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Abstract—It has been shown in [1] that hierarchical coopera-
tion achieves a linear throughput scaling for unicast traffic, which
is due to the advantage of long range concurrent transmissions
and the technique of distributed MIMO. In this paper1, we
investigate the scaling law for multicast traffic with hierarchical
cooperation, where each of the n nodes communicates with k
randomly chosen destination nodes. Specifically, we propose a
new class of scheduling policies for multicast traffic. By utilizing
the hierarchical cooperative MIMO transmission, our new poli-
cies can obtain an aggregate throughput of Ω

�
(n
k
)1−ϵ

�
for any

ϵ > 0. This achieves a gain of nearly
p

n
k

compared with the non-
cooperative scheme in [26]. Among all four cooperative strategies
proposed in our paper, one is superior to in terms of the 3
performance metrics: throughput, delay and energy consumption.
Two factors contribute to the optimal performance: multi-hop
MIMO transmission and converge-based scheduling. Compared
with the single-hop MIMO transmission strategy, the multi-hop
strategy achieves a throughput gain of (n

k
)

h−1
h(2h−1) and meanwhile

reduces the energy consumption by k
α−2
2 times approximately,

where h > 1 is the number of the hierarchical layers, and α > 2
is the path loss exponent. Moreover, to schedule the traffic with
the converge multicast instead of the pure multicast strategy, we
can dramatically reduce the delay by a factor of about (n

k
)
h
2 .

Our optimal cooperative strategy achieves an approximate delay-
throughput tradeoff D(n, k)/T (n, k) = Θ(k) when h → ∞. This
tradeoff ratio is identical to that of non-cooperative scheme, while
the throughput is greatly improved.

I. INTRODUCTION

Capacity of wireless ad hoc networks is constrained by
interference between concurrent transmissions. Observing this,
Gupta and Kumar adopt Protocol and Physical Model to define
a successful transmission, and study the capacity scaling, i.e.,
the asymptotically achievable throughput of the network in
their seminal work [3]. Assume there are n nodes in a unit
disk area, they show that the per-node throughput capacity
scales as Θ

�
1√

n logn

�
for random networks, and the per-node

transport capacity for arbitrary networks scales as Θ
�

1√
n

�
,

respectively.
The results on network capacity provide us both a theoreti-

cal bound and insights in the protocol design and architecture
of wireless networks. Thus, great efforts are devoted to un-
derstand the scaling laws in wireless ad hoc networks. One
important stream of work is improving unicast capacity. With

1An earlier version of this paper appeared in the Proceedings of
IEEE Infocom 2010 [33]..

percolation theory, Franceschetti et al. [4] show that a rate
Θ
�

1√
n

�
is attainable in random ad hoc networks under Gen-

eralized Physical Model. However, it is still vanishing when
we have infinite number of nodes. To achieve linear capacity
scaling, Grossglauser et al. [5] exploit nodes’ mobility to
increase network throughput while at a cost of induced delay.
Tradeoff between capacity and delay is studied in literatures
[10] – [12]. An alternative way is adding infrastructure to the
network. It is shown in [13] – [17] that when the number of
base stations grows linearly as that of the nodes (implying
a huge investment), capacity will scale linearly. Moreover,
instead of letting nodes perform traditional operations such as
storage, replication and forwarding, [18] and [19] introduce
coding into the network. This also brings about the gain on
throughput.

Recently, Aeron et al. [6] introduce a multiple-input
multiple-output (MIMO) collaborative strategy achieving a
throughput of Ω(n−1/3). Different from the Gupta and Ku-
mar’s results, they use a cooperative scheme to obtain capacity
gain by turning mutually interfering signals into useful ones.
Later, Özgür et al. [1] [2] utilize hierarchical schemes rely-
ing on distributed MIMO communications to achieve linear
capacity scaling. The optimal number of hierarchical stages
is studied in [7], while multi-hop and arbitrary networks are
investigated in [8] and [9], respectively.

Another line of research deals with more generalized traf-
fic patterns. In [20], Toumpis develops asymptotic capacity
bounds for non-uniform traffic networks. In [21], broadcast
capacity is discussed. Then, a unified perspective on the
capacity of networks subject to a general form of information
dissemination is proposed in [22]. As a more efficient way for
one-to-many data distribution than multiple unicast, multicast
is well fit for the applications such as group communications
and multi-media services. Thus, it raises great interests to the
research community and has been studied by different manners
in [23] – [30]. Specifically, in [24], the authors derive the
asymptotic upper and lower bounds for multicast capacity by
focusing on data copies and area argument in the routing tree
established in the paper; In [25], multicast capacity is studied
under a more realistic channel model, physical layer model
instead of simplified protocol model assumed in many previ-
ous literatures; In [26], through mathematical derivations and
simulations, the authors demonstrate that multicast achieves a
gain compared to unicast when information is disseminated
to n destinations in mobile ad hoc networks; In [27], a
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comb-based architecture is proposed instead of routing tree
for multicast and this is shown to achieve an order-optimal
multicast capacity in static networks; In [28], Wang et. al.
prove that network coding cannot necessarily bring about gain
in multicast capcity, which is a counter-intuitive result. Very
lately, Niesen et al. [31] characterize the multicast capacity
region in an extended network. And capacity-delay tradeoff
for mobile multicast is inquired in [32].

However, the capacity of all the work above is largely
restricted by adjacent interference which is caused by the
concurrently transmitting nodes nearby. This is the bottleneck
for the capacity existing in the traditional ad-hoc networks.
This motivates us to focus on multicast scaling laws with
hierarchical MIMO in this paper. We jointly consider the effect
of traffic patterns and cooperative strategies on the asymptotic
performance of networks, aiming to break the bottleneck.
Moreover, there lacks a former work following into this kind.
Thus, the next questions are still open.

• How to hierarchically schedule multicast traffic to opti-
mize the achievable multicast throughput?

• Is there a strategy with good delay performance and is
energy-efficient when achieving optimal throughput?

• What is the delay-throughput tradeoff in our hierarchical
cooperative multicast strategies?

To answer the above questions, we propose a class of
hierarchical cooperative scheduling strategies to solve the
multicast problem. Specifically, we divide the network into
clusters; nodes in the same cluster cooperate to transmit data
for each other. In this way, all transmissions in the network
consist of two parts: inter-cluster communication and intra-
cluster communication.

Inter-cluster communication: The transmissions between
clusters are conducted by distributed MIMO. When a cluster
acts as a sender, all nodes in the cluster transmit a distinct bit
at the same time. Then each node in the receiving cluster can
observe a signal containing information of all transmitted bits.

We propose two kinds of transmission: direct and multi-
hop MIMO transmission, which is more general than that
in [33]. For the communication between clusters, the direct
manner uses MIMO transmission only once from the source
cluster to all destination clusters, while the multi-hop manner
conducts MIMO transmissions for many hops, and each time
a cluster only transmits to the neighboring cluster. After
analysis, we find multi-hop MIMO transmission can increase
the throughput and reduce the energy consumption due to
better spatial reuse and power management.

Intra-cluster communication: To decode MIMO transmis-
sions, the destination nodes in each destination cluster must
collect observation results from all nodes in the same cluster.
Since each cluster may act as a destination cluster of multiple
source clusters, there are several sets of destination nodes in
it. For each set, every node in the cluster sends one identical
bit to all nodes in the set. This traffic can be seen as multicast,
but considering the “converge” nature of the data flows, it can
also be regarded as converge multicast. Hence, we propose
two kinds of strategies: multicast-based strategy and converge-
based strategy.

Comparing these two kinds of strategies, there are no
differences on throughput and energy consumption. However,
the converge-based strategy can dramatically reduce the delay
by approximately Θ

�
(nk )

h
2

�
, where h > 1 is the number of

hierarchical layers in the network. We further divide clusters
into “sub-clusters”, and still use distributed MIMO to com-
municate between them. When using multicast-based strategy,
for each source node it must distribute data within its sub-
cluster, which accounts for the major part of the delay. On
the other hand, utilizing the converge nature of the traffic,
converge-based strategy omits the distribution procedure and
significantly reduces the delay.

Our main contributions are as follows.
• We propose a class of hierarchical cooperative scheduling

policies for multicast traffic, which can nearly achieve the
throughput information-theoretic upper bound.

• We reschedule the traffic of our cooperative transmission
and dramatically reduce the delay.

• We achieve an identical delay-throughput tradeoff to non-
cooperative multicast scheme, while the throughput is
greatly improved. The multicast tradeoff even outper-
forms that of unicast in some special cases.

Our main results are presented below.2

• We achieve a throughput of ÜΘ�(nk ) 2h−2
2h−1

�
, which has

a gain of nearly
È

n
k compared with non-cooperative

scheme.
• The delay of our optimal strategy is ÜΘ�n 2h−4

2h−1 k
3

2h−1

�
,

which achieves a delay-throughput tradeoff ratioÜΘ�k( kn ) 2
2h−1

�
.

• The energy-per-bit consumption is
O
�
n

1−α
2h−1 k−

2hα−3α+2
4h−2

�
.

The rest of the paper is organized as follows. In Section
II, we give our network models and definitions of terms. In
Section III, we outline the multicast hierarchical cooperative
scheme. Then, the analysis of throughput, delay and energy
consumption are presented in Section IV, V-A and V-B,
respectively. All the results are discussed in detail in Section
VI. Finally, we conclude the paper in Section VII.

II. NETWORK MODELS AND DEFINITIONS

A. Network Models

We consider a set of n nodes V = {v1, v2, . . . , vn}
uniformly and independently distributed in a unit square Ω.
Each node vi acts as a source node of a multicast session.

Multicast Traffic: For a source node vi, we randomly and
independently choose a set of k nodes Ui = {ui,j |1 ≤ j ≤ k}
other than vi in the deployment square as its destination nodes.
We define a multicast session as the collection of transmissions
from one source node to k destination nodes, and use MP(n, k)
to denote a n-session multicast problem with each node acting
as a source node for a session.

We then define another traffic that helps in our analysis.

2We use Knuth’s notation in this paper. Also we use f(n) = eΘ(g(n))
to indicate f(n) = O(nϵg(n)) and f(n) = Ω(n−ϵg(n)), for any ϵ > 0.
Intuitively, this means f(n) = Θ(g(n)) with logarithmic terms ignored.
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Converge Multicast Traffic: We randomly and independently
choose a set of k nodes Ui = {ui,j |1 ≤ j ≤ k} as destinations.
Each of n nodes in the network acts as a source node and
sends one identical bit to all nodes in Ui. This is a “converge”
transmission because the overall data flow is from all n nodes
to the set of k nodes. See Figure 1-(c) for illustration. And we
define it as a converge multicast frame. Use CMP(n,m, k) to
denote a m-frame converge multicast problem, for each frame
we choose a set of k destination nodes.

Wireless Channel Model: We assume that communication
takes place over a channel of limited bandwidth W . Each node
has a power budget of P . For the transmission from vj to vi,
the channel gain between them at time t is given by:

gij [t] =
√
Gd

−α/2
ij ejθij [t] (1)

where dij is the distance between vi and vj , θij [t] is the
random phase at time t, uniformly distributed in [0, 2π).
{θij [t]|1 ≤ i, j ≤ n} is a collection of independent and iden-
tically distributed (i.i.d.) random processes. The parameters G
and α > 2 are assumed to be constants; α is called the path-
loss exponent. Then, the signal received by node vi at time t
can be expressed as

Yi[t] =
X
j∈T[t]

gij [t]Xj [t] + Zi[t] + Ii[t] (2)

where Yi[t] is the signal received by node vi at time t, T[t]
represents the set of active senders, which can be added
constructively, Zi[t] is the Gaussian noise at node vi of
variance N0 per symbol, and Ii[t] is the interference from
the nodes which are destructive to the reception of node vi.

When conducting cooperative transmission, we assume that
full channel state information (CSI) is available at each node3.
Also we assume the far-field condition holds for all nodes, i.e.
the minimum distance between any two nodes is larger than
the wavelength of the carrier frequency4.

In this paper, we only consider dense network, which means
the network area is a unit square. Our hierarchical cooperative
scheme can also be applied to extended network, with a

√
n×√

n square network area.

B. Definition of Performance Metrics

Definition of Throughput: A per node throughput of λ(n, k)
bit/s is feasible if there is a spatial and temporal transmission
scheme, such that every node can send λ(n, k) bit/s on average
to its k randomly chosen destination nodes. The aggregate
multicast throughput of the system is T (n, k) = nλ(n, k).
When k = 1, it becomes aggregate unicast throughput.

Definition of Delay: The delay D(n, k) of a communication
scheme for the network is defined as the average time it takes
for a bit to reach its k destination nodes after leaving its source
node. The averaging is over all bits transmitted in the network.

Definition of Energy-Per-Bit: Define energy-per-bit E(n, k)
as the average energy required to carry one bit from a source
node to one of its k destination nodes.

3This assumption is also made in reference paper [1].
4The assumption is proved to be reasonable on page 3, the first paragraph

in [1].

(a) Three-step structure.

(b) Multi-hop MIMO transmis-
sion.

(c) A converge multicast trans-
mission frame.

Fig. 1. Transmission strategy of hierarchical cooperation.

III. TRANSMISSION STRATEGY

A. General Multicast Structure

The key idea of our multicast structure is dividing the net-
work into clusters with equal number of nodes, then the traffic
can be transformed into intra- and inter-cluster transmissions.
In this way, we divide the network into two layers: the clusters
and the whole network. We call the prior lower layer, and the
later upper layer. In our two-layer scheme, let n1 and n2 be
the number of nodes in the lower and upper layer, respectively.

In each multicast session, there is a source node and k
randomly chosen destination nodes. Let k1 be the number
of destination nodes in a cluster, and k2 = k be that in the
network. We also call the cluster containing the source node
source cluster, and clusters containing at least one destination
node destination clusters. Each multicast session is realized
by a three-step structure (see Figure 1-(a)).

1) Step 1: Source node distributes n1 bits among n1 nodes
in the cluster, one bit for each node. The traffics in this
step are unicasts from the source node to n1 − 1 other
nodes in the same cluster.

2) Step 2: The nodes in the source cluster transmit simul-
taneously by implementing distributed MIMO transmis-
sion to convey data to the destination clusters. There are
two ways of MIMO transmissions:

• Multi-hop MIMO transmission: Each source clus-
ter uses MIMO to transmit to a neighboring cluster,
which is called relay cluster. After each node in
the relay cluster receives a MIMO observation, it
amplifies the received signal to a desirable power
and retransmits it to the following relay cluster in
the next chance according to the routing protocol.
This process is repeated until all the destination
clusters receive MIMO observations. See Figure 1-
(b) for illustration.

• Direct MIMO transmission: The nodes in the
source cluster broadcast the data in the network
simultaneously. Then all nodes in the destination
clusters can receive a MIMO observation.

3) Step 3: After each destination cluster receives the MIMO
transmissions, each node in the cluster holds an obser-
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vation. The k1 destination nodes in the cluster must
collect all n1 observations to decode the transmitted
n1 bits. Thus, the traffics in this step are n1 multicast
sessions, with each node in the cluster acting as a source
node. Also, the k1 destination nodes are identical for all
n1 sessions. Hence, the traffic can also be treated as
a converge multicast problem, which means all source
nodes “converge”5 their data to a set of destination
nodes.

Now consider a network with more layers. The hierarchical
recursion of the whole system is shown in Fig. 2. In this
way, we have built a hierarchical scheme to achieve the
desired throughput. At the lowest layer of the hierarchy, we
use simple TDMA protocol to exchange bits for setting up
cooperation among small clusters. Combining this with multi-
hop MIMO transmissions, we get a higher throughput scheme
for cooperation among nodes in larger clusters at the next layer
of the hierarchy. Finally, at the top layer of the hierarchy, the
size of the cooperation clusters are maximum and the MIMO
transmissions are almost over the global scale to meet the
desired traffic demands.

B. Four Strategies for cooperative multicast

Following the three-step multicast structure, there are four
strategies that can realize the steps. All of them involve a
multi-layer solution.

• Multi-hop MIMO multicast (MMM): treat the traffic
in step 3 as multicast problem, with multi-hop MIMO
transmissions. The multicast problem in step 3 can also be
solved using the same three-step structure. Implementing
the three-step structure recursively we can get a hierar-
chical solution to multicast problem.

• Direct MIMO multicast (DMM): treat the traffic in step
3 as multicast problem, with direct MIMO transmissions.

• Converge based multi-hop MIMO multicast (CMMM):
treat the traffic in step 3 as converge multicast problem,
with multi-hop MIMO transmissions. The converge mul-
ticast problem can also be solved in a multi-layer manner.

• Converge based direct MIMO multicast (CDMM): treat
the traffic in step 3 as converge multicast problem, with
direct MIMO transmissions.

For the hierarchical schemes with multiple number of layers,
we give the following more detailed definition of converge
multicast frame introduced in CMMM and CDMM schemes.

Converge multicast: Consider the cooperative hierarchical
scheme with the number of layers to be 2. At layer i, for any
destination cluster, there are ni−1 nodes in that cluster, with
ki−1 of them being destinations. The convergecast multicast
frame here refers to the traffic pattern where all the ni−1 nodes
in this destination cluster transmit their data to those ki−1

destinations. Here there are n1 multicast sessions, with each
node in the cluster acting as a source node.

5Note that the traffic mode is similar to converge-cast in step 3, our
multicast analysis can well cover converge-cast case, where sources transmit
information to the destination with distinctive data rates.

C. Notations

We use the following notations throughout this paper. First
let h be the number of layers which is independent of n and
k. Then we give every layer a unique number 1 ≤ i ≤ h,
indicating the ith layer from the bottom to the top.

Given a layer i, let ni be the number of nodes and ki be that
of destination nodes for each source node. Apparently, nh = n
and kh = k. Use nci = ni/ni−1 to denote the number of
clusters, and kci to denote that of destination clusters at layer
i.

When analyzing strategies, we use mi to denote the
number of multicast sessions at layer i when considering
MMM/DMM, or the number of converge multicast frames at
layer i when considering CMMM/CDMM.

IV. ANALYSIS OF MULTICAST THROUGHPUT

In this section, we first present the information-theoretic
upper bound of the multicast throughput. Then we provide
strategies that can nearly achieve the upper bound by utilizing
cooperation in the network. When analyzing the throughput,
we use a “assume-and-verify” method, i.e. we first make some
assumptions on the network; after we obtain the results, we
verify these assumptions. Using this method, we make our
analysis both strict and easy to follow.

A. Upper Bound of Multicast Throughput

To prove the upper bound, we need lower-bound the mutual
distance between nodes, which is provided in the following
lemma.

Lemma 4.1: In a network with n nodes randomly and
uniformly distributed on a unit-square, the minimum distance
between any two nodes is 1

n1+δ whp6, for any δ > 0.
Theorem 4.1: In the network with n nodes and each send-

ing packets to k randomly chosen destination nodes, the
aggregate multicast throughput is whp bounded by

T (n, k) ≤ p1
n log n

k

where p1 > 0 is a constant independent of n and k.
Proof: For each source node in the network, we have

randomly assigned k destination nodes to it. If the sets of des-
tination nodes for each source node do not intersect with each
other, nk nodes will act as destination nodes in total. However,
there are only n nodes in the whole network. Thus, by
considering the source-destination paring from a reverse view,
for each node d, there are on average k nodes s1, s2, . . . , sk
that choose d as one of its destination nodes. Assume each
source node transmits data to d at a same rate λ(n, k). The
total rate kλ(n, k) from source nodes si(1 ≤ i ≤ k) to
the destination node d is upper-bounded by the capacity of
a multiple-input single-output (MISO) channel between d and
the rest of the network. Using a standard formula for this

6In this paper, whp stands for with high probability, which means the
probability tends to 1 as n → ∞.
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Fig. 1. A whole view of the hierarchical cooperative multicast scheme.
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Fig. 2. A whole view of the hierarchical cooperative multicast scheme.

channel, we get

kλ(n, k) ≤ log

 
1 +

P

N0

nX
i=1

si ̸=d

|gsid|2
!

= log

 
1 +

P

N0

nX
i=1

si ̸=d

G

dαsid

!
.

According to Lemma 4.1, the distance between si(1 ≤ i ≤ k)
and d is larger than 1

n1+δ whp. Using this fact, we obtain whp

λ(n, k) ≤ 1

k
log

�
1 +

GP

N0
nα(1+δ)+1

�
≤ p1 log n

k

for some constant p1 independent of n and k. The theorem
then follows.

B. Throughput Analysis with MMM

To ensure successful MIMO transmissions, there must be
same number of nodes in each cluster. The following lemma
ensures the number of nodes in each cluster at layer 2 ≤ i ≤ h
has the same order. For simplicity, we consider the number of
nodes in each cluster is exactly ni−1.

Lemma 4.2: Consider ni nodes uniformly distributed in the
network area. Divide the network into nci identical square-
shaped clusters. Then the number of nodes in each cluster is
ni−1 = ni

nci
whp when Assumption 1: ni = Ω(nci lognci)

is satisfied.
Remark 4.1: Note that the purpose of Lemma 4.2 is to

show the relationship between the number of nodes at layer
i, denoted by ni, and the number of cells at layer i, namely,
nci . It does not aim to show how nci depends on n. Actually,
how nci varies at each layer not only depends on n, but on the
number of total layers h and the property of the cooperative
scheme adopted as well. Under different ways of hierarchical
division at each layer will result to different throughput results.
In our following MMM, CMMM, DMM and CDMM schemes,
the detailed dependency of nci on n can be revealed during
the analysis on throughput and delay.

As mentioned, to solve the MP(n, k) in the network area,
we divide it into three steps. Since the problems in step 1 and

3 are also multicast problems7, we can apply the three steps
recursively and build a h-layer solution.

1) Solution to Multicast Problem: We consider the ith layer
in the network (2 ≤ i ≤ h) and follow the three steps.

Step 1. Preparing for Cooperation: Given the total number
of multicast sessions mi at layer i, each node holds mi

ni
bits

that need to multicast. In this step, each node must distribute
all its data to other nodes in the same cluster, mi

nini−1
bits for

each one. Considering ni−1 source nodes in each cluster, the
traffic load are Θ

�
mini−1

ni

�
bits. Since the data exchanges only

involve intra-cluster communication, they can work according
to the 9-TDMA scheme. We divide the time into slots; at each
time slot, let the neighboring eight clusters keep silent when
the centric cluster is exchanging data. According to the channel
model (2), we assume the received interference signal Ir(t) is
a collection of uncorrelated zero-mean stationary and ergodic
random processes with power upper-bounded by a constant.8

This assumption is also made in the proof of Lemma 3.1
[2]. Thus, the power of destructive interference is bounded,
enabling clusters operate simultaneously in 9-TDMA manner.
This is ensured by Lemma 4.3.

Lemma 4.3: By 9-TDMA scheme, when α > 2, one node
in each cluster has a chance to operate data exchanges at a
constant transmission rate. Also when α > 2, the interfering
power received by a node from the simultaneously operating
clusters is upper-bounded by a constant.

Assume an aggregate unicast throughput of Θ(na
i−1), 0 ≤

a ≤ 1 can be achieved for every possible source-destination
paring at layer (i−1). Given a traffic load of Θ

�
mini−1

ni

�
bits,

this step can be completed in Θ
�

min
1−a
i−1

ni

�
time slots.

Step 2. Multi-hop MIMO Transmissions: In this step,
each source cluster starts a series of MIMO transmissions
to reach all its corresponding destination clusters in multi-
hop manner. To achieve the asymptotically optimal multicast
throughput, we construct a multicast tree (MT) by adopting
Algorithm 1 in [26], spanning from a source cluster Si and its

7We view unicast as a special case of multicast problem.
8This assumption is also needed in other strategies. We will not repeat. Also

note that negligible channel interference is one of the basic catches that make
both our work and analysis go through. Without the guarantee of constant
bounded interference, we cannot ensure the high decoding probability at the
receiving nodes.



6

Fig. 3. An example of three MTs in multi-hop MIMO transmission. Si

denotes a source cluster and Di is one of its destination clusters. The number
on the arrow indicates which MT it serves. For each pair of neighboring
clusters, the communication between them may involve data from different
sources.

corresponding destination clusters Dij , where 1 ≤ j ≤ kci .
Let Pi = {Si, Dij , 1 ≤ j ≤ kci}.

For simplicity, we do not present the detailed algorithm of
how to constructing an MT here since it is not our major
contribution. Briefly speaking, the algorithm is conducted
through the following way:

For a set of nodes Pi containing a super source node and its
super destination nodes, we first build an Euclidean spanning
tree, denoted as EST (Pi), to connect them. For each link
uv in EST (Pi), we decompose it into a Manhattan path
connecting u and v to form Manhattan routing tree MRT (Pi).
Then, for each edge uw in MRT (Pi), we connect super nodes
crossed by uw in sequence. The final tree is called multicast
tree MT.

The constructed MT possesses properties below and hence
we can acquire Lemma 4.4.

• The maximum length of each hop at layer i is
Θ
�È

ni−1

n

�
.

• The total length of MT(Pi) is at most O
�p

kci ×
È

ni

n

�
.

Lemma 4.4: The number of hops in MT is O
�q

nikci

ni−1

�
.

Accounting all mi multicast sessions, at layer i there are
mi

ni−1
MTs, and the total number of hops is O

�
mi

ni−1

q
nikci

ni−1

�
.

Using the 9-TDMA scheduling, each cluster is allowed to
take MIMO transmission in every nine time slots. If a cluster
serves as a relay cluster for multiple multicast sessions, it
will deliver the packets of different sessions including its own
packets with equal probability. See Figure 3 for illustration.
Hence, according to our protocol, at each time slot Θ

�
nci

9

�
clusters can transmit simultaneously. The total amount of time
to accomplish all mi sessions’ MIMO transmissions is no
more than O

�
mi

q
kci

nini−1

�
.

Step 3. Cooperative Decoding: Now that each MT has
kci destination clusters, after step 2, every cluster receives
Θ
�
mikci

ni

�
MIMO transmissions9. For each MIMO transmis-

sion, every node in a destination cluster obtains an observation
of the ni−1 bits transmitted from the source node. To decode

9This is valid under assumption 3 in Lemma 4.7, which we present later.

the original ni−1 bits, all nodes in the destination cluster
must first quantify each observation into Q bits, where Q
is a constant. Then each node conveys the Q bits to all
ki−1 destination nodes in the cluster. Clearly, this procedure
is a MP(ni−1, ki−1). After all observation results reach the
destination nodes, they can decode the transmitted ni−1 bits.

Assume an aggregate multicast throughput ÜΘ(na
i−1k

b
i−1) is

achievable at layer (i−1) whp, where 0 ≤ a ≤ 1,−1 ≤ b ≤ 0,
and a + b ≤ 0. Then MP(ni−1, ki−1) can be solved withinÜΘ� Qni−1

na
i−1

kb
i−1

�
time slots. Note each cluster receives Θ

�
mikci

ni

�
MIMO transmissions, and needs to perform this decoding
process for each transmission. By utilizing the 9-TDMA
scheme, we can finish all mi−1 = mikci multicast sessions

in Θ
�
mikci

ni

�
rounds. Thus, step 3 costs ÜΘ�min

1−a
i−1

kci

nikb
i−1

�
time

slots.
For the last part of our solution, we specify the transmission

at the bottom layer. In each session, every node broadcasts its
data. Then each time, all destination nodes can receive one bit.
Thus a multicast session can be completed in one time slot.

2) The Division of Network: By minimizing the total
time cost during the three steps at layer i, we present the
throughput-optimal division of the network. First, we have

Lemma 4.5: Given ki independently and uniformly dis-
tributed destination nodes in the network at layer i. The
number of destination clusters kci is given by

kci =

¨
Θ(ki), when ki = O(nci),

Θ( ni

ni−1
), when ki = Ω(nci).

Lemma 4.6: When Assumption 2: mh = O
�
(nci)

p2

�
holds for all 2 ≤ i ≤ h with a constant p2 > 0:

(a) if ki = Ω(nci log nci), then ki−1 = Θ
�

ki

nci

�
whp;

(b) if ki = O(nci lognci), then ki−1 = O(log nci) whp.
In the following Lemma 4.7, we use li to denote the number

of destination sets in each cluster. More specifically, let each
source node choose a set of destination nodes in the network,
and li is the number of source nodes that choose at least one
destination node in a layer i network. Thus, for MMM/DMM,
in which mi is the number of multicast sessions, we acquire
li = mi/

Qh
j=i+1 ncj ; for CMMM/CDMM, in which mi is

the number of converge multicast frames, we acquire li =
mi/

Qh−1
j=i+1 ncj .

Lemma 4.7: When ki = o(nci), the number of destination
sets at the (i− 1)th layer li−1 is

(a) when Assumption 3: li = Ω
�
nci

ki
log

nci

ki

�
is satisfied,

then whp li−1 = Θ
�
liki

nci

�
;

(b) when li = O
�
nci

ki
log

nci

ki

�
, then whp li−1 =

O
�
log

nci

ki

�
.

Now we are ready to present our network division scheme.
Lemma 4.8: When k = O(n1−ϵ) for a small ϵ > 0, the

number of nodes at each layer to achieve optimal throughput
in MMM strategy is given by

ni =

¨
(nk )

2i−1
2h−1 , i < h,

n, i = h.
(3)



7

Proof: Still we consider the three steps at layer i. When
assumptions 1 and 3 are satisfied, combining the three steps,
the total time to complete mi multicast sessions is

Θ

 
min

1−a
i−1

ni

!
+O

 
mi

Ê
kci

nini−1

!
+ÜΘ min

1−a
i−1 kci

nikbi−1

!
(4)

Since the time cost on step 3 is always longer than that on
step 1 in the order sense, the throughput at layer i is given by

T (ni, ki) =
mi

Θ
�

min
1−a
i−1

ni

�
+O

�
mi

q
kci

nini−1

�
+ÜΘ�min

1−a
i−1

kci

nikb
i−1

�
= ÜΘ nini−1p

nini−1kci + n2−a
i−1 k

−b
i−1kci

!
(5)

To optimize the network division at layer i, we consider
two cases: nci = O(ki) and nci = Ω(ki)

10. Note we suppose
the assumption 2 is satisfied. According to Lemmas 4.5 and
4.6, the properties of two cases are summarized below.

• Case 1: When nci = O(ki), then kci = Θ(nci), ki−1 =ÜΘ� ki

nci

�
;

• Case 2: When nci = Ω(ki), then kci = Θ(ki), ki−1 =

O(log nci) =
ÜΘ(1).

In case 1, the throughput in (5) can be written as

T (n, k) = ÜΘ� nini−1

ni + n1−a−b
i−1 k−b

i n1+b
i

�
(6)

The result is optimized when ni−1 = (ni

ki
)

b
1−a−b . However,

since case 1 requires that nci = O(ki), or ni−1 = Ω(ni

ki
), the

optimal result cannot be achieved. Thus the maximum achiev-
able throughput in case 1 is ÜΘ� ni

ki+n1−a
i

ka
i

�
when choosing

ni−1 = ni/ki, which is not superior to the throughput at the
(i− 1)th layer.

In case 2, the throughput in (5) can be written as

T (n, k) = ÜΘ� nini−1È
niki/ni−1 + n2−a

i−1 ki

�
(7)

The result is optimized when ni−1 = (ni

ki
)

1
3−2a . Since the

inequality (ni

ki
)

1
3−2a < ni

ki
holds, we can achieve a throughput

of ÜΘ�(ni

ki
)

2−a
3−2a

�
, which is better than the throughput at the

(i− 1)th layer as 0 ≤ a < 1. Therefore, we can improve the
throughput by adopting case 2.

At bottom layer, the aggregate multicast throughput is
T (n1, k1) = 1. When dividing the network in the optimal
way at each layer, the relationship of ni, ki and throughput in
each layer is as follows

nh = khn
2h−1
2h−3

h−1 , (
nh

kh
)

2h−2
2h−1

...

n3 = n
5
3
2 , (

n3

k3
)4/5

n2 = n3
1, (

n2

k2
)2/3

(8)

10The network division is equivalent to power control. By optimal network
division, a node does not need to transmit with full power. This can well solve
the problem of limited power.

Note nh = n, kh = k. Substituting this into (8), it yields (3).
This finishes the proof.

Remark 4.2: Now the number of sessions at each layer is
mi = n

Qh
j=i+1 kj = ÜΘ(nk). Under this condition, when

(3) is satisfied, the time spent at each layer is identical in
the order sense, i.e. it takes the same amount of time on
the broadcast transmission at bottom layer and multi-hop
MIMO transmission at every other layer. However, when
mi = Θ(nk) do not exactly holds, the throughput of the
network is determined by the layer with the maximum number
of sessions max1≤i≤h−1{mi}. Note this conclusion also holds
for CMMM strategy, with mi denoting the number of frames
at each layer. To get the precise throughput result of MMM
strategy, we must further calculate the number of multicast
sessions at each layer.

3) The Verification of Assumptions: To calculate the accu-
rate throughput result, there are three conditions need justifi-
cation. We now consider these factors under (3).

a) First we consider assumptions 1 and 2. According to our
multicast traffic in the network, the number of multicast
sessions at the top layer is mh = n, which is smaller
than nh

ci for 2 ≤ i ≤ h. Thus, assumption 2 holds.
As for assumption 1, obviously ki = O(log nci+1) =
O( ni

lognci
) for 1 ≤ i ≤ h− 1. Considering the top layer,

k = O( n
nch

) satisfies when k = O(n/ log
2h−1
2h−3 n). Since

we only consider the case k = O(n1−ϵ) for a small
ϵ > 0, assumption 1 is also satisfied.

b) Then we consider the number of destination nodes at
each layer. By Lemma 4.6

ki =

(
O
�
log(nk )

2
2h−1

�
, 1 ≤ i ≤ h− 2,

O
�
log k(nk )

2
2h−1

�
, i = h− 1.

This will change the number of sessions to

mh = n

mh−1 = nk

mh−2 = nk log(
n

k
)

...

m1 = nk logh−2(
n

k
)

(9)

c) In our scheme, Lemma 4.7-(a) must be applied recur-
sively. Each time, we have to ensure assumption 3 is
satisfied. Recall the number of destination sets is given
by

li =
miQh

j=i+1 ncj

=
mi

k(n/k)
2h−2i
2h−1

Combining (9), we obtain li = Ω
�
(nk )

2
2h−1

�
. Note in

our network division nci

lognci
log

nci

lognci
= Θ

�
(nk )

2
2h−1

�
for 2 ≤ i ≤ h − 1. Thus li = Ω

�
nci

ki
log

nci

ki

�
, and

assumption 3 is satisfied for all layers.
4) The Calculation of Throughput: From the analysis

above, plus the conclusion of Remark 4.2, the throughput is
determined by the number of sessions at the bottom layer
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because m1 = max1≤i≤h−1{mi} = nk logh−2(nk ). Followed
by (5), the throughput is

T (n, k) = Θ
��n

k

� 2h−2
2h−1

log−(h−2) n

k

�
. (10)

Then the following theorem naturally holds.
Theorem 4.2: By using MMM strategy, we can achieve an

aggregate throughput of

T (n, k) = Θ
��n

k

� 2h−2
2h−1

log−(h−2) n

k

�
. (11)

C. Throughput Analysis with CMMM

Consider three top layers h, h− 1 and h− 2, and call layer
h− 1 and h− 2 as “clusters” and “sub-clusters” respectively.
We organize nh−1

nh−2
rounds of transmission and for each round,

choose a sub-cluster in every cluster (nhnh−2

nh−1
source nodes per

round). At each round, only nodes in the chosen sub-clusters
serve as source nodes. We divide a round into three steps.

Step 1. Preparing for Cooperation: Each source node in
the chosen sub-clusters must deliver nh−1 bits to nodes in
the same cluster for cooperation, one bit for each node. This
includes two sub-steps:

• Sub-Step 1. MIMO Transmissions: In a specific cluster,
each node acts as a destination node. For each destination
node d, the chosen sub-cluster uses direct MIMO trans-
mission11 to communicate with the sub-cluster where d
locates. This takes nh−1 time slots to accomplish.

• Sub-Step 2. Cooperate Decoding: All sub-clusters in
the network work in parallel to decode. This sub-step is
a CMP(nh−2, nh−2, 1).

Step 2. Multi-hop MIMO Transmission: After step 1,
all source nodes in the chosen sub-cluster have distributed
their nh−1 bits among the nodes in the same cluster. To use
multi-hop MIMO transmission, we must build nhnh−2

nh−1
MTs,

each corresponding to a source node. According to Lemma
4.4 and the 9-TDMA scheme, step 2 can be completed in
Θ
�
nh−2

q
nhkch

nh−1

�
time slots.

Step 3. Cooperative Decoding: Each destination cluster
works in parallel and decodes the original nh−2 bits from
MIMO observations. The decoding process can be treated as
an CMP(nh−1,mh−1, kh−1), with mh−1 = nh−2kch . This
conclusion is based on assumption 3.

1) Solution to Converge Multicast Problem: We start by
studying a two-layer network. Given a CMP(n2,m2, k2), we
divide the network into clusters of n1 nodes. A frame of
transmission includes the following steps.

Step 1: After the division of clusters, there are kc2 desti-
nation clusters. Since all n2 nodes must send one bit to k2
destination nodes, all nc2 clusters must act as source clusters
and transmit to kc2 destination clusters using MIMO.

For each of the nc2 source clusters, build a MT connecting
the source and destination clusters. By Lemma 4.4, we can

11Because the time cost in step 1 is not the dominating factor on throughput,
this will not affect the result. The reason we do not use multi-hop is that the
traffic is not uniformly distributed and is hard to schedule by TDMA scheme.

finish all the transmissions on MTs in O
�q

n2kc2

n1

�
slots. Con-

sidering m2 frames, the time cost in step 1 is O
�
m2

q
n2kc2

n1

�
.

Step 2: After a destination cluster receives a MIMO trans-
mission, all n1 nodes must quantify the observation and
converge them to the destination nodes in the cluster. This is a
converge multicast problem. When assumption 3 is satisfied,
there are m1 = Θ

�
m2kc2

nc2

�
frames that choose a cluster as

destination cluster. Thus, there is a CMP(n1,m1, k1) in each
cluster.

Since the problem in step 2 is also a converge multicast
problem, our two-step scheme can be applied recursively to
construct a hierarchical solution. In our CMMM strategy, we
build a (h − 1)-layer strategy for step 3. Plus the top layer,
there is a total of h layers.

At last, we specify the transmission of the bottom layer. For
each frame, every node broadcasts its data and all destination
nodes can receive one bit per time slot. Then a frame can be
completed in n1 time slots.

2) The Division of Network: Similar to MMM strategy, we
first present the throughput-optimal network division.

Lemma 4.9: When k = O(n1−ϵ) for a small ϵ > 0, the
number of nodes at each layer to achieve optimal throughput
in CMMM strategy is given by

ni =

¨
(nk )

2i−1
2h−1 , i < h,

n, i = h.
(12)

Proof: Consider two layers i and i−1, with 2 ≤ i ≤ h−1.
Assume at the (i−1)th layer, CMP(ni−1,mi−1, ki−1) can be
solved in ÜΘ(mi−1n

a
i−1k

b
i−1) time slots. Similar to the analysis

of MMM strategy, we assume that assumptions 1, 2 and 3 are
satisfied. Then we have mi−1 = Θ(mikci) Still, we consider
two cases: nci = O(ki) and nci = Ω(ki), with the properties
still hold.

• Case 1: When nci = O(ki), then kci = Θ(nci), ki−1 =

Θ
�

ki

nci

�
;

• Case 2: When nci = Ω(ki), then kci = Θ(ki), ki−1 =

O(log nci) =
ÜΘ(1).

In case 1, the CMP(ni,mi, ki) can be solved in

mi

Ê
nikci
ni−1

+mi−1n
a
i−1k

b
i−1 =

mini

ni−1
+min

1−b
i kbin

a+b−1
i−1

(13)
time slots. The result is optimized by choosing ni−1 =

(ni

ki
)

b
a+b . However, since (ni

ki
)

b
a+b < ni

ki
, which contradicts

with the requirement ni−1 = Ω(ni

ki
) of case 1. Thus the

minimum time to solve the CMP(ni,mi, ki) is min
a
i k

1−a
i ,

which is achieved when ni−1 = ni/ki. This is not superior to
the solving time at the (i− 1)th layer.

In case 2, the CMP(ni,mi, ki) can be solved in

mi

Ê
nikci
ni−1

+mi−1n
a
i−1k

b
i−1 = mi

Ê
niki
ni−1

+mikin
a
i−1 (14)

time slots. The result is optimized by choosing ni−1 =

(ni

ki
)

1
2a+1 . Since the equation (ni

ki
)

1
2a+1 < ni

ki
holds,

CMP(ni,mi, ki) can be solved in mn
a

2a+1

i+1 k
a+1
2a+1

i+1 time slots,
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which is better than the solving time at ith layer. Therefore,
we can shorten the solving time by adopting case 2.

At bottom layer, a frame can be finished in n1 time slots.
When we divide the network in the optimal way at each layer,
the relationship of ni, ki and solving time in each layer from
1 to h− 1 is shown as follows

nh−1 = kh−1n
2h−3
2h−5

h−2 , n
1

2h−3

h−1 k
2h−4
2h−3

h−1

...

n3 = n
5
3
2 , n

1/5
3 k

4/5
3

n2 = n3
1, n

1/3
2 k

2/3
2

(15)

Thus, the minimum solving time of CMP(nh−1,mh−1, kh−1)

is ÜΘ�mh−1n
1

2h−3

h−1 k
2h−4
2h−3

h−1

�
.

Accounting all procedures together, at every round of
transmission, we deliver nh−1 × nh−2 × nh

nh−1
bits to their

destination nodes in�
nh−1+n

2h−6
2h−5

h−2

�
+nh−2

Ê
nhkch
nh−1

+nh−2khn
1

2h−3

h−1 k
2h−4
2h−3

n−1 (16)

time slots. So the aggregate throughput is given by

nh−1 × nh−2 × nh

nh−1�
nh−1 + n

2h−6
2h−5

h−2

�
+ nh−2

q
nhkch

nh−1
+ nh−2khn

1
2h−3

h−1 k
2h−4
2h−3

n−1

(17)
We optimize the result by choosing nh−1 = (nh

kh
)

2h−3
2h−1 .

Combining with (15), we obtain (12). This finishes the proof.

3) The Verification of Assumptions: Before presenting the
throughput result, the three conditions in section IV-B3 also
need justification.

a) To begin with, the verification procedure of assumptions
1 and 2 is identical to MMM strategy, and the assump-
tions are satisfied. For simplicity we omit the details.

b) Then we consider the number of destination nodes at
each layer. Accounting mh−1 = k(nk )

2h−5
2h−1 and ki−1 =

log nci for 2 ≤ i ≤ h:

mh−1 = k
�n
k

� 2h−5
2h−1

mh−2 = k
�n
k

� 2h−5
2h−1

log
�n
k

�
...

m1 = k
�n
k

� 2h−5
2h−1

logh−2
�n
k

�
(18)

c) In our scheme, Lemma 4.7-(a) must be applied recur-
sively. Each time, we need to ensure that assumption
3 is satisfied. Recall the number of destination sets is
given by

li =
miQh−1

j=i+1 ncj

=
mi

(n/k)
2h−2i−2

2h−1

The equation holds under the network division (12).
Combining (18), we obtain li = Ω

�
(nk )

2
2h−1

�
=

Ω
�

nci

lognci
log

nci

lognci

�
for 3 ≤ i ≤ h−1, and assumption

3 is satisfied. However, when i = 2,

l2 = k
�n
k

� 1
2h−1

logh−3
�n
k

�
.

Comparing l2 with (nk )
2

2h−1 , there exist a threshold12

kth = Θ
�
n

1
2h log

(h−3)(2h−1)
2h n

�
= ÜΘ�n 1

2h

�
. (19)

When k = Ω(kth), assumption 3 holds for layer 2,
otherwise it does not. Thus the number of frames at
bottom layer is thus given by

m1 =

(
(nk )

2h−4
2h−1 log(nk ), when k = O(kth),

k(nk )
2h−5
2h−1 logh−2(nk ), when k = Ω(kth).

(20)
4) The Calculation of Throughput: From the above anal-

ysis, plus the conclusion of Remark 4.2, the throughput is
determined by the number of frames at the bottom layer
because m1 = max1≤i≤h−1{mi}. Thus, followed by (17) and
(20), the throughput is given by

T (n, k) =

(
Θ
�
n

2h−3
2h−1 k

2
2h−1 log−1 n

k

�
, when k = O(kth),

Θ
�
(nk )

2h−2
2h−1 log−(h−2) n

k

�
, when k = Ω(kth).

(21)
Then, we have the following theorem.
Theorem 4.3: By using CMMM strategy, we can achieve

an aggregate throughput of

T (n, k) =

(
Θ
�
n

2h−3
2h−1 k

2
2h−1 log−1 n

k

�
, when k = O(n

1
2h ),

Θ
�
(nk )

2h−2
2h−1 log−(h−2) n

k

�
, when k = Ω(n

1
2h ).
(22)

D. Broadcast Case

So far we have only proved the throughput result when
k = O(n1−ϵ) for an arbitrarily small ϵ > 0. Another case
is k = ÜΘ(n), which we refer to as broadcast case.

According to Theorem 4.2, the network cannot be divided
into more than ÜΘ(ni) clusters at layer i. Thus for broadcast
case, we can only divide the network as nci = O(ki). This
division has been discussed in the proof of Lemma 4.8 and 4.9
(see case 1), and the throughput performance does not increase
as the number of layer becomes higher. Thus, there is no gain
on the throughput when utilizing our cooperative scheme in
the broadcast case, and the throughput results in Theorems 4.2
and 4.3 still hold.

In the rest of this paper, we do not distinguish k = O(n1−ϵ)

and k = ÜΘ(n), because the conclusions hold for both cases.

E. Throughput Analysis Using Direct MIMO Transmission

DMM and CDMM operate in similar manners to MMM
and CMMM, respectively. The only difference is that we use
direct MIMO transmission in these two strategies. Because
the similarity, we only present some important conclusions
and results.

12We will discuss the influence of it in Section VI-C
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In DMM and CDMM, we perform direct MIMO transmis-
sions at each layer, which takes one time slot for each source
clusters. This difference leads to another optimized network
division, which is identical for both DMM and CDMM.

ni =

¨
(nk )

i
h , i < h,

n, i = h.
(23)

Under this division, the throughput results are given by the
following theorem.

Theorem 4.4: By using either DMM or CDMM strategy,
we can achieve an aggregate throughput

T (n, k) = Θ

��n
k

�h−1
h

log−(h−1)n

k

�
. (24)

V. DELAY AND ENERGY CONSUMPTION ANALYSIS

A. Delay Analysis

1) Delay Analysis with MMM: As mentioned in the previ-
ous section, delay performance of MMM is poor. Intuitively, at
the ith layer, a source node must divide the data into ni−1 parts
of the same size and distribute to other nodes for cooperation.
This division is repeated at each layer. Since the smallest part
of data at the bottom later is one bit, the minimum size of
data packets at layer i is Bi =

Qi−1
j=1 nj bits.

For the ith layer, let D(ni, ki) be the average time to
accomplish a multicast session for each of ni nodes. To
analyze the delay, we consider the three steps separately.

1) For step 1, each source node distributes Bi bits to
other nodes within the same cluster. Because in this
step, all traffic is unicast, the distribution process takes
D(ni−1, 1) time slots. We ignore the time spent in step
1 since it is smaller than that in step 3.

2) For step 2, to transmit Bi bits for all ni source node,
there are niBi/ni−1 MTs at layer i. The number of hops
on each MT at layer i is Θ

�È
niki

ni−1

�
. Using 9-TDMA

scheme, we can accomplish Θ( ni

ni−1
) hops per time slot.

Thus, we can complete the second step in Θ
�
Bi

È
niki

ni−1

�
time slots.

3) For step 3, the traffic load are ni−1ki multicast sessions
in every cluster. Recall we use D(ni−1, ki−1) to denote
the amount of time to finish the transmission of ni−1

multicast sessions at layer i − 1. Thus, step 3 takes
kiD(ni−1, ki−1) time slots.

These three steps cost D(ni, ki) time slots. Thus

D(ni, ki) = Θ

�
Bi

Ê
niki
ni−1

�
+ kiD(ni−1, ki−1) (25)

where Bi = (nk )
(i−1)2

2i−1 for 1 ≤ i ≤ h. Also by the bottom
layer transmission scheme, D(n1, k1) = n1 = (nk )

2
2h−1 .

Substituting these into (25) and iterating the equation for
i = 1, 2, . . . , h, we then obtain the final result

D(n, k) = Θ
�
n

h2−2h+2
2h−1 k−

h2−4h+3
2h−1

�
(26)

Remark 5.1: Observing the result, the delay is determined
by the number of nodes at each layer. And the transmission

time at the top layer is the dominating factor on delay. This
implies that we can just calculate the time cost at the top layer.

Combining (11) with (26), the delay-throughput tradeoff is

D(n, k)/T (n, k) = Θ
�
n

h2−4h+3
2h−1 k−

h2−6h+4
2h−1 logh−2 n

k

�
.

(27)
2) Delay Analysis with CMMM: In our CMMM strategy,

delay is the amount of time that a transmission round spends,
and it is calculated when analyzing the throughput. The time
cost to finish each round is given by (16). By Lemma 4.9,
substituting all parameters by n and k in (16), we obtain the
delay

D(n, k) =

(
Θ
�
(nk )

2h−3
2h−1 log n

k

�
, when k = O(kth),

Θ
�
n

2h−4
2h−1 k

3
2h−1 logh−2 n

k

�
, when k = Ω(kth),

(28)
which is simplified as

D(n, k) =

(ÜΘ�(nk ) 2h−3
2h−1

�
, when k = O(n

1
2h ),ÜΘ�n 2h−4

2h−1 k
3

2h−1

�
, when k = Ω(n

1
2h ).

(29)

Combining with (22), the delay-throughput tradeoff is

D(n, k)

T (n, k)
=

�
Θ
�
k−1 log n

k

�
, when k = O(n

1
2h ),

Θ
�
k(n

k
)−

2
2h−1 logh−2 n

k

�
, when k = Ω(n

1
2h ).

(30)
3) Delay Analysis with DMM: The delay analyzing proce-

dure of DMM is similar to that of MMM. Thus, we can easily
obtain the delay result by the conclusion of Remark 5.1.

For DMM, each time a source node must transmit Bh =
(nk )

h−1
2 bits. And the transmission rate at the top layer is

n
1
h k

h−1
h bit/s using MIMO. Then we derive the delay as

D(n, k) = Θ
�
n

h2−h+2
2h k

h2−3h+2
2h

�
. (31)

Combining with (24), the delay-throughput tradeoff is

D(n, k)/T (n, k) = Θ
�
n

h2−3h+4
2h k−

h2−5h+4
2h logh−1 n

k

�
.

(32)
4) Delay Analysis with CDMM: The way we obtain the

delay of CDMM is similar to that of CMMM. The result is

D(n, k) = Θ
�
n

h−1
h k

1
h logh−1 n

k

�
. (33)

Comparing with (26), CMMM strategy reduces the delay
dramatically by a factor nearly (nk )

h
2 . Combining with (24),

the delay-throughput tradeoff is

D(n, k)/T (n, k) = Θ
�
k log2h−2 n

k

�
. (34)

B. Energy Consumption Analysis

Suppose the energy consumption for each transmission is
proportional to dα, where d is the distance between the sender
and the receiver and α > 2 is the path loss exponent. Recall
that we define E(n, k) as the energy cost to carry one bit from
a source node to one of its k destination nodes. We focus our
attention on the energy consumption of MMM strategy. For
the rest three strategies, we only present the results, which can
be obtained in similar manner.
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1) Energy Consumption of MMM: In the MMM strategy, a
multicast session is divided into three steps. We consider the
three steps respectively. For the ith layer, we use E(ni, ki) to
denote the energy consumption.

1) For step 1, each source node distributes packets among
the network. The amount of traffic load is less than that
in step 3 in the order sense. Thus, we need not consider
the power spent in this step.

2) For step 2, the number of hops on each MT are
Θ
�È

niki

ni−1

�
. For each hop, all ni−1 nodes in the sending

cluster must transmit to a distance of
È

ni−1

n , which is
the side length of a cluster at the ith layer. Thus the
energy spent to finish the transmissions on each MT is

O

�
ni−1

Ê
niki
ni−1

(
ni−1

n
)

α
2

�
3) For step 3, we will perform Θ(ni−1ki) sessions of

multicast at layer (i− 1), each transmitting Qki−1 bits.
Hence, the energy consumption in this step is

O
�
ni−1kiE(ni−1, ki−1)

�
In these three steps, a total of ni−1ki bits are transmitted.
Combining the above analysis

ni−1kiE(ni, ki) = ni−1

Ê
niki
ni−1

�ni−1

n

�α
2
+ni−1kiE(ni−1, ki−1)

holds in the order sense. Equivalently we have

E(ni, ki) =

r
ni

ni−1ki

�ni−1

n

�α
2
+ E(ni−1, ki−1) (35)

Considering the network division (12) and the factor ki =
Ω(1) for all layer, we obtain

E(ni, ki) = n
(i−h−1)α+1

2h−1 k−
2+2iα−3α

4h−2 + E(ni−1, ki−1) (36)

For 1 ≤ i ≤ h− 1, summing (36) up, it yields

E(nh−1, kh−1) =
h−1X
i=2

n
(i−h−1)α+1

2h−1 k−
2+2iα−3α

4h−2 + E(n1, k1),

where E(n1, k1) =
�È

n1

n

�α
= n

(1−h)α
2h−1 k−

α
4h−2 , which is

smaller than the first term on the right-hand-side in the order
sense. Thus, the power spent at the (h− 1)th layer is

E(nh−1, kh−1) = O
�
n

−2α+1
2h−1 k−

2hα−5α+2
4h−2

�
(37)

For i = h in (36), substitute E(nh−1, kh−1) with (37), we can
obtain the final result

E(n, k) = O
�
n

1−α
2h−1 k−

2hα−3α+2
4h−2

�
(38)

Remark 5.2: Observing the result, we find the energy con-
sumption is determined by the amount of energy spent on
the transmissions at the top layer. This is similar in other
transmission strategies.

2) Energy Consumption of CMMM: Our CMMM strategy
consumes the same amount of energy to transmit a bit as
that of MMM strategy, i.e. the equation (38) also holds for
CMMM. Through a deeper investigation, two reasons lead to
this.

• The network division is identical in two strategies.
• In two strategies, we all build MTs. The number of MTs

is the same at each layer, leading to a same amount of
power to transmit one bit.

3) Energy Consumption of DMM and CDMM: Intuitively,
DMM and CDMM use direct MIMO transmission, which
is less energy-efficient than multi-hop MIMO transmission.
Using the conclusion of Remark 5.2, we only consider the
transmissions at the top layer. At the top layer, to transmit
nh−1 bits to all kch = Θ(k) destination clusters, nodes in the
source cluster broadcast data among the whole network. Thus,
the energy to transmit one bit to all Θ(k) destination clusters
is O(1) on average. The result is identical in two strategies,
which is presented below.

E(n, k) = O
�1
k

�
(39)

VI. DISCUSSION

Until now, we have derived all the performance matrices
for the four strategies. In this section we will further discuss
these results.

A. The Advantage of Cooperation

In our cooperative multicast scheme, we assume that the
nodes nearby help each other on transmitting and receiving.
Moreover, the hierarchical scheme we propose can bring
about great improvements on the throughput only when h is
sufficiently large. When setting h to 1, we cannot obtain a
good capacity result since the cooperation is not fully utilized
in this case. Because the cooperation between nodes becomes
stronger as h increases. In such case, we get a Θ

�È
n
k

�
gain

on the achievable throughput compared with [26]. And there is
also a gain on throughput if compared with the results in [25].
The reason of the improvement is that when using distributed
MIMO transmission, we exploit interference cancelation and
could transmit many bits simultaneously. This method reduces
the average interference level caused by each multicast session,
which is the bottleneck of the achievable throughput.

B. The Effect of Different Network Division

Although we use cooperative schemes, there are still cases
when throughput cannot be improved. An obvious example is
broadcast. In the broadcast case, the number of clusters at each
layer is smaller than that of the destination nodes, i.e. nci =
O(ki) for 2 ≤ i ≤ h. Moreover, even when k = O(n1−ϵ) for
a small ϵ > 0, under this kind of network division we still
cannot achieve a gain on the throughput.

Assume at the ith layer, we partition the network as
nci = O(ki). Then it follows that kci = Θ(nci). The reason
that we cannot improve the throughput lies on the number of
multicast sessions mi (or converge multicast frames). Since



12

Strategy Delay Throughput Delay/Throughput Energy

Multi-hop MIMO
MMM n

h2−2h+2
2h−1 k−h2−4h+3

2h−1

(n
k
)
2h−2
2h−1 log−(h−2)n

k

n
h2−4h+3

2h−1 k−h2−6h+4
2h−1 logh−2 n

k

n
1−α
2h−1 k− 2hα−3α+2

4h−2

Transmission
CMMM n

2h−4
2h−1 k

3
2h−1 logh−2 n

k
k(n

k
)−

2
2h−1 logh−2 n

k

Direct MIMO
DMM n

h2−h+2
2h k

h2−3h+2
2h

(n
k
)
h−1
h log−(h−2)n

k

n
h2−3h+4

2h k−h2−5h+4
2h logh−1 n

k
1
k

Transmission
CDMM n

h−1
h k

1
h logh−1 n

k
k log2h−2 n

k

TABLE I
THE SUMMARIZATION OF PERFORMANCE FOR THE FOUR STRATEGIES. DUE TO SPACE LIMITS, THE EXPRESSIONS IN THE ENERGY COLUMN HAVE

OMITTED PREFIX O(·), WHILE OTHER EXPRESSIONS ARE IN THE SENSE OF Θ(·). NOTE WE ASSUME k = Ω(kth) WHEN CONSIDERING CMMM
STRATEGY.

mi−1 = Θ(mikci), we conclude mi−1 = Θ
�
mini

ni−1

�
, which

is greater than mi in the order sense. This means that the
transmission scale grows as the layer becomes lower, which
cancels the advantage of parallel communications at lower
layers, and results in no gain on the achievable throughput.

Besides, in MMM and DMM strategies, the delay decreases
as k increases. When performing multicast, we need to
transmit Bh =

Qh−1
i=1 ni bits to other cooperative nodes to

prepare for distributed MIMO, which is also decided by the
network division. The time cost on distributing Bh bits is the
deterministic factor of delay, and gets smaller when k grows.

C. Delay-Throughput Tradeoff

First of all, we discuss how the number of destination nodes
k affect the delay-throughput tradeoff. The delay-throughput
tradeoff D(n, k)/T (n, k) under multicast traffic is approx-
imately D/T = ÜΘ(k), which is identical to that of non-
cooperative schemes. As Figure 4 shows, when k grows, the
tradeoff curves of CMMM/CDMM move leftwards, indicating
D/T increases. The reason is obvious: when k increases, each
source node has to deliver more copies of data among the
network. Thus the time to complete a multicast session gets
longer, and D/T become larger.

However, exceptions exist: when k = 1 and k = n0.2,
the CMMM curves intersect, which means for certain h,
multicast D/T may be better than that of unicast. The reason
is the existence of kth in (19). In our CMMM strategy, when
k < kth = ÜΘ(n

1
2h ), the assumption 3 cannot be ensured

at the 2nd layer layer, i.e. l2 = k(nk )
1

2h−1 logh−3(nk ) =

O
�
(nk )

2
2h−1

�
. Thus l1 can only be derived by Lemma 4.7-

(b): l1 = O(log(nk )). However, when k > kth and assumption
3 holds, l1 can be given as l1 = Θ

�
n− 1

2h k
2h

2h−1 logh−2(nk )
�

.
Combining the relationship between li and mi, the number of
transmission frames at the bottom layer is given in (20), which

we repeat it here

m1 =

(
(nk )

2h−4
2h−1 log(nk ), when k = O(kth),

k(nk )
2h−5
2h−1 logh−2(nk ), when k = Ω(kth).

In unicast, k = 1 is always below the threshold kth. Thus
the number of frames at the bottom layer can only upper
bounded by m1 = ÜΘ�n 2h−4

2h−1

�
. However, k = n0.2 > kth

when the number of layer h > 2.5, and therefore we can
bound m1 by m1 = ÜΘ�k(nk ) 2h−5

2h−1 logh−2(nk )
�

. If we choose

h = 3, then m1 = ÜΘ(n0.4) when k = 1; and mi = ÜΘ(n0.36)
when k = n0.2. Hence, in this case, the number of frames
at bottom layer of multicast is smaller than that of unicast.
By the conclusion of Remark 4.2, the number of frames at
the bottom layer will determine the transmission time of each
round, which results in a larger D/T of unicast case.

The effect of kth is also embodied in Figure 4. Since the
number of destination nodes k is smaller than the threshold
kth = ÜΘ(n

1
2h ) only when k and h are both small, an typical

example is k = n0.1, see the solid red line in Figure 4. The
lower-left part of it is a straight line, indicating h ≤ 5 and
k < kth. In this case, the delay-throughput ratio D/T can
only be lower-bounded by Θ(k−1). But when h ≥ 5, k > kth
is satisfied and D/T is bounded by Θ

�
k(nk )

− 2
2h−1

�
. This is

indicated by the upper-right part of the curve. As for other
CMMM curves, the number of destination nodes k is never
below the threshold since h > 2 in our CMMM strategy. Thus,
the threshold has no effect on them.

Second, when considering the tradeoff D(n, k)/T (n, k),
CMMM has a better performance. However, this tradeoff
becomes worse as the number of layers h grows. See Figure
4. Actually in CMMM, the delay is the time to complete a
round. For each round, only a number of n× nh−2

nh−1
nodes act

as source nodes. When it increases, the time to finish a round
will also increase. However, this does not affect the multicast
throughput, since the number of bits transmitted in a round
is linear with the time cost of a round. Hence, the tradeoff
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Fig. 4. Throughput-delay tradeoff for CMMM and CDMM compared with
known results, the upper-right part of curves is achieved when choosing larger
k. When k = Θ(1), CMMM line covers CDMM one, while the beginning
points are different. For two curves with the same k, we use a common color.

ratio D/T increases when the transmission scale of each round
grows. Particularly, if all n nodes would act as source nodes
in a round, the tradeoff D/T = k, which is independent of h.
While in our scheme, there are n×(nk )

2
2h−1 active nodes each

round. The transmission scale grows as h increases, which
results in the phenomena above.

At last, another interesting phenomena appears to us. As
the results in Section V-A show, the delay-throughput tradeoff
results are poor in MMM and DMM strategies. Surprisingly,
the tradeoff ratio D/T is identical to that of CMMM and
CDMM when k = Θ(n). Namely, in the broadcast case, the
tradeoff results of the four strategies unify to D/T = n.
To explain this, we explore the common features of the four
strategies in broadcast case: (1) The network division is the
same. (in broadcast, we only divide each layer into clusters of
a constant number) (2) We schedule the transmissions at the
bottom layer in a same method. The direct consequences of
these features are (1) the size of packets that need to distribute
in step 1 is the same (Θ(n) bits); (2) the time spent on MIMO
transmission at each layer is ÜΘ(1) for each source cluster;
and (3) the identical transmission strategy at the bottom layer
result in the same amount of transmission time. Thus, for the
four strategies, the throughput and delay are both identical in
the broadcast case, leading to the unification of tradeoff ratio.
We summarize all the main results (throughput, delay, delay-
throughput tradeoff and energy consumption) obtained under
our four strategies in TABLE I.

D. Multi-hop vs. Direct MIMO Transmission

For a given h, the throughput and delay of MMM/CMMM
are both better than that of DMM/CDMM. Two factors con-
tribute to the less delay. (1) Parallel MIMO transmissions (The
average time to complete the transmission of a MT at layer

i is O(
È
ni−1kci/ni), which is smaller than that of direct

transmission, namely one slot.) (2) Less bits transmitted at
each round in CMMM. By reducing the transmission time,
multi-hop scheme also improves the throughput. Comparing
(11) and (24), the throughput gain is (nk )

h−1
h(2h−1) . Thus, the

delay-throughput tradeoff of CMMM is better than that of
CDMM, which is shown in Fig. 4.

As for the energy consumption, multi-hop is approximately
k

α−2
2 times smaller than that of direct MIMO transmission.

Intuitively, multi-hop performs several short distance commu-
nications, which is more energy efficient than direct manner.

E. MMM vs. Existing Approach in Other Published Papers

Now we consider comparing our MMM scheme with some
other existing schemes published by other papers. We compare
MMM with several cooperative schemes proposed in [22],
[24], [25] and [32], respectively. In [22], [24] and [25], the
authors study multicast capacity in protocol model in static
networks. In [22] and [24], the authors establish the routing
by constructing an Euclidean tree for multicast. Information
is then transmitted from source to the destinations through
the constructed tree. In [32], the authors study throughput
and delay for multicast under mobile networks. They propose
several approaches for multicasting transmission such as 2-hop
relay without redundancy, 2-hop relay with redundancy and
multi-hop relay with redundancy. In [25], the authors consider
multicast capacity in a more realistic and less pessimistic
channel models. They propose a multicast routing and time
scheduling scheme to achieve the computed asymptotic bound
over all channel models except the simple Protocol Model.

The throughput comparison is listed in Table II. From the
table, we can see that MMM achieves much larger throughput
than the scheme proposed in [22], [24] and [25]. In [22], [24]
and [25], a large number of extra transmission are wasted for
redundancy in the routing process. Moreover, all the adjacent
transmission has to be treated as interference while it is
efficiently canceled in our MMM scheme. These two factors
causes the poor throughput performance in [22], [24] and
[25]. Compared with the three relay schemes proposed in
[32], our MMM scheme also can guarantee a good aggregate
throughput, which is close to the upper bound with a difference
of only log n factor. This is almost the same as the result
achieved in 2-hop relay without redundancy in [32], Θ

�
n
k

�
.

Moreover, the authors also study multicast capacity in mobile
networks under more realistic channel model in [25]. And they
achieve the same capacity result Θ

�
n
k

�
, which is also the

result in our MMM scheme, when h goes to infinity.
To better demonstrate the gain achieved in our MMM

scheme, we also illustrate the throughput performance in Fig.
5, compared with other known results. It can be seen that
for any ϵ > 0, our cooperative scheme obtains a throughput
of Ω

�
(nk )

1−ϵ
�

, with h large enough. However, the delay
performance of MMM strategy is poor. Intuitively, this is
because each node must transmit a large amount of bits a
time to achieve this throughput. Hence, if concerning delay
performance, our MMM scheme is not the appropriate choice.



14

scheme (static) aggregate throughput

MMM Θ

��
n
k

� 2h−2
2h−1 log−(h−2) n

k

�
multi-hop relay in [22] Θ

�
n√

nk logn

�
spanning routing tree in [24] Θ

�
n

k logn

�
(k = O

�
n

logn

�
)

Θ(1) (k = Ω
�

n
logn

�
)

Multi-hop scheme in [25] Θ
�p

n
k

�
(k ≤ n

log3 n
)

Ω

�
n

k
√

log3 n

�
( n
log3 n

≤ k ≤ n
log2 n

)

Ω
�È

n
k logn

�
( n
log2 n

≤ k ≤ n
logn

)

Θ(1) (k ≥ n
logn

)

scheme (mobile) aggregate throughput
routing scheme in [25] Θ

�
n
k

�
2-hop relay in [30] Θ

�
n
k

�
2-hop relay in [30] Ω

�
n√

n log k

�
multi-hop relay in [30] Ω

�
1

logn

�
TABLE II

COMPARISON ON THROUGHPUT BETWEEN OUR MMM SCHEME
AND SOME APPROACHES PUBLISHED BY OTHER PAPERS.
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Fig. 5. We compare the known throughput results in static and mobile
networks with that of our MMM strategy when h = 2, 3, 4. It shows MMM
strategy can achieve a higher throughput than that of non-cooperative schemes,
and can also achieve the information-theoretic upper bound up to a logarithmic
term when h → ∞.

VII. CONCLUSION

In this paper, we develop a class of hierarchical cooperative
schemes achieving an aggregate throughput of Ω

�
(nk )

1−ϵ
�

for
any ϵ > 0, which is arbitrarily close to the upper bound. Our
proposed schemes rely on MIMO transmissions, and consist
of three steps. To maximize the aggregate throughput, in step 1
and step 3, we use multi-layer solutions to communicate within
the clusters. We analyze the delay and energy consumption in
each strategy. We find that converge-based multi-hop scheme
performs better on both throughput and delay. Moreover,
our CMMM strategy achieves the delay-throughput tradeoff

identical to that of non-cooperative schemes when h → ∞.
While for certain k and h, the tradeoff ratio can be even
smaller than that of unicast.

There are still many aspects for us to investigate in the
future. For example, it remains an interesting problem to
study multicast throughput with cooperative MIMO scheme
in extended network, where the network area scales linearly
with the number of nodes n on it.

APPENDIX A: PROOF OF LEMMA 4.1

Proof: Consider a specific node vi. To prove the distance
between vi and all other nodes is larger than 1

n1+δ , it is
equivalent to prove that there are no other nodes inside a circle
of area π

n2+2δ around vi. The probability of such an event

is
�
1 − π

n2+2δ

�n−1
. The minimum distance between any two

nodes in the network is larger than 1
n1+δ only if this condition

is satisfied for all nodes in the network. Thus, by union bound
we have

P
�
dij ≤

1

n1+δ
, for all i, j and i ̸= j

�
≤ n

�
1−(1− π

n2+2δ
)n−1

�
which diminishes to zero when n tends to infinity.

APPENDIX B: PROOF OF LEMMA 4.2

Proof: The number of nodes in a cluster at layer i is a
sum of i.i.d. Bernoulli random variables Xj , such that P [Xj =
1] = 1/nci . Using Chernoff bounds

P

� niX
j=1

Xj ≥ (1 + δ)
ni

nci

�
< e

−f(δ)
ni
nci

where f(δ) = (1 + δ) log(1 + δ)− δ, and

P

� niX
j=1

Xj ≤ (1− δ)
ni

nci

�
< e

− 1
2 δ

2 ni
nci

When ni = Ω(nci lognci)

P

����� niX
j=1

Xj −
ni

nci

���� ≥ δ
ni

nci

�
< e

− ni
nci

θ → 0

when n → +∞. Here θ > 0 is a constant depend only on δ.
Thus ni−1 =

Pni

j=1 Xj = Θ( ni

nci
) whp.

APPENDIX C: PROOF OF LEMMA 4.3

Proof: We divide the network into groups, each of which
contains nine sub-squares. The nine squares in each group
are numbered from 1 to 9 in the same way. We further
divide time into sequences of successive slots, denoted by
t (t = 0, 1, 2, 3, . . .). During a particular slot t, one node in
sub-squares that are numbered (t mod 9) + 1 are allowed to
transmit packets.

Consider a slot when a node inside sub-square si is allowed
to transmit to another node inside si. Then, those nodes that
may interfere with the current transmission are located along
the perimeters of concentric sub-squares centered at si. They
can be grouped based on their distance to si such that the j-th
group contains 8j interfering nodes or less (near the boundary
of the network) and the shortest distance from the receiver
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in si is (3j − 1)
√
A, where A is the area of the sub-square.

Assume all nodes use the same transmission power P (n, k).
Thus, with the power propagation model in (1), the cumulative
interference at sub-square si, denoted by Isi , can be bounded
by

Isi ≤
n/MX
j=1

8j × GP (n, k)

[(3j − 1)
√
A]α

≤ 8GP (n, k)

A
α
2

�
1 +

n/MX
j=2

(3j − 1)1−α
�

<
8GP (n, k)

A
α
2

�
1 +

Z ∞

j=0
(3j + 2)(1−α)dj

�
<

8GP (n, k)

A
α
2

�
1 +

1

3(α− 2)

�
=

8GP (n, k)

A
α
2

· 3α− 5

3α− 6
(40)

If we choose the transmission power P (n, k) = Θ(A
α
2 ),

then interfering power will be upper-bounded by a constant
independent of n. Besides, since the maximum distance for a
transmitter to a receiver is

√
2A, the reception power can be

lower-bounded by

Rsi ≥
GP (n, k)

(
√
2A)α

(41)

As a result, the SINR for the transmission in si, denoted by
SINRsi , is

SINRsi =
Rsi

N0 + Isi

≥
GP (n,k)

(
√
2A)α

N0 +
8GP (n,k)

A
α
2

· 3α−5
3α−6

(42)

Note that P (n, k) = Θ(A
α
2 ), the SINR is a constant irrespec-

tive to n and k. Thus, according to the Shannon’s channel
capacity formula, i.e., R(n, k) = W log(1 + SINR) where
R(n, k) is the feasible rate, and W is the channel bandwidth,
a fixed transmission rate independent of n and k can be
achieved.

APPENDIX D: PROOF OF LEMMA 4.5

Proof: Let Xj be a random variable:

Xj =

¨
1, if cluster j contains at least one destination node;
0, else.

Then kci =
Pnci

j=1 Xj . Since the ki destination nodes at layer
i are uniformly and independently distributed in nci clusters,
the probability that a destination node is in cluster j is 1/nci .
The probability that none of the ki destination nodes is in
cluster j is

�
1− 1

nci

�ki

. Thus,

E[Xj ] = 1−
�
1− 1

nci

�ki

Since {Xj}
nci
1 is a sequence of i.i.d. random variables, using

the law of large numbers, we obtain whp:

kci
nci

=
1

nci

nciX
j=1

Xj → 1−
�
1− 1

nci

�ki

when nci → ∞ (43)

Consequently, the number of clusters which contain at least
one destination node is kci = nci

�
1 − (1 − 1

nci
)ki

�
. When

ki = O(nci), kci = nci

�
1− (1− 1

nci
)ki

�
= Θ(ki) whp; when

ki = Ω(nci), kci = nci

�
1− (1− 1

nci
)ki

�
= Θ(nci) whp.

APPENDIX E: PROOF OF LEMMA 4.6

Proof: There are mh sessions (frames) at layer mh, or
equivalently there are at most mh sets of destination nodes
distributed in the network. When consider a specific session
(frame), let Xj be the number of destination nodes in the jth
cluster at layer i. Obviously E[Xj ] =

ki

nci
.

(a) If ki = Ω(nci log nci), using Chernoff bound we obtain

P
h���Xj −

ki
nci

��� ≥ δ
ki
nci

i
< e

− ki
nci

θ

At layer i, the number of destination sets is at most mh =
O((nci)

p2). Thus

P
h���Xj−

ki
nci

��� ≤ δ
ki
nci

for all sets
i
>

�
1−e

− ki
nci

θ
�(nci

)p2

→ 1

Therefore, ki−1 = Xj = Θ( ki

nci
) whp.

(b) If ki = O(nci log nci), Chernoff’s inequality implies for
all s > 0

P [Xj > (p2 + 3) log nci ] ≤ e−(p2+3)s lognciE[esX ] (44)

with E[esX ] = exp((es − 1)ki/nci). From ki =
O(nci log nci), the following inequality holds

(e− 1)ki/nci − (p2 + 3) log nci ≤ (e− p2 − 4) log nci

Let s = 1 and we can get from (44)

P [Xj > (p2 + 3) log nci ] ≤ ne−p2−4
ci

Considering there are nci clusters and at most mh destination
sets, we get

P [Xj ≤ (p2 + 3) log nci , for all j and all sets]

≥
�
1− ne−p2−4

ci

�nci
mh

≥
�
1− ne−p2−4

c1

�np2+1
ci → 1

Therefore, ki1 = Xj = O(log nci) whp.

APPENDIX F: PROOF OF LEMMA 4.7

Proof: According to Lemma 4.5, when ki = o(nci), the
ki destination nodes are distributed into at least Θ(ki) clusters
whp.

(a) We use Xj to denote that nodes from jth destination set
exist in a cluster at layer i. Then from Lemma 4.5

p3ki
nci

≤ P [Xj ] ≤
ki
nci
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where p3 is a constant. Let X =
Pli

j=1 Xj , we can conclude
that E[X] = p4liki

nci
, where p3 ≤ p4 ≤ 1. Using Chernoff

bounds we obtain for any 0 < δ < 1,

P [|X − E[X]| > δE[X]] < e−θE[X]

where θ > 0. Thus

P
h���X − p4liki

nci

��� > δ
p4liki
nci

i
< e

−θ
p4liki
nci

Since li = Ω
�
nci

ki
log

nci

ki

�
and ki = o(nci), the right-hand-

side of the above equation tends to 0. Therefore, li−1 =
Θ
�
liki

nci

�
whp.

(b) Let Xj denote the number of destination sets in the jth
cluster at layer i. Using Chernoff’s inequality, for all s > 0

P
�
Xj > (2p4+1) log

nci

ki

�
≤ e

−(2p4+1)s log
nci
ki E[esX ] (45)

Let s = 1 we can get E[esX ] = exp((e− 1)p4liki/nci) and

P
h
Xj > (2p4 + 1) log

nci

ki

i
≤
�nci

ki

�p4(e−3)−1

Considering all nci clusters, we can get

P
�
Xj ≤ (2p4 + 1) log

nci

ki
, for all j

�
≥

�
1−

�nci

ki

�p4(e−3)−1
�nci → 1

Therefore, li−1 = O
�
log

nci

ki

�
whp.
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