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Abstract

Many engineering design applications require geometric modeling and mechanical simulation of
thin flexible structures, such as those found in the automotive and aerospace industries. Traditionally,
geometric modeling, mechanical simulation, and engineering design are treated as separate modules re-
quiring different methods and representations. Due to the incompatibility of the involved representations
the transition from geometric modeling to mechanical simulation, as well as in the opposite direction,
requires substantial effort. However, for engineering design purposes efficient transition between geo-
metric modeling and mechanical simulation is essential. We propose the use of subdivision surfaces as a
common foundation for modeling, simulation, and design in a unified framework. Subdivision surfaces
provide a flexible and efficient tool for arbitrary topology free-form surface modeling, avoiding many of
the problems inherent in traditional spline patch based approaches. The underlying basis functions are
also ideally suited for a finite element treatment of the so-called thin shell equations, which describe the
mechanical behavior of the modeled structures. The resulting solvers are highly scalable, providing an
efficient computational foundation for design exploration and optimization. We demonstrate our claims
with several design examples, showing the versatility and high accuracy of the proposed method.
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1 Introduction

Current engineering design practice in industry employs a sequence of tools which are generally not well
matched to each other. For example, the output of a computer aided geometric design (CAGD) system is
typically not suitable as direct input for a finite-element modeler. This is usually addressed through interme-
diate tools such as mesh generators. Unfortunately these are notoriously lacking in robustness. Even once a
geometric model has been successfully meshed, the output of a finite-element simulation cannot be directly
applied to the original geometric model, since there is no straightforward mapping back to the original de-
sign degrees of freedom. Additionally there is a need for a trade-off between the speed of analysis and the
fidelity of the results. In the early stages of design, quick results are necessary, but approximate results are
acceptable. In the the later stages, highly precise results are required, and with longer computation times
tolerated. Worse, different underlying models are required for each level of refinement. These difficulties
make the design process cumbersome and inhibit multiple, rapid iteration on different design choices. Many
of these difficulties can be greatly reduced in a unified representation paradigm, e.g., an environment in
which the geometric model uses the same underlying representation as the appropriate finite-element sim-
ulation. The principal advantage of such a unified representation paradigm is the simple and rapid data
transfer between the geometric design and finite-element analysis tools. No cumbersome remodeling of
already generated geometric models for purposes of finite-element simulation is required. As a result the
investigation of different design alternatives, e.g., for design space exploration, will be substantially simpli-
fied. In applications this will lead to faster product development cycles through the tight combination of the
design and analysis steps.

Historically modeling and simulation tools were developed in different communities with limited in-
teractions. To our knowledge few attempts have been made in the past to unify geometric modeling and
simulation based on a common representation paradigm [17, 20]. Our contribution in this paper is a compu-
tationally simple and theoretically well-justified framework for free-form geometric modeling coupled with
finite-element analysis of thin-shells for purposes of engineering design. Thin flexible structures (plates and
shells) appear in many areas of applied engineering design, e.g., in automobile and aerospace industries. As
the underlying representation we have chosen subdivision surfaces. They have many advantages for free
form geometric modeling in particular for shapes of arbitrary topology. With the recent development of sub-
division algorithms supporting such important modeling operations as trimming, boundary interpolation, or
description of small features [5, 19, 23, 24], subdivision surfaces are well positioned to become important
a fundamental modeling primitive for CAGD applications [2]. At the same time it has been demonstrated
recently [10] that subdivision basis functions can serve as shape functions in the context of finite-element
thin-shell analysis, with excellent performance and accuracy. Similar to a thin-plate, the deformation of
curved shells is described by partial differential equations with derivatives up to order four, requiring shape
functions with square integrable curvatures for finite-element treatments. The choice of subdivision shape
functions can be contrasted with more traditional approaches for the construction of shape functions, which
are typically based on Hermite interpolation. It is well known that this leads to fifth order polynomials over
triangles [50]. Higher order shape functions however are not suitable for practical problems with e.g. reen-
trant corners, jumps in the material properties, or point loads which exhibit singularities in the exact solution.
Subdivision surfaces satisfy the necessary analytic requirements while being parameterized strictly in terms
of displacements only and circumvent the usual difficulties with traditional finite-element treatments.

The many advantages of the subdivision method for geometric modeling and for mechanical simulation
makes it a method of choice for integrated design and simulation. The need to convert an existing CAD
model to a finite-element mesh and the difficulty of doing so robustly is entirely circumvented. Since
the finite-element solver uses the same degrees of freedom as the free-form geometric modeling system,
optimization of the geometry based on the results of mechanics simulations is immediate. The latter in
particular greatly facilitates the iterative process of engineering design.
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1.1 Overview

In Section 2 we briefly review subdivision surfaces. In the present paper we restrict our framework to
Loop surfaces [25] which generalize classic quartic box-splines, but we hasten to point out that the basic
algorithms are equally applicable to other subdivision schemes, in particular the scheme of Catmull and
Clark [8] which generalizes bi-cubic splines. Both subdivision schemes have the necessary smoothness
to be ideally suited as shape functions in the finite-element treatment of thin-shell equations. Section 3
describes the formulation of equations governing the mechanical behavior of thin flexible structures. Finally,
Section 4 discusses a basic framework for design space exploration and presents an integrated framework
for modeling, simulation and design with subdivision surfaces. Two engineering design examples (square
plate and car hood) are used to demonstrate the proposed approach.

2 Brief Review of Subdivision Surfaces

Subdivision schemes construct smooth surfaces through a limiting procedure of repeated refinement starting
from an initial control mesh. In this sense they behave very much like knot doubling approaches applied to a
spline surface control mesh. Generally, subdivision schemes consist of two steps. First the mesh is refined,
i.e., by quadrisection of all faces. Second, new nodal positions are computed for all vertices. These positions
are simple, linear combinations of the nodal positions of the coarser mesh. For the schemes, of interest
these computations are local, i.e., they involve only nodal positions of the coarser mesh within a small,
finite topological neighborhood, leading to efficient implementations. Using a suitable choice of weights,
such subdivision schemes can be designed to produce a smooth surface in the limit [35, 51]. Subdivision
methods which result in limit surfaces whose curvature tensor is square integrable are especially appealing
for geometric modeling applications and purposes of thin-shell analysis.

The first subdivision schemes were proposed by Catmull and Clark [8] and Doo and Sabin [11] to address
a shortcoming of traditional spline patches when modeling arbitrary topology surfaces. When assembling
complex shapes out of spline patches, the Euler characteristic of the control mesh implies that “irregular
vertices” cannot be avoided in the general case. For quadrilateral patches, these are control vertices where
other than four patches meet; while for triangular patches, irregular vertices are those of valence other than
six. At irregular vertices, cross patch continuity conditions can in general not be maintained. Catmull and
Clark as well as Doo and Sabin proposed to address this challenge by generalizing the knot doubling rules
associated with bi-cubic, respectively bi-quadratic splines around irregular vertices. The result are arbitrary
topology smooth surfaces which consist of spline patches almost everywhere and are globally smooth for
almost all initial control point configurations.

Many other schemes have been proposed and studied extensively in the mathematical geometric mod-
eling literature (for an overview the interested reader is referred to [52]). All methods can be classified
according to a small number of criteria. They can be interpolating or approximating, use triangular or
quadrilateral patches, or be based on splitting either faces (primal schemes) or vertices (dual schemes). For
example the scheme of Catmull and Clark is primal, based on quadrilaterals and is approximating, while the
scheme of Doo and Sabin is dual, uses quadrilaterals, and is approximating. Interpolating primal schemes
based on triangles were introduced by Dyn et al. [12] and improved by Zorin et al. [53], while Kobbelt, et
al., [20] constructed a quadrilateral interpolating scheme. These latter schemes are generally not smooth
enough for either geometric modeling or finite-element analysis of thin-shells.

For our purposes we have chosen the triangle-based primal approximating scheme of Loop [25]. It
generalizes the knot doubling rules of quartic box splines to the arbitrary topology setting and yields globally
C2 surfaces except at irregular vertices where the surfaces are only C1. While the curvatures at these points
diverge, the curvatures are square integrable [36] as required for thin-shell analysis.
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Control mesh First subdivided mesh

Limit surface

Figure 1: Loop’s scheme.

In the following sections we state the refinement rules used in Loop’s subdivision scheme for surfaces.
While we focus on Loop’s scheme, we hasten to point out that the basic ideas and machinery apply equally
well to other subdivision schemes. In particular, the Catmull-Clark scheme, with quadrilateral elements, is
a promising alternative for finite-element computations.

2.1 Loop’s Scheme

In Loop’s subdivision scheme, the control mesh and all refined meshes consist only of triangles. These are
refined by quadrisection (Fig. 1 left side). The nodal positions of the new mesh are computed as local affine
combinations of nearby nodal points in the coarser mesh. We distinguish two types of rules, those which
compute newly inserted points (odd rules) and those which compute new nodal positions for vertices already
present in the coarser mesh (even rules). Using the notation in Figure 2 odd points are computed as:

xi+1odd =
1

8
(3xileft + 3x

i
right + x

i
top + x

i
bottom)

while even points are updated as:

xi+1center = (1− kw)xicenter + w
k∑
l=1

xil
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Figure 2: Refinement mask for Loop’s subdivision scheme.

where xi are the nodal positions of the mesh at level i and xi+1 are the nodal positions for the mesh i + 1.
The valence of a vertex, i.e., the number of edges incident on it, is denoted by k. Note that all newly
generated vertices have valence six while only the vertices of the original mesh may have valence other than
six.

In the original scheme Loop [25] proposed weights:

w =
1

k

[
5

8
−
(
3

8
+
1

4
cos
2π

k

)2]

Other values for w also give smooth surfaces. For example, Warren [48] proposed a simpler choice for w:

w =
3

8k
for k > 3 and w =

3

16
for k = 3

Note that the weights used by the subdivision scheme depend only on the connectivity of the mesh and are
independent of the nodal positions themselves. For the case k = 6 these rules reproduce the well known
knot doubling rules for quartic box splines. As a consequence, the surface consists of quartic box spline
patches everywhere except near the irregular vertices where it can be thought of as consisting of an infinite
sequence of ever shrinking rings of quartic box spline patches.

So far we have ignored the boundary of the mesh, where the subdivision rules need to be modified. A
very simple method applies the cubic spline knot doubling rules at the boundary. This method will produce
cubic splines on the boundary if all boundary vertices are valence four. The presence of irregular vertices
on the boundary as well as corners (concave as well as convex) requires different subdivision rules (see for
example Biermann, et al., [5]). In some applications it may be necessary to match boundary curves exactly
which are not splines. Such transfinite interpolation can also be achieved through suitable modification of
the rules near the boundary [24].

In any case, as we discuss below, evaluation of the necessary limit surface quantities can be achieved in
a straightforward manner after only one or two subdivision steps (the exact number depends on the nature
of the rules used [5]).

2.2 Limit Surface Evaluation

Even though subdivision surfaces are defined through a limit procedure, it is possible to evaluate the sur-
face and its derivatives exactly at arbitrary parameter values based on eigen analysis of the subdivision
operator [44, 43]. We are interested only in specific parameter values, namely those needed for quadrature
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Figure 3: Quartic box spline patch.

evaluation of stiffness integrals arising from the computation of the mechanical response of the surface. For
this the fully general method is not needed. In particular one-point quadratures are sufficient. These require
the evaluation of positions and derivatives at the barycenter of an element.

A convenient local parameterization of the limit surface may be obtained as follows. For each triangle
in the control mesh we choose (θ1, θ2) as two of its barycentric coordinates within their natural range:

T = {(θ1, θ2), s. t. θα ∈ [0, 1], 0 ≤ θ1 + θ2 ≤ 1}

The triangle T in the (θ1, θ2)-plane may be regarded as a master or standard element domain. It should be
emphasized that this parameterization is defined locally for each element in the mesh. The entire discussion
of parameterization and function evaluation may therefore be couched in local terms.

For regular patches, Loop’s scheme leads to quartic box splines. Therefore, the local parameterization
of the limit surface may be expressed in terms of box-spline shape functions, with the result:

x(θ1, θ2) =
12∑
l=1

N l(θ1, θ2)xl (1)

where now the labels l refer to the local numbering of the nodes (see Figure 3). The precise form of the
shape functions Nl(θ1, θ2) is given in [10]. The embedding (eq. 1) may thus be regarded as a conventional
isoparametric mapping from the standard domain T onto the limit surface Ω, with (θ1, θ2) playing the role
of natural coordinates.

For function evaluation on irregular patches the mesh has to be subdivided until the parameter value
of interest is interior to a regular patch. At that point the regular box spline parameterization applies once
again. It should be noted that the refinement is performed for parameter evaluation only. For simplicity we
assume that irregular patches have one irregular vertex only. This restriction can always be met for arbitrary
initial meshes through one step of subdivision, which has the effect of separating all irregular vertices. As
shown in Figure 4, after one subdivision step the triangles marked one, two, and three are regular patches.
The action of the subdivision operator for this entire neighborhood can be described by a matrix:

X1 = AX0

The matrix A has dimension (k + 12, k + 6) and its entries can be derived from the subdivision rules as
presented in Section 2.1. For the proposed shell element with one point quadrature at the barycenter of the
element, a single subdivision step is sufficient, since the sampling point (center of the initial patch) lies in

https://www.researchgate.net/publication/2488156_Subdivision_Surfaces_A_New_Paradigm_For_Thin-Shell_Finite-Element_Analysis?el=1_x_8&enrichId=rgreq-dc1a838fed0a491378d0fcef9d73a2e6-XXX&enrichSource=Y292ZXJQYWdlOzIyMjUyMDk0NztBUzo5NzY5NzQxOTc1OTYyMkAxNDAwMzA0Mjg4NDk5
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Figure 5: Refinement in the parameter space.

sub-patch 2. We define 12 selection vectors Pl, l = 1, . . . , 12 of dimension (k + 12) which extract the 12
box-spline control points for sub-patch 2 from the k + 12 points of the refined mesh. The entries of Pl are
zero and one depending on the indices of the initial and refined meshes. To evaluate the function values in
the three triangles with the box-spline shape functions Nl, a coordinate transformation must be performed.
The relation between the coordinates (θ1, θ2) of the original triangles and the coordinates (θ̃1, θ̃2) of the
refined triangles can be established from the refinement pattern in Figure 5. For the center of sub-patch 2
we have the following relation:

Triangle 2: θ̃1 = 1− 2θ1 and θ̃2 = 1− 2θ2

The function values and derivatives for sub-patch 2 can now be evaluated using the interpolation rule:

x(θ1, θ2) =
12∑
l=1

N l(θ̃1, θ̃2)P lAX
0 (2)

Derivatives, such as required for the computation of the potential energy, follow by direct differentiation of
the interpolation rule (eq. 2).
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3 Review of Thin-Shell Equations

The mechanical response of a subdivision surface with an attached thickness property can be computed with
the classical Kirchhoff-Love shell theory. In this section we briefly summarize the resulting field equations.
A detailed presentation of classical shell theories can be found in [29]. The final result of our derivation will
be couched in terms of constrained energy minimization where the internal energy of the shell depends on
intrinsic quantities of the surface such as the first and second fundamental form.

3.1 Related Methods in Geometric Modeling

Before going into the details of the description of the mechanical behavior of shells, it is useful to briefly
contrast our approach with other energy minimization methods. These often appear in variational modeling.
For example, Halstead, et al., [14] described an algorithm for fair interpolation of a given set of points with
a Catmull-Clark surface. To constrain the solution space they search for a parameterized surface x which
simultaneously interpolates the given constraints and minimizes an energy functional Φ over the domain Ω
based on a weighted average of squared first and second derivatives:

Φ[x] = α

∫
Ω
(x,1)

2 + (x,2)
2dΩ+ β

∫
Ω
(x,11)

2 + 2(x,12)
2 + (x,22)

2dΩ

where α and β are some prescribed constants and a comma is used to denote partial differentiation. These
terms are sometimes referred to as stretching and bending energies. While such formulations are typically
derived from a thin-plate ansatz they cannot describe the mechanical behavior of a shell correctly since
the result of the computation depends on the particular parameterization chosen. In fact using the standard
parameterization (see Section 2.2) leads to infinite bending energies [14] and either zero or infinite stretching
energies near irregular vertices. Such methods can nonetheless be useful for scattered data interpolation after
suitable modifications near the extraordinary vertices [27] or elimination of the infinite energy modes [14].
To accurately and consistently describe the mechanical behavior of shells a formulation in terms of intrinsic
surface properties is required.

3.2 Kinematics of Deformation

We begin by considering a shell whose undeformed geometry is characterized by a subdivision surface of
domain Ω and boundary Γ = ∂Ω. The shell deforms under the action of applied loads and adopts a deformed
configuration characterized by a surface of domain Ω and boundary Γ = ∂Ω. The position vectors r and r
of a material point in the reference and deformed configurations of the shell may be parameterized in terms
of a system of curvilinear coordinates {θ1, θ2, θ3} as:

r(θ1, θ2, θ3) = x(θ1, θ2) + θ3a3(θ
1, θ2), −h

2
≤ θ3 ≤ h

2

and

r(θ1, θ2, θ3) = x(θ1, θ2) + θ3a3(θ
1, θ2), −h

2
≤ θ3 ≤ h

2

The functions x(θ1, θ2) and x(θ1, θ2) furnish a parametric representation of the middle surface of the shell
in the reference and deformed configurations, respectively (Fig. 6). The corresponding surface basis vectors
are:

aα = x,α and aα = x,α

https://www.researchgate.net/publication/2633963_A_Novel_FEM-Based_Dynamic_Framework_For_Subdivision_Surfaces?el=1_x_8&enrichId=rgreq-dc1a838fed0a491378d0fcef9d73a2e6-XXX&enrichSource=Y292ZXJQYWdlOzIyMjUyMDk0NztBUzo5NzY5NzQxOTc1OTYyMkAxNDAwMzA0Mjg4NDk5
https://www.researchgate.net/publication/2385556_Efficient_Fair_Interpolation_using_Catmull-Clark_Surfaces?el=1_x_8&enrichId=rgreq-dc1a838fed0a491378d0fcef9d73a2e6-XXX&enrichSource=Y292ZXJQYWdlOzIyMjUyMDk0NztBUzo5NzY5NzQxOTc1OTYyMkAxNDAwMzA0Mjg4NDk5
https://www.researchgate.net/publication/2385556_Efficient_Fair_Interpolation_using_Catmull-Clark_Surfaces?el=1_x_8&enrichId=rgreq-dc1a838fed0a491378d0fcef9d73a2e6-XXX&enrichSource=Y292ZXJQYWdlOzIyMjUyMDk0NztBUzo5NzY5NzQxOTc1OTYyMkAxNDAwMzA0Mjg4NDk5
https://www.researchgate.net/publication/2385556_Efficient_Fair_Interpolation_using_Catmull-Clark_Surfaces?el=1_x_8&enrichId=rgreq-dc1a838fed0a491378d0fcef9d73a2e6-XXX&enrichSource=Y292ZXJQYWdlOzIyMjUyMDk0NztBUzo5NzY5NzQxOTc1OTYyMkAxNDAwMzA0Mjg4NDk5
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Figure 6: Shell geometry in the reference and the deformed configurations.

where the comma is used to denote partial differentiation with respect to θ1 and θ2 and the Greek indices
take the value 1 and 2. The shell directors a3 and a3 are defined as:

a3 =
a1 × a2√

a
and a3 =

a1 × a2√
a

with the Jacobians of the surface coordinates:
√
a = |a1 × a2| and

√
a = |a1 × a2|

The covariant components of the surface metric tensors in turn follow as:

aαβ = aα · aβ and aαβ = aα · aβ

whereas the covariant components of the curvature tensors are given by:

καβ = −aα,β · a3 and καβ = −aα,β · a3

We define the following two strain measures for describing the change in the geometry between reference
and the deformed geometry:

ααβ =
1

2
(aαβ − aαβ) and βαβ = καβ − καβ

In particular, the in-plane components ααβ , or membrane strains, measure the straining of the surface and the
components βαβ , or bending strains, measure the bending or change in curvature of the shell, respectively.
The linearized strain measures follow from:

dααβ(x+ εu)

dε
|ε=0 and

dβαβ(x+ εu)

dε
|ε=0

where u(θ1, θ2) is the displacement field of the middle surface of the shell. The membrane and bending
strains are, therefore, of the form:

ααβ =
1

2
(aα · u,β + u,α · aβ) (3)
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and

βαβ = −u,αβ · a3 +
1√
a
[u,1 ·(aα,β × a2) + u,2 ·(a1 × aα,β)]

+
a3 · aα,β√

a
[u,1 ·(a2 × a3) + u,2 ·(a3 × a1)] (4)

It is clear from these expressions that the displacement field u of the middle surface furnishes a complete
description of the deformation of the shell and may therefore be regarded as the primary unknown of the
analysis.

3.3 Weak Form of Equilibrium and Discretization

For simplicity, we shall assume throughout that the shell is linearly elastic with a strain energy density per
unit area of the form:

W (u) =
1

2

Eh

1− ν2
Hαβγδααβαγδ +

1

2

Eh3

12(1 − ν2)
Hαβγδβαββγδ (5)

whereby the Einstein summation convention applies, ν denotes Poisson’s ratio and E denotes Young’s
modulus. The fourth order constitutive tensor Hαβγδ is given by:

Hαβγδ = ν aαβaγδ +
1

2
(1− ν) (aαγaβδ + aαδaβγ) (6)

In (eq. 5), the first term is the membrane strain energy density and the second term is the bending strain
energy density. The shell is subject to a system of external dead loads consisting of distributed loads q per
unit area of Ω, and axial forces N per unit length of Γ. Under these conditions the potential energy of the
shell takes the form:

Φ[u] =

∫
Ω
W (u) dΩ−

∫
Ω
q · u dΩ−

∫
Γ
N · u ds

The stable equilibrium configurations of the shell now follow from the principle of minimum potential
energy:

Φ[u] = inf
v∈V
Φ[v] (7)

where V is the space of solutions consisting of all trial displacement fields v with finite energy Φ[v]. The
Euler-Lagrange equations corresponding to the minimum principle (eq. 7) may be expressed in weak form
as:

〈DΦ[u],v〉 = 〈DΦi[u],v〉+ 〈DΦe[u],v〉 = 0 (8)

In particular, the term internal energy has the form:

〈DΦi[u],v〉 =
∫
Ω
[

Eh

1− ν2
Hαβγδααβ(u)αγδ(v) +

Eh3

12(1 − ν2)
Hαβγδβαβ(u)βγδ(v)]dΩ

It is clear that the displacements and the trial functions must necessarily have square integrable first and
second derivatives. Under suitable technical restrictions on the domain Ω and the applied loads, it therefore
follows that V may be identified with the Sobolev space of functions H2(Ω, R3). In particular, an acceptable
finite-element interpolation method must guarantee that all trial finite-element interpolants belong to this
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space. Next we proceed to partition the domain Ω of the shell into a set of disjoint elements as induced by
the original control mesh. The collection of element domains in the mesh is {Ωj , j = 1, . . . , n}, where
Ωj denotes the domain of element j and n is the total number of elements in the domain. The subdivision
control mesh may be taken as a basis for introducing the interpolations of the general form:

xh(θ
1, θ2) =

L∑
l=1

N l(θ1, θ2)xl and uh(θ
1, θ2) =

L∑
l=1

N l(θ1, θ2)ul (9)

where {N l, l = 1, . . . , L} are the shape functions, {xl, l = 1, . . . , L} are the coordinates of the control
points in the reference configuration, {ul, l = 1, . . . , L} are the corresponding nodal displacements, and
L is the number of nodes in the mesh. Furthermore, an application of (eqs. 3 and 4) to the displacement
interpolation (eq. 9) gives the finite-element membrane and bending strains in the form:

αh(θ
1, θ2) =

L∑
l=1

M l(θ1, θ2)ul and βh(θ
1, θ2) =

L∑
l=1

Bl(θ1, θ2)ul (10)

The exact form of the matrices Ml and Bl can be found in [10]. Introducing the strain interpolations
(eq. 10) into the weak form (eq. 8) and subsequent numerical integration of the integrals leads to the discrete
equilibrium equation:

Khuh = fh (11)

whereKh is the stiffness matrix and fh is a force vector.

3.3.1 Remarks

• Theoretical considerations and numerical tests show that a one-point quadrature rule leads to a discrete
stiffness matrix with full rank, and optimal convergence of the method. The integration point is at the
barycenter of the elements. Sufficient conditions for the quadrature rule to preserve the order of
convergence of the finite-element method may be found in [45].

• The derived strain-displacement relations (eqs. 10) and the introduced material model (eq. 6) are
linear. The presented theory can thus only be applied in the small displacement and strain regime.

• The extension of the methods to the large deformation case can be found in [9].

• The resulting algebraic equation system (eq. 11) is, as usual for finite-element methods, sparse. We
solve it with a standard direct method specially tailored for sparse matrices.

• A classical approach to avoid the use of smooth shape functions in finite-element computations is
based on the theory of thick-shells with shear deformation [1, 4, 7, 40, 41]. The related finite-element
implementations require only piecewise continuous shape functions, but lead to problems such as
shear locking for thin-shells – especially in the presence of severe element distortion.

4 Design Space Exploration and Multi-Attribute Decision-Making

Engineering design requires a range of analysis methods, such as the subdivision method for thin-shell
structural analysis described above, in order to assess one or more aspects of performance for any particular
design candidate. However, several additional elements must also be available to the design engineer to
make effective use of such analysis methods. The designer needs:

https://www.researchgate.net/publication/236145565_An_Analysis_of_The_Finite_Element_Method?el=1_x_8&enrichId=rgreq-dc1a838fed0a491378d0fcef9d73a2e6-XXX&enrichSource=Y292ZXJQYWdlOzIyMjUyMDk0NztBUzo5NzY5NzQxOTc1OTYyMkAxNDAwMzA0Mjg4NDk5
https://www.researchgate.net/publication/256379471_On_a_stress_resultant_geometrically_exact_shell_model_Part_I_Formulation_and_optimal_parametrization?el=1_x_8&enrichId=rgreq-dc1a838fed0a491378d0fcef9d73a2e6-XXX&enrichSource=Y292ZXJQYWdlOzIyMjUyMDk0NztBUzo5NzY5NzQxOTc1OTYyMkAxNDAwMzA0Mjg4NDk5
https://www.researchgate.net/publication/222140577_On_a_stress_resultant_geometrically_exact_shell_model_Part_II_The_linear_theory_Computational_aspects?el=1_x_8&enrichId=rgreq-dc1a838fed0a491378d0fcef9d73a2e6-XXX&enrichSource=Y292ZXJQYWdlOzIyMjUyMDk0NztBUzo5NzY5NzQxOTc1OTYyMkAxNDAwMzA0Mjg4NDk5
https://www.researchgate.net/publication/229874130_Analysis_of_Thick_and_Thin_Shell_Structures_by_Curved_Element?el=1_x_8&enrichId=rgreq-dc1a838fed0a491378d0fcef9d73a2e6-XXX&enrichSource=Y292ZXJQYWdlOzIyMjUyMDk0NztBUzo5NzY5NzQxOTc1OTYyMkAxNDAwMzA0Mjg4NDk5
https://www.researchgate.net/publication/2488156_Subdivision_Surfaces_A_New_Paradigm_For_Thin-Shell_Finite-Element_Analysis?el=1_x_8&enrichId=rgreq-dc1a838fed0a491378d0fcef9d73a2e6-XXX&enrichSource=Y292ZXJQYWdlOzIyMjUyMDk0NztBUzo5NzY5NzQxOTc1OTYyMkAxNDAwMzA0Mjg4NDk5
https://www.researchgate.net/publication/240909579_Stress_projection_for_membrane_and_shear_locking_in_shell_Finite_Elements?el=1_x_8&enrichId=rgreq-dc1a838fed0a491378d0fcef9d73a2e6-XXX&enrichSource=Y292ZXJQYWdlOzIyMjUyMDk0NztBUzo5NzY5NzQxOTc1OTYyMkAxNDAwMzA0Mjg4NDk5
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• some approach to determine or propose which candidates to analyze,

• some method for trading-off cost and fidelity of analysis, and

• a method for trading-off (or aggregating) multiple (usually competing) aspects of performance (i.e.,
mass and stiffness).

The subdivision method for thin-shell structural analysis described above provides a powerful technique
for trading-off cost and fidelity of analysis, by:

• permitting the use of a coarse mesh early in the design procedure when a large number of design
alternatives are being considered, and the resources that can be applied to the (preliminary) analysis
of any one alternative are small, and

• increasing the fidelity of the analysis, by subdivision refinement of the mesh, as the design process
proceeds and the number of design alternatives being considered is reduced, and the resources that
can be applied to the analysis of any one alternative grow.

This is particularly beneficial, because the underlying model of the shell does not need to be recreated as the
design proceeds, only the degree of subdivision applied to the original model needs to be increased.

The multi-attribute character of engineering design makes it more than a simple optimization problem.
In multi-attribute problems, trade-offs among criteria can play a determining role, and the designer is fre-
quently interested in a Pareto frontier of points [18, 26, 46] rather than a single optimum.

A Pareto point is a point in the set of possible designs that matches or exceeds the performance of any
other possible design point on at least one attribute; if one point is better than a second on all attributes, the
second point is dominated and cannot be a Pareto point. The Pareto frontier is the set of Pareto points. A set
of Pareto points comprising a Pareto frontier in a 2-dimensional problem is shown in Figure 7.

The choice of a trade-off strategy (or aggregation) determines which of the undominated (Pareto) points
is selected as best satisfying the multiple criteria. Choosing an appropriate trade-off strategy is a crucial part
of the engineering design process, principally because it can dramatically affect the result [31]. A family of
functions, appropriate for engineering design, to perform this aggregation is introduced in [39].

It can be highly beneficial for the engineer to consider sets of designs [3]. As the design process pro-
ceeds, the size of the set of designs under consideration is reduced, as the fidelity of the analysis is increased.
Set-based methods have been shown to facilitate design concurrency [47].

The design engineer’s task involves proposing alternative solutions, coupled with an iterative exploration
of the design space. The dimension of a typical design space may be in the tens or hundreds. Unless the
measure of performance is an analytic function of the design variables (an unusual case), the engineer
must construct the performance function through pointwise evaluation of the design space. Even for rapid
performance calculations, “exhaustive” exploration of a design space (even to a modest resolution in each
dimension) is prohibitively expensive; for calculations such as finite-element analysis that may take many
minutes of cpu time, even a rudimentary exploration of the design space becomes impossible.

Methods for coping with this computational difficulty at any one level of design resolution include
polynomial and other approximations of the performance function (Design of Experiments [28, 33, 37],
Kriging [42], MARS [15], Response Surface methods [21]), local approximation of partial derivatives (sen-
sitivity analysis [22]), directed pointwise search (classical optimization [32]) and ad hoc selection guided
by experience and intuition.

For multi-attribute problems, decision analysis methods are used to assess the performance of sets of
designs (the Method of Imprecision [3, 49]), and to trade-off multiple competing aspects of the design
(utility theory [18], matrix methods [34], and aggregation methods [31, 39]).
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https://www.researchgate.net/publication/247487494_Sensitivity_analysis_and_optimization_of_mechanical_system_design?el=1_x_8&enrichId=rgreq-dc1a838fed0a491378d0fcef9d73a2e6-XXX&enrichSource=Y292ZXJQYWdlOzIyMjUyMDk0NztBUzo5NzY5NzQxOTc1OTYyMkAxNDAwMzA0Mjg4NDk5
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Figure 7: A Set of Pareto Points.

Finally, engineers routinely use models of differing resolution at different stages of a design process, for
example, progressing from linear beam calculations at an early stage of design to a finely-meshed non-linear
finite-element analysis when the geometry of the part is more precisely described. Such models cannot be
described as multi-resolution, however, for the engineer must employ different models to change resolutions.

The subdivision method for thin-shell structural analysis described above provides a true, natural, multi-
resolution analysis, where one model supports many different resolutions. As with other modeling methods,
increased fidelity comes at an increased computational cost. However, here the designer specifies a single
parameter (the level of subdivision) to choose faster analyses in the early stages and more accurate ones
later, rather than building a new model for each desired level of resolution of the same design.

5 Examples

We present two design examples to illustrate the framework presented above for integrated modeling, finite-
element analysis and design of thin-shells based on subdivision surfaces. In the examples, the initial design
is improved with respect to multiple objective functions. For optimization we employ a simple pattern
search algorithm. The search is based only on the value of the objective function and does not require
function derivatives. If derivatives (sensitivities) are available more sophisticated optimization algorithms
can be utilized (see, e.g., [13, 30] among many others).

5.1 Square Plate

The first example is the design of a uniformly loaded roof over a square shaped area (Figure 8). The roof
is supported at the four corners. The design objective is to maximize the stiffness (or to minimize the
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Figure 8: Definition of the plate test problem and a typical mesh used in the calculations.

compliance) of the structure which can be expressed more formally as:

min
s

uTKu (12)

where s is the set of design variables, u are the displacements, andK is the stiffness matrix. Although, not
explicitly indicated in (eq. 12), the stiffness matrix and the displacements depend on the design variables.
Furthermore, the range of the design variables s is given by the user. Within the subdivision framework the
vertices of the control mesh are the design variables. For the plate example we chose as design variables
the out of plane components of the control vertices in Figure 8. In order to compute the stiffness in (eq. 12)
during the design space exploration we utilize the finite-element method based on the subdivision shape
functions as described earlier. However, the resolution of the control mesh is not sufficient for finite-element
analysis. The control mesh is subdivided twice prior to the computation (Figure 9, left). Using the finite-
element mesh vertices directly as design variables would lead to too many unknowns during the optimization
procedure. In addition it leads to oscillations in the optimized shape so that the results of the optimization
are useless [13]. Consequently the parameters of the CAD model are chosen as the optimization variables.
In a traditional framework this requires the generation of a finite-element mesh separate from the original
CAD model, bringing with it the computational disadvantage of keeping two representations [6, 16, 30].
The subdivision based approach is computationally efficient and representationally unified way to use the
subdivision control mesh to parameterize both the geometry and the finite-element model.

The optimized roof structure is shown in Figure 9. For thin-shells the response to membrane strain is
much stiffer than to bending strain. Accordingly, the stiffness of the initial flat plate with bending energy
only, can be increased by changing the initial geometry of the shell as shown in Figure 9. Note the small
features close to the free boundaries of the optimized shape. Through the optimization process the objective
function in (eq. 12) could be minimized from 22541.32 to 55.39. This improvement demonstrates the well
known strong influence of the curvature on stiffness.

5.2 VW Hood

As an illustration of the value of the multiresolution simulation method using subdivision surfaces, consider
the circa-1960 VW Beetle hood shown in Figure 10. The engineering design problem for the VW hood is to
select a geometry of the hood to obtain superior performance in a number of aspects of performance, both
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Figure 10: Definition of the hood problem.

measured and unmeasured. Chief among these performance concerns is a measure of torsional stiffness (the
hood should not deform unacceptably if lifted from a point off-center at the front), which will be computed
using the finite-element method on the subdivision surface described above. In addition, the total weight
and the storage volume under the hood are calculated, and the styling, manufacturability, and usability of
the hood are taken into account.

The original surface model (Figure 10) has 63 control points. There are 28 reflected pairs, leaving 35
unique control points if symmetry is enforced. Of those 35 points, 12 lie on the edge of the hood, and as the
hood boundary is presumed to be fixed, those 12 points are fixed as well. It would be possible to treat the
23 remaining control points as design variables, and vary them individually. In order to lessen deviations
from the original styling (the hoods that we consider ought to look like a VW), these 23 control points are
varied using four non-dimensional geometric parameters: the swell of the hood (Figure 11, left), the depth
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Center swell Crease

Figure 11: VW Hood Variations.

Lower side swell Upper side swell

Figure 12: VW Hood Variations.

of the characteristic center crease (Figure 11, right), the swell of the upper portion of each side of the hood
(Figure 12, right), and the swell of the lower portion of each side of the hood (Figure 12, left). At the
reference configuration all design variables have a value of one, and at zero all curves flatten to straight
lines.

As mentioned above, the design problem for the VW hood is not one of simple optimization. Since the
finite-element mesh is easily modified, it is possible to “optimize” the design variables for minimum weight
(Figure 13), or maximum stiffness (Figure 13). These “optima” may be undesirable for other reasons such
as styling or manufacturability; also, one may sacrifice too much stiffness to achieve the lightest possible
design, or vice versa. Using the lowest resolution finite-element analysis and an iterative search process, an
approximate Pareto frontier on trade-offs between weight and stiffness can be found. As shown in Figure 14,
there are many Pareto points, many of which significantly outperform the reference configuration in both
weight and stiffness. Acquisition of the approximate Pareto frontier is made possible by use of the fastest
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Figure 15: VW hood: Trade-off.

(coarsest) analysis; when a smaller region of design space is explored at the next design iteration, a finer,
more accurate finite-element analysis can be employed.

The search for desirable designs can be further hastened by the use of approximations (which were
not used in this example), and by a priori analysis of the trade-off between performance measures. By
determining trade-off strategies and weights as described in [38], it is possible to search directly for a
solution to fulfill a desired level of trade-off and relative importance weighting among the attributes. One
such solution, representing a relatively non-compensating trade-off (s = −10), is shown in Figure 15,
which appears as a black triangle in Figure 14. This particular solution is relatively insensitive to deviations
from equal importance weights for the two attributes, and does not differ much from the minimum weight
solution. As was shown in [38], every point on the Pareto frontier is the optimum for some trade-off strategy
and pair of weights, so different decision analysis could lead to different solutions. In any case, the amount of
necessary computation is greatly reduced by choosing importance weighting and a degree of compensation
between attributes in advance [38].

6 Summary and Conclusions

We have proposed subdivision surfaces as a common foundation for modeling, simulation, and design in a
unified framework. Subdivision surfaces provide a flexible and efficient tool for arbitrary topology free-form
surface modeling, avoiding many of the problems inherent in traditional spline patch based approaches. In
addition, the underlying basis functions are ideally suited to the finite-element analysis of thin-shells. The
resulting solvers are highly scalable, providing an efficient computational foundation for design exploration
and optimization. In particular, the ability to represent smooth surfaces with a relatively coarse control mesh
greatly facilitates geometrical optimization.

Many engineering design applications require geometric modeling and mechanical simulation of thin
flexible structures, such as those found in the automotive and aerospace industries. Traditionally, geometric
modeling, mechanical simulation, and engineering design are treated as separate modules requiring different
methods and representations. Due to this representational incompatibility, the transition from geometric

https://www.researchgate.net/publication/2242061_Formalizing_Negotiation_in_Engineering_Design?el=1_x_8&enrichId=rgreq-dc1a838fed0a491378d0fcef9d73a2e6-XXX&enrichSource=Y292ZXJQYWdlOzIyMjUyMDk0NztBUzo5NzY5NzQxOTc1OTYyMkAxNDAwMzA0Mjg4NDk5
https://www.researchgate.net/publication/2242061_Formalizing_Negotiation_in_Engineering_Design?el=1_x_8&enrichId=rgreq-dc1a838fed0a491378d0fcef9d73a2e6-XXX&enrichSource=Y292ZXJQYWdlOzIyMjUyMDk0NztBUzo5NzY5NzQxOTc1OTYyMkAxNDAwMzA0Mjg4NDk5
https://www.researchgate.net/publication/2242061_Formalizing_Negotiation_in_Engineering_Design?el=1_x_8&enrichId=rgreq-dc1a838fed0a491378d0fcef9d73a2e6-XXX&enrichSource=Y292ZXJQYWdlOzIyMjUyMDk0NztBUzo5NzY5NzQxOTc1OTYyMkAxNDAwMzA0Mjg4NDk5


Integrated Subdivision Modeling for Thin-Shell Structures, F. Cirak, et al. 19

modeling to mechanical simulation, and vice versa, requires substantial effort. A straightforward transition
between the different representations is particularly important for engineering design purposes. Subdivision
surfaces provide a new formalism for overcoming these difficulties and effecting a seamless integration of
modeling, finite-element analysis, and design of thin-shell structures. The examples of application presented
here illustrate the versatility and effectiveness of this paradigm.
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