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Abstract

Fault detection and diagnosis for jet engines is complicated by the presence of engine-to-engine manufacturing differences and
engine deterioration during normal operation, the complexity of an accurate engine model, and our inability to directly measure
certain engine variables. Here, we work with a sophisticated component level model (CLM) simulation of a turbine engine
(the General Electric XTE46) that can simulate the effects of manufacturing and deterioration differences, in addition to a variety of
faults. To develop a fault diagnosis system we begin by using the CLM to generate data that is used by a Levenberg-Marquardt
method to train a Takagi—Sugeno fuzzy system to represent the engine. The resulting nonlinear model provides a reasonably
accurate representation of manufacturing differences, engine deterioration, and fault effects. We use multiple copies of this
nonlinear model, each representing a different fault, to generate error residuals by comparing them to the engine output. In fact, we
manage the composition of the set of models with a “supervisor” that ensures that the appropriate models are on-line, and processes
the error residuals to detect and identify faults. Robustness and fault sensitivity of the proposed approach are studied in the paper
and the component model level simulation of the XTE46 engine is used to illustrate the effectiveness of the fault diagnosis scheme.

© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The last two decades saw continuous improvement in
control techniques resulting from the spectacular
progresses in control theory and computer technology.
Meanwhile, stimulated by the growing demand for
improving the reliability and performance of systems,
many fault diagnosis methods, in particular, model-
based analytical redundancy methods, have been devel-
oped, which have the capability of detecting the
occurrence of faults and determining the types (or
locations) of the faults. Survey papers by Gertler (1988),
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Frank (1990) and Patton (1997) present excellent over-
views of advances in model-based fault diagnosis
methods. Due to the complexity and importance of jet
engines, the study of fault diagnosis for jet engines has
become a very active research topic for both theoretical
and practical reasons. In Merrill (1985), Merrill,
DeLaat, and Bruton (1988), and Merrill, DeLaat, and
Abdelwahab (1991), the authors studied sensor failure
detection for jet engines using a Kalman filter with a
generalized likelihood ratio testing-based scheme. In
Duyar and Merrill (1992) and Duyar, Eldem, Merrill,
and Guo (1994) the authors derived linearized models of
jet engine systems via the a-canonical form parameter-
ization identification method and applied a parameter
estimation approach in fault detection and isolation
(FDI) for the space shuttle main engine. In Patton and
Chen (1992, 1997) and Patton, Chen, and Zhang (1997),
the authors studied fault detection of jet engine sensor
systems using an eigenstructure assignment technique to
design observer-based residual generators, and they also
studied its robustness. The model based FDI techniques
have also been applied to many other complex applica-
tions. In Menke and Maybeck (1995), the authors
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detected sensor and actuator faults of flight control
systems using multiple model adaptive estimation. The
multiple model fault diagnosis approach were also
studied in Yen and Ho (2001); Fu, Shen, Zhang,
and Liu (2001); Patton, Toribio, and Simani (2001);
Boskovic, Li, and Mehra (2001); and Tu, Pattipati, Deb,
and Malepati (2003). In Gertler, Costin, Fang, Hira,
Kowalczuk, and Luo (1993), the authors used orthogo-
nal parity equations for automotive engines. In Tylee
(1983), the authors detected instrument failures in
nuclear power plant instrumentation using Kalman
filters, and in Wang, Kropholler, and Daley (1993),
the authors applied robust observer-based methods to a
distillation column. In the application of FDI, process
disturbances, sensor noise, and model inaccuracy are
inevitable. Since residuals are not only affected by faults
but also by these factors, robustness is a very important
problem in model-based FDI (Chen & Patton, 1999). To
reduce the sensitivity of the residuals to modeling errors,
many methods have been developed by decoupling the
effects of faults from those of modeling error, which are
based on unknown input observers (Seliger & Frank,
1991; Chen & Zhang, 1991; Hou & Muller, 1994),
eigenstructure assignment (Patton & Chen, 1991,
1997a), or orthogonal parity relations (Gertler & Luo,
1989; Gertler & Singer, 1990). Another class of robust
FDI method is achieved by making the threshold
adaptive to the input (Emani-Naeini, Athter, & Rock,
1988; Frank & Ding, 1994, 1997).

Recently, the research on FDI has focused more on
nonlinear system fault diagnosis. Some nonlinear
techniques such as nonlinear observer methods (Frank,
1994; Garcia & Frank, 1997) and nonlinear parity
relations (Krishnaswami, Luh, & Rizzoni, 1995) have
been applied. Moreover, artificial intelligence has
received increasing attention and been applied in the
field of nonlinear FDI (e.g., see the discussion in
Antsaklis & Passino, 1993). The artificial intelligent
methods such as fuzzy systems, neural networks, and
expert systems have the potential to “learn” the plant
model from input—output data or “learn” fault knowl-
edge from past experience, and they can be used as
function approximators to construct the analytical
model for residual generation, or as supervisory schemes
to make the fault analysis decisions. The nonlinear
modeling ability of neural networks has been utilized for
nonlinear FDI problems (Watanabe, Matsuura, Abe,
Kubota, & Himmelblau, 1989; Naidu, Zafiriou, &
McAvoy, 1990; Sorsa, Koivo, & Koivisto, 1991; Sorsa
& Koivo, 1993; Maki & Loparo, 1997; Kavuri &
Venkatasubramanian, 1994). In addition, the learning
ability has also been studied and successfully used in
nonlinear robust FDI (Polycarpou & Vemuri, 1995;
Polycarpou & Helmicki, 1995; Vemuri & Polycarpou,
1997a, b; Vemuri, Polycarpou, & Diakourtis, 1998;
Demetriou & Polycarpou, 1998), where robustness, fault

sensitivity and stability conditions of the learning
scheme are also studied. Meanwhile, expert systems,
fuzzy logic and genetic algorithms have been used in
model based FDI (Lopez, Benkhedda, & Patton, 1997;
Fussel, Balle, & Isermann, 1997; Passino & Antsaklis,
1988; Laukonen & Passino, 1995; Laukonen, Passino,
Krishnaswami, Luh, & Rizzoni, 1995; Gremling &
Passino, 1997).

This paper presents a multiple-model-based fault
diagnosis method that utilizes fuzzy modeling and an
expert supervisory scheme. Note that most existing
multi-model fault diagnosis methods are based on linear
models, while nonlinear multiple models are rarely used.
This paper presents a FDI method using multiple
nonlinear models and the robustness and fault sensitiv-
ity of the proposed method are also studied. The
analytical system models in the form of Takagi-Sugeno
fuzzy systems are developed using nonlinear system
identification techniques (Section 2). In Section 3 a fault
diagnosis system is described with a bank of multiple
models and a supervisory scheme determines the proper
model bank to generate residuals and analyzes the
residuals to detect and identify faults. Robustness and
fault sensitivity of the proposed approach are also
studied in this section. In Section 4, the proposed
method is applied to a turbine engine (the General
Electric XTE46) and its effectiveness is demonstrated via
component level model (LH) simulation examples.

2. Model development using Takagi—Sugeno fuzzy
systems

2.1. The XTE46 turbine engine

The General Electric XTE46 engine, as shown in
Fig. 1, is a simplified, unclassified version of the original
IHPTET engine (Adibhatla & Lewis, 1997). To develop
a model-based fault diagnosis scheme an accurate
representation of the engine dynamics is desired. This
model can be used to generate residuals by comparing
its output to the engine output. However, modeling a
turbine engine is undoubtedly a very difficult problem in
the fact that the jet engine system has an iterative
structure, which means that the model cannot be written
down in a differential-algebraic equation form. For-
tunately, a thermodynamic simulation package, the
component level engine cycle model (CLM) of the
XTE46 engine, was provided by General Electric Air-
craft Engines (GEAE). This is a sophisticated highly
nonlinear dynamic model where each engine component
is simulated. The CLM executes one pass within the
digital control’s sampling time and thermodynamic
states are assumed to be in equilibrium after each pass
through the simulation. The CLM is a low-frequency
transient turbofan engine simulation and volume
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Fig. 1. Schematic of the XTE46 turbine engine.

dynamics and airflow storage affects, which are high-
frequency phenomenon, are not included. The operating
condition of the engine is defined by the altitude (ALT),
the Mach number (XM), the difference of temperature
(DTAMB), and the throttle setting represented by
power code (PC). The health of the engine is described
by 10 quality parameters which include the flows and
efficiencies of the fan, the compressor and turbines. The
model has three state variables, including the fan rotor
speed (XNL), the core rotor speed (XNH), and the
temperature at combustor inlet (TMPC). There are six
actuators, but the major control variables are the
combustor fuel flow (WF36), the exhaust nozzle area
(A8), and the variable area bypass injector area (A16).
(Refer to Table 1 for list of acronyms.)

In the course of developing fault diagnosis schemes,
the use of analytical redundancy implies that a
mathematical model of the system is used to describe
the inherent relationship (or redundancy) contained
among the system inputs and outputs, which can be used
to generate the residuals for fault diagnosis. The
resulting approaches are usually referred to as “analy-
tical redundancy-based” fault diagnosis or ‘“‘model-
based” methods. From the point of view of theoretical
studies in fault diagnosis, however, the CLM is too
complicated. Although the CLM does provide a driver
to trim the model to specified operating conditions and
generate linearized models, studies show that the
accuracy of the linear models is not adequate for our
purposes (where we consider faults with significant
nonlinear effects). Here, we developed a nonlinear
model with Takagi—Sugeno fuzzy systems using a system
identification methodology that utilized nonlinear tran-
sient data generated by the CLM. Note that other
nonlinear modeling methods such as neural networks
can also be used for modeling the engine dynamics. In
this paper we choose to use the Takagi—Sugeno fuzzy
systems because of its clear model interpretation,
constructed from nonlinearly interpolated linear models.
Besides modeling the engine behaviors at each operating

Table 1
Table of acronyms

CLM Component level model

XNL Fan rotor speed

XNH Core rotor speed

TMPC Temperature at combustor inlet
ALT Altitude

XM Mach number

PC Power code

WEF36 Combustor fuel flow

A8 Exhaust nozzle area

Al6 Variable area bypass injector area
ZSW2 Fan flow

SEDM2 Fan efficiency

ZSWTD Compressor tip flow

SEDM7D Compressor tip efficiency
ZSW27 Compressor hub flow

SEDM27 Compressor hub efficiency
ZSW41 High pressure turbine flow
ZSE41 High pressure turbine efficiency
ZSW49 Low pressure turbine flow
ZSE49 Low pressure turbine efficiency

node, we also use Takagi—Sugeno fuzzy systems to
construct the global engine model by interpolating
among local models.

2.2. The Takagi—Sugeno fuzzy system

Developing mathematical models for nonlinear sys-
tems can be quite challenging. Takagi-Sugeno fuzzy
systems are capable of serving as the analytical model
for nonlinear systems due to the universal approxima-
tion property, that is, any desired approximation
accuracy can be achieved by increasing the size of the
approximation structure and properly defining the
parameters of the approximator (Passino & Yurkovich,
1998). A Takagi—Sugeno fuzzy system can be defined by

:Fts ’0 =
e

) (M
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where y is the output of the fuzzy system, x =
[x1,X2,...,x,]" holds the n inputs, and i=1,2,...,R
represent R different rules. The shapes of the member-
ship functions are chosen to be Gaussian, and center-
average defuzzification and product are used for the
premise and implication in the structure of the fuzzy
system. The g;(x), i=1,2,...,R are called consequent
functions of the fuzzy system, where the a;; are
constants. The premise membership functions p;(x) are
assumed to be well defined so that Z[R: 1 1i(x)#0 for all
x. The parameters that enter in a nonlinear fashion are
c} and 0}, which are the centers and relative widths of the
membership functions, respectively, for the jth inputs
and the ith rules. Actually, the Takagi—Sugeno fuzzy
system, where the consequent parts are chosen to be
affine functions, is a special case of “functional fuzzy
systems’ (Passino & Yurkovich, 1998). If other func-
tions such as polynomial or neural networks are used as
consequent functions, different kinds of functional fuzzy
systems will be generated.

The tunable parameter vector 6 in (1) can be
composed of both premise membership function para-
meters (c} and a]’:) and consequent function parameters
(a;j). This is referred to as nonlinear in the parameter
case. A nonlinear in the parameter Takagi—Sugeno fuzzy
system can be tuned by a variety of gradient methods
such as the steepest descent method and Levenberg—
Marquardt method. Alternatively, the parameter vector
0 can be composed of only the consequent function
parameters so that y is a linear function of 6. To tune the
fuzzy approximator for this linear in the parameter case,
a linear least-squares method will normally be suitable.

2.3. Fuzzy modeling for the XTE46 engine

The CLM for the XTE46 aircraft engine is a
complicated multiple-input multiple-output (MIMO)
nonlinear system (involving schedules, look-up tables,
and partial differential equations). We assume that its
fundamental dynamic characteristics, however, can be
represented by a single-input single-output (SISO)
system in the form

X = f(x,u,c,p) + n(x,u,c,p), 4)

y = h(x,u,c,p), (5)

where x = [XNL, XNH, TMPC]" is the state vector, u =
WF36 is the input variable, y = XN2 is the output of the
engine, ¢ =[ALT,XM,DTAMB,PC]" represents the
operating condition of the engine, p =[ZSW2, SEDM2,
ZSW7D, SEDM7D, ZSW27, SEDM27, ZSW41, ZSE41,

ZSW49, ZSE49]"T represents the quality parameter
vector, f(-) denotes the unknown function representing
the nonlinear characteristics of the engine, A(-) = XNL
because the output variable XN2 is the measurement
of the state variable XNL, and #(-) represents
model uncertainty caused by describing the MIMO
engine by a SISO system.

The analytical model of the engine is developed in two
steps. Fuzzy identification is applied first to generate (a
grid of) “node” models specified by operating condi-
tions and quality parameters. Afterwards, the ““global”
model can be constructed by fuzzy interpolation on
these node models. (We use this two-step method rather
than identifying the model directly from the data
collected from the whole space of operating conditions
and quality parameters in that it is practically impossible
to train an approximator using such a large amount of
data, due to the limitations of computing resources.)
Given a specific operating condition (¢;) and fixed values
of quality parameters (p;), the node model for the
XTEA46 engine can be obtained using nonlinear identi-
fication technique as

XNLdot(k) = F\(XNL(k), XNH(k), WF36(k), 0' (c;, p:)),

(6)
XNHdot(k) = F2(XNL(k), XNH(k), WE36(k), 0*(ci, p:),
(7)
XNL(k + 1) = XNL(k) + T,XNLdot(k), 8)
XNH(k + 1) = XNH(k) + T,XNHdot(k), 9)
XN2(k + 1) = XNL(k + 1), (10)

where two multiple-input single-output (MISO) Takagi—
Sugeno fuzzy systems, F. and F2, are specified with
corresponding pararneters/\@1 and 0%, respectively. The
variables XNL(k) and XNH(k) denote the estimated
values of XNL(k) and XNH(k) (XNL(0) = XNL(0) and
XNH(0) = XNH(0) to let the fuzzy model have the
same initial values as the engine), and XN2(k) is the
estimated value of XN2(k). Xl\mlot(k) and XN/H\dot(k)
are the outputs of the fuzzy systems. Ty is the sample
time, which is 0.02 s. The fuzzy systems are trained using
engine data generated by the transient driver of the
CLM simulator of the XTE46 engine. One thousand
engine input-output data pairs are collected which
reflect the transient performance of the engine for 20 s
(sampled every 0.02 s) at a specific “‘node’” (of operating
conditions and quality parameters). For the kth,
experimental data pair, the input data are the state
variables XNL(k) and XNH(k), and the input variable
WF36(k). The output data are XNLdot(k) and
XNHdot(k), which denote the derivatives of XNL(k)
and XNH(k), respectively.
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The structure of fuzzy approximators is selected by
having the premise input be XNL(k) only because most
nonlinearity can be captured by XNL(k) (and this
selection will result in an affine model, which can be
beneficial to fault tolerant control using stable adaptive
fuzzy/neural approach). The Takagi—Sugeno fuzzy
system can be written in the form of

F,o(XNL(k), XNH(k), WF36(k), 0)
S| (@0 + 4 XNL(K) + a;2XNH(K) + 43 WF36(k));(XNL(k))
S| 1y(XNL(K)) '

Using trial and error, fuzzy models with R = 3 rules
each were selected. The models are tuned by the
Levenberg—Marquardt method. Note that since the
engine models are identified off-line, the stability and
accuracy of the models can be validated prior to their
applications to fault diagnosis.

Notice that we did not use TMPC as one of the model
inputs because it is not measurable and the importance
of TMPC to the model accuracy is insignificant, which is
verified by an input selection method referred to as
“regressor analysis” (where the regression models are
constructed and the regression coefficients are analyzed
to determine the importance of each input), so that it is
not necessary to estimate TMPC either. Also note that
the fuzzy models are running in an ‘“open-loop
manner”’, i.e., the outputs of the models will be feeded
back into the models as the inputs, and only the basic
behavior of the engine can be obtained due to the
drifting effects caused by the accumulation of approx-
imation errors. We use this approach because sometimes
this analytical model is desired to run as the “truth
engine” in the simulation study, where the CLM and
thus the engine states XNL and XNH are not available.
Certainly, when we utilize the model in the fault
diagnosis of the CLM, we can use the (measurable) real
engine states to be the inputs of fuzzy systems and
expect an improvement in model accuracy.

By nonlinearly interpolating between a grid of node
models obtained above from nonlinear system identifi-
cation, the global model can then be constructed which
is in the form

XNHdot(k)
_ i FAOXNL(K), XNH(k), WE36(K), 0%(ci. )y (2)

Z,]'\il wi(2)
(12)

14 i\ 2
1{zi —¢;
,ul-(z) = H eXp| — 5( ! i j> 5 (13)
=1 j

where i = 1,2, ..., N represent N different models and
z=1[c",p"]" is the premise input vector including 14
variables.

We choose to focus on fault diagnosis system
development for the “climb” region (which is defined
as ALTe[12500,17500], XMe[0.6,0.8], DTAMBe
[—35,35], and PCe[45, 50]). We partition each operating
condition variable into three regions to define our grid.
In this way, we have 3* = 81 models to describe the
nonlinearity presented in the climb region. The values of
quality parameters are composed of four parts: the
nominal value, the initial engine variation due to
manufacturing differences, the quality parameter ad-
justment resulted from engine deterioration, and the
quality parameter change due to the faults. Note that
the effects of engine deterioration and faults are larger
than the initial engine variation, and we will try to
capture the characteristics of these two factors and leave
the effect of initial engine variation to be model
uncertainty. By assuming that the engine deterioration
affects 10 quality parameters in the same way (so that
we may have three grids to represent no deterioration,
half deterioration, and full deterioration, respectively)
and considering four sizes of faults (no fault, small,
medium, or large fault), we have 3 x 4 x 4 = 48 models
to describe the nonlinearity presented in the quality
parameters (for simplicity, we only consider two
possible faults, fan fault and compressor hub fault,
here.) In total, we have 81 x 48 = 3888 (nonlinear) node
models to describe the nonlinearity in the climb region.
We need this level of complexity to obtain a reasonably
accurate “design model” for the development of our
fault diagnosis scheme.

The general form of the model can be described as

Xl\TI:iot(k) X =f(x,u,cp)+nx,uc,p)), (14)
Y ELKNLG), XNHK), WE36(0), 0 (e pyi(s)
- POARNTHE) ’ SN L e ppdes p)
L6, p) == 15
(11) Jteep) SV ude,p) >
L(x, ci,pi)
_ Z,}il [ajo(ci, pi) + aji(ci, pi)x1 + ajp(ci, pi)xa + a;3(ci, pulpi(x1) (16)

Z]{il Hl(xl)
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Fig. 2. Illustrative example of the model performance.

where u = WF36 and x =[x}, x]" = [XNL,XNH]".
The value of ¢ is the known operating condition vector,
p is unknown quality parameter vector, and ¢;, p; are to
specify nodes where we establish “‘node models”. In
addition, f and f represent 2 x 1 function vectors. The
model parameters a;,4;,,4a;2,a;3 are 2 x 1 vectors of
linear parameters of Takagi—Sugeno fuzzy systems, and
wj(x1) are membership functions describing the non-
linearity with respect to x;. They are identified using the
Levenberg—Marquardt method, separately for each
node. The function y;(c,p) are membership functions
of fuzzy interpolation between different operating
conditions and quality parameters, whose parameters
are also identified using the Levenberg—Marquardt
method.

The function 5 represents model uncertainty caused
by using finite size approximators to approximate the
engine dynamics. Note that we represent the relation-
ship between the model and model uncertainty to be
additive but the actual relationship may not be so. This
is because no matter what kind of systems we consider
and what kind of model is obtained, the model
uncertainty (n) can always be represented as the
difference between the system dynamics (F) and the
model dynamics (f), i.e. n = F — f.

The resulting nonlinear model provides a reasonably
accurate representation of engine dynamics (GE Air-
craft Engines verified this for us). Here we give an
example at a point different from the nodes where we
generated the model. The engine operating conditions

are ALT =16000, XM =0.75, DTAMB =0, and
PC =46. The quality parameters are defined by
considering some initial engine variation, nearly half
engine deterioration, and a fan fault a little bit larger
than medium size. Fig. 2 compares system responses
between the nonlinear model and the CLM and
indicates their similarity (where the solid lines represent
the system response of the CLM and the dashed lines
represent that of the analytical model). We also
conducted many other such simulations to verify the
quality of our design model; however, in the interest of
brevity we do not include those plots here. Compared to
modeling engine dynamics using local linear models
(either through a CLM driver to trim the model to
specified operating conditions and generate linearized
models, or by using fuzzy models with R = 1), using
local nonlinear models generally provides more accurate
modeling results, especially when the input variable
WF36 has a large variation magnitude and the state
variables XNL and XNH are far away from the
operating point.

3. Fault diagnosis by interfacing multiple models with a
supervisory scheme
3.1. Residual generation using multiple models

The engine simulation can represent many situations.
For example, it can simulate what happens for several
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types of faults, possibly with manufacturing differences
and engine deterioration. Usually, engine faults result in
changes of the input-output characteristics of the
system so that the faults may be detected by evaluating
the residuals generated by comparing the model output
and the engine output. Some faults, however, may affect
all such residuals, so that if we generate residuals with
only a single model, we can only detect but not isolate
such faults. In such situations, a “multiple model”
method may be preferable. In this approach we utilize
different models to identify different fault situations,
and isolate faults by comparing the residuals corre-
sponding different models. The structure of the fault
diagnosis scheme using multiple models and a super-
visory expert system is shown in Fig. 3.

Assume that there are N possible fault situations and
we have N 41 models {M;}Y,, where the nominal
model M, corresponds to the situation where there is no
fault, and the fault models M;, i = 1,2, ..., N represent
the ith fault situations. These models can be obtained by
using nonlinear system identification with Takagi—
Sugeno fuzzy systems (as explained in the previous
section). Note that the faults affect the engine dynamics
through engine quality parameters, and the engine
quality parameters are also affected by initial engine
variation (due to manufacturing differences) and engine
deterioration, so that the quality parameter vector p in
f(x,u,c,p) of (14) is actually unknown (and unmeasur-
able as well). However, we can represent the engine
dynamics of different fault situations as f(x,u, ¢, p?) with
p? indicating the expected quality parameters with
respect to the corresponding fault situation, and
consider the effects of initial engine variation and engine
deterioration as model uncertainty. By running a bank
of models on-line (which are selected by the expert
supervisory scheme as we will explain later), the

My
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residuals r; are generated by r; = y — p;, where y is the
engine output and J; is the output of the model M;
which corresponds to the ith fault situation. (More
discussion on the forms of the system and models will be
given later in the section of robustness analysis.)

3.2. Expert supervisory scheme

The determination of the on-line model bank compo-
sition and the evaluation of residual signals are
conducted using an expert supervisory scheme. The
advantage of using an expert system is that the heuristic
knowledge of faults and our experience in handling
faults can be easily incorporated into the expert system
in the form of rules, and the operation of the expert
system is transparent so that we can investigate the
residual evaluation process of the expert system.
Basically, the rule-based expert supervisory system of
our fault diagnosis scheme performs the following
functions:

1. Determine the on-line models to generate the
residuals: Our experience of working with the engine
provide us some a priori knowledge of the faults, for
instance, the possible types of the faults and the possible
combinations of these faults. According to this, N + 1
models have been established that correspond to
different no-fault or fault situations. Besides, we know
there exist certain relationships among these situations.
For instance, suppose fault i is happening at present,
then the next possible fault situation can be the existence
of fault i together with fault j (a fault that could occur in
the presence of fault i), but not the situations where
there exist three faults under the assumption that no two
faults can occur simultaneously, or no fault exists if we
know that the fault cannot be self-recovered. Therefore,
at each time instant only a subset of NV + 1 situations

N

Model Bank Determinator

Fault |

T5 Detector |
i |
IICSD i
€ 3= !
23 % !
= c —o| & |
g Sg|lF.] Faut !
O Isolator !

Supervisory Scheme !

Fig. 3. Structure of the fault diagnosis scheme.
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can happen and thus only a subset of models are
required to be on-line to generate the residuals, which
can be summarized as the rule: IF (fault situation i is
currently in existence) THEN (a subset of models (S;) will
be used as the on-line model bank to generate residuals
afterwards). In particular, the rules can include the
following:

® [F (there is no fault in existence) THEN (the model
bank consists of no fault model and all possible
single-fault models).

® |F (there is a single fault in existence) THEN (all
single-fault models except the one that has been
1solated will be removed from the model bank, and
the multiple-fault models including the isolated fault
and another possible fault will be added).

® [F (there are two faults in existence) THEN (the
on-line model bank includes the model corresponding
to the situation with these two faults, and the models
corresponding to the situations with three faults, i.e.,
these two faults and another possible fault).

The advantage of using the fault knowledge to select the
on-line model bank is to reduce the computational
complexity caused by using this multiple model fault
diagnosis approach.

2. Fault detection: Once the residuals are generated,
the fault decision logic is used to diagnose the faults. A
sequence of “minimum residual indices” is first gener-
ated by

I*(k) = arg min (r;(k)), (17)

where I*(k) denotes the index of the model whose
residual is the minimum, which corresponds to the most
appropriate model to represent the engine at time
instant k. Note that the change of fault situations
results in the change of the input—output characteristics
of the system. Therefore, the change of index, i.e., the
change of most suitable model, may be used to indicate
the change of fault situations, i.e., the occurrence of new
faults.

3. Fault isolation: The change of index can serve as a
fault detector, but not a fault isolator. Actually, the new
index may not indicate that the new fault is the one
corresponding to this index. This is because during the
transient phase the residuals corresponding to the on-
line models may change drastically and some of them
may happen to be very small for a short time (and
become large afterwards since they are not the one
corresponding to the new fault situation). In order to
isolate the fault situations correctly, some logic rules are
used to guarantee that a fault will be isolated only if its
corresponding index is the minimum index at least for
Ty seconds (to indicate the suitability of the model). The
time delay term 7 will be used to ensure robustness of
fault diagnosis (which we will discuss later), and its

value can be obtained by trial and error to balance the
robustness and sensitivity of fault isolation. The results
of isolation is represented by a fault index
* : .

Fo (k) =arg sl (G (18)
where F*(k) denotes the index of the model whose
residual is minimum for a period of 7). Actually, the
fault diagnosis strategy of using a time delay term may
affect fault sensitivity to some extent but it is often
useful in isolating faults accurately (which is more
important), and it generally does not affect the
sensitivity of fault detection. As a result, we will have
a fault diagnosis scheme that can detect a fault relatively
fast, but isolate the fault type a little more slowly but
accurately, which is quite reasonable.

3.3. Robustness analysis

The robustness of fault diagnosis refers to the ability
to prevent false alarms in the presence of modeling
uncertainties, i.e., if the system is in the ith fault
situation, the fault diagnosis system should indicate the
ith fault situation rather than the jth fault situation
where j#i. The robustness of the proposed fault
diagnosis system is achieved by using the time delay
term Ty in the fault isolation scheme.

We study the nonlinear dynamic system in the ith
fault situation that can be described by

x = f06u, e, p0) + n(x,u, ¢, p)), (19)
y=Cx, (20)

where C =[ci,¢2,...,¢), >0, [=1,2,...,n and f =
[fi./> ....fx]" denotes the known model dynamics,
which are characterized by the developed Takagi—
Sugeno model with “‘nominal” quality parameter vector
p? (corresponding to the ith fault situation but without
considering initial engine variation and engine deteriora-
tion). The functions ni:[n,—’l,ni,z,...,ni’n]T represent
modeling uncertainties in the system (e.g., caused by
ignoring initial engine variation and engine deteriora-
tion, and by representing the system dynamics with
finite size approximators).

The model corresponding to the jth fault situation can
be represented by

% = (w00, (1)
Vi=Cx;, (22)

where X; is the estimated state vector of the jth model
and j; is the estimated output.

To study the robustness of the fault diagnosis scheme
for the above nonlinear system, we have the following
assumptions.

(A1) The modeling errors are additive, unstructured,
and bounded, and the accumulation effect of
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modeling uncertainties can be described by

t
’/ r’i,/(x’ u, C’pi) dr
0

where /=1,2,...,n, and ) = [}, 105, ....00,
are constant bounds on modeling uncertainties.
(A2) The ith model can represent the system dynamics
in the ith fault situation accurately enough
compared to the modeling uncertainties, i.e.,

t
/ (it e, p%) — fiGGis e, p2)) d
0

<n), (23)

]T

<anl,.  (24)

(A3) The difference between the jth and ith model (j #i)
is large enough compared to the modeling
uncertainties, i.€.,

max
=Ty<r'<t

I/
/0 (i, %) — fiGy 0, c,p0) dt

> ). (25)

The constants & and ¢ are parameters that satisfy the
inequality a>d&+ 2 (which will be used later for
robustness analysis). We use “max” to represent that
| [ (e, u, e, p0) — ik, u, ¢,p))) dt| may only be smaller
than omg, for no longer than T, seconds, which could
happen when the estimated output of a “wrong’ model
approaches the engine output for a short period of time
and then leaves again. Note that the effects of the faults
on the quality parameters are usually larger than those
of initial engine variation and engine deterioration, and
the inaccuracy that arises from the accumulation of
drifting errors is usually smaller than that from
modeling uncertainties; hence, the above assumptions
can be satisfied in real applications.

With the above assumptions the robustness problem
of the fault diagnosis system is that in the ith fault
situation, the residual of the jth model (r; = y — J;, j#1)
cannot be smaller than the residual of the ith model
(r; = y — p;) for a period of Tj time, i.c.,

max_ [r({)< max_ |r(7), (26)
t—Ty<t'<t t—To<t'<t

so that the fault diagnosis system will still indicate /" as
the current fault situation. The following analysis
ensures robustness of the proposed fault diagnosis
scheme. Related analysis, but for a different problem,
can be found in Vemuri and Polycarpou (1997a).

For the ith model, defining the state estimation error
to be ¢; = x — X;, the error dynamics are described by

éi :f.(x: u, cap?) _f.()%b u, cvp?) + ”Ii(X, u, capi)5 (27)

ri = Ce,-. (28)

By processing the differential equation we obtain

t
ol =|c /0 (e, p) — f Gty esp?)
+ 771‘(X> u, Cﬂpf)) dT
t
< C‘ / (F(xou, e, pl) — f(Ri,u, ¢, p)) dr
0
t
+ C’/ n;(x,u, ¢, pi)dr
0
< Can? + Cp’
=@+ 1)Cnf
and thus
max |ri()| <@+ 1)Cn. (29)
t—To<t'<t

The error dynamics of the jth model (j#i) can be
described by

ej :f‘(-xa u, C,p?) _f()’eja u, Cvpj(')) + ”Ii(X, u, Capl')5 (30)
rp = C€j. (31)

From the differential equation we obtain

max |ri(f))= max
t—Ty<t<t |]( )l t—Ty<tr<t

t/
c / 5,0 p0)
0

— Ry, ¢,p)) + ni(x,u, ¢, pi) de

> C max
t—Ty<t'<t

t/
/0 (f(x, u,c, P?)

— (&) u, ¢, p))) de

— C max
—To<t'<t

[/
/ n(x,u,c,pi)dr
0

> aCy) — Cny!
=(x— 1)Cn?.

Therefore, max;_r,<r<; |ri(?)| <max,_r,<r <, [r;(¢)] when
a>d + 2, which means the robustness of the fault
diagnosis system is guaranteed and no false alarms will
be generated.

3.4. Fault sensitivity analysis

Fault sensitivity of fault diagnosis refers to the ability
to correctly determine the existence of a fault and then
isolate its type. In particular, if a fault happens at time
Ty and thus the system changes from the ith fault
situation to the kth fault situation (k#i) at that time,
the fault diagnosis system can isolate the kth situation
after an isolation time T; if for the kth model and
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tzTr+ T, — Ty

<pny, (32)

t
/ it ) — G s e, p) e
0

and for jth model (j#k but j may be equal to i) and
Ty + T, — To<t<Ty + T;

> B, (33)

t
/0 i, p0) — fiGy ¢, %) e

where f and f3 are parameters that satisfy the inequality
B>=f + 2 (which will be used later for fault sensitivity
analysis). Under above conditions, using the triangle
inequality the residual corresponding to the kth model
has the following relation (when t> Ty + T; — T):

|l"k(l)| = ‘CA (f(x’ u, Cvpg) _f()%kv u, Capg)

+ ”k(x> u, C’pk)) dr

<C

t
/0 (e p)) — f Gy, pl)) de

+C

t
/ ne(x, u, ¢, pr) dz
0
< Chni + Cnp
=B+ 1)Cny

and for Ty + T; — To<t< Ty + T; we have
' 0 0
Iy (D)) = ‘C/ (fx,u, e, pp) = f(Xj,u,¢,p;)
0

+ nk(xa u, C:Pk)) dr

t
> C’ /0 (F(xatt ep2) — £y, p0)) di

-C

t
/ nk(-x’ u, Capk) dT
0
> BCnl) — iy
=(B— 1)CnY.

Therefore, in the time interval [Ty + T; — Ty, Ty + T3],
we have |ri(¢)| <|rj(?)| since = B + 2, which implies that
the fault isolation scheme can indicate the kth fault
situation at the time 7y 4 T;. (Related analysis, but for a
different problem, is given in Vemuri and Polycarpou
(1997a).) Note that the above analysis on robustness
and fault sensitivity are obtained under worst-case
conditions, which are, in other words, sufficient but
not necessary conditions to guarantee the robustness
and fault sensitivity of the fault diagnosis system, so that
the analysis are quite conservative.

4. Component level model simulation

To study the effectiveness of the proposed fault
diagnosis method we pick an engine in the climb region.
Specifically, the operating condition variables are
chosen to be ALT = 15000, XM = 0.7, DTAMB = 0,
and PC =46. For the quality parameters of the
engine, we set the initial engine variation to be pj, =
[0.1%, 0.1%, 0.2%, 0.1%, —0.1%, 0, —0.3%, 0.3%, —0.1%,
0.1%], and the engine deterioration index to be 0.1. For
simplicity, we only consider two fault types: fan fault
and compressor hub fault, and each fault may have
three different levels: small, medium, and large. Using
Takagi—Sugeno fuzzy systems we generated 16 models
including one nominal model (no fault), six single fault
models (three models corresponding to small, medium,
and large fan fault, respectively, and three models of
small, medium, and large compressor hub fault), and
nine double fault models (small fan fault with small
compressor hub fault, small fan fault with medium
compressor hub fault, etc.). The fault diagnosis results
for four different fault situations are given as below. We
also conducted many other such simulations to verify
the effectiveness of our fault diagnosis scheme; however,
in the interest of brevity we do not include them here.

4.1. No fault

First, we study the case where there is no fault. The
expert supervisory scheme determines the initial bank of
on-line multiple models to consist of six single-fault
models and one no-fault model. The residuals will be
generated by comparing the outputs of these seven
models and the engine output. Afterwards, the residuals
are analyzed by the expert supervisory scheme to
diagnose whether there are any faults in the engine.
The output of the engine (XN2) and the estimated
outputs (and residuals) of multiple models are shown in
Fig. 4, where the wide solid lines represent the engine
output, the thin solid lines correspond to the nominal
model (model 0, or index 0), the thin dotted lines
represent the small fan fault model (model 1, or index 1),
the thin dash—dotted lines represent the medium fan
fault model (model 2, or index 2), the thin dashed lines
represent the large fan fault model (model 3, or index 3),
the wide dotted lines represent the small compressor hub
fault model (model 4, or index 4), the wide dash—dotted
lines represent the medium compressor hub fault model
(model 5, or index 5), and the wide dashed lines
represent the large compressor hub fault model (model
6, or index 6). Note that there is some oscillation in
the beginning of the simulation, which can be seen in the
plot of “minimum residual index”. However, the
oscillation has been attenuated by the isolation scheme,
where the time delay term is designed to be 7y = 1.2 s by
trial and error in order to let the fault diagnosis scheme
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Fig. 4. No-fault situation.

be robust to the modeling uncertainties and sensitive to
faults. Thus, the “fault index”, as seen in Fig. 4, is
always zero, which indicates that the nominal (no-fault)
model always serves as the most suitable model and the
engine is running in the no-fault situation.

From this case (no-fault, i = 0) we can also study how
the assumptions for robustness analysis (Al, A2, and
A3) are hold. From the “Residual” plot in Fig. 4, we
notice that |ro(?)|<9, i.e., we should be able to find &
and n) such that (@4 1)n)>9. For the residuals
generated from other models (j =1,2,...,6) we have
max,_r,<r<¢ |[;(#)] =10, which implies that (¢x—1)
n5<10. We also know that the residual between the
nominal (no-fault) model and the nominal engine (not
shown in this figure) is smaller than 2.8, which means we
should have ) >2.8. Therefore, if we pick 1) =6, @ =
0.5, and o = 2.6, all the above inequalities will hold and
a>d + 2 also holds. Studies of the validity of assump-
tions for other cases and for the assumptions of fault
sensitivity analysis (32) and(33) are similar to the above
analysis.

4.2. Small fan fault

Next, we study the case where only the small fan fault
occurs in the ‘“take-off” region and there is no
compressor hub fault in the “climb” region. The initial
bank of on-line multiple models is chosen to be
composed of six single-fault models and one no-fault
model. As shown in Fig. 5, the fault is isolated at 2.44 s.
Note that the residuals corresponding to the small fan

fault model and the small compressor hub fault model
are interlaced, which imply that these two small faults
have some similar signatures. However, since the small
fan fault is isolated at 2.44 s, the small compressor hub
fault model will not be used after that to generate the
residual so that it will not cause any confusion. (Here,
we provide them just for the purpose of illustration.)
Also note that the multiple-fault models are not used
after the small fan fault was isolated. This is because we
want to keep this example simple and thus assume that
only single fault can occur here. Studies of the multiple-
fault cases will be given below.

4.3. Multiple faults: case 1

The effectiveness of the fault diagnosis scheme for
multiple-fault situations is illustrated in the example,
where there is no fault for the first 5s, a small
compressor hub fault occurs and lasts for 10 s, and at
15 s the size of the compressor hub fault changes from
small to large. Here, six single-fault models and one no-
fault model are used as the initial bank of on-line
models. As shown in the “minimum residual index” plot
in Fig. 6, a fault (index 1, small fan fault) is detected at
5.3 s. However, this is just the transient phenomenon
that occurred after the change of the fault situation.
After it lasts for 0.86 s, the minimum residual index
changes from 1 to 4, which indicates a small compressor
hub fault. This index is the minimum for more than
1.2 s. At 7.38 s the small compressor hub fault is claimed
to be isolated by the fault isolation scheme (using the
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Fig. 6. Small compressor hub fault followed by large compressor hub fault.

time delay term 7j), as shown in the “fault index’ plot.
Afterwards, only three single-fault models (small,
medium, and large compressor hub fault models) will
be used as on-line models to generate the residuals and
at 15.7 s a fault is declared to be detected, as shown in

the “minimum residual index” plot and at 17.04 s the
large compressor fault is isolated, as shown in the “fault
index” plot. Clearly, a fault can be detected shortly after
it occurs, and be isolated correctly a bit later to help
maintain robustness.
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4.4. Multiple faults: case 2

Another multiple-fault case we have studied is shown
in Fig. 7, where the medium fan fault exists in the
beginning and the medium compressor hub fault occurs
at 10 s. The medium fan fault is isolated by the fault
diagnosis system at 2.34 s. Note that there are significant
oscillations for the first 2 s. After that, a bank of four
models (which correspond to medium fan fault only,
medium fan fault with small compressor hub fault,
medium fan fault with medium compressor hub
fault, and medium fan fault with large compressor hub
fault) are used to generate residuals. A fault is then
detected at 10.3 s and the medium compressor hub fault
is isolated at 12.12 s.

4.5. Robustness and sensitivity issues

To obtain a sensitive fault detection scheme, any
changes in the minimum residual index (i.e., the change
of the most suitable model) will be considered as
indicating the occurrence of new faults, and the
minimum residual index is used to detect the fault
promptly. In our simulation examples, the detection
delay time is less than 1 s. Furthermore, considering the
presence of modeling uncertainties, a time delay term T
is included to achieve the robustness of the fault
isolation scheme. In general, there is a trade-off between
robustness and sensitivity of fault isolation. Improving
the robustness to modeling uncertainties may cause the

fault isolation scheme to be insensitive. Here, T is
chosen to be 1.2 s via a priori knowledge on modeling
errors, and the isolation delay in our simulation is less
than 2.5 s.

5. Conclusion

A fault diagnosis method that interfaces fuzzy models
with an expert supervisory scheme has been presented.
This method can recognize the current fault situation of
the plant by comparing a bank of nonlinear analytical
models formed by Takagi—Sugeno fuzzy systems. Under
the supervision of an expert system, the proper bank of
models are applied to generate residuals which are
analyzed on-line to indicate the occurrence of faults and
identify them. Both robustness and fault sensitivity are
analyzed and the XTE46 engine simulation example is
used to show the reliability of the method.

The effectiveness of the proposed fault diagnosis
method has been demonstrated via the CLM simulation
of the XTE46 engine. Unlike the typical engine models
that are used in some of the literature, this XTE46
simulator has been developed by GEAE to be very
complicated and accurate (through thermodynamic
simulation for each engine component) so that the
simulation conducted on this simulator is very close to
that on the real engine for actual flights.

Nonlinear modeling is important to model-based fault
diagnosis for nonlinear systems. Having a hierarchical
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modeling structure and interpolating among nonlinear
local models helps to model a complex system in a
manageable way. A similar hierarchical structure can
also be used to organize the multiple models for fault
diagnosis so as to scale up for the cases where a large
number of faults are involved.
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