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Abstract

This paper examines the intertemporal relation between downside risk and expected stock
returns. Value at Risk (VaR), expected shortfall, and tail risk are used as measures of
downside risk to determine the existence and significance of a risk- return tradeoff. We
find a positive and significant relation between downside risk and the portfolio returns on
NYSE/AMEX/Nasdaq stocks. VaR remains a superior measure of risk when compared
with the traditional risk measures. These results are robust across different stock market
indices, different measures of downside risk, loss probability levels, and after controlling
for macroeconomic variables and volatility over different holding periods as originally
proposed by Harrison and Zhang (1999). ’

. Introduction

The conditional mean and variance of return on the market portfolio play
central roles in Merton’s (1973) intertemporal capital asset pricing model (ICAPM).
Although theoretical models suggest a positive relation between risk and return
for the aggregate stock market, the existing empirical literature fails to agree on
the intertemporal relation between expected return and volatility. There is a long
literature that has tried to identify the existence of such a tradeoff between risk
and return, but the results are far from being conclusive (see the recent article by
Guo and Whitelaw (2006) and the references therein).
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This paper examines the intertemporal relation between downside risk and
expected return on the market. Value at Risk (VaR), expected shortfall (ES), and
tail risk (TR) are used as measures of downside risk to determine the existence
and significance of a risk-return tradeoff for several stock market indices. The re-
sults indicate a positive and significant relation between VaR and the value- and
equal-weighted portfolio returns on NYSE/AMEX/Nasdaq stocks. This finding
also holds for the NYSE/AMEX, NYSE, Nasdag, and S&P 500 index portfolios.
As alternative measures of downside risk, we also consider ES and TR, which
measure the mean and variance of losses beyond some VaR thresholds, respec-
tively. We show that the strong positive relation between down31de risk and excess
market return is robust across different left-tail risk measures.'

Ghysels, Santa-Clara, and Valkanov (2005) have recently shown that the
choice of window size (from | to 6 months) in the estimation of realized vari- -
ance has tremendous impact on the significance of risk-return tradeoff.2 When
they compute the realized variance as the sum of squared daily returns over the
past 1 month, they find no evidence of a significant link between realized variance
and future market returns. However, they report a significantly positive relation
between the excess market return and the realized variance obtained from the past
3 to 6 months of daily data. In this paper, we compare the relative performance of
various VaRs and realized variance measures computed over different horizons in
predictive regressions. VaR remains a superior measure of risk even when com-
pared to the traditional risk measures that have significant predictive power for
market returns. These results are robust across different loss probability levels
and after controlling for macroeconomic variables associated with business cycle
fluctuations.

There are several reasons why we consider downside risk in determining the
existenice of a positive risk-return tradeoff. First, there is a long literature about
safety-first investors who minimize the chance of disaster (or the probability of
failure). The portfolio choice of a safety-first investor is intended to maximize
expected return, subject to a downside risk constraint. The safety-first investor of
Roy (1952), Baumol (1963), Levy and Sarnat (1972), and Arzac and Bawa (1977)
uses a downside risk measure that is a function of VaR. Roy (1952) indicates that
most investors are principally concerned with avoiding a possible disaster and

TAng, Chen, and Xing (2006) decompose market beta into down versus up beta and focus on
- the cross-sectional predictive power of down beta (which they term downside risk). Their firm-level
Fama-MacBeth (1973) regressions and long-short porifolio analyses indicate that there is a positive
and significant relation between down beta and the cross-section of expected returns, whereas up beta
cannot explain the cross-sectional variation in average stock returns. We should note that in Ang et al.
(2006) downside risk is defined as a systematic risk conditional on market declines, whereas in our
paper downside risk is defined as an extreme measure of risk such as VaR, ES, or TR. We focus on
the time-series relation between extreme risk measures and expected returns on the aggregate market
portfolio, whereas Ang et al. (2006) examine the cross-sectional relation between down beta and
individual stock returns.
2Note that Harrison and Zhang (1999) are the first to look at the time-series relation between
expected returns and conditional volatility over different holding periods and across different states of
the economy and are the first to uncover a significantly positive risk and return relation at long holding
intervals.
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that the principle of safety plays a crucial role in the decision-making process.
Roy ((1952), p. 432) states:

Decisions taken in practice are less concerned with whether a little
more of this or of that will yield the largest net increase in satisfaction
than with avoiding known rocks of uncertain position or with deploying

" forces so that, if there is an ambush round the next corner, total dis-
aster is avoided. If economic survival is always taken for granted, the
rules of behavior applicable in an uncertain and ruthless world cannot
be covered. i :

Thus, the idea of a disaster exists, and a risk averse safety-first investor will seek
to reduce the chance of such a catastrophe occurring as much as possible.

Second, commercial banks, investment banks, insurance companies, and
nonfinancial firms hold portfolios of assets that may include stocks, bonds, cur-
rencies, and derivatives. Each institution needs to quantify the amount of risk its
portfolio may incur in the course of a day, week, month, or year. For example,
a bank needs to assess its potential losses in order to put aside enough capital
to cover them. Similarly, a company needs to track the value of its assets and
any cash flows resulting from losses on its portfolio. In addition, credit rating
and regulatory agencies must be able to assess likely losses on portfolios as well,
since they need to set capital requirements and issue credit ratings. These institu-
tions can judge the likelihood and magnitude of potential losses on their portfo-
lios using VaR. Regulatory concerns require commercial banks to report a single
number, the so-called VaR, which measures the maximum loss on their trading
portfolio if the lowest 1% quantile return were to materialize. Capital adequacy is
judged on the basis of the size of this expected loss. Likewise, pension funds are
often required by law to structure their investment portfolio such that the risk of
underfunding is kept low (e.g., equity investment may be capped).

Third, asset returns have been modeled in continuous time as diffusions by
Black and Scholes (1973), as pure jump processes by Cox and Ross (1976), and
as jump diffusions by Merton (1976). The rationale usually given for describing
asset returns as jump diffusions is that diffusions capture frequent small moves,
while jumps capture rare large moves. Carr, Geman, Madan, and Yor (2002) de-
velop a continuous time model that allows for both diffusions and jumps of either
finite or infinite activity. They find that market index returns tend to be pure jump
processes of infinite activity and finite variation, and thus the index return pro-
cesses appear to have effectively diversified away any diffusion risk. They indicate
that the jump components account for significant skewness levels that statistically
may be either positive or negative but that are risk-neutrally negative. They report
significantly greater skewness and kurtosis in the risk-neutral process than in the
statistical process. The results presented in Carr et al. (2002) suggest that extreme
movements in stock returns can be interpreted as signals, whereas the frequent
small fluctuations can be viewed as noise that may not have the power to explain
time-series variation in excess market returns.

« Finally, the mean-variance analysis developed by Markowitz (1952) ( 1959)
relies critically on two assumptions: Either the investors have a quadratic utility or
the asset returns are jointly normally distributed (see Levy and Markowitz (1979),
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Chamberlain (1983), and Berk (1997)). Both assumptions are not required, just
one or the other: i) If an investor has quadratic preferences, she cares only about
the mean and variance of returns, but she will not care about extreme losses.
ii) Mean-variance optimization can be justified if the asset returns are jointly nor-
mally distributed, since the mean and variance will completely describe the dis-
tribution. However, the empirical distribution of stock returns is typically skewed,
peaked around the mode, and has fat tails, implying that extreme events occur
much more frequently than predicted by the normal distribution. Therefore, the
traditional measures of market risk (e.g., variance or standard deviation) are not
appropriate to approximate the maximum likely loss that a firm can expect under
normal or highly volatile periods.*

Although the mean-variance criterion has been the basis for many academic
papers and has had significant impact on the academic and nonacademic financial
community, it is still subject to theoretical and empirical criticism. Arditti (1967),
Arditti and Levy (1975), and Kraus and Litzenberger (1976) extend the standard
portfolio theory to incorporate the effect of skewness on valuation. They present
a three-moment model with unconditional skewness. Harvey and Siddique (2000)
present an asset pricing model with conditional coskewness, where risk-averse
investors prefer positively skewed assets to negatively skewed assets. Their re-
sults imply a preference for positive skewness: Investors should prefer stocks
that are right-skewed to stocks that are left-skewed. Assets that decrease a port-
folio’s skewness (i.e., that make the portfolio returns more left-skewed) are less
desirable and should command higher expected returns. Dittmar (2002) extends
the three-moment asset pricing model using the restriction of decreasing abso-
lute prudence (see Pratt and Zeckhauser (1987), Kimball (1993)). His findings
suggest a preference for lower kurtosis. Investors are averse to kurtosis and pre-
fer stocks with lower probability mass in the tails of the distribution to stocks
with higher probability mass in the tails of the distribution. Assets that increase a
portfolio’s kurtosis (i.e., that make the portfolio returns more leptokurtic) are less
desirable and should command higher expected returns. Since the magnitude of
VaR becomes larger for negatively skewed and thicker-tailed asset distributions,
the findings of the three- and four-moment asset pricing models indicate a positive
relation between VaR and expected stock returns (i.e., the more a market index
can potentially fall in value, the higher the expected return).

The paper is organized as follows. Section II presents alternative measures of
market risk and describes our investigation of the risk-return tradeoff. Section III
presents an economic framework that relates VaR to expected returns. Section IV
presents the descriptive statistics of the data. Section V discusses the empirical re-
sults from time-series regressions. Section VI runs a battery of robustness checks.
Section VII compares the relative performance of realized variance and VaR in

3Longin (2000), Neftci (2000), and Bali (2003) find that VaR provides good predictions of catas-
trophic market risks and performs surprisingly well in capturing both the rate of occurrence and the
extent of extreme events in financial markets. However, the traditional measures of market risk such
as conditional variance and standard deviation yield an inaccurate characterization of extreme move-
ments in financial markets.
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terms of their power to predict future market returns. Section VIII concludes the
paper.

Il. Measuring the Risk-Return Relationship
A. Alternative Risk Measures

1. Realized Variance

Following French, Schwert, and Stambaugh (1987), we calcﬁlate the vari-
ance of a market portfolio using various window sizes of return data:

Dk Dk

1 0 = bd+2 :

(D Ok = Teat <) Ted: Thd—1,
d=1 d=2

where a,f,, is the variance of index returns, Dy is the number of trading days over
the past kK months,* and ry 4 is the portfolio’s return on day d that resides within
k months. The second term on the right-hand side adjusts for the autocorrelation
in daily returns using the approach of French et al. (1987). Note that the real-
ized variance measure given in equation (1) is not, strictly speaking, a variance
measure since daily returns are not demeaned before taking the expectation. How-
ever, as pointed out by French et al. (1987), the impact of subtracting the means
is trivial for short holding periods. ‘

2. Nonparametric Value at Risk

VaR determines how much the value of a portfolio could decline over a given
period of time with a given probability as a result of changes in market rates. For
example, if the given period of time is one day and the given probability is 1%,
the VaR measure would be an estimate of the decline in the portfolio value that
could occur-with a 1% probability over the next trading day. In other words, if
the VaR measure is accurate, losses greater than the VaR measure should occur
less than 1% of the time. In this paper, we use different confidence levels to check
the robustness of VaR measures as an explanatory variable for the expected return
on the market. The estimation is based on the lower tail of the actual empirical
distribution. We use the past 1 to 6 months of daily returns to estimate alternative
* VaR measures from the empirical distribution. It should be noted that the original
VaR measures are multiplied by — 1 before running our regressions. The original
maximum likely loss values are negative since they are obtained from the left tail
of the distribution, but the downside risk measure, VaR;, used in our regressions,
is defined as — 1. times the maximum likely loss. Therefore, the slope coefficients
turn out to be positive, which gives the paper’s central result that there is a positive
and statistically significant relation between VaR and the excess return on the
market.

4As in Ghysels et al. (2005), we use | to 6 months of past daily data to compute the rolling window
variance estimates. )
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3. Parametric Value at Risk

There is substantial empirical evidence showing that the distribution of finan-
cial returns is typically skewed to the left, is peaked around the mean (leptokur-
tic), and has fat tails. The fat tails and negative skewness suggest that extreme
outcomes happen much more frequently than would be predicted by the'normal
distribution, and the negative returns of a given magnitude have higher proba-
bilities than positive returns of the same magnitude. This also suggests that the
normality assumption can produce VaR numbers that are inappropriate measures
of the true risk faced by individual firms. To account for skewness and excess
kurtosis in the data, we use the skewed ¢ (ST) distribution of Hansen (1994),
which accounts for the nonnormality of returns and relatively infrequent events.

Hansen (1994) introduces a generalization of the Student ¢-distribution where
asymmetries may occur, while maintaining the assumption of a zero mean and
unit variance. The ST density that provides a flexible tool for modeling the em-
pirical distribution of stock market returns exhibiting skewness and leptokurtosis

is given by equation (2):
_wsl )
1 bz, +a 2 ' a
1 f —
bc<+v—2<1—x> ta<—y
(2) f(Zp;/I»,O',"U,)\) = ) il )
1 bz +a : . a
> ——
bc(“v—z(u,\)) itz 2-3
where z, = (R, — p)/0 is the standardized market return, and the constants a, b,
and c are given by

3) a = 4)\c<v—f), o= 143X -4,
-
v+1
r
(3
. =

w(v—2)I (%) '

Hansen shows that this density is defined for 2 < v < oo and —1 < XA < 1. This
density has a single mode at —a/b, which is of opposite sign with the parameter .
Thus, if A > 0, the mode of the density is to the left of zero and the variable is
skewed to the right, and vice versa when A < 0. Furthermore, if A = 0, Hansen’s
distribution reduces to the standardized ¢-distribution. If A = 0 and v = oo, it
reduces to a normal density.

SThe parameters of the ST density are estimated by maximizing the log-likelihood function of R,
with respect to the parameters u, g, v, and A:

I
logl = nlnb+nlnl (22~ ~Zhr—al(v=2)—ninr (2)
2 2 2

v < d?
—nlno — In{1+—=
e ( 2 ); ( (v—2>)’
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A parametric approach to calculating VaR is based on the lower tail of the
ST distribution. Specifically, we estimate the parameters of the ST density (i, o,
v, A) using the past 1 to 6 months of daily data and then find the corresponding
percentile of the estimated distribution. Assuming that R, ~ f, x(z) follows a ST
density, parametric VaR is the solution to

Isr(P)
4 / fir(@)de = &,

— 00

where [sr(®) is the VaR threshold based on the ST density with a loss probability
of @. Equation (4) indicates that VaR can be calculated by integrating the area
under the probability density function of the ST distribution.

B. Time-Series Regressions

We investigate the intertemporal relation between downside risk and excess
market return at the monthly frequency. The downside risk-return relationship we
analyze in the paper takes the following form:

5) Ry = a+,8Et(VaRt+l)+'YX1+5t+l,

where R, is the monthly excess return of the market portfolio, E,(VaR,,) is the
conditional VaR of the market portfolio obtained from the daily index returns,
and X, is the vector of control variables that includes a set of macroeconomic
variables proxying for business cycle fluctuations, the lagged excess return, and
a dummy variable for the October 1987 crash.® We use various measures of the
lagged realized VaR as a proxy for the expected conditional downside risk for the
current period.” The slope coefficient 3 in equation (5) is expected to be positive
and statistically significant.

We also test the usual form of the risk-return tradeoff by examining whether
the relation between the conditional variance and the expected excess return is
positive. We use the following discrete-time specification of Merton (1980):

(6) . R = a+ﬂEr(C7_’;2+|)+’YXt+€r+l,

.where the coefficients « and 3, according to Merton’s ICAPM, should be 0 and
equal to the relative risk aversion coefficient, respectively. Positive values of 3
imply the existence of a risk-return tradeoff, indicating that the expected returns
are higher as the risk level for the market increases. Following Ghysels et al.
(2005), we use various measures of the lagged realized variance as a proxy for
E/(d2)). :

t+1

where d; = (bz; + a) /(1 — As) and s is a sign dummy taking the value of 1 if bz; +a < Oand s = —1
otherwise.

6To make sure that our results from estimating risk-return regressions are not due to model mis-
specification, we add to the regressions a set of control variables that have been used in the literature
to capture the state variables that determine changes in the investment opportunity set.

7As discussed later in the paper, we conduct robustness checks where VaR measures that condi-
tionally change over time are used in regressions. The results from the lagged realized VaR and from
the conditional forecasts of VaR are found to be similar.
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ill. Economic Framework

The standard theory of portfolio choice-determines the optimum asset mix
by maximizing i) the expected risk premium per unit of risk in a mean-variance
framework or ii) the expected value of a utility function approximated by the ex-
pected return and variance of the portfolio. In both cases, market risk of the port-
folio is defined in terms of the variance (or standard deviation) of the portfolio’s
returns. Modeling portfolio risk with the traditional volatility measures implies
that investors are concerned only about the average variation (and covariation) of
individual stock returns, and they are not allowed to treat the negative and positive
tails of the return distribution separately.

In what follows, we consider an investor who allocates her portfolio in or-
der to maximize the expected utility of end-of-period wealth U(W). We assume
that the distribution of returns on the investor’s portfolio of risky assets is non-
symmetrical and fat-tailed. The expected value of end-of-period wealth can be
written as W = Y q;R; + qsRy, where R; is unity plus the expected rate of
return on the ith risky asset, Ry is unity plus the rate of return on the riskless
asset, g; is the fraction of wealth allocated to the ith risky asset, and gy is the
fraction of wealth allocated to the riskless asset. We approximate the expected
utility by a Taylor series expansion around the expected wealth. For this pur-
pose, the utility function is expressed in terms of the wealth distribution, so that
E[U(W)] = [ U(W)f(W)dW, where f(W) is the probability density function of’
the end-of-period wealth which depends on the multivariate distribution of re-
turns and on the vector of weights g. We now consider the infinite-order Taylor
series expansion of the utility function

o0

® (W W W
o) ZU ) w)*

k=0 -

3

where W = E(W) denotes the expected end-of-period wealth. Under rather mild
conditions, the expected utility is given by

© UE (WWW — W ©_ k) (W _
-(8) E[UW)] =E ZU (W)]((!W W) U—kfv—v—)E[(W—W)"].

k=0 k=0

Therefore, the expected utility depends.on all central moments of the distribution
of the end-of-period wealth.

It should be noticed that the approximation of the expected utility by a Taylor
series expansion is related to the investor’s preference (or aversion) toward all
moments of the distribution that are directly given by derivatives of the utility
function. Scott and Horvath (1980) indicate that, under the assumptions of pos-
itive marginal utility, by decreasing absolute risk aversion at all wealth levels,
together with strict consistency for moment preferences, one has U®) (W) > 0,
YW if k is odd and U (W) < 0, VW if k is even. Further discussion on the con-
ditions that yield such moment preferences or aversion can be found in Pratt and
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Zeckhauser (1987), Kimball (1993), and Dittmar (2002). Focusing on terms up to
" the fourth one, we obtain

) E[U(W)] = UW)+UDW)E [(W-W)] + %U(”(W) E[(W- W)Y
+ VOB (W~ W)+ U@ WE (W~ )] + 0w,

where O(W*) is the Taylor remainder. We define the expected return, variance,
skewness, and kurtosis of the end-of-period return, R, as

(1) w = ER)] = W,
an o = E[R-w)y] = E[W-W)],
(12) $ = E[R-w)] = E[W-W], and
(13) K = E[R-w)] = E[W-W)

Hence, the expected utility is simply approximated by the following preference
function:

(14) E[UW)] ~ UW)+ 0O W)+ 20O W)sh+ 0O Wk,

Under conditions established by Scott and Horvath (1980), the expected utility
depends positively on expected returns and skewness and negatively on variance
and kurtosis. Based on the constant absolute risk aversion (CARA) and constant
relative risk aversion (CRRA) utility functions, we now show that an increase in
VaR reduces the expected utility of wealth.

We first consider the CARA utility function, deﬁned by: U(W) = —exp
(—6W), where 8 measures the investor’s CARA. The approximation for the ex-
pected utility is given by

A W 9 , &5 0,
(15) - EUW)] =~ —exp(—0W) |1+ —0— —5 +—k|.

Equation (15) indicates aversion to variance and kurtosis and preference for
(positive) skewness since

SE[UW)] e BE[U(W &

9o = _exp(few)i < 0, T = exp(— 9W)— >0, and
SElUW) _ 6
—6‘k§ = —exp( OW)4! < 0.

These results imply aversion to VaR, (9E [U(W)])/(9VaR,) < 0, since VaR
for long positions (defined by the left tail of the return distribution) increases

with variance and kurtosis and decreases with positive skewness (see Cornish and
Fisher (1937)).
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Similar results are obtained from the CRRA utility function given by: U(W)=

(WI=9)/(1 - 6), (8 > 0,8 # 1). Since § > 0, the expected utility of wealth de-
creases with variance and kurtosis, whereas it increases with positive skewness,
for example,

OE[U(W)] 0 —_(1+9) JE[U(W)] 0(1+0)W_(2+9)

_ 9 - d
903 2W < 0, as3 3 > 0, an
JE[UW)] _ 0(1+6)(2+6)——(49)
o = 2 w < 0.
Since .
OVaR, JVaR, HVaR,
60’3 > 0, a—sg— < 0, and 61(3 0

(see Cornish and Fisher (1937)), investors dislike VaR—for example, an increase
jin VaR reduces the expected utility of wealth, (0 E[U(W)])/(8VaR,) < 0. Hence,
investors have an aversion to VaR that implies a positive relation between the VaR
of a portfolio and the portfolio’s expected return.

IV. Data

To capture the U.S. stock market returns, we use the value- and equal-
weighted monthly returns on the NYSE/AMEX/Nasdaq index. As a robustness
check, we also repeat our analysis for the NYSE/AMEX, NYSE, Nasdaq, and
S&P 500 indices. We use returns from July 1962 to December 2005, except for
the Nasdaq sample, which covers the period from January 1973 to December
2005. As a further robustness check, we also use a longer sample period of
* January 1926 to December 2005. In predictive regressions, the excess market re-
turn is defined as the difference between the index return and the risk-free rate.
We use the 1-month Treasury bill return as the risk-free rate.

Panel A of Table 1 provides descriptive statistics for the value-weighted in-
dex returns. Panel A shows that the average monthly return is in the range of
0.97% for the NYSE/AMEX/Nasdaq and 1.05% for Nasdaq, which correspond
to annualized returns of 11.64% and 12.60%, respectively. The unconditional
standard deviations of monthly returns are in the range of 4.2% for the NYSE -
and 6.5% for the Nasdaq index. The skewness and kurtosis statistics are reported
for testing the distributional assumption of normaljty. The skewness statistics for
monthly returns are negative and significant at the 1% level. The kurtosis statis-
tics are greater than 3.0 and statistically significant at the 1% level. Furthermore,
the Jarque-Bera (1980) statistics strongly reject the distributional assumption of
normality.®

81n Jarque-Bera (1980), JB =n[(52/6) + (K — 3)2/24], is a formal test statistic for testing whether
returns are normally distributed, where n denotes the number of observations, S is skewness, and K
is kurtosis. The test statistic, distributed as chi-square with two degrees of freedom, measures the
difference of the skewness and kurtosis of the series from those of the normal distribution.
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TABLE 1
Descriptive Statistics

Panel A of Table 1 shows summary statistics for the monthly return on the value-weighted NYSE/AMEX/Nasdaq,
NYSE/AMEX, NYSE, Nasdag, and S&P 500 index for the sampte period from July 1962 to December 2005. Panel B shows
summary statistics for Value at Risk (VaR;), computed using rolting window estimation over various months (k). VaR is de-
fined as — 1 times the minimum NYSE/AMEX/Nasdagq index return observed during the last k months as of the end of each
month t. Each month is assumed to have 21 trading days. We report the mean, median, standard deviation, maximum,
minimum, skewness, kurtosis, and Jarque-Bera (1980) statistics. Panel C presents results from the AR(1) regressions,
VaRi 1 = A + pVaR: + er41, where VaR; is obtained from the past 1 to 6 months of daily data. For each regression in
Panel C, we present the intercept (A), AR(1) coefficient (p), Newey-West (1987) adjusted t-statistics (in parentheses),
number of observations, and corrected A2 values implied by the autocorrelation-heteroskedasticity adjusted t-statistics:
R? = t2/(t2 +(n —2)), where t is the Newey-West (1987) adjusted t-statistic of the AR(1) coefficient and n is the number
of observations.

Panel A. Monthly Index Returns

NYSE/AMEX/Nasdaq NYSE/AMEX NYSE Nasdaq SP500
No. of obs. 522 : 522 522 - 396 522
Mean 0.970% 0.977% 0.980% 1.046% 0.974%
Median 1.250% 1.195% 1.195% 1.375% 1.085%
Std. dev. 4.405% 4.224% 4.198% 6.504% 4.273%
Maxirmum 16.56% 16.50% 16.81% 21.98% 16.81%
Minimum ' —22.53% . —21.81% —21.62% . —27.11% —21.58%
Skewness —0.4547 —0.3743 —0.3495 —0.4792 —-0.3172
Kurtosis 5.0203 5.2019 5.1738 4.7683 4.9166
Jarque-Bera 106.76 117.64 113.41 66.75 . 88.65

Panel B. Value at Risk over Various Horizons ‘

k 1 2 3 4 5 6
No. of obs. . 521 520 . 519 518 . 517 516
Mean 0.015 0.019 0.021 0.023 0.024 0.026
Median 0.013 0.016 0.017 0.018 0.020 0.022
Std. dev. 0.011 0.014 0.016 0.017 . 0019 0.020
Maximum - 0171 0.171 0.171 0.171 0171 0.171
Minimum 0.002 . 0.004 0.005 0.005 0.008 0.008
Skewness 6.240 5.977 5.560 5.252 4.934 4.699
Kurtosis 77.405 60.826 49.431 42.408 36.584 32.650
Panel C. AR(1) Regressions of VaR
k 1 2 3 4 5 6
Intercept 0.011 0.007 0.005, 0.004 0.004 0.003
(9.03) (6.08) (4.85) (4.06) "(3.41) (2.87)
AR(1) coeff. 0.286 0.610 0.754 0.805 0.843 0.871
(4.99) (10.15) (14.07) (14.95) (15.51) (15.99)
No. of obs. 521 520 519 518 517 516
Corrected R2 4.6% 16.6% 27.7% 30.2% 31.8% 33.2%

Panel B of Table 1 shows summary statistics for VaR computed using a
rolling window estimation over various months denoted by k. VaR is defined as
—1 times the minimum NYSE/AMEX/Nasdaq index return observed during the
last k months of daily data as of the end of each month ¢. Furthermore, each month
is assumed to have 21 trading days. For example, VaR for the past 4 months is
computed as the lowest return observed during the last 84 days. Observe that the
distributions of various VaRs are skewed to the right and have fatter tails than the
normal distribution. _

Panel C of Table 1 presents results from the AR(1) regressions for alternative
measures of VaR, VaR,,; = A + pVaR, + €., where VaR, is obtained from the
past 1 to 6 months of daily data. For each regression in Panel C, we present the
intercept (\), AR(1) coefficient (p), their Newey-West (1987) adjusted #-statistics
in parentheses, the number of observations, and the corrected R? values implied by
the autocorrelation-heteroskedasticity adjusted ¢-statistics: R? =¢*/(£* + (n — 2)),
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where ¢ is the Newey-West (1987) adjusted t-statistic of the AR(1) coefficient,
and n is the number of observations. As shown in Panel C, the AR(1) coefficients
are in the range of 0.29 to 0.87, and they are all statistically significant at the
1% level. The r-statistics and the corrected R? values indicate that the realized
VaR measures are highly persistent and motivate the use of VaR, as a proxy for
E,(VaR,,). .
A series of papers argue that the stock market can be predicted by macro-
economic variables associated with business cycle fluctuations. The commonly
chosen variables include default spread (DEF,), term spread (TERM,), dividend
price ratio (DP;), and the detrended riskless rate (RREL,). We define DEF, as
the change in the difference between the yields on BAA- and AAA-rated corpo-
rate bonds, and TERM, as the change in the difference between the yields on the
10-year Treasury bond and the 1-month Treasury bill. RREL, is defined as the
difference between the [-month T-bill rate and its 12-month backward moving
average.'® To be consistent with earlier studies on ICAPM, we use the afore-
mentioned macroeconomic variables in our risk-return regressions and investi-
gate how incorporating these variables into the predictive regressions affects the
intertemporal relation between downside risk and expected stock returns.'!

V.. Empirical Results
A. Results from Nonparametric Value at Risk

Table 2 presents the first set of empirical results from the time-series regres-
sions of the value-weighted excess market return on nonparametric VaR (VaR,)
computed using daily returns observed over the past 1 to 6 months. The first col-
umn in each panel shows the number of months used to compute VaR. We assume
that each month has 21 trading days. Therefore, at the 1-month horizon, VaR is
defined as the minimum daily return observed during the past 21 days; hence, it
corresponds to 4.76% VaR. At the 2-month horizon, VaR is defined as the min-
imum daily return observed during the past 42 days; hence, it can be viewed as
2.38% VaR. Similarly, at the 5-month horizon, VaR is defined as the minimum

9See, e.g., Campbell (1987), Fama and French (1989), Ferson and Harvey (1991), Tallarini and
Zhang (2005), and Bali (2008), who test the predictive power of these variables for expected stock
returns. .
10The time-series data on monthly 10-year Treasury bond yields and on BAA- and AAA-rated
corporate bond yields are available from the Federal Reserve statistics release Web site. We obtain the
dividend price ratio using the CRSP value-weighted index return with and without dividends based on
the formula given in Fama and French (1988). Finally, we obtain the 1-month Treasury bill rate from
Kenneth French’s online data library (http://mba.tuck.dartmouth.edu/pages/facuity/ken.french/
data_library.html). At an earlier stage of the study, we proxy the short-term interest rate with the
3-month Treasury yields reported on the Federal Reserve Web site (http://www.federalreserve.gov/
releases/h15/data.htm). Note that our results are not sensitive to the choice of 1- versus 3-month T-bill
rates.
1T At an earlier stage of the study, we use the default spread (DEF) and term spread (TERM) as the
" difference between two interest rate levels. When DEF and TERM are defined in the level of interest
rates (instead of the change in interest rates), the slope coefficients on VaR turn out to be very similar to
those reported in our tables. However, the coefficients on DEF and TERM are found to be statistically
insignificant. This provides further evidence that innovations in macroeconomic variables (instéad of
the levels) generate a better proxy for state variables capturing shifts in the investment opportunity set.
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daily return observed during the past 105 days; hence, it is 0.95% VaR, etc. In
predictive regressions, the dependent variable is the I-month-ahead value-
weighted excess return on the NYSE/AMEX/Nasdaq index, Ry.(. The indepen-
dent variables are VaR, a dummy variable that takes the value of 1 in October
1987, and O otherwise, the lagged excess market return, R, and the macroeco-

“nomic variables. For each parameter estimate, we present the Newey-West (1987)
adjusted z-statistic in parentheses.'?

TABLE 2
Value-Weighted Market Return and Nonparametric Value at Risk

Table 2 presents results from the time-series regressions of the value-weighted excess market return on nonparametric’
Value at Risk (VaR), defined as the minimum daily index return observed during the past 1 to 6 months. The original VaRs
are multiplied by — 1 before running our regressions. Value-weighted excess return,, Ry, is defined as the return on the
value-weighted NYSE/AMEX/Nasdag index minus the 1-month Treasury bill rate. A dummy takes the value of 1in Octaber
1987, and 0 otherwise. DEF; is the default spread calculated as the change in the difference between the yields on BAA-
and AAA-rated corporate bonds. TERM; is the term spread calculated as the change in the difference between the yields
on the 10-year Treasury bond and the 1-month Treasury bill. RREL; is the stochastically detrended riskless rate defined
as the 1-month Treasury bill rate minus its 12-month backward-moving average. DP; is the aggregate dividend yield. In
each regression, the dependent variable is the 1-month-ahead excess market return, Rt.q. The first row gives the estimated
coefficients. The second row gives the Newey-West (1987) adjusted t-statistics in parentheses. The R2 values are reported
in the last column. :

Panel A. Mean-VaR Tradeoff

k Constant VR R Dummy i
1 —0.003 0.498 0.078 . —0.141 1.6%
. (—0.72) ) (2.25) (1.71) (—4.51)
2 —0.004 0.431 0.061 —0.142 25%
(—1.48) (4.23) . (1.45) (=7.77) :
3 —0.003 0.391 0.044 —0.129 2.4%
(~1.07) (3.72) (1.11) (—7.45)
4 —0.003 0.368 0.040 —0.126 2.6%
(—1.17) (4.19) (1.00) (—7.96)
5 —0.002 0.266 0.036 —=0.111 1.9%
(—0.57) (3.02) (0.90} (—=7.01)
6 —0.001 ’ 0.221 0.037 —0.104 1.7%
(—0.32) (2.61) (0.91) (-—6.69)
Panel B. Mean-VaR Tradeoff with Macro Variables .
k  Constant VaRy R ' Dummy . RREL TERM; DEF; DP; R2
1 —0.012 0.451 0.063 —0.141 —0.467 —0.739 3.381 0.346 4.9%
(—1.58) (2.01) (1.34) (—4.44) (—2.57) (—2.44) (2.00) - (1.63)
2 —0.014 0.468 0.051 —0.146 —0.461 —~0.761 2977 0.357 57% -
(~1.98) (3.84) (1.17) (—7.63) (—2.57) (—2.53) (1.76) (1.67)
3 —0.013 . 0373 0.035- —0.134 —0.460 —0.751 3.159 0.349 5.6%
(—1.78) (3.48) (0.84) (—7.38) (—2.55) (—2.52) (1.89) (1.62)
4 —-0.013 0.351 0.031 —0.132 —0.443 —0.759 3.034 0.352 57%
(—1.80) (3.70) (0.76) -(—7.52) (—2.44) (—2.56) (1.79) (1.63)
5 —~0.011 0.238 0.025 —0.114 —0.457 —0.711 3.408 0.326 5.0%
(—1.42) (2.42) (0.62) (—6.32) (—2.51) (—2.38) (2.02) (1.51)
"6 —0.010 0.200 0.024 —0.108 —0.463 —0.713 3.532 0.323 4.9%

(—1.33) (2.16) (0.62) ! (—6.23) (—2.54) (—2.38) (2.11) (1.50)
- T N

As shown in Panel A of Table 2, after controlling for the lagged market return
and the crash dummy, the slope coefficients on VaR, are positive and highly signif-
icant. Specifically, the Newéy-West (1987) t-statistics of the VaR slopes are in the
range of 2.25 to 4.23. The dummy variable controls for the October 1987 crash.

12We use six lags when computing the Newey-West (1987) standard errors.’
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The coefficient on the dummy variable is negative and significant, indicating that
there would be a misspecification error if we had not used it as a right-hand side
variable."3

Our main finding can be interpreted by considering the changes in expected
excess returns as a result of a one-standard-deviation change in the average VaR
measure. For example, for the I-month horizon (k= 1), moving from average VaR
minus one standard deviation (i.e., 1.5% — 1.1% =0.4%) to average VaR plus one
standard deviation (i.e., 1.5% + 1.1% = 2.6%) increases expected excess returns
by 1.10% per month (2.2% x 0.498 = 1.10%).

We further investigate the relation between downside risk and expected re-
turns after controlling for macroeconomic variables known to forecast the stock
market. As shown by Merton (1973), the hedging demand component (vX,) in
equations (5) and (6) captures the investor’s motive to hedge against unfavor-
able shifts in the investment opportunity set. Thus, we include macroeconomic
variables that have been shown in the literature to capture state variables that de-
termine the investment opportunity set.

Panel B of Table 2 shows that even after controlling for the macroeconomic
variables, VaR, has a positive and significant coefficient, indicating that there is
a robust and significantly positive relationship between downside risk and ex-
pected returns. The strong positive relation holds for alternative measures of VaR
obtained from the past 1 to 6 months of daily data. Consistent with the earlier
research (e.g., Ghysels et al. (2005), Bali, Cakici, Yan, and Zhang (2005)), the R?
values are small, in the range of 4.9% to 5.7%.

¥

B. Results from Parametric Value at Risk

Table 3 presents the pérameter estimates from the monthly regressions of
the value-weighted Center for Research in Security Prices (CRSP) index returns
on the lagged VaR, which is calculated parametrically based on the lower tail of
the ST distribution, VaR{. The magnitude and statistical significance of the slope
coefficients turn out to be very similar to our findings in Table 2. As shown in
Table 3, VaR} has positive and highly significant coefficients. Specifically, the
Newey-West (1987) t-statistics of the slope coefficients on VaR! range from 1.96
to 3.70. This result is robust across different measures of VaR computed with the
ST density using the past 1 to 6 months of daily data. Overall, the results from
alternative measures of nonparametric and parametric VaR turn out to be similar,
indicating a significantly positive relation between downside risk and expected
return on the market.

C. Results from the Equal-Weighted Market Portfolio

We have so far examined the significance of downside risk based on the
value-weighted portfolio of NYSE/AMEX/Nasdaq stocks. We will now repeat
our analyses for the equal-weighted market index. Stocks with smaller (bigger)

. Bwe also repeat our analysis by eliminating the month of October 1987. Since the qualitative
results turn out to be very similar to those reported in our tables, we do not present them here. They
are available from the authors.
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TABLE 3
Value-Weighted Market Return and Parametric Value at Risk

Table 3 presents results from the time-series regressions of the value-weighted excess market return on parametric Value
at Risk (VaRP), defined based on the lower tail of the skewed t density using daily returns over the past 1 to 6 months.
The original VaRs are multiplied by — 1 before running our regressions. Control variables are defined in Table 2. In each
regression, the dependent variable is the 1-month-ahead excess market return, Ri.q. The first row, gives the estimated
coefficients. The second row gives the Newey-West (1987) adjusted t-statistics in parentheses. The R< values are reported
in the last column.

K Constant VaRf Rt Dummy RREL¢ TERM; DEF; DP; R2

1 —0.012 0.399 0.061 —-0.139 —0.472 —0.744 3.395 0.347 4.8%
(—1.59) (1.96) (1.31) (—4.39) (—2.60) (—2.46) (1.98) (1.64)

2 —-0.014 0.448 0.049 —0.142 —0.476 -0.773 3.029 0.356 5.4%
(—1.93) (3.63) (1.13) (=7.27) (—2.64) (—2.54) (1.77) (1.67)

3 -0.013 0.374 0.036 —-0.131 —0.476 —-0.761 3.180 0.345 5.3%
(—=1.72) (3.43) (0.86) (—7.39) (—2.63) (—2.54) (1.80} (1.61)

4 -0.013 0.382 0.033 —0.131 —0.462 —0.774 3.055 0.349 5.6%
(—1.80) (3.70) (0.80) (—7.40) (—2.54) (—2.59) (1.81) (1.62)

5 -0.010 0.252 0.026 —-0.113 —0.474 -0.722 3.450 0.317 4.9%
(—1.36) (2.31) (0.64) (—6.11) (—2.861) (—2.40) (2.04) (1.48)

6 —0.009 0.214 0.026 —0.108 —0.478 -0.722 3.563 0.311 4.8%

(—1.26) (2.07) (0.62) (—6.03) (—2.64) (—2.40) (2.13) (1.45)

market capitalization are weighted more heavily in the equal-weighted (value-
weighted) index. We expect VaR to be even more powerful in forecasting the
future equal-weighted returns because the return distributions of small stocks ex-
hibit higher peaks, fatter tails, and more outliers on the left or right tail than do
the distributions of bigger stocks.

Table 4 presents the parameter estimates and the Newey-West (1987)
t-statistics for alternative measures of nonparametric VaR that are used to pre-
dict the excess return on the CRSP equal-weighted index. The slope coefficients
on VaR are positive and highly significant, with the ¢-statistics falling in the range
of 2.83 to 4.77 even when macroeconomic variables are used as control variables.
These results also provide supporting evidence for a stronger relation between
VaR and expected return on the equal-weighted index.

TABLE 4
Equal-Weighted Market Return and Nonparametric Value at Risk

Table 4 presents results from the time-series regressions of the equal-weighted excess market return on nonparametric
Value at Risk (VaR;), defined as the minimum daily index return observed during the past 1 to 6 months. The original
VaRs are multiplied by —1 before running our regressions. Control variables are defined in Table 2. In each regression,
the dependent variable is the 1-month-ahead excess market return, Rr,1. The first row gives the estimated coefficients.
The second row gives the Newey-West (1987) adjusted t-statistics in parentheses. The R2 values are reported in the last
column.

kK Constant VaR; Rt Dummy RREL; TERM; DEF; DP; R2

1 —0.011 1.084 0.298 ~0.081 —0.745 ~1.293 3.184 0282  10.4%
(~1.18) (283)  (607)  (-253)  (=374)  (~349) (131  (1.20)

2 -0.008 0722 0.242 -0082 ' —0797 -1.326 2732 0249  102%
(—0.90) (359)  (547)  (-281)  (=396) (=352  (112)  (1.04)

3 —0.010 0.761 0.233 ~0.068 ~0.789 —1.336 2535 0256  109%
(—1.16) (429)  (5.45)  (=314)  (-389)  (-363)  (108)  (1.05)

4 -0.0M 0.709 0.222 ~0.065 —0.768 ~1.380 2.307 0259  10.9%
(=1a7) - @77 (521)  (=322)  (-374)  (-376)  (097)  (1.04)

5 ~0.005 0.445 0.215 -0.041 -0.753 —1.278 3356 0.225 9.9%
(—058) (333)  (5.14)  (-229)  (—385)  (-351)  (138)  (0.92)

6 ~0.005 0.387 0.218 -0.035 —0.744 —1.244 3554 0231 9.8%

(—0.52) (2.91) (56.27) (—1.96) (—3.57) (—3.39) (1.45) (0.94)
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D. Conditional Value at Risk

Before we generate the conditional VaR measure, we investigate the infor-
mation content of VaR. As discussed in Section II, VaR is a nonlinear function of
volatility, skewness, and kurtosis. Table 5 shows that past skewness has almost no
power to predict future skewness. The Newey-West (1987) r-statistics of the slope
coefficients on past skewness are in the range of 0.78 to 1.76 (see Chen, Hong,
and Stein (2001) for a detailed analysis of the forecastability of skewness). On the
other hand, the slope coefficients on past VaR have the correct sign for all hori-
zons, and the Newey-West t-statistics are in the range of —2.40 to —5.49 (except
for the 1-month horizon).!* However, we find that (although not presented in the
paper to save space) VaR has a little forecasting power for future kurtosis.

TABLE 5
Forecasting Skewness

Table 5 presents the parameter estimates, the Newey-West (1987) t-statistics in parentheses, and the R2 values from the
regression of 1-month-ahead skewness (SKEW(, 1) on past skewness (SKEW;), past VaR (VaR;), past return (R;), and past
volatility (o). The original VaRs are multiplied by — 1 before running our regressions.
K Constant SKEW, VaR, Ry o R2
1 -0.115 0.060 —8.339 ~2.305 ' 20323

(—2.05) (0.78) (—1.49) (—3.68) (—2.06)

2 . —0.098 0.092 —6.315 —1.981 24.039
(—1.80) (1.64) (—2.80) (~3.73) (3.25)

—0.089 0.082 —8.661 —-1.778 29.714

(—1.68) (1.47) (—5.49) (—3.38) (4.53)

—0.092 0.092 —5.088 —1.735 21.469

(—1.66) (1.60) (—3.54) (—-3.17) (3.58)

-0.088 0.101 —4.037 —1.718 18.784

(—157) (1.76) (—2.40) (—-3.07) (3.19)

—0.080 0.097 —4.888 —1.689 20514
(—1.43) (1.66) (~3.09) (—3.02) (3.45)

As mentioned earlier, we approximate the conditional VaR by the lagged re-
alized VaR (i.e., £;(VaRn4 ) = VaR)), to test the intertemporal relation between
downside risk and excess market return as shown in equation (5). This approxi-
mation is justified by the fact that the VaR is highly persistent. As discussed in
Section 1V, we present the parameter estimates, the Newey-West (1987) adjusted
t-statistics, and the R? values implied by the autocorrelation-heteroskedasticity
adjusted ¢-statistics from an AR(1) specification of the realized VaR, VaR,H =+
pVaR, + g,,. As shown in Panel C of Table 1, the AR(1) coefficients are in the
range of 0.29 to 0.87, and they are all statistically significant at the 1% level.

Since the actual realizations of VaR measures are known to be conditionally
changing over time, in this section we use time-varying conditional measures of
downside risk. In order to come up with a more accurate conditional expectation
of VaR, we consider a more general AR(p) specification:

p—1
(16) VaRii = A+ pVaRii+en,
i=0

"In regressions, VaR is used in absolute value terms, and hence we expect a negative relation
between VaR and skewness.
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where p denotes the order of autoregressive process. For each measure of VaR,
the optimal lag length p is determined based on the Akaike information criterion
(AIC) and Schwarz Bayesian criterion (SBC). For 21-day VaR, the optimal lag
length is found to be four, and alternative measures of VaR have an optimal lag
length in the range of three to five. Hence, we use p = 4 when we compute the
conditional measures. We should also note that the results are robust for all lag
lengths between p =2 and p = 5. Therefore, assuming that investors’ information
set as of time ¢ consists of the lagged VaRs, we estimate the conditional VaR
as the explainid portion of the regression shown in equation (16), for example,
E,(VaRy1) = A+ Y07 piVaR,_;.

Table 6 presents results from the time-series regressions of the 1-month-
ahead excess market return, R, on the conditional VaR, E,(VaR,,,), a dummy
variable that takes the value of 1 in October 1987, and 0 ofherwise, lagged excess
market return, R,, and macroeconomic variables. Here, E,(VaR,.() has positive
and highly significant coefficients. Specifically, the Newey-West (1987)
t-statistics of the slope coefficients on E,(VaR,,) are in the range of 2.28 to 3.89.
The results in Table 6 indicate that there exists a positive and significant link
between expected return and conditional VaR, E,(VaR,,), for all estimation win-
dows from 1 to 6 months. Furthermore, the results are similar to those reported
in our earlier tables using the lagged realized VaR as a proxy for the conditional
measure of downside risk. Thus, we conclude that the lagged VaR is a good proxy
for the conditional expectation of future VaR. '

TABLE 6
Excess Market Return and Conditional Value at Risk

Table 6 presents results from the time-series regressions of the excess market return on the conditional VaR, E(VaRts1),
estimated using equation (16). The original conditional VaRs are multiplied by —1 before running our regressions. In each
regression, the dependent variable is the 1-month-ahead excess market return, Ry.1. The first row gives the estimated
coefficients. The second row gives the Newey-West (1987) adjusted t-statistics in parentheses. The RZ values are reported
in the last column.

kK Constant  E(VaRis1) R Dummy RREL, TERM, DEF; DP; R?

1 —0.022 1.098 0.040 —0.113 —0.464 0746 3222 0353  5.1%
(—2.25) (253) (0.96) (—670)  (—255)  (—~250)  (180)  (1.63)

2 —0.019 0.733 0.058 —0.165 —0.450 ~0.736 299 0354  56%
(—2.33) (3.27) (131)  (=607)  (—252)  (—246) (177)  (167)

3 —0.015 0.476 0.042 —0.141 —0.465 —0.738 3.195 0340  55%
(—1.94) (3.44) (0.96)  (—7.24)  (—259)  (—246)  (192)  (1.88)

4 —0.015 0.453 0.031 —0.136 —0448  —0748 3.069 0333  59%
(—2.01) (3.89) (0.76)  (—7.63)  (—248)  (—252)  (1.81)  (1.55)

5 —0.012 0.285 0.026 —0.116 —0.456 —0.708 3.430 0320 51%
(—1.54) (2.51) (0.63)  (=637)  (=250)  (=237)  (203)  (1.50)

6 —0.0Mm 0.239 0.028 —0.110 —0.460 —0.712 3542 0319  50%
(—1.45) (2.28) (068)  (—6.25)  (—253)  (—237) (212 (149

VI. Robustness Checks

A. Different Indices

" The positive relation between VaR, and expected returns on the NYSE/
AMEX/Nasdaq index may well be due to smaller, illiquid, and lower-priced stocks
trading in certain exchanges. Therefore, in Table 7 we examine the relation be-
tween downside risk and expected returns for other stock market indices.
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TABLE 7
Various Indices

Table 7 presents results from the time-series regressions of the excess market return on nonparametric Value at Risk
(VaRy). The original VaRs are multiplied by -1 before running our regressions. The dependent variable is defined as the
return on the NYSE/AMEX (Panel A), NYSE (Panel B), Nasdaq (Panel C), and S&P 500 (Panel D) index minus the 1-month
Treasury bill rate. In each regression, the first row gives the estimated cogfficients. The second row gives the Newey-West
(1987) adjusted t-statistics in parentheses. The B2 values are reported in the last column.

k Constant VaR; Ry Dummy RREL; TERM; DEF; DP; R?

Panel A. NYSE/AMEX
1 -0.009 0.393 0.037 —0.146 3.500 0.274
(—1.31) (1.88) (0.79) (—4.51) (2.12) (1.42)

—-0.01 0.412 0.027 —0.150 3.178 0.280
(—1.68) (3:82) (0.60) (—8.15) (1.93) (1.46)

—~0.010 0.343 0.015 —0.141 3.330 0.279
(—1.56) (3.57) (0.34) (-8.04) (2.05) (1.44)

-0.010 0.309 0.011 —0.136 3.237 0.282
(—1.56) (3.63) (0.26) (—8.08) (1.97) (1.46)

—0.008 0.211 0.007 —0.120 3.550 0.267
(—1.21) (2.26) (0.16) (—6.62) (2.16) (1.38)

—0.007 0.180 0.006 —0.115 3.654 0.266
(=1.14) (2.06) (0.14) (—6.62) (2.24) (1.37)

Panel B. NYSE
1 —040.09 0.397 0.030 —0.149 3.408 0272
(—1.31) (1.91) (0.65) (—4.57) 2.11) (1.43)

—0.010 0.404 0.020 —0.152 3111 0.278
(—1.65) (3.77) (0.65) (—8.15) (1.93) (1.46)

—0.010 0.335 0.008 -0.142 3.259 0.278
(—1.53) (3.54) (0.18) (—8.11) (2.05) (1.45)

-0.010 0.301 0.004 -0.137 3.172 0.280
(—1.53) (3.60) (0.10) (—8.16) (1.97) (1.46)

—0.008 0.206 0.000 ~0.121 3.474 0.265
(—1.18) (2.21) (0.00) (—6.65) (2.16) (1.38)

-0.007 0.176 —0.001 —-0.116 3.576 .0.264
(=1.10) (2.02) (—0.02) (—6.66) (2.24) (1.37)

Panel C. Nasdaq
1 —-0.011 1.247 0.341 —0.062 2372 0.262
(—0.78) (2.41) (5.24) {(—1.83) (0.92) (0.88)

2 ~0.003 0.743 0.270 —0.039 1.780 0.138
(—0.22) (2.71) (4.17) (—1.61) (0.68) (0.47)

-0.003 0.689 0.258 .—0.038 1.799 0.130
(=0.27) (2.71) (4.16) (—1.60) 0.71) (0.45)

—0.005 0.700 0.252 -0.040 1.538 0.137
(—0.40) (3.50) (4.19) (—1.81) (0.61) (0.46)

0.003 0.425 0.235 -0.024 2614 0.050
(0.26) (2.38) (3.99) (—1.18) (1.01) (0.17)

0.006 0.323 0232 - -0017 2.830 0.026
(0.47). (1.76) (3.94) (—-0.87) (1.08) (0.09)

Panel D. S&P 500
1 -0.010 0417 0.004 —0.169 3.438 0.291
(—1.35) (2.12) (0.08) (—5.16) (2.17) (1.39)

—-0.011 0.396 —0.008 -0.167 3.135 0.298
(—1.62) (3.69) (-0.19) (—8.48) (1.98) (1.43)
-0.010 0.314 -0.021 —0.155 3.305 0.293
(—1.45) (3.35) (—0.49) (—8.52) (2.11) (1.39)
-0.010 0.294 —0.024 -0.152 3.216 0.296
(—1.47) (3.37) (—0.55) (—8.44) (2.03) (1.40)
—0.008 - 0.202 —0.029 —0.135 3513 0.273
(=1.12) (2.10) (—0.67) (—86.90) (2.23) (1.30)

—0.008 0.175 -0.030 —0.131 ’ 3.606 0.271
(—1.06) (1.93) (—0.69) (—6.97) (2.30) (1.29)
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Table 7 reports results for the value-weighted NYSE/AMEX, NYSE,
Nasdaq, and S&P 500 index portfolios. For all market indices, there is a positive
and highly significant relation between VaR, and excess market return. As shown
in Table 7, after controlling for the lagged market return, the October 1987 crash,
and macroeconomic variables, the slope coefficients on VaR have Newey-West
(1987) t-statistics ranging from 1.88 to 3.82 for NYSE/AMEX (Panel A), from
1.91 to 3.77 for NYSE (Panel B), from 1.76 to 3.50 for Nasdaq (Panel C), and
from 1.93 to 3.69 for S&P 500 (Panel D). Although not presented in the paper to
save space, the f-statistics are even larger when we exclude the macroeconomic
variables. Thus, we conclude that the strong positive relation between VaR and
expected return is robust across different stock market indices.

B. Alternative Measures of Downside Risk

VaR provides information about the left tail of the empirical return distribu-
tion; however, it is not the only measure of downside risk. If downside risk is an
important determinant of expected returns, we expect other proxies of downside
risk to perform well in predictive regressions too. In this section, we conduct an
empirical analysis of the various left-tail risk measures.

An important example for a risk measure of this kind is “expected shortfall”
originally proposed by Artzner, Delbaen, Eber, and Heath (1999). ES is defined
as the conditional expectation of loss given that the loss is beyond the VaR level.
That is, when the distributions of losses are continuous, ES at the 100(1 — $)%
confidence level is defined by

(17) ESs(R) = E[R|R < VaRo(R.)].

Equatlon (17) can be viewed as a mathematlcal transcription of the concept
“average loss in the worst 1006% cases.”
In addition to ES that measures the mean of losses larger than VaR we also
compute the variance of losses larger than VaR and call it TR:

(18)  TRs(R) = E[(R,—E(R,ue, < VaRa(R))? |R: SVaRq;(R,)}.

We consider the 2.5% and 5% tail risk (TR?% and TR;”) and the 2.5% and 5%
expected shortfall (ES2% and ES}”) as alternative proxies for downside risk. In
our empirical analysis, we define the 2.5% (5%) TR as the sum of squared de-
viations of the lowest 2.5 percentile (5 percentile) of the NYSE/AMEX/Nasdaq
index returns from the mean of index returns during the last 100 days. Similarly,
we define the 2.5% (5%) ES as the average of the lowest 2.5 percentile (5 per-
~ centile) of the NYSE/AMEX/Nasdaq index returns observed during the last 100
days as of the end of month ¢.!5:'6

15When computing ES and TR, we need a large number of observations so that we can find the
mean and variance of extreme observations beyond some VaR threshold. Practically, there are not
enough observations to calculate 2.5% ES and 2.5% TR from the past 21, 42, 63, and 84 daily returns.
Hence, we use the past 100 daily returns to compute 2.5% and 5% ES and TR.

16 Also note that using k = 5 or the past 100 days produces very similar results, since 2.5% (5%)
TR and ES are computed by using the lowest three (five) observations regardless of whether the past
100 days or the past 105 days (i.e., k = 5) is used.
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Table 8 presents results from the regressions of the value-weighted index re-
turn on the lagged TR and ES measures. The slope coefficients on TR,Z'S% and
TR;? are positive and significant, with Newey-West (1987) t-statistics of 1.97
and 1.96, respectively. Similarly, the ES measures, ES25% and ES3%, have signif-
icantly positive slope coefficients, with t-statistics of 2.23 and 2.01, respectively.
Indeed, when we exclude macroeconomic variables, the statistical significance
goes higher such that TR?>” and TR3” have -statistics of 2.56 and 2.55, respec-
tively, and ES?% and ES3% have r-statistics of 2.65 and 2.29, respectively (not
shown). Overall, the parameter estimates in Table 8 indicate that alternative mea-
sures of left-tail risk measures predict the 1-month-ahead market returns almost
as well as VaR.

TABLE 8
Alternative Measures of Downside Risk

Table 8 presents results from the time-series regressions of the excess market return on the 2.5% and 5% tail risk (TFR,2 5%
and TR?®) and the 2.5% and 5% expected shortfall (ES?5% and E55%) measures. Here, 2.5% (5%) il risk is computed
as the sum of squared deviations of the lowest 2.5 percentile (5 percentile) of the NYSE/AMEX/Nasdaq index returns from
the mean of index returns during the latest 100 days, and 2.5% (5%) expected shortfall is computed as the average of the
lowest 2.5 percentile (5 percentile) of NYSE/AMEX/Nasdagq index returns observed during the last 100 days as of the end
of month . In each regression, the first row gives the estimated coefficients. The second row gives the Newey-West (1987)
adjusted t-statistics in parentheses. The R2 values are reported in the last column.

Constant DR . Rt Dummy RREL; . TERM; DEF; DP; R2

DRy = 2.5% Tail Risk
—0.005 0.956 0.022 —0.114 -0.478 —-0.714 3.623 0.291
(—0.80) (1.97) (0.54) (—5.56) (—2.65) (-2.37) (2.17) (1.38)

DR; = 5% Tail Risk {
—0.006 0862 . 0.022 —0.112 —-0.479 -0.715 3.599 0.296
(—0.86) (1.96) (0.55) (—5.63) (—2.65) (~2.38) (2.15) (1.40)

DR = 2.5% Expected Shortfall
—0.012 0.366 0.028 —0.108 —0.465 -0.723 3.326 0.326
(—1.56) (2.23) (0.68) (—6.14) (—2.54) (—2.41) (1.95) (1.51)

DR = 5% Expected Shortfall R
—0.012 0.414 0.028 —0.102 —0.474 -0.728 3.333 0.326

(—1.54) (2.01) (0.70) (—6.16) (—2.59) (—2.42) (1.93) (1.50)

C. Risk-Return Tradeoff Over the Long Sample

In this section, as an additional robustness check, we test whether the strong
positive relation between downside risk and expected returns persists over the
long sample period. Specifically, we use the NYSE/AMEX/Nasdaq index for the
sample period of January 1926 to December 2005 and examine the predictive
power of VaR.

As presented in Panel A of Table 9, there is a positive and highly significant
relation between VaR and excess market return. Specifically, the slope coefficients
on VaR have Newey-West (1987) t-statistics in the range of 2.45 to 3.43 for the
tong sample period of January 1926 to December 2005. Panel B of Table 9 shows
that after controlling for the commonly used macroeconomic variables, the strong
positive relation remains intact over the sample period of July 1927 to Decem-
ber 2005."” Hence, we conclude that the positive downside risk-return tradeoff
extends to earlier periods.

The monthly data on 10-year Treasury bonds start from April 1953, and the monthly data on
1-month Treasury bills start from July 1926. Since the data on term spread (defined as the difference
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TABLE 9
Downside Risk and Return Tradeoff Over the Long Sample

Table 9 presents results from the time-series regressions of the excess market return on nonparametric Value at Risk (VaR ;)
over the long sample period of January 1926 to December 2005 (Panel A) and July 1927 to December 2005 (Panel B).
The original VaRs are multiptied by —1 before running our regressions. In each regression, the dependent variable is
the 1-month-ahead excess market return, Re.1. The first row gives the estimated coefficients. The second row gives the
Newey-West (1987) adjusted t-statistics in parentheses. The RZ values are reported in the last column.

Panel A. Mean-VaR Tradeoff

k Constant | VaR: A Dummy R?
1 0.000 0.845 ’ 0.302 —0.051 8.2%
(—0.07) (2.86) (3.11) (—2.34)
2 0.003 0.530 0.265 —0.031 7.3%
(0.57) (2.45) (2.79) © o (=157)
3 ‘ 0.001 0528 0.258 —0.031 . 7.6%
0.27) (2.95) (2.79) (—1.49)
4 0.001 0.477 0.253 —0.027 7.5%
(0.34) (3.43) (2.75) (—1.22)
5 0.004 0.362 0.248 —0018 7.0%
(1.00) . (335) (2.68) (—0.81)
6 ’ 0.004 0.315 . 0.248 —0.014 6.8%
(1.23) (3.10) (2.66) | (—062) .
Panel B. Mean-VaR Tradeoff with Macro Variables
k  Consant  VaRg A Dummy  RREL,  DER  DP A%
1 —~0.020 0.707 0.331 —0.021 —0.359 5304 0.568 10:8%
(—1.74) (2.35) (2.67) (—=0.77) (—1.65) (1.40) (2.11)
2 —0.019 0.355 0.291 0.001 —0383 4567 0.641 9.9%
. (—1.57) (1.93) = (247 (0.04) (=1.77) (1.31) (2.29)
3 —0.019- 0.373  0.287 —0.001 —0.374 4526 0.625 10.1%
(—1.63) (2.63) (2.48) (~0.02) (=1.71) (1.30) (2.24)
4 —0.019 0.323 0.282 0.003 —0.356 4.492 0.635 10.0%
(~1.66) (2.81) (2.44) (0.09) (—162) =~ (1.28) (2.21)
5 —po18 0218 0.281 0.011 —0.361 4655 0.662 9.7%
(—1.57) (2.26) (2.41) (0.35) (-164) ~ (1.33) (2.26)
6 —0018 0.179 0.281 0.015 —0.363 4.723 0.671 9.6%
(—1.55) (1.82) (2.40) (0.45) (—1.65) (1.36) (2.27)

D. Value at Risk Time Aggregates

We also examine the intertemporal relation between VaR and expected return
over the 1-month, 2-month, 3-month, 4-month, 5-month, 6-month, and 1-year
nonoverlapping intervals. In other words, we examine the parameter estimates
from the longer-term time-series regressions of 1-, 2-, 3-, 4-,5-, 6-, and 12-month-
ahead excess return of the value-weighted NYSE/AMEX/Nasdaq index on the
VaR computed as the minimum daily index return during the past 1, 2, 3, 4, 5,
6, and 12 months, respectively. For example, when the dependent variable is
4-month-ahead returns, we compute the VaR using the past 4 months of daily
data, and hence the regression covers an 8-month period, as demonstrated below:

between the yields on 10-year and 1-month Treasury) start from April 1953, we do not include TERM
in our risk-return regressions. Also note that RREL is defined as the difference between the 1-month
T-bill rate minus its 12-month backward-moving average, and hence the monthly data on RREL start
from July 1927. Therefore, the results in Panel B are based on RREL, DEF, and DP from July 1927 to
December 2005.
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L Estimation Window for VaR: 4 months ‘ Prediction Window for Returns: 4 months

t=0 t=4 t=8

The results in Table 10 indicate a positive and significant relation between
VaR and expected returns for 1- to 4-month investment horizons (covering a pe-
riod of 2 to 8 months), whereas the relation in 5-month, 6-month, and 1-year hori-
zons is weak. Observe that when 1-, 2-, 3-, and ‘4-month-ahead returns are used .
as dependent variables, the r-statistic of VaR varies between 2.00 and 3.14. These
results suggest that investors care about downside risk for intermediate holding
periods. '

TABLE 10
Value at Risk Time Aggregates

Table 10 presents results from the long-term time-series regressions of k-month-ahead excess return of the
NYSE/AMEX/Nasdag index on the Value at Risk (VaR) computed as the minimum daily index return during the past k
months. Hence, each regression covers 2 x k months of data. Control variables are defined in Table 2. In each regression,
the dependent variable is the 1-month-ahead excess market return, Re.1. The first row gives the estimated coefficients.
The second row gives the Newey-West (1987) adjusted t-statistics in parentheses. The R< values are reported in the last
column.

K Constant VaR; Ry Dummy RREL; _ _TERM; DEF; DP¢ R2
1 —0.012 0.451 0.063 —0.141 —0.467 -0.739 3.381 0.346 4.9%
(—~1.58) (2.00) (1.34) (—4.44) (—257) (—2.44) (2.00) (1.63)
2 —-0.027 0.844 0.027 —0.148 —0.825 -0.784 3.640 0.713 6.1%
(—1.91) (3.14) (0.49) (—3.80) (—2.34) (—1.89) (1.55) (1.77)
3 —0.037 0.951 0.048 —0.119 —1.037 —0.829 3.733 1.063 6.9%
(—1.82) (2.82) (0.70) (—2.44) (—2.11) (—2.01) {1.03) (1.87)
4 —0.039 0.739 0.085 -0.039 —1.239 —0.824 4284 . 1343 8.3%
(—1.49), (2.04) {0.76) (—0.71) (—2.00) (—1.84) 0.95) . (1.82)
5 —0.037 0.534 0.044 —0.035 —1.537 -0.993 10.467 1.571 71%
(-1.23) (1.60) (0.55) (—0.68) (—2.09) (—1.83) (2.21) (1.77)
6 —0.029 0.154 0.004 0.012 —2012- —1.657 12.461 1.792 - 7.7%
(—0.83) (0.50) (0.04) (0.25) (2.33) (—2.47) (2.32) (1.74)
12 —0.042 0.258 —0.044 0.023 —3.673 —2.028 15.293 3.052 1.2%
(—0.57) (0.58) (—0.36) (0.36) (2.56) (—2.48) (2.19) . (1:63)

VIl.  Comparing Value at Risk with Variance
A. Various Measures of Realized Variance

As mentioned earlier, theoretical models suggest a positive relation between
conditional mean and variance of returns for-the aggregate stock market. One of
the most commonly used estimators of conditional variance is the sum of squared
daily returns over the previous month (see French et al. (1987)). Although this
_ measure of market variance has been used extensively in tests of risk-return trade-
off, there is no evidence of a positive and significant relation between this measure
of conditional variance and expected returns.

Harrison and'Zhang (1999) examine the time-series relation between ex-
pected returns and conditional volatility over different holding periods and find
a significantly positive risk-return tradeoff at long holding intervals (such as 1 to
2 years), which does not exist at short holding periods (such as 1 month).
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Similar to the original findings of Harrison and Zhang (1999), Ghysels
et al. (2005) present evidence on the risk-return tradeoff. Like French et al. (1987),
they use the rolling window approach and the sum of squared daily returns
as a proxy for the monthly conditional variance. Additionally, they argue that
since the realized variance is very persistent, it ought to be a good proxy for
the conditional variance. On the other hand, they point out that it is not clear
why the researchers should confine themselves to using data from the last month
only to estimate the conditional variance. Therefore, they use a larger window
size (from 1 to 6 months) when they sum the past squared returns to acquire the
conditional variance measure. Interestingly, this choice has a tremendous impact
on the significance of the risk-return tradeoff. Ghysels et al. (2005) report that the
variance measures that are computed using the daily returns over the previous
3 to 6 months significantly forecast the market return.

These recent findings are important for us, because we would like to compare
our measure of downside risk with the traditional risk measures that are shown to
have a statistically significant predictive power for the expected market returns.

_Thus, in light of these recent findings, we have to focus on realized variance that is
computed using a window size larger than 1 month because the realized variance
in the previous month is not a significant predictor of expected returns.

In Table 11, we reexamine the findings of Ghysels et al. (2005) on the rolling
window estimates. We assume that each month has 21 trading days and compute
the realized variance as the sum of squared daily returns on the value-weighted
NYSE/AMEX/Nasdagq index plus an adjustment term for the first-order serial cor-
relation in daily returns. We generate different variance measures for horizons of
1 to 6 months. Panel A of Table 11 presents the parameter estimates from the re-
gressions of excess value-weighted market return on the lagged realized variance,
lagged market return, and the dummy for the October 1987 crash. The first column
shows the number of months used in the estimation of the conditional variance
proxy. Similarly to the very early literature, we find that the realized variance in
the previous month has no forecasting power, but from month 2 through month 6,
realized variance is a significant forecaster of market returns. In Panel B of
Table 11, when we control for the macroeconomic variables, the statistical signif-
icance of the realized variance reduces, except for the 3- and 4-month estimation
window.

B. Value at Risk versus Realized Variance

We have so far shown that there is a significant felation between VaR and
expected returns. However, another objective of this paper is to compare the pre-
dictive power of VaR with the predictive power of traditional risk proxies that are
shown to forecast market returns. Table 12 compares the relative performance of
various VaRs and realized variance measures computed over different horizons in
predictive regressions. For 1- to 6-month horizons, we compute VaR and variance
measures and use them in the same regressions. For example; at 2 months, we
compute VaR as the minimum return observed during the past 42 days and com-
pute the variance as the sum of squared daily returns during the past 42 days plus
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TABLE 11
Various Measures of Realized Variance

Table 11 shows estimates of the risk-return tradeoff with the rolling window estimators of realized variance. For each horizon,
the realized variance is computed as the sum of the squared daity returns on the value-weighted NYSE/AMEX/Nasdaq
index plus an adjustment term for the first-order serial correlation in daily returns. The first column in each panel shows
the number of months (k) used to compute the variance. The dependent variable is the 1-month-ahead excess market
return, Rr.q. Panel A presents the parameter estimates without the control variables, and Panel B presents the parameter
estimates with the control variables. In each regression, the first row gives the estimated coefficients. The second row gives
the Newey-West (1987) adjusted t-statistics in parentheses. The R? values are reported in the last column,

Panel A. Mean-Variance Tradeoff

k Constant o? Ry Dummy R?

1 0.004 0.462 0.040 -0.101
(1.60) (0.49) (0.98) (—1.67)

0.002 0.684 0.044 —0.115
(0.88) (1.70) (1.05) (—4.39)

0.001 0.627 0.040 -0.112
(0.51) (2.64) (0.99) (—6.09)

0.001 0516 0.035 —0.106
(0.34) (2.70) (0.88) ’ (—6.24)

0.001 0.342 0.034 —~0.094
(0.55) (1.99) (0.84) (~5.85)

6 0.001 0.270 0.035 —-0.090
(0.61) - (1.71) 0.87) (—5.83)

Panel B. Mean-Variance Tradeoff with Macro Variables

Constant 0,2 Ay Dummy RREL; TERM; DEF; DP;
—0.003 —0.060 0.021 —0.076 -0.517 —-0.751 3.849 0.283
(—0.48) (—0.06) 0.50) (—1.21) (—2.84) (—2.51) (2.20) (1.33)

—0.008 0.549 0.031 . —0.114 = —0.492 -0.781 3.284 0.289
(-0.88) (1.23) (0.73) (—3.89) (—2.77) (~-2.57) (1.82) (1.36)
-0.007 0.497 0.028 -0.111 —0.468 —0.754 3.240 0.290
(—0.98) (2.04) (0.69) (—5.84) (—2.61) (—2.51) . (1.83) (1.36)
—0.007 0.402 0.025 —0.106 —0.459 -0.751 3.203 0.292
(—1.02) (2.04) (0.61) (—5.93) (—2.52) (—2.51) (1.79) - (1.36)
—0.006 0.225 0.023 —0.093 —0.473 -0.718 3.515 0.280
(—0.85) (1.30) (0.56) (—5.58) (—2.60) (—2.39) (1.99) (1.31)

-0.006 0.169 0.023 —0.090 —0.478 -0.717 3.612 0.280
(—0.82) (1.11) (0.56) (—5.71) (—281) (—2.39) (2.07) (1.32)

the autocorrelation adjustment term. We further include the control variables to
run a full specification. _

Panel A of Table 12 shows that, at all horizons, the nonparametric VaR mea-
sure has a positive and significant coefficient estimate. The Newey-West (1987)
t-statistics are in the range of 2.10 to 3.49 when the past 1 to 5 months of daily
returns are used in nonparametric VaR calculations. For the 6-month horizon, the
slope coefficient on VaR has a t-statistic of 1.91 with a p-value of 5.61%. On the
other hand, the coefficients on rolling window estimators of variance are nega-
tive and statistically insignificant. Therefore, measuring the variance by using a
window size larger than 1 month has a substantial effect on the risk-return trade-
off, but that impact is captured by VaR. We conclude that VaR is not only a good
measure of downside risk that is related to expected returns, it also captures infor-
mation about expected returns that cannot be explained by the traditional measure
of market risk, realized variance, even if it is computed by using a larger number
of observations. :

Panel B of Table 12 confirms these findings based on the parametric VaR.
It is clear that parametric VaR also outperforms the rolling window estimators of
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TABLE 12
Comparing Value at Risk with Realized Variance

Table 12 compares the relative performance of rolling window estimates of the Value at Risk (VaR) and realized variance in
predicting future market returns. Each month is assumed to have 21 trading days. The first column in each panel shows the
number of months (k) used to compute the VaR and variance. In Panel A, for each horizon the nonparametric VaR (VaR;) is
computed as the lowest daily returns on the NYSE/AMEX/Nasdaq index. Similarly, for each horizon, the realized variance
is computed as the sum of squared daily returns on the NYSE/AMEX/Nasdaq index plus an autocorrelation adjustment
term. In Panel B, for each horizon the parametric VaR (VaRf7 }is computed as the lower tail of the skewed t density. In each
regression, the dependent variable is the 1-month-ahead excess market return, Res1. The first row gives the estimated
coefficients. The second row gives the Newey-West (1987) adjusted t-statistics in parentheses. The R2 values are reported
in the last column.

k  Constant  VaR; of R Dummy RREL, TERM; DEF; DP, R?

Panel A. Relative Performance of Nonparametric VaR and Variance

1 -0.015 0.902 —2.453 0.077 -0.049 —-0.473 —-0.721 3.956 0.386 5.6%

(—2.03) (3.19) (—2.10) (1.70) (—0.85) (—2.58) (—2.48) (2.29) (1.86)

2 -0.018 0.824 —1.115 0.054 —0.126 —-0.468 | -0.709 3.429 0.401 6.2%
(—2.24) (3.49) (—1.79) (1.24) (-5.51) (—2.58) (—2.41) (2.06) (1.83)

3 -0.015 0.580 —0.532 0.035 —0.130 —0.477 -0742 ' 3414 0.380 5.8%
(—1.89) (2.42) (—1.09) (0.86) (—7.25) (—2.63) (—2.50) (2.07) (1.72)

4 —0.015 0.560 —0.481 0.033 —-0.131 —0.464 —0.758 3.303 0.386 6.0%
(—1.94) (2.51) (—1.08) (0.81) (—7.70) (—2.54) (—2.58) (1.96) (1.74)

5 -0.012 0.412 —0.378 0.027 —0.116 —-0.482 -0.711 3.650 0.356 5.3%
(—1.57) (2.10) (—1.01) (0.66) (—6.67) (—2.64) (—2.40) (2.16) (1.64)

6 —0.011 0.346 —0.301 0.026 -0.110 —0.489 —-0.718 3.728 0.350 51%

(—1.43) (1.91) (—0.92) (0.64) (—6.57) (—2.67) (—242) (2.21) (1.61)
Panel B. Relative Performance of Parametric VaR and Variance :

1 -0.016 0.842 - —2.523 0.076 —0.046 —0.480 —0.729 3.969 0.394 5.5%
(—2.14) 3.17) (—2.07) (1.70) (—0.78) (—2.61) (—2.54) (2.29) (1.91)

2 —-0.018 0.803 —-1.027 0.053 —-0.126 -0.489 —0.735 3.410 0.402 6.2%
(-2.18)  (3.22) (—1.53) (1.23) (—5.33) (—2.85) (—2.48) (2.04) (1.81)

3 —-0.014 0.548 —0.392 0.037 —0.129 —0.493 —0.760 3.339 0.370 5.8%
(—1.78) (2.10) (-0.77) (0.89) (—7.26) (—2.67) (~2.54) (1.99) (1.67)

4 —0.015 0.618 —0.458 0.036 —-0.134 —0.491 -0.783 3.285 0.382 6.0%
(—1.96) (2.46) (—1.01) (0.88) (=7.71) (—2.63) (—2.65) (1.96) (1.74) .

5 —-0.011 0.430 —0.320 0.028 -0.117 —0.503 —0.729 3.647 0.341 5.3%
(—1.50) (1.86) (—0.83) (0.68) (—6.55) (=2.71) (—2.45) (2.15) (1.59)

6 -0.010 0.362 —0.262 0.026 —0.112 —0.508 —0.732 3.723 0.330 51%

(—1.35) (1.70) (—0.76) (0.64) (—6.40) (—2.72) (—2.46) (2.19) (1.54)

variance for all horizons considered in the paper. The slope coefficients on para-
"metric VaR have #-statistics ranging from 2.10 to 3.22 when the past 1 to 4 months
of daily returns are used in parametric VaR calculations. For 5- and 6-month es-
timation windows, the parametric VaR has a positive but marginally significant
coefficient estimate. A notable point in Table 12 is that the coefficient estimates
on alternative measures of variance are negative and statistically insignificant.

VIIl. Conclusion

We examine the intertemporal relation between downside risk and expected
stock returns. We use Value at Risk (VaR) as a measure of downside risk and
find a positive and significant relation between VaR and expected return on the
market. Moreover, we generate alternative measures of VaR based on the past
1 to 6 months of daily data, and we show that there is a significantly positive re-
lation between VaR and expected market return for all horizons considered in the
paper. Finally, we test the relative performance of various VaRs and realized

‘
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variance measures computed over different horizons in predictive regressions. The
results indicate that VaR wins convincingly even when it is compared to the con-
ditional variance proxies that have significant predictive power for market returns.
These findings are robust across different measures of market return, loss prob-
ability levels, and after controlling for macroeconomic variables associated with
business cycle fluctuations. '

If downside risk is an important determinant of expected returns, we. ex-
pect other proxies of downside risk to perform well in predictive regressions too.
Therefore, we use expected shortfall and tail risk, both of which inform us about
the left tail of the return distribution, as alternative measures of downside risk. We
show that, regardless of the left-tail measure we use, our qualitative results from
predictive regressions remain intact.

The results provide strong evidence that there exists a positive and significant
relation between downside risk and expected returns. Our findings also suggest
that rare large moves in the market or relatively infrequent return observations can
be interpreted as signals, whereas the frequent small fluctuations can be viewed
as noise, which does not have the power to explain time-series variation in excess
market returns.
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