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Abstract

We discuss some properties of the research collaboration graph for mathematicians, look

at its evolution over time, and survey some random models that might produce graphs

of this sort. Our approach is more experimental and statistical than theoretical. Further

information is available on the Erdős Number Project web site (especially the subpage

http://www.oakland.edu/~grossman/trivia.html).
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§1. Introduction

The mathematics research collaboration graph Cmath has as its vertices all mathematicians

who have published research papers. Two vertices are joined by an edge in Cmath if the two

mathematicians have published a joint paper, with or without other coauthors. Using 60

years of data from Mathematical Reviews (MR, available electronically on the World Wide

Web as MathSciNet [15]), from its beginning in 1940, we find that this graph currently

has about 337,000 vertices and 496,000 edges.

Traditional models of random graphs do not produce graphs that look at all like Cmath.

For example, in Cmath (and similar “small world” graphs in the sense of Watts [23]) the

number of vertices of a given degree is approximately proportional to a power (somewhere

around −3) of the degree, whereas the traditional model gives a Poisson distribution.

Recently a number of researchers in both mathematics and physics have suggested various

random graph models to explain the structure and evolution of graphs like Cmath.

In this paper we look at some details of the structure of Cmath. In addition to dis-

cussing the entire graph as it exists at the present time, we also study its evolution over the

past 60 years. We believe that these data are interesting in their own right as a reflection

of the way mathematical research gets done, apart from the mathematical questions raised

about how to model and analyze social interactions. We also observe to what extent the

structure of Cmath conforms to the predictions made by the various random graph models

that have been proposed.
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§2. The MR Data and the Construction of Cmath

The American Mathematical Society’s Mathematical Reviews database consists of about

1.6 million authored items (mainly research papers published in peer-refereed journals),

written by a total of about 337,000 different authors. (These are the figures as of the end

of the 20th century; of course these numbers continue to grow.) For simplicity we call each

such item a “paper”. (We ignore non-authored items in the database, such as conference

proceedings—the relevant papers in the proceedings have their own entries as authored

items.) In maintaining this database, and making it available to subscribers in print form

and on the Internet, the MR editors and staff have taken pains to identify authors as people

and not merely as name strings—strings of characters that the journal listed as an author’s

name. For example, Raymond L. Johnson, Roberto Johnson, and Russell A. Johnson all

published under the name string “R. Johnson”, but each of the papers by “R. Johnson” in

the database is identified with exactly one of these three people. To the extent that MR has

been successful in this endeavor, the collaboration graph will accurately reflect the social

network of individuals and not accidents caused by misidentification. (Some errors of this

type remain, to be sure, but we do not think they substantially affect our results. Indeed,

before they corrected the mistake in 1995, MR listed a paper by the physicist Paul Erdős as

being by the mathematician Paul Erdős. Now, these two individuals are identified as Paul

Erdős2 and Paul Erdős1, respectively, using a convention that has become increasingly

necessary. See [21] for more details.)

This database of authored items gives rise to a bipartite graph Bmath, whose vertices

of one type are the papers and vertices of the other type are the authors, with an edge

between a paper and each of its authors. The graph Bmath has about 2.3 million edges,

from which it follows that the average number of authors per paper is about 1 1
2 , and

the average number of papers per author is about 7. (The latter distribution is heavily

skewed, with first quartile 1, median 2, third quartile 6, standard deviation about 15, and

maximum 1401, the number of papers by Paul Erdős in the database.) Any bipartite

graph gives rise to two association graphs by squaring and restricting the vertices to being

of one type or the other. Thus the collaboration graph Cmath has the set of authors as

its vertices, with two authors adjacent if they are among the authors on some paper—in

other words, if they are published research collaborators. (We have also studied the graph

obtained when we restrict the set of papers to be only those with exactly two authors; see

[11] for more discussion of this “collaboration graph of the second kind”.)

We corrected a few anomalies in Cmath by hand before analyzing it. For example,

we removed the author that MR identified as “et al.”, who was on the author list of a

number of papers, including one with no coauthors! Based on extensive experience with

the database over the past seven years, we are confident that problems of this sort do not

significantly distort the true picture of the collaboration graph.

§3. Models for Small World Graphs

The mathematics collaboration graph (as well as other social networks studied in the
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literature) exhibits several interesting features. First, although the number of edges is fairly

small (just a little larger than the number of vertices), the average path length between

vertices in the same component is small. Furthermore, there is a “giant component” of the

graph that encompasses a majority of the authors, and the remaining components are very

tiny. Second, the degrees of the vertices in the collaboration graph follow a “power law”

pattern—the number of vertices of degree x is proportional to a (negative) power of x.

Third, the clustering coefficient is fairly large. (The clustering coefficient [20] of a graph is

the fraction of ordered triples of vertices a, b, c in which edges ab and bc are present that

have edge ac present. In other words, how often are two neighbors of a vertex adjacent

to each other?) The question, then, is, “What model of random graphical evolution will

produce graphs with these (and other) properties of the collaboration graph?”

The first model for constructing random graphs [10] appeared in 1961, when Erdős

and Rényi fixed the (large) number of vertices (n) and the number of edges (m, which

could depend on n) and chose endpoints of edges uniformly at random until the required

number of edges had been obtained. Beautiful and surprising theorems describe how,

almost surely, the structure of the resulting graph depends only on how large m is, relative

to n. For example, if m > n/2, then there will be a giant component containing most of

the vertices, and if m > (n log n)/2, then the graph will be connected.

The Erdős-Rényi model is not suitable for describing collaboration graphs, however,

because collaborations are not formed uniformly at random. For example, if u and v have

each collaborated with the same person, then it makes sense that u and v are more likely

to have collaborated with each other than if they do not share a common collaborator.

(This will tend to make the clustering coefficient higher.) Furthermore, it seems likely that

people who have already collaborated with many people are more likely to collaborate with

someone else than those who have few collaborators. (Once vertices attain a high degree,

their degree will tend to increase even more as the graph evolves, so the distribution of

degrees will be skewed.) Thus in a realistic model, the probability of adding edge uv in

the construction process should depend on such things as how close u and v already are

in the graph constructed so far, or how many edges are already incident to each of them.

Different models are needed.

Both mathematicians and physicists have proposed a variety of interesting models.

One way to guarantee the power law pattern of vertex degrees is to fix the degree sequence

according to such a law and then construct the graph to have exactly, or expectedly, the

given degree sequence. Specifying degrees ahead of time was first tried in 1978 by Bender

and Canfield [6], and then developed further in 1995 by Molloy and Reed [16]. In much

of this previous work, special emphasis was placed on regular graphs (rather the opposite

extreme from what we want here). In 2001 Aiello, Chung, and Lu [1] used Molloy and

Reed’s model with a power law for the degree sequence. Precisely, they assumed that the

number of vertices of degree x is eαx−β for some positive constants α and β. They proved

results analogous to those in the traditional model. For example, if β is between 2 and

3.47, there is almost surely a unique giant component with Θ(n) vertices, the second largest

component has only Θ(log n) vertices, and there are components of essentially every size
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Figure 1. Distribution of (nonzero) vertex degrees in Cmath

from 2 to Θ(log n).

Rather than specify the required degree distribution ahead of time, Barabási and

Albert in 1999 [3] grew their graphs with the following algorithm, which incorporates the

kinds of assumptions one might want to make about collaboration graphs. Initially, the

graph has one vertex (or a small number of vertices). At each time step, a new vertex is

added and attached to old ones preferentially, with vertices of higher degree more likely

to become neighbors of the new vertices; and, in some variants [5], edges are also added

among vertices already present, again with preferential attachment. In simulations, they

found that the degrees of the vertices in the resulting graphs did follow a power law, with

β ≈ 3. Bollobás et. al [7] confirmed theoretically that β = 3 in this model.

These are not the only approaches in the literature. Several other models and analyses

have been proposed (e.g., a random model without preferential attachment [8]); see [4] for

a recent survey, which also explains the connection to percolation theory in statistical

mechanics. There is widespread interest in this subject, perhaps partly because of its

relevance to analyzing the World Wide Web [14]. Indeed, papers have appeared in such

main-stream journals as The Proceedings of the National Academy of Sciences [19], Nature

[24], and Science [3], and there are at least two recent books on these topics pitched to a

general audience [23], [2].
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§4. The Properties of Cmath

The mathematics research collaboration graph Cmath has 337,454 vertices and 496,489

edges, so the average degree (number of coauthors for a mathematician) is about 2.94.

There are 84,115 isolated vertices in Cmath (25%), which we should probably ignore for

the purposes of this analysis; after all, these are not collaborating mathematicians. That

leaves 253,339 vertices with degree at least 1. Viewed this way, the average degree (number

of coauthors for a mathematician who collaborates) is 3.92.

Let us first look at the degrees of the vertices, and see whether the power law predicted

in §3 holds. We want to fit the equation y = eαx−β to our data, where x ranges over the

degrees of the vertices and y is the number of vertices of degree x. The scatterplot of log(y)

versus log(x) is shown in Figure 1. (We omit the degrees that do not occur.) A regression

gives β = 2.81, with R2 = 93.9%. This value of β is consistent with other examples of

massive graphs studied in the literature cited in §3, such as the World Wide Web and

telephone call graphs. (If we omit Paul Erdős, whose degree is 502, then we have β = 2.87

and R2 = 94.9%.)

Next we look at the sizes of the components of Cmath. One giant component has

208,200 vertices and 461,643 edges; and the remaining 45,139 vertices and 34,846 edges

split into 16,883 components, each having from 2 to 39 vertices. The sizes of the nongiant

components are shown in Figure 2, whose axes are again on a log-log scale.

According to the models in §3, the component sizes, as well as the vertex degrees,

should follow a power law; that is, the number of nongiant components with x vertices

should be proportional to xδ for some δ < 0. A linear regression gives us an exponent of

δ = −3.72, with R2 = 97.3%. If we omit the outlier (an accident that the largest nongiant

component happens to have 39 vertices as opposed to, say, 25), then we get an even better

fit: exponent δ = −3.96 and R2 = 99.2%. The model in [1] predicts that since β is between

2 and 3.47, we should expect a largest nongiant component to have on the order of log(n)

vertices, and there should be a component of essentially every size up to this value. In fact,

Cmath has components of every size up to 21, and the only two larger nongiant components

have 23 and 39 vertices.

Next, we concentrate just on the giant component of Cmath and consider the distri-

bution of distances between vertices. Based on a random sample of 66 pairs of vertices in

this component, the average distance between two vertices is around 7.73 (between 7.37

and 8.08 with 95% confidence), with a standard deviation of about 1.45. The median of

the sample was 8, with the quartiles at 6.75 and 9. The smallest and largest distances in

the sample were 5 and 12, respectively. The appropriate buzz phrase for Cmath may be

“nine degrees of separation” [13], if we wish to account for three quarters of all pairs of

mathematicians.

We find that the diameter of the giant component (maximum distance between two

vertices) is 27, and the radius (minimum eccentricity of a vertex, where the eccentricity is

the maximum distance from that vertex to any other) is 14. (Surprisingly, the eccentricity

of Paul Erdős is 15, not 14; Noga Alon and at least two other vertices have eccentricity
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Figure 2. Distribution of (nongiant) component sizes in Cmath

14.) For an Erdős-Rényi random graph with the edge density of Cmath, one expects small

diameters in the giant component [9]; in our case we should expect something close to

log(337454)/ log(2.94) ≈ 11.8 (or log(253339)/ log(3.92) ≈ 9.1 if we ignore the isolates, or

log(208200)/ log(4.43) ≈ 8.2 if we stick to the giant component). Theoretical estimates

of the radius, diameter, or average path length for other random graph models, however,

have not been computed.

For any fixed vertex u in the giant component, we can ask for the shape of the

distribution of the distances from u to the other 208,199 vertices in this component. The

distance from u to v is, of course, the familiar “Erdős number” of v when u = Erdős [12].

To analyze this aspect of Cmath, we took a random sample of 100 vertices in the

large component and computed for each of them the mean and standard deviation of the

distances to all the other vertices. The means varies from 5.65 to 11.61, with an average of

7.52 and a standard deviation of 1.00. The standard deviations are remarkably constant,

with the numbers varying only between 1.19 and 1.35 (the interquartile range was from

1.23 to 1.27, mean 1.25, standard deviation 0.03). So although the average “Jane Doe”

number varies quite a bit, depending on who Jane Doe is, the distribution of these numbers

has pretty much the same shape and spread for everyone. Figure 3 shows the distribution

of Erdős numbers and the distribution of “Jane Doe” numbers for a person chosen at
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random. It seems as if those people further away from the heart of the graph may take

longer to get to the heart, but once there, the fan-out pattern is the same.

Figure 3. Distribution of Erdős numbers (front) and Doe numbers

Finally, we compute the clustering coefficient of Cmath to be 0.15 (this calculation is

confirmed in [17]). That is 10,000 times higher than one would expect for a traditional

random graph with 253,000 vertices and 496,000 edges, another indication of the need for

better models [18]. Theoretical estimates of the clustering coefficient for other random

graph models, however, have not been computed.

§5. The Evolution of Cmath over Time

Tables 1 and 2 gives various statistics on the publication habits of mathematicians over

time, organized roughly into decades (the 90s end with papers published around 2000).

These summaries were determined from Bmath. All integer figures are rounded to the near-

est thousand. Data are given both for all authors, and for authors who have collaborated.

A “collaboration” is recorded for each instance of a pair of authors sharing a publication.

These tables reveal a number of trends. The total number of papers per year seems to

be rising about 1000–2000 papers per year per year, but the actual increase in publications

may be more, to the extent that MR tries to keep its cost in line by becoming more selective

in what it catalogs. That the relative rate of increase in the number of authors is slightly

less can be seen from the fact that the average number of papers per author per decade

has risen slowly from about 4 to about 5 over the past half century.
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thru 90s thru 80s thru 70s thru 60s thru 50s thru 40s

number of papers 1598 1010 572 278 109 30

number of authors 337 225 137 68 29 10

ave. authors/paper 1.45 1.35 1.27 1.20 1.14 1.10
s.d. authors/paper 1.63 1.50 1.40 1.31 1.28 0.36

1-auth papers 66% 73% 78% 84% 88% 91%
2-auth papers 26% 22% 18% 13% 11% 8%
3-auth papers 7% 4% 3% 2% 1% 1%
> 3-auth papers 1% 1% 1% 1% 0% 0%

ave. papers/author 6.87 6.05 5.30 4.89 4.33 3.41
s.d. papers/author 15.34 12.91 11.26 10.49 8.88 5.70

collaborating authors 253 153 82 34 11 3
fraction of all authors 75% 68% 60% 49% 39% 28%

ave. collaborators/auth 2.94 2.26 1.67 1.20 0.83 0.49
ave. collaborations/auth 5.65 4.08 2.87 2.01 1.36 0.75

ave. coll’tors/col. auth 3.92 3.33 2.79 2.42 2.14 1.74
ave. coll’tions/col. auth 7.52 6.00 4.77 4.07 3.50 2.65

Table 1. Cumulative data, by decade; integer figures in thousands

Perhaps most striking is the increasing tendency to collaborate. Whereas in the 1940s

and 1950s, only one paper in nine was joint work, and papers with more than two authors
were vitually unheard of, by the 1990s only half the papers being published were solo
ventures, and one in eight had more than two authors. In those early years, less than half
of all mathematicians had ever written a joint paper, whereas four fifths of mathematicians
who published in the 1990s had published at least one joint work in that decade. The

average number of collaborators for an author has also grown dramatically, from less than

one if we close the books in 1959, to nearly three if we look at the entire database.

If we look just at the papers in the late 1990s (the last 95,000 papers in our database,
or about two years’ worth), then we find that the mean number of authors per paper has

increased to 1.71 (standard deviation 1.90), with 49% of the papers by a single author,

35% by two authors, 13% by three authors, and 3% by four or more authors, an increase
in collaboration even over the 1990s as a whole.

§6. Open Questions and Directions for Future Work

Using the data in MR, one can look at other questions as well. For example, it would

be very interesting to look at the bipartite graph Bmath itself and study such things as
the numbers of papers mathematicians write, and when in their careers they write them;
or turn the tables and look at the “collaboration graph” of papers, rather than authors.
We can also analyze the subgraphs of Cmath restricted to various branches of mathemat-
ics or specific subjects. In what qualitative and quantitative ways, for example, does
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90s only 80s only 70s only 60s only 50s only 40s only

number of papers 587 439 294 168 80 30

number of authors 192 144 97 51 24 10

ave. authors/paper 1.63 1.45 1.33 1.23 1.16 1.10
s.d. authors/paper 1.82 1.63 1.48 1.35 1.26 0.36

1-auth papers 54% 66% 73% 81% 87% 91%
2-auth papers 33% 27% 22% 16% 11% 8%
3-auth papers 10% 6% 4% 2% 2% 1%
> 3-auth papers 3% 1% 1% 1% 0% 0%

ave. papers/author 4.97 4.43 4.03 4.05 3.84 3.41
s.d. papers/author 8.31 6.91 6.15 6.60 6.73 5.70

collaborating authors 155 104 62 27 9 3
fraction of all authors 81% 72% 64% 52% 41% 28%

ave. collaborators/auth 2.84 2.16 1.62 1.18 0.84 0.49
ave. collaborations/auth 5.14 3.66 2.62 1.90 1.34 0.75

ave. coll’tors/col. auth 3.51 2.99 2.55 2.25 2.08 1.74
ave. coll’tions/col. auth 6.35 5.06 4.11 3.64 3.31 2.65

Table 2. Data for each decade; integer figures in thousands

the subgraph C05 of Cmath, in which only those papers are considered whose primary
mathematics subject classification [22] is “05 Combinatorics” (which includes enumerative
combinatorics, designs and configurations, graph theory, extremal combinatorics, and al-

gebraic combinatorics), differ from all of Cmath? We conjecture that the publishing and
collaboration habits strongly depend on subfield.
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3. Albert-László Barabási and Réka Albert, Emergence of scaling in random networks,
Science 286 (1999) 509–512.
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Kutató Int. Közl. 5 (1960) 17–61; MR 23#A2338.

11. Jerrold W. Grossman, The Erdős Number Project,
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