take an incremental expansion strategy

for constructing LSs. The fundamental question is in

what kind of granularity the expansion should perform.

An LS is characterized by two dimensions of resources,

bandwidth and storage. An increment of either of them

contributes to the system revenue in a monotonic way.

That means we can deal with them independently. Based

on this observation, we choose the expansion unit object
as either a video copy or a channel. Initially, all LSs start

with the minimum configuration––one video channel

and one video copy. And then they repeatedly compete

for expansion. In each competition run, we seek an LS

to expand one unit object (either a video copy or a

channel) based on a specific rule (to be described

shortly). Each expansion further calls for a deployment

decision. Our decision is intended to minimize the total
utilization difference

Pu�1
i¼0 di. (This part will be de-

scribed in detail in the next section.) This expansion

process is repeated until the physical limits of disks are

reached. In terms of the competition rule, it ideally

should give us enough intuition to lead to a unification

of both objectives specified in Section 2.4. Unfortu-

nately, an optimal solution of one objective is not nec-

essarily optimal for the other. We envision that
guaranteeing service grades has a higher priority than

maximizing system revenue. For this reason, we take the

following two-phase approach, where different rules are

applied in different phases.

• In the first phase, termed service-grade-assurance

phase, we try to satisfy the tolerable rejection proba-

bility for all LSs as quickly as possible. To achieve this
goal, the corresponding arbitration rule is that an LS

is entitled to expand a unit object if (1) that LS has an

intolerable rejection probability (i.e. Riðmi; kiÞ > ri)
and (2) its expanding that particular unit object gives

the maximum reduction on its rejection probability.

When all LSs meet their tolerable rejection probabili-

ties, we move toward the second phase.

• In the second phase, termed revenue-maximization

phase, we try to push the system revenue as high as

possible. The revenue is associated with both storage
and bandwidth. Conceptually, our intention is to

equally exploit both resources to gain the maximum

revenue. For this purpose, we design the following

arbitration rule: An LS i is entitled to expand a unit
object if its expansion on that particular unit object

causes the LS to have the maximum revenue-contribu-

tion factor Fi, where

Fi ¼
Xiðmi þ 1; kiÞ � Xiðmi; kiÞ
Us � si=min06 i6 u�1fsig

for a copy object;

ð10Þ
and

Fi ¼
Xiðmi; ki þ 1Þ � Xiðmi; kiÞ
Ub � bi=min06 i6 u�1fbig

for a channel object:

ð11Þ
In either case, the dividend equals the revenue con-

tribution associated with the expansion. The divider is
the product of resource utilization and normalized re-

sources. The resource utilization is defined as

Us ¼
allocated storage

total storage

¼
Pi¼t�1

i¼0
Pj¼u�1

j¼0 dsij � siPi¼u�1
i¼0 Si

for storage ð12Þ

or

Ub ¼
allocated bandwidth

total bandwidth

¼
Pi¼t�1

i¼0
Pj¼u�1

j¼0 dbij � biPi¼u�1
i¼0 Bi

for bandwidth: ð13Þ

The normalized resources are defined as bi=min06 i6 u�1
fbig and si=min06 i6 u�1fsig for bandwidth and storage,
respectively. By taking such normalized forms, we

‘‘unify’’ the measuring scales of both resources. Also we
place the resource utilization in the divider for the rea-

son of downplaying the importance of one resource type

if that resource has been intensively exploited (i.e. highly

utilized). As a result, both resources can be exploited in

parallel. This phase is terminated if all disks reach their

physical limits.

We outline the corresponding pseudo codes
CACHE_RESOURCE_ALLOCATION() in Table 1.

We use A_set and WK_set to respectively denote the

active set of VCs which are eligible for competing re-

sources in the current phase, and the working set of VCs

which are waiting for expansion. (Of course,

A set �WK set.) Initially, bandwidth and storage uti-

lization is set to zero (line 10) and WK_set is assigned

with all VCs (line 14). Each VC is also assigned with a
minimum LS with one channel and one copy by calling a



Table 1

The pseudo program of CACHE_RESOURCE_ALLOCATION()

1 CACHE_RESOURCE_ALLOCATION()

2 { VC_set WK_set; // working set of VC0s.
3 VC_set A_set; // active set of VC0s.
4 Int phase;

5 Constant SERVICE_GRADE_ASSURANCE 1;

6 Constant REVENUE_MAXIMIZATION 2;

7 Constant END_OF_ALLOCATION 3;

8 Constant CHANNEL 1;

9 Constant COPY 2;

10 Float Us¼Ub ¼0;

11 Int allocated_bandwidth¼allocated_storage¼0;

12 Int total_bandwidth¼
P
Bi for 06i6u-1;

13 Int total_storage¼
P
Si for 06i6u-1;

14 WK_set¼{VCi Œ 06i6t-1};

15 For each VCi2WK_set do

16 { if (EXPANSION(i,1,1)¼ ¼FAIL)

17 WK_set¼WK_set-{VCi};

18 }

19 phase¼SERVICE_GRADE_ASSURANCE;

20 A_set¼{VCi Œ VCi2Wk_set and ri<Ri(mi,ki)};

21 While (phase„END_OF_ALLOCATION) // start of allocation loop

22 { if (phase¼ ¼SERVICE_GRADE_ASSURANCE)

23 { For each (VCi,unit_object) combination where VCi2A_set and

24 unit_object2{CHANNEL,COPY}, do

25 { Estimate its Ri reduction, that is,

26 if unit_object is COPY, estimate Ri(mi,ki)-Ri(mi+1,ki) or

27 if unit_object is CHANNEL, estimate Ri(mi,ki)-Ri(mi,ki+1);

28 }

29 Sort out combinations based on the reduction in a decreasing list.

30 Find the first one in the list which is expandable, that is,

31 EXPANSION(i,1,0)¼ ¼SUCCEED (for COPY object) or

32 EXPANSION(i,0,1)¼ ¼SUCCEED (for CHANNEL object);

33 If no extendable combination is found,

34 { phase¼REVENUE_MAXIMIZATION; (move into the next phase)

35 A_set¼W_Set;

36 }

37 else if that chosen combination, say (VCi,unit_object),

38 causes its Ri(mi,ki)<ri,

39 A_set¼A_set-{VCi};

40 }

41 else if (phase¼ ¼REVENUE_MAXIMIZATION)

42 { For each (VCi,unit_object) combination where VCi2A_set and

43 unit_object2{CHANNEL,COPY}, do

44 { Estimate its revenue-contribution factor Fi, that is,

45 if unit_object¼ ¼COPY,

46 (Xi(mi+1,ki)-Xi(mi,ki))/(Us·(si/unit_storage)) or

47 if unit_object¼ ¼CHANNEL,

48 (Xi(mi,ki+1)-Xi(mi,ki))/(Ub·(bi/unit_bandwidth));
49 }

50 Sort out combinations based on Fi in a decreasing list.

51 Find the first one in the list which is expandable, that is,

52 EXPANSION(i,1,0)¼ ¼SUCCEED (for COPY object) or

53 EXPANSION(i,0,1)¼ ¼SUCCEED (for CHANNEL object);

54 If no expandable combination is found,

55 { phase¼END_OF_ALLOCATION;

56 }

57 }

58 } // end of allocation loop

59 }
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subroutine EXPANSION(i; 1; 1) (line 16). The function
of EXPANSION(i; x; y) is expanding LS i with x copies
and y channels. If the expansion is successfully done, it
will return a ‘‘SUCCEED’’ message; otherwise, it will

return a ‘‘FAIL’’ message (due to a shortage of disk

resources) and not effect the original deployment. (Its
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implementation will be described in the next section.) If

an LS fails to be expanded, the corresponding VC can-

not serve any videos to clients based on the current

available disk resource. It thus should be removed from

WK_set (line 17). 3 The variable phase indicates the

phase that the process is currently in, and is initialized
with ‘‘SERVICE_GRADE_ASSURANCE’’ (line 19).

A_set is initialized with those VCs failing to satisfy their

tolerable rejection probabilities (line 20).

The allocation loop corresponds to the codes from

lines 21 to 58. In each iteration, only one LS is entitled

to expand one unit object, which could be either a

channel or video copy. In the service-grade-assurance

phase, we estimate the reduction of rejection probabili-
ties for all possible combinations of expansion (lines

23–28). The combinations are sorted out in a decreasing

list, based on the reduction (line 29). We try to find the

first combination in the list which can be actually ex-

panded by calling EXPANSION() (that is, obtaining a

returned message of ‘‘SUCCEED’’) (lines 30–32). If no

expandable element is found, it implies an empty A_set

or a shortage of disk resources. In either case, we pro-
ceed with the process into the revenue_maximization

phase, by assigning phase with ‘‘REVENUE_MAXI-

MIZATION’’ and A_set with W_set (lines 33–35).

Otherwise, we check the rejection probability of the

newly expanded LS, to see if its rejection probability is

below the tolerable rejection probability or not. If yes,

the corresponding VC is no longer eligible for competing

resources in this phase and should be removed from A_
set (lines 37–39).

In the revenue_maximization phase (lines 41–57), we

pretty much do the same thing, with a few differences.

First of all, we find the expansion combination based on

the revenue-contribution factor F , rather than the

rejection probability reduction of LS (lines 46 and 48).

Secondly, if no eligible element is found, it means we

either reached the disk limits, or have cached all VCs. So
we have to terminate the resource allocation process by

assigning phase with ‘‘END_OF_ALLOCATION’’ (line

55).

3.3. Expansion of LS

To deploy an LS in disks, we need to keep an iden-

tical BSR relationship for all associated disks. And
hopefully the bandwidth utilization and storage utiliza-

tion are about equal in each disk (i.e. small utilization

difference). To achieve this goal, we divide an LS i into
many smaller building blocks. Each of them occupies a

bandwidth bi (one channel) and a storage bi=BSR (1/

BSR of a video copy). To expand x copies and y chan-
nels, we first re-adjust the storage of the mi existing
3 This case indicates a serious inadequacy of disk resources and thus

should be avoided by adding/replacing with larger disks.
building blocks according to the new BSR, and then we

deploy the additional y building blocks one by one with
the goal of minimizing the total utilization difference.

We illustrate the corresponding pseudo-codes

EXPANSION() in Table 2. It inputs three parameters,

namely, VC id i, the number of copies x and the number
of channels y. If storage is asked to be expanded, but the
entire VC i has been cached in disks already, such an
expansion does not make any sense so we return to the

caller a ‘‘FAIL’’ message (line 8). Otherwise, the new

BSR is computed as ðki þ yÞ � bi=ððmi þ xÞ � siÞ (line 9).
The storage of a building block thus equals bi=BSR. The
number of existing building blocks of LS i in disk j
equals dbij, so the corresponding storage equals db

i
j�

bi=BSR and the copy number ds
i
j should be accordingly

re-adjusted to dbij � bi=ðBSR� siÞ (lines 10 and 11). If
such adjustment calls for storage increment which ex-

ceeds the storage limits of the associated disks, the

expansion is unfeasible so we call off any change made

on the deployment in this call and return to the caller a

‘‘FAIL’’ message (lines 12–15). Otherwise, we proceed

on deploying y new building blocks in the following loop
(lines 16–29). Only one building block is deployed in a

specific disk in each iteration. From the set of disks

which has at least bi bandwidth and bi=BSR storage

available, we choose the one which will have the maxi-

mum improvement on balancing resource utilization,

that is, the maximum reduction on difference doldi � dnewi ,

to deploy the building block, where doldi and dnewi
respectively are the utilization differences before and
after deploying the building block (lines 17–24). If no

disk has sufficient resources to deploy the building

block, the expansion is unfeasible. We thus call off any

change made in the deployment in this call and return to

the caller a ‘‘FAIL’’ message (lines 25–28). After fin-

ishing the expansion, we update the bandwidth and

storage utilization (lines 31–34) and return to the caller a

‘‘SUCCEED’’ message (line 35). Note that EXPAN-
SION() designed here is capable of processing any size

of expansion, while in our case the caller asks for a one-

unit-object expansion most of the time.

3.4. Computational complexity analysis

The computational complexity of CACHE_

RESOURCE_ALLOCATION() is dominated by the
allocation loop. The number of iterations depends on

the number of unit objects deployed. The number of

unit objects is then bounded by the sum of the upper-

bounds of the channel number and the copy number,

that is, Oð
Pu�1

i¼0 Bi=bmin þ
Pu�1

i¼0 Si=sminÞ, where bmin ¼
minfbig and smin ¼ minfsig, 06 i6 t � 1. In each itera-
tion, we sort out all pairs of (LS, unit object) in a

decreasing list. This part can be implemented by a heap
sort with time complexity of Oðt � log tÞ. We further
look for the first combination in the sorted list which



Table 2

The pseudo program of EXPANSION()

1 EXPANSION(i,x,y)

2 // This function is to expand LS i with x copies and y channels.If the expansion is

3 successfully done, it will return a 00SUCCEED00 message; otherwise, it will return a

4 00FAIL00 message and does not eect the original deployment.//

5 Int I; // LS id.

6 Int x; // the number of copies to be expanded.

7 Int y; // the number of channels to be expanded.

8 { If (x!¼0) and (VCi has been entirely cached), return (FAIL);

9 BSR¼(ki+y)*bi/((mi+x)*si);

10 Re-adjust the allocated storage in all disks, that is,

11 dsij¼dbij*bi/(BSR*si), for all j0s;
12 If any disk complains about the shortage of storage,

13 { Call o any change made on the deployment in this call;

14 return(FAIL);

15 }

16 For each of y new building blocks,

17 { For each disk i which has at least bi bandwidth and bi/BSR storage available,

18 { Estimate doldj -dnewj , where

19 doldj and dnewj are the utilization dierences of disk j before

20 and after accommodating the building block;

21 Record the one which has the maximum estimation.

22 }

23 For that recorded disk, say disk i, deploy a building block in it, that is,

24 dbij¼dbij+1 and dsij¼dbij*bi/(BSR*si);

25 If no disk is recorded

26 { Call o any change made on the deployment in this call;

27 return(FAIL);

28 }

29 }

30 // update resource utilization

31 allocated_storage¼allocated_storage+x*si;

32 Us¼allocated_storage/total_storage;

33 allocated_bandwidth¼allocated_bandwidth+y*bi;

34 Ub ¼allocated_bandwidth/total_storage;

35 return(SUCCEED);

36 }
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can be expanded. The time complexity for CACHE_

RESOURCE_ALLOCATION() is thus equal to

O
Xu�1
i¼0

Bi

bmin

  
þ
Xu�1
i¼0

Si
smin

!
� t � log t � /expansion

!
;

ð14Þ

where /expansion is the time complexity of EXPAN-

SION(). For each call on EXPANSION(i; x; y), the
associated disks need to readjust their allocated storage
size. This part takes OðuÞ time. Additionally, y new
building blocks need to be deployed, where y is normally
bounded by a small constant (e.g. 1 in our case).

Deploying one building block requires comparing all

disks’ reduction on utilization differences. This part

takes another OðuÞ time. Thus /expansion ¼ OðuÞ. Finally,
the proposed optimization algorithm takes the following

polynomial computational complexity:

O
Xu�1
i¼0

Bi

bmin

  
þ
Xu�1
i¼0

Si
smin

!
� t � log t � u

!
: ð15Þ
4. Performance evaluation

4.1. Video clustering and cache platform

Suppose we cluster videos into 12 clusters with their

associated profiles shown in Table 3. Basically, video

clusters are categorized into three different categories:

new-release, regular and discount. The new-release cate-

gory contains a small portion of the entire video col-

lection (40 out of 570). It is the most popular and

profitable category, so we plan the system to guarantee a

low rejection rate (r ¼ 0:001). Then, the regular category
contains the major portion of the collection (500 out of

570). In spite of the fact that videos in this category are

less popular than in the previous one, its large video

amount makes itself likely to be the most frequently

accessed category. We plan the system to guarantee a

moderate rejection rate (r ¼ 0:1). At last, the discount
category contains a small number of selected videos for

promotional purposes (30 out of 570). We plan the
system to serve them in the best-effort manner (r ¼ 1). In

each category, videos are further divided into four VCs,



Table 3

Video clusters and their associated profiles

VC id Category Length

(min)

Quality Amount

(ni)
Characteristic vector

ai (req/h) bi (Mbps) si (GB) ri pi (US$)

1 New release 100 Low 15 3 1.5 1.10 0.01 8

2 High 15 1.5 4 2.93 0.01 9

3 150 Low 5 3 1.5 1.65 0.01 9

4 High 5 1.5 4 4.40 0.01 10

5 Regular 100 Low 200 0.01 1.5 1.10 0.1 4

6 High 200 0.005 4 2.93 0.1 5

7 150 Low 50 0.01 1.5 1.65 0.1 5

8 High 50 0.005 4 4.40 0.1 6

9 Discount 100 Low 10 1 1.5 1.10 1 1

10 High 10 0.5 4 2.93 1 2

11 150 Low 5 1 1.5 1.65 1 2

12 High 5 0.5 4 4.40 1 3
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based on their length (100 min or 150 min) and band-

width/encoding quality (1.5 Mbps for MPEG-1 or 4

Mbps for MPEG-2). We define the pricing structure by

referring to today’s market price. In principle, the price
of video ranks down from the new-release to the dis-

count, from high quality to low quality and from long to

short.

We evaluate our scheme over two different disk

platforms: homogenous and heterogeneous. In the

homogeneous platform, we assume there are 10 identical

disks, and each of them is equipped with 66 MBps (bytes

per second) bandwidth (ultra-DMA) and 32 GB storage.
Their BSR thus equals 66/32¼ 2.0625 MBps/GB. In the
heterogeneous platform, we assume there are 10 disks

with their storage, bandwidth and BSRs shown in

Table 4. We assume the total bandwidth and storage are

the same for both platforms.

Section 4.2 discusses the relationship between re-

source utilization and system revenue. Then, Section 4.3

further investigates how the unit network transmission
Table 4

The storage, bandwidth and BSRs of the 10 disks deployed in the

heterogeneous-disk platform

VC id Bandwidth

(MBps)

Storage

(GB)

BSR

1 132 134 0.985

2 90 32 2.8125

3 90 32 2.8125

4 90 32 2.8125

5 58 20 2.9

6 58 20 2.9

7 58 20 2.9

8 28 10 2.8

9 28 10 2.8

10 28 10 2.8

Total 660 320 2.0625
cost p impacts the system revenue and resource utiliza-

tion. Finally, we compare the system revenue in different

disk platforms in Section 4.4.

4.2. Revenue vs. resource utilization

Table 5 shows the simulation results related to

respective LSs for the homogeneous platform (such as

the copy and channel numbers, the rejection probability

and the expected revenue) after applying the proposed

scheme with p ¼ 1. For comparison purposes, we also

simulate the single-disk case where all resources are as-
sumed to be located in a single disk. In this case, no disk

boundaries exist and resources can be shared in an

arbitrary way, so its performance can serve as a theo-

retical upper-bound. As we can see, all VCs satisfy their

rejection probability requirement. The final rejection

probabilities are very small in all LSs. The first four

(new-release) VCs contribute to most of the revenue.

The homogeneous-disk platform has its LS deployment
and system revenue very close to that of the single-disk

(theoretical) platform.

Fig. 6 shows the growth of the system revenue as a

function of the number of unit objects deployed (i.e. the

summation of channel and copy numbers). We observe

that the curves of the single-disk platform and homo-

geneous platform are extremely close to each other,

except that the curve of the former case lasts longer than
that of the latter. This is because the single disk, without

the disk-boundary constraint, can adopt more unit ob-

jects than the homogenous disks. In both platforms,

during the early stage, the LS rejection probabilities are

reduced very quickly, so the system revenue also rises

very dramatically. After a while, these probabilities ap-

proach zero, and further expansion results in very lim-

ited revenue improvement. So the system revenue
approaches a stable value. If we trace the expansion



Table 5

Comparison of the single-disk and homogeneous-disk platforms on allocated resource, rejection probability and expected revenue

VC id ri Single-disk Homogeneous

ðmi; kiÞ Riðmi; kiÞ Xi ðmi; kiÞ Riðmi; kiÞ Xi

1 0.01 (15,46) 2.0572e)012 360.00 (15,35) 2.9259e)009 360.00

2 0.01 (15,33) 5.6750e)012 202.50 (15,22) 1.4797e)007 202.50

3 0.01 (5,33) 5.8561e)012 135.00 (5,25) 1.1956e)009 135.00

4 0.01 (5,25) 3.6149e)011 75.00 (5,16) 2.0466e)005 75.00

5 0.1 (59,14) 1.7451e)005 6.45 (67,7) 2.3447e)007 6.54

6 0.1 (2,10) 2.1870e)002 2.09 (9,5) 9.5385e)004 2.20

7 0.1 (50,11) 1.3005e)002 2.50 (19,5) 9.5306e)007 1.99

8 0.1 (1,5) 3.6037e)003 0.39 (4,4) 2.1344e)005 0.49

9 1 (10,24) 1.9203e)011 10.00 (10,15) 3.5299e)007 10.00

10 1 (10,19) 7.8723e)010 10.00 (10,10) 1.7395e)006 10.00

11 1 (5,21) 2.1676e)011 10.00 (5,14) 1.7650e)007 10.00

12 1 (5,17) 1.3166e)010 7.50 (5,9) 1.9815e)002 7.50

H 821.43 821.22

Note: p ¼ 1.
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history, initially resources are given to LSs to meet their

service grades (before the dashed line). Afterwards, most

of the resources have to be given to the first four (new-

release) VCs to gain a high revenue. When their F ’s
becomes very small, the other two categories start to

gain resources.

To further discern the differences between the two

platforms, Fig. 7 shows both tracks of bandwidth and

storage utilization in both platforms, with respect to the

unit object numbers. When a unit object is deployed in

the system, we draw a dot at the height, corresponding

to the resource utilization of that particular resource
type. We observe that before entering the revenue-

maximization phase (beyond the dashed line), the

bandwidth utilization Ub and the storage utilization Us
are close to each other. After that point, Us becomes
higher than Ub. This can be explained by inspecting Eq.
(6), where increasing the channel number only decreases

the rejection probability; whereas increasing the copy

number decreases both the rejection probability and
penalty. Since rejection probabilities of all LSs asymp-
totically approach zero as of that point, it becomes more

profitable to increase storage than increasing band-

width. So the track of Us is higher than that of Ub in
both platforms. But there is a section in the single-disk

case where copies are intensively allocated before

channels. The same section in the homogenous-disks

case, however, shows a more even distribution. This is

because in the single-disk case, without disk boundary
constraints, the resource allocation is totally dominated

by the revenue-contribution factor F , and F at this

moment indicates that copies are more profitable than

channels. On the other hand, in the homogenous-disks

case, sometimes we may fail to deploy copy units be-

cause of a shortage of large chunks of storage at this

moment, and later expansion of channels releases some

storage in some disks. So copy units can be added again.
Such a process occurs frequently. That is why we see

dots are more evenly distributed in both tracks of Us and
Ub.
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A final observation is that in the homogenous case,

the curve of Ub stops at 63% where Us approaches 100%.
It seems to disagree with our expectation that both Ub
and Us are supposed to approach 100%. This is due to
the fact that some disks have been fully utilized in both

bandwidth and storage. If any LSs are associated with

one of those disks, their expansions are prohibited, even

if there is some bandwidth available in other disks.
For the above discussion, we observe that in fact the

system reaches its stable revenue without consuming too

many resources. It implies that the system can actually

accommodate heavier traffic. To show this, we simulate

the same VCs but increase their arrival rates.

Fig. 8 shows the system revenues H as functions of

unit object numbers with respect to various times of the

original arrival rate, denoted as c. We also show the
associated Ub and Us aside to each c. In general, the final
rejection probabilities of all LSs (not shown here) are

satisfied when H reaches to a stable value. This stable H
also increases with c. However, the points where H starts

to become stable are postponed as c increases. It means
that more resources are required to reach a stable system

revenue. We also observe that Ub and Us are switching
their dominant roles as c increases. This is because as c
increases, traffic load increases. We then need more

channels to satisfy the rejection probability requirement.

In practice, the system revenue chart can help us to as-

sess the traffic load is sustainable by a system configu-

ration so that we can use this information as a guideline

for system installation. The strategy is to find a maxi-

mum traffic load under which a stable H can be reached.

In this case, 8 times of the original traffic load (c ¼ 8)
gives a stable value of H at the very last stage (i.e. sat-

isfying the rejection probability requirement), and thus

seems to be the maximum sustainable traffic load.

4.3. Impacts of the unit transmission cost p

We simulate the homogeneous-disk platform by

changing p from 1 to 5. Fig. 9 shows the system revenues
of various p as functions of the number of unit objects.
We observe that as p increases, the stable system reve-

nue decreases. This is because a higher penalty is in-
curred at every pre-load action. We also notice that

when p P 3, the revenue of playing a video, which needs

to be pre-loaded from some VC, becomes negative. For

instance, consider playing a video pre-loaded from VCs

9, 10 or 11. The price is 1, 2 or 3, respectively and the

penalty is 3 for all. As a result, the net revenue is )2, )1
or )1, respectively. In such a situation, by inspecting Eq.
(6), increasing channels may actually decrease the net
revenue. Therefore, in the region corresponding to the

SERVICE_GRADE assurance phase (before the dashed

line), where our primary concern is the rejection prob-

ability instead of the revenue, we observe some fluctu-

ations in both curves of p ¼ 3 and 5. Also in the section

right before the stabilization, since all LSs with positive

F can no longer be expanded, resources are thus granted
to the LSs with a negative, but largest F . Therefore, we
can see some small fluctuations. Regardless of those

fluctuations, generally speaking, the system revenue

obtained by our algorithm eventually converges toward

a stable value in all cases.

4.4. Heterogeneity of disk platform

In this section, we would like to know how effective
our algorithm is in the heterogeneous-disk platform.

Table 6 shows the stable (final) system revenues subject

to various c’s and p’s for three disk platforms: (single-
disk, homogeneous-disk and heterogeneous-disk). We

observe that in general, the system revenue increases

with c (traffic load) but decreases with p (pre-load

penalty). Except for the cases of ðp ¼ 3; c ¼ 1Þ and
ðp ¼ 5; c ¼ 1Þ, for any given combination, the system
revenue of the single-disk case is no more than 10%

higher than the other two. The other two are also very

close to each other. Particularly, when p is small, the



Table 6

The stable (final) system revenues subject to various c’s and p’s for three disk platforms

p c

1 2 4 6 8

1 (821.43, 821.22,

801.17)

(1642.86, 1642.04,

1624.44)

(3285.67, 3282.71,

3281.35)

(4922.09, 4916.41,

4914.38)

(6390.40, 6381.47,

6380.30)

3 (810.60, 769.44,

597.76)

(1621.15, 1618.79,

1565.57)

(3242.86, 3235.31,

3230.90)

(4859.72, 4839.23,

4836.78)

(6348.02, 6284.44,

6319.61)

5 (799.80, 795.41,

468.69)

(1597.01, 1465.00,

1406.48)

(3195.43, 2758.86,

2652.95)

(4798.29, 4143.80,

4174.19)

(6267.25, 5690.53,

5728.49)

Note: (single, homogeneous, heterogeneous).
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three system revenues are extremely close. This fact

shows that the proposed algorithm is suitable for both

disk platforms, able to take advantage of AS to share

disk resources, and able to make the disk boundary

constraint less of a serious obstacle to the perfor-

mance.
5. Discussion and conclusion

5.1. Other management issues

In the following, we would like to discuss several

practical management issues which have not been fully

covered in this work, but which are crucial to a real

practice.

• Level granularity vs. resource utilization: In reality,

video sizes are usually different. By definition, si of
VC i should be the largest video size in that VC.
LS i allocates mi video copies in terms of si size. This
fact results in a storage fragment in LS i which can
not be utilized for caching videos at all. If video sizes

in the same VC vary considerably, we might have
very poor storage utilization. The similar fragmenta-

tion phenomenon is also observed in other profile

items. One way to alleviate this problem, is to define

finer levels for each profile item to obtain a more

accurate estimation. However, it increases the num-

ber of video clusters and management overhead.

Also, it limits the flexibility of resource sharing

among videos. Thus, how to find a balance between
level granularity and resource utilization, needs to be

carefully planned.

• Pricing vs. revenue: Pricing formulas should be care-

fully defined to obtain a reasonable revenue. It should

depend on the required resources, the network trans-

mission cost, and the provider’s selling policy. If the

price is defined too high, customers will be discour-

aged from viewing videos. On the other hand, if the
price is too low, the provider may end up with a def-

icit. So fine tuning between these two factors needs to

be properly done in the real system.
• Tuning the system: Initially, we setup the system

based on the video profiles. Hopefully, re-adjustment

is seldom or never needed afterwards. Unfortunately,

video profiles are usually subject to change with time

or policy. Therefore, we suggest two types of tuning:

video-ownership and system-wide. The video-owner-

ship tuning is applied on a short-term periodic basis.

It states that videos can change their ownership (from
one video cluster to another), in response to the ac-

cess pattern change or their being added into/

removed from the collection. This tuning may cause

small fluctuations on the size of VC (i.e. ni). So we
should assume a larger ni (e.g. 10% more) in the phase
of resource allocation to tolerate moderate jitter on

VC size. By doing so, the tuning can be performed

during runtime and LSs do not have to be rebuilt.
The system-wide tuning is needed on a long-term

and irregular basis when the presently observed per-

formance deviate from that required by the current

video profiles above certain thresholds, or a new pol-

icy has to be enforced. We hence rebuild all LSs based

on the current video profiles in an offline manner.

• Locations of videos in the archive: In our model, we do

not consider where videos are stored in the archive
and how long queuing delay may incur, but just make

an assumption of the constant unit network transmis-

sion cost p. If the archive consists of diverse tertiary
devices, the cost of pre-loading videos may be differ-

ent. The locations of videos in the archive should thus

be carefully managed. This aspect is worthy of fur-

ther study.
5.2. Conclusion

The resource management for a hierarchical video

server, which consists of a high-capacity archive (e.g. a

set of tertiary devices) in the back and a high-speed

cache (e.g. a set of disk drives) in the front, is investi-

gated in this paper. The video caching policy is to decide

which videos should be cached in the cache to leverage
the system performance. We particularly investigate

such a policy in the context of a specific cache organi-

zation, adaptive striping (AS), with the objectives of (1)
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assurance of different service grades and (2) maximization

of system revenue. We logically cluster videos into vari-

ous video clusters based on their profiles. Each video

cluster is then allocated with a specific portion of cache

resource, termed logical server. Requests for videos in

the same video cluster enjoy the same service grade. The
question of how many resources a logical server requires

to realize a specific service grade, is answered by a

queuing model. We also present a quantitative mea-

surement of the system performance in terms of system

revenue, which directly reflects the actual revenue of

commercial applications. An optimization framework of

constructing logical servers is proposed in two steps: In

the first, logical servers are built up with the necessary
resource for meeting their respective service grades, and

secondly, they are further extended to maximize the

system revenue. Logical servers are deployed among

disks using the AS scheme with the goal of balancing

both storage and bandwidth utilization. The optimiza-

tion algorithm is a heuristic with polynomial computa-

tional complexity.

We validate the effectiveness of our scheme by
simulation. The simulation results reveal that the
Symbols Definitions

VCi The set of videos in

LSi The set of videos ca

ai The request arrival
pi The price for viewin

ri The tolerable rejecti

bi The bandwidth of a

si The size of a video

ni The number of vide

mi The number of vide

ki The number of vide

ki The request arrival
li The service rate for

/iðjÞ The probability of l

request

Riðmi; kiÞ The probability of l

rejecting a new requ

Xiðmi; kiÞ The expected revenu

channels

Hðm̂; k̂Þ The expected system
Bi (Si) The physical bandw

dbji (ds
j
i ) The bandwidth (sto

t The total number o

u The total number o

di The utilization diffe

Fi The revenue-contrib

Us The system-wide sto

Ub The system-wide ba
proposed scheme can properly build logical servers to

fulfill the design goals. We also observe that the sys-

tem revenue is prone to be stable when logical servers

are expanded to certain scales. In general, there exists

a critical (most cost-effective) configuration that a

given amount of cache resource just makes the system
revenue stable and fulfills service grades. Our algo-

rithm provides a helpful guideline to find such a crit-

ical configuration. Our scheme is also proven to be

effective in both homogeneous- and heterogeneous-disk

platforms. Finally, we point out some management

issues concerning how to employ the proposed scheme

in the real system.
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