
Flow Control via Pricing: a Feedback PerspectiveFernando Paganini�UCLA Electrical EngineeringLos Angeles, CA 90095-1594.paganini@ee.ucla.eduAbstractThis paper discusses network 
ow control from the perspective of multivariablefeedback theory. We build on recent research on 
ow control based on pricing sig-nals, which has cast these problems in terms amenable to mathematical analysis,and more speci�cally we focus on the control algorithm of [8]. After reviewingour recent result regarding the stability of this method, we move on to issues ofperformance and delay robustness. These are studied with tools of linear loop-shaping, which exhibit the main tradeo�s involved in parameter selection for thesealgorithms. An illustrative example is provided.1 IntroductionFeedback mechanisms are of widespread use for controlling 
ows in networks such as theInternet; indeed some form of feedback is inevitable in order for resources to be e�cientlyused in the presence of high variability and uncertainty. However, feedback theory israrely invoked for such designs: at �rst sight, practical congestion control mechanisms asthose in TCP and its variants [3, 2] appear far removed from mathematically groundedcontrol.Recent research (see [1, 4, 5, 7, 8] and references therein) in 
ow control based onpropagation of price signals has, however, strikingly closed this gap and opened the doorfor a mathematical theory of network 
ow control. These models can be used both tointerpret the mechanism implicit in existing protocols [4, 9], and to propose alternativesbased on more explicit price signaling. In particular, Kelly et al. [4, 5] have developeda framework with suggestive economic theory interpretations that leads to two dualfamilies of 
ow control algorithms. Employing continuous time models, analytical resultsare obtained regarding equilibrium fairness, stability, and convergence rates for thesesystems, as well as studies of stochastic disturbances and time delays.A related approach has been developed by Low and co-workers [7, 8], based ondiscrete-time models. In it, prices are interpreted as Lagrange multipliers for the op-timization of total source utility, subject to link capacity constraints. This interpreta-tion leads to convergence proofs for a �rst-order version of the price update law [7]. Asecond-order version was later proposed in [8] to address some drawbacks of the �rst order�Research supported by NSF CAREER Award ECS-9875056, and the David and Lucille PackardFoundation. The author thanks Steven Low for his guidance in this topic.



algorithm. This alternative has satisfactory performance in simulations, but analyticalresults have been more di�cult to obtain. Very recently [11], employing a continuous-time model and a Lyapunov argument, we have been able to prove stability for this case.An outline of this result is provided in Section 3 of this paper.The main thrust of the present paper is, however, to move beyond stability andapply to this problem the perspective of the multivariable feedback designer. Here, asin other applications, the main concern is the fundamental tradeo� between dynamicperformance (transient response, tracking capability, etc.) and robustness to uncertainor under-modeled e�ects (e.g. time delays). In this regard, we show in Section 4, workingwith linearized models, that a loopshaping point of view can provide insight on the designtradeo�s involved in parameter choices for the algorithm of [8]. Section 5 contains asimulation example that illustrates these �ndings in the nonlinear setting.2 Problem FormulationWe are concerned with a system of L communication links shared by a set of K sources.The routing matrix R, of dimensions L�K, is de�ned byRlk = � 1 if source k uses link l0 otherwise :� For each link l we have:{ the capacity cl;{ the aggregate rate yl of all 
ows through the link;{ the backlog bl;{ the price signal pl.� For each source k we have:{ The source rate xk;{ The aggregate price qk of all links used by source k.We use vector notation to collect the above variables across all links or sources; thus wede�ne c; y; b; p 2 RL , and x; q 2 RK . The following relationships are immediate1:y = Rx; q = RTp: (1)It is assumed that links are able to measure their own aggregate rate, and that sourcesare fed back their aggregate price; see [5, 8] for discussions on implementation of suchmechanisms. For the moment we also assume that propagation of rates and prices isinstantaneous; we later discuss the e�ect of delay.With the information given so far, we have depicted in Figure 1 a generic feedbackstructure for 
ow control based on price propagation; what remains to be speci�ed is:� How the links �x their prices based on link utilization.� How the sources �x their rates based on their aggregate price.1RT is the matrix transpose of R.
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Figure 1: General 
ow control structure based on pricing signals.These operations are up to the designer, but have a main restriction: both must bedecentralized, as indicated in the �gure by a block diagonal structure. For instancethe source rate xk can only depend on the corresponding aggregate price qk. We arethus in the realm of decentralized feedback control. The objective of this feedback isto allow for 
ows to dynamically adapt to changing conditions in tra�c demand, linkcapacity, routing, etc. Key design considerations are thus to ensure dynamic stability andregulation of these systems around equilibria that satisfy some desirable static properties(full resource utilization, fairness among sources).In this context, Kelly et al. [5] have proposed two 
ow control methods:(i) The \primal" algorithm uses a �rst-order continuous-time model for the source ratecontrol, and a static law for the price update.(ii) The \dual" method uses a �rst-order dynamics for the price update, and a staticlaw for source rate selection.We will not describe the speci�c laws here, but indicate that [5] describes fairness prop-erties of the resulting equilibria, and proves that these are global attractors by meansof a Lyapunov argument. These equilibria can also be interpreted in economic terms asbalancing network supply with source demand, expressed in terms of a utility function.In this paper we will focus on the approach of Low and coworkers [7, 8], which issimilar to the dual method above, in particular it is based on a static law for sourcecontrol, and a dynamic price control law at the links.Source rate control. According to [7, 8], for a given total price qk, the sources pickthe rate that maximizes Uk(xk)� xkqkover xk, where Uk(xk) is the source utility function, assumed to be strictly concave2.Assuming Uk(�) is di�erentiable, the maximum is achieved at xk = U 0k�1(qk); where U 0k�1is the inverse function of the derivative of Uk. We denote henceforthfk(qk) := U 0k�1(qk):Notice that U 0k is strictly decreasing in xk > 0, hence fk is a strictly monotone decreasingfunction of qk. In vector notation, we summarize the above equations for source rates asx = f(q): (2)2[7] allows for the inclusion of maximum and minimum constraints for xk, for simplicity we will notimpose those here (as, for instance, in logarithmic utility functions Uk(xk) = wk log(xk)).



Link price control: We adopt a continuous time version of the dynamics from [8]; foreach l, backlogs and prices evolve according todbldt = � (yl � cl) if bl(t) > 0;maxf0; (yl � cl)g if bl(t) = 0: (3)dpldt = � 
(�lbl + yl � cl) if pl(t) > 0;maxf0; 
(�lbl + yl � cl)g if pl(t) = 0: (4)The above switched di�erential equations enforce non-negativity constraints in allvariables. Here 
 > 0 and �l > 0 are constants. Setting �l = 0 corresponds to the�rst-order price update law in [7]; in this case prices are proportional to backlogs, whichmay lead to an undesirable equilibrium backlog, hence the use of �l > 0 in [8].Let (b�; p�) be an equilibrium of the above system. We also use the notation q� =RTp� for the equilibrium source prices, x� = f(q�) for the equilibrium source rates, andy� = Rx� for the equilibrium link rates. It is not di�cult to see that we must haveb� = 0. Indeed, if b�l > 0 then we would have y�l = cl so _pl > 0, which contradictsequilibrium. Now p� need not be zero, indeed its nonzero components correspond tolinks where yl � cl, i.e. where the capacity constraint is active (bottleneck links).The relation of this algorithm with optimization is explained in detail in [7], but webrie
y outline it here. The key observation is that an equilibrium point p�, x� satisfyingthe equations (1-4) will be a saddle point of the optimizationminp�0 maxx  KXk=1 Uk(xk) + pT (c�Rx)! :This is the Lagrangian dual of the convex program of maximizing the overall utilityPKk=1 Uk(xk), subject to link capacity constraints Rx � c.. Furthermore, the �rst-orderlink price algorithm of [7], corresponding to �l = 0, can be interpreted as a gradientalgorithm for the above maximization in p; this is used to establish convergence. Nosuch interpretation is available in the second-order case of [8] we are considering.It follows from duality theory that x� must be the unique global optimum of the latterproblem; therefore y�, q� are also unique. p� need not be unique, because in general thecapacity constraints might not be independent. To simplify the further development andobtain a unique equilibrium price, we assume from now on that the matrix R is of fullrow rank. Thus, given a vector q of aggregate source prices, there is a unique p satisfyingq = RTp. Some comments on generalizing this assumption are given in [11].3 StabilityIn this section we outline a proof of global stability for the price update law of (3-4); thissupplements available results for the systems in [5, 7]. We state the following result:Theorem 1. Given the system (1-4), assume fk(qk) is strictly decreasing in qk > 0,and that R is of full row rank. Then the unique equilibrium point b� = 0, p� is globallyasymptotically stable.A detailed proof is given in [11]. Here we will brie
y outline the argument, which isbased on the Lyapunov functionV (b; p) = LXl=1 [�l
 b2l2 + (cl � y�l )pl] + KXk=1 �k(qk);



where �k(qk) := Z qkq�k (x�k � fk(�))d�:The monotonicity of fk makes �k non-negative, which implies V (b; p) is non-negative(notice y�l � cl). It is further argued in [11] that under the rank assumption on R,V (b; p) only vanishes at equilibrium and is radially unbounded. The derivative of V (b; p)along trajectories of the system is given by_V = LXl=1 [�l
bl _bl + (cl � y�l ) _pl] + KXk=1(x�k � fk(qk)) _qk:Now observe that last term above can be written asKXk=1(x�k � xk) _qk = (x� � x)T _q = (x� � x)TRT _p = (y� � y)T _p = LXl=1 (y�l � yl) _pl; (5)and thus _V = LXl=1 [�l
bl _bl + (cl � y�l ) _pl + (y�l � yl) _pl] = LXl=1 �l;where we have denoted �l := �l
bl _bl + (cl � yl) _pl.Consider the case where bl > 0, pl > 0; then the dynamics (3-4) give�l = �l
bl(yl � cl) + (cl � yl)
(�lbl + yl � cl) = �
(yl � cl)2 � 0:The limiting cases bl = 0, pl = 0 are more delicate, but a detailed study in [11] showsthat indeed �l � 0 at all times. Therefore our Lyapunov function is decreasing alongtrajectories of the system. Finalizing the proof of global asymptotic stability involvesensuring that _V � 0 can only occur at equilibrium, and invoking Lasalle's invarianceprinciple (see [6]) to show trajectories must converge to equilibrium over time. For fulldetails on this last step see [11].This theorem implies, under mild assumptions, that the 
ow control method proposedin [8] is sound and will, in the continuum limit, converge asymptotically to a desirableequilibrium where the overall utility is maximized, and backlogs are cleared.4 Performance and RobustnessGlobal stability is a fundamental property, and it is fortunate to be able to establish itwith such generality; however it does not su�ce to guarantee a feedback system behavesin a satisfactory way. As in other feedback design problems, key questions are:(i) What is the dynamic performance of this system? There are many ways to specifythis, but mainly one wants to know that in addition to \eventually" settling downto equilibrium, the system is capable of quickly reacting to changing conditions.Of relevance here are the transient response from non-equilibrium initial conditions(these arise due to changes in network users, links, or routing), and the ability totrack variations in link capacity c (e.g. in an Available Bit Rate scenario).(ii) What is the robustness of this system to deviations from the idealized model?There are again many such deviations, many of which can be modeled as stochasticdisturbances around equilibrium. From a stability point of view, however, the keyconcern is the e�ect of system delay, which arises both in propagating prices andrates and also is inherent in discrete-time price update implementations.



Some of these issues have been studied in [5] for the pricing algorithms considered there.Here we will explore some of these questions for the algorithm in [8], and cast them inthe language of multivariable feedback control theory. We will work with a linearizedmodel of the dynamics around the equilibrium. Let ~x, ~y, etc, denote the deviationsof the system variables from their equilibrium values x�, y�, and so on. We also allow
uctuations ~c in the link capacities. Then:� Linearizing the source rate function x = f(q) around the point (x�; q�), we write~x � �D~q, where D = �diag(f 0k(q�k)) = �diag� 1U 00k (x�k)� :Here and in the sequel, diag(� � � ) denotes a diagonal matrix with the enclosed diagonalelements. We have used above the fact that fk is (U 0k)�1. The sign convention is forconvenience, making D a positive de�nite matrix (since Uk is concave).� We consider the linear approximationd~bldt = (~yl � ~cl) (6)d~pldt = 
(�l~bl + ~yl � ~cl) (7)to the price/backlog dynamics. Clearly, (7) is a valid local model for bottleneck links,where the equilibrium p�l > 0. The argument is less clear for (6), since the equilibrium of(3) occurs at the point of discontinuity; one case in which it would apply is if the bl aretaken to measure the deviation from a nonzero backlog bl0, as is also considered in [8].Given these limitations, as well as the inherent locality of any linear model, our analysisto follow does not carry the same weight as the earlier stability result. Nevertheless wewill see below that this �rst-cut linear model can have signi�cant predictive power.With this model, we can represent the linearized dynamics by the block diagram onthe top of Figure 2; in it, s is the usual Laplace variable, and for simplicity we haveassumed that the �l have the same value � across all links.
M(s) ~y~c �

1s � 
s RT �D R ~y~x~q~p~b�~c

Figure 2: Linearized model and standard unity feedback formThe bottom �gure is obtained from the above by absorbing the negative sign andde�ning the loop gain transfer function matrixM(s) = 
s �1 + �s �RDRT :



In this way we are led to a standard unity feedback con�guration; we can now bring instandard tools from multivariable control, to analyze:1. The transient response. In particular, the closed loop modes are given by the rootsof det(I +M(s)) = 0.2. The tracking performance: i.e. how well the link utilization tracks link capacityvariations. Here we can look at the singular values of the sensitivity functionS(j!) = (I +M(j!))�1which maps ~c to tracking error, and study the range of ! for which S(j!) is small.3. Stability margin to delay. One can insert delays of the form e��is to loop channelsand study bounds on delays consistent with stability.These tasks are greatly simpli�ed by the observation that the loop transfer functionis easily diagonalized: indeed the matrix RDRT is symmetric, positive de�nite and hencecan be written as UT�U , where U is a unitary matrix and � is the diagonal matrix ofpositive eigenvalues �1; : : : �L. Given this fact, we haveM(s) = UTdiag�m1(s); : : : ; mL(s)�U;with mi(s) = 
�is �1 + �s � : This means that the multivariable feedback can be easilystudied by L single loops of loop-gain mi(s), leading to the following conclusions:1. The closed loop modes are the roots of s2 + (
�i)s+ 
�i� = 0, for i = 1 : : : L:It is easily veri�ed that the dominant pole of the above equation can have negative realpart no faster than 
�i=2; therefore the decay exponent of the overall transient dynamicsis limited by 
�min=2, where �min is the smallest eigenvalue of RDRT .
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�i !Figure 3: Bode plot of mi(j!)2. The sensitivity function diagonalizes as S(j!) = Udiag�(1 + mi(j!))�1�UT ; soits singular values are determined by the \loopshape" functions mi(j!). In Figure 3 wesketch its Bode plot for the case � << 
�i. The frequency range for which jmi(j!)j >> 1is associated with good tracking performance. Since the cross-over frequency is about 
�iin this case, once again we �nd the �gure of merit 
�min as a measure of the bandwidthover which our system exhibits good tracking.



3. Finally, we turn to the issue of robustness to delay. The analysis is simplest for acommon delay e��s in all loops; this directly translates to a modi�ed loopshape functionmi(j!)e��j!; for this to yield stability, in classical terms we must have a phase margingreater than !c� in the original Bode plot, where !c is the crossover frequency.In fact the best phase margin is about 90 degrees, achieved when � << 
�i, whichmotivates our earlier choice. Then !c � 
�i and the stability condition is approximately� < �=(2
�i):Here the condition is more stringent for the largest eigenvalue �max of RDRT , and isinversely proportional to 
.We summarize the conclusions of our linear analysis:� The parameter 
 directly a�ects dynamic performance, but inversely a�ects delayrobustness; a judicious design must balance this tradeo�.� A similar role is played by the matrix RDRT , which represents the sensitivity oflink rates to price increases. Note, however, that while its minimum eigenvaluedictates performance, its maximum eigenvalue impacts delay stability. Hence, foran ill-conditioned matrix RDRT the design tradeo� will become more di�cult; thisobservation is well known in multivariable feedback design problems (see, e.g. [10]).� For the parameter �, robustness to delay indicates the use of � << 
�i.5 Example
31 2

Figure 4: Example: network of 2 links, 3 sourcesConsider the simple 2-link network of Figure 4; we assign capacity c1 = 0:9 to the left link,and c2 = 2:4 to the right link. Three sources, each with utility function U(x) = log(x),share the network as indicated by dashed lines. Thus the routing matrix isR = � 1 0 10 1 1 � :It is easily veri�ed that the equilibrium point for the price-based control is given byp� = � 20:5 � ; q� = 24 20:52:5 35 ; x� = 24 0:520:4 35 ; y� = c = � 0:92:4 � : (8)The linearized matrixD = �diag� 1U 00(x�1) ; 1U 00(x�2) ; 1U 00(x�3)� = 24 0:25 0 00 4 00 0 0:16 35leads to RDRT = � 0:41 0:160:16 4:16 � ; with eigenvalues �min = 0:4, �max = 4:16.We see that we are in an ill-conditioned case, with �max=�min � 10.



5.1 Study of Tracking PerformanceWe consider the price dynamics of (3-4) with parameters 
 = 0:1, � = 0:01. Note that
�min = 0:04, so we are in the situation of Figure 3, and in particular, the cross-overfrequency ofm1(j!) is !c1 � 0:04. Our linear analysis predicts that variations in capacitywill be tracked well up to this bandwidth, but not beyond.
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Figure 5: Link capacities (solid) and 
ows (dashed). Left: !0 = 0:02; right: !0 = 0:1We simulated the nonlinear dynamics (1-4) using the Matlab sti� solver `ode15s', andintroducing the sinusoidal variations ~cl(t) = 0:2 sin(!0t), to the capacity values from (8),for several values of !0. Figure 5 presents the results for !0 = 0:02 and !0 = 0:1. Wecon�rm the prediction that at least one of the link 
ows loses the ability to track thenetwork capacity as frequency grows beyond the critical value of !0 = 0:04. The fact thatthe other 
ow is able to track closely corresponds here to the matrix RDRT being closeto diagonal; in a general situation, many or all links could lose their tracking capability.5.2 Study of Robustness to DelayIn a second study, we restored the capacity to the constant value in (8), but now inserteda delay in the feedback loop. Turning again to our linear analysis, we expect that� < �=(2
�max) = 3:77will be required for stability. Figure 6 shows simulations for various values of the delay.From the top plot we see that delays of � = 2 or � = 3 a�ect the response, but retainstability; once we move to � = 4, however, the equilibrium for the second price becomesunstable and the nonlinear system exhibits a limit cycle.6 ConclusionWe have explored the application of tools from feedback theory to 
ow control algorithmsbased on pricing. Our investigation with simple linear models reveals basic design trade-o�s involved when selecting control parameters, e.g. the price update parameter 
 in[8]. An interesting �nding is that an ill-conditioned matrix RDRT can severely a�ectthese dynamic tradeo�s. This factor should thus be considered, in addition to otherconsiderations such as fairness, in decisions on routing and utility function selection.We have focused on the control law from [8], but in principle similar analysis ispossible for other methods with the general structure of Figure 1. A natural question
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