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This article focuses on the effect of differing heteroscedasticity assumptions on derived premium rates
of area-yield crop insurance. Tests of the proportional and absolute heteroscedasticity assumptions
are conducted using both in-sample and out-of-sample measures. Our results suggest that arbitrarily
imposing a specific form of heteroscedasticity or homoscedasticity in insurance rate calculations limits
actuarial soundness. Our results have practical implications for the federal crop insurance programs,
as we reject the traditional rating assumptions for many cotton regions and lower-yielding/higher-risk
corn and soybean counties but not in the heart of the Cornbelt.
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Area-yield insurance has attracted significant
attention as a means to avoid the problems
of moral hazard, inaccurate rates, and trans-
actions cost associated with individual cover-
age crop insurance policies (Deng, Barnett,
and Vedenov 2007; Glauber 2004; Miranda
1991). With an area design, coverage and pay-
ments are based on the observed yield for an
area that encompasses several producers. By
doing so, moral hazard is mitigated because
a producer usually directly controls inputs
for a relatively small proportion of aggregate
production.Area-yield insurance does not con-
form to the traditional model of adverse selec-
tion in that producers in a county are exposed
to the same payout, so there can be no sep-
arating equilibrium between low- and high-
risk insureds. However, producers in a county
with superior information about the common
county yield risk could select against a poorly
rated program.

Federally subsidized area-yield insurance is
offered for several major crops in the United
States. Introduced in 1993,the Group Risk Plan
(GRP) provides area-yield insurance based on
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county-yield data of the National Agricultural
Statistics Service (NASS) of the USDA. GRP
covered $25 million of liability in its first year.
In recent years a revenue insurance variant,
Group Risk Income Protection (GRIP) has
been added. By 2008 the liability for these
two programs neared $8.5 billion and acreage
insured exceeded 34 million acres. A number
of other area-based policies based on weather
and vegetation indexes are also available.

While area yield designs are often expected
to reduce moral hazard and improve actuar-
ial performance relative to individual coverage,
this conclusion is predicated upon producers
not having superior knowledge of local yield
trends and yield variability. Thus, recognizably
erroneous rating and modeling assumptions
can lead to a program that violates the leg-
islative mandate that rates must be actuarially
sound—neither overcharging nor undercharg-
ing producers.1

Several studies have either explicitly or
implicitly proposed systems to set rates for
area-yield designs. Halcrow (1949) proposed
an early area-wide plan, but the current
U.S. design is largely based on the work of
Skees, Black, and Barnett (1997). Alternative
procedures have been considered by Goodwin
and Ker (1998), Ker and Coble (2003),

1 The actuarial soundness target loss ratio was revised to 1.0
in the 2008 Farm Bill. This target is applied prior to legislatively
mandated rate subsidies.
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and Ker and Goodwin (2000). The typical
approach is to regress historical yield against a
deterministic trend and then use the estimated
residuals—along with assumptions about the
existence and form of heteroscedasticity—to
estimate expected insurance indemnities.
Skees, Black, and Barnett (1997) fitted a
two-knot, linear spline to historical yield
data and then estimated rates using the
regression residuals. They assumed that the
standard deviation of the residuals increased
proportionally with increases in yields. Their
approach encompasses technological change,
adjustments in input use, and any other deter-
ministic yield effects and treats all remaining
variation as random shocks arising primarily
from weather, insects, diseases, and other
assumed uncontrollable events.2

Two primary heteroscedasticity assumptions
have been maintained in the area-yield insur-
ance literature. The assumption of a constant
coefficient of variation where changes in the
yield standard deviation are proportional to
the changes in the yield mean has been exten-
sively used (Deng, Barnett, and Vedenov 2007;
Ker and Coble 2003; Miranda and Glauber
1997; Skees, Black, and Barnett 1997). We refer
to the insurance rates calculated using this het-
eroscedasticity assumption as “proportional
rates.”The assumption of homoscedasticity has
also been used extensively (Coble, Heifner,
and Zuniga 2000; Mahul 1999; Miranda 1991).
We identify insurance rates calculated using
the homoscedasticity assumption as “abso-
lute rates.” The literature on heteroscedastic-
ity remains ambiguous for two reasons: (a)
assumptions have often been explicitly or
implicitly made without testing; and (b) empir-
ical evidence has been provided to support
specific applications of both the homoscedastic
model and the constant coefficient of variation
(CV) assumptions, but neither holds univer-
sally across location or crop type. Such assump-
tions about heteroscedasticity are not always
fully examined; yet there is a significant empir-
ical literature (starting with the seminal work
by Just and Pope [1978]) suggesting that het-
eroscedasticity may be present in crop yields
and that, if present, it varies spatially across
regions.

2 A better in-sample fit might be achieved by modeling inputs
more explicitly but since those inputs are not observable at the time
of rating, the model cannot be used to forecast yields (unless those
inputs are first forecasted). Further, crop insurance plans typically
require that participating producers follow “good farming prac-
tices,”though verification of such practices may present a significant
challenge for insurers.

In this article, we focus on the effect of the
different heteroscedasticity assumptions on
area-yield insurance rates. When the estimated
residuals are used for insurance rating, het-
eroscedasticity assumptions have significant
effects on the derived rates.Woodard,Sherrick,
and Schnitkey (2009) have recently raised
the issue that heteroscedasticity assumptions
are also relevant for the individual coverage
products offered by the Risk Management
Agency (RMA). They suggest that lost-cost
rating procedures, as used by RMA, implic-
itly impose proportional heteroscedasticity.We
assume that the yield variance is a function
of predicted yield. However, we estimate the
relationship between the variance and pre-
dicted yield rather than a priori impose either
the proportional or the absolute form of het-
eroscedasticity. We refer to the insurance rates
calculated using this approach as “empirical
rates” and compare them to conventional pro-
portional and absolute rates.

Our results demonstrate that no single het-
eroscedasticity assumption is appropriate in
every case. Being correct on average or even in
a majority of cases may still lead to significant
problems in the design, rating, and perfor-
mance of crop insurance contracts. Further, the
federal crop insurance program, like any other
government program offering benefits, is sub-
ject to a wide range of political considerations.
Inequities in the provision of program bene-
fits often trigger political debate and realign-
ment of policies. Therefore, inaccuracies and
inequities across regions and crops are impor-
tant issues, even when the distortions occur at
the margin. We demonstrate that standard het-
eroscedasticity assumptions often break down
when one moves outside of principal growing
areas. In particular, we show that in excess of
$1.3 billion in total premium existed in crops
and regions in 2009 for which the conventional
rating assumptions were rejected.

In order to provide a measure of the
economic differences between the alternative
heteroscedasticity assumptions, we estimate
county-level models for corn, soybeans, and
cotton in several states. We consider the dif-
ferences between the proportional, absolute,
and empirical rates for each county and multi-
ply these differences by total liability to obtain
the respective differences in total premiums
for each county. We summarize (results are
reported in table 1) these county total pre-
miums for several major corn, soybean, and
cotton producing states—respectively, Illinois,
Indiana, Iowa, Minnesota, Missouri, Ohio, and
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Table 1. Summary of the Overcharged or Underpaid Premium Amounts Based on the
Difference Between the Proportional and Empirical Rates for Several Major Corn Producing
States (in US$)

Average Std Dev of Maximum Maximum Total Total
overcharge/ overcharge/ underpayment overcharge underpayment overcharge

State underpayment underpayment to the programa to farmersa to the program to farmers

Corn
IL −82,671 1,081,640 −6,429,329 2,255,108 −34,278,506 26,342,114
IN −31,623 354,660 −1,185,032 918,680 −10,315,362 7,690,691
IA 18,583 255,213 −915,362 707,298 −6,848,936 8,670,087
MN 20,387 114,208 −285,213 634,442 −790,959 1,769,524
MO 45,928 119,733 −115,943 588,272 −345,000 2,595,473
OH 27,138 94,657 −255,477 241,508 −1,406,242 3,251,649
WI −36,088 393,574 −1,835,075 1,202,875 −5,054,275 3,069,418

Soybeans
IL 8,743 51,105 −274,364 112,104 −1,453,729 2,319,302
IN 30,189 57,813 −127,378 250,010 −531,108 3,036,793
IA 3,157 14,278 −77,605 40,504 −316,818 623,056
MN 3,164 6,813 −6,532 34,956 −17,728 125,317
MO 7,916 26,944 −81,411 112,420 −146,483 550,200
OH 22,744 31,207 −59,640 92,734 −213,963 1,669,607
WI 58,023 9,858 −6,387 51,774 −6,523 216,145

Cotton
AL 36,452 55,313 13,563 155,571 – 255,164
AR 1,281,594 1,183,008 361,009 2,615,901 – 3,847,824
GA 133,642 138,411 2,166 365,164 – 1,202,773
LA 26,984 13,923 −21,777 16,355 −23,419 23,554
MS 65,479 168,862 −30,117 408,293 −45,201 438,077
TN 165,044 149,392 35,453 324,159 – 660,175

Note: aThese are calculated at the county level.

Wisconsin for corn and soybeans andAlabama,
Arkansas, Georgia, Louisiana, Mississippi, and
Tennessee for cotton.

Given these differences, we investigate the
effect of differing heteroscedasticity assump-
tions on derived premium rates at vary-
ing coverage levels. We conduct a repeated
game of insurance program selection. Specif-
ically, using the RMA rating methodology and
heteroscedasticity assumptions for area-yield
insurance, we derive actuarially fair rates. We
assume the role of a private insurance com-
pany and re-derive the rates using the RMA
methodology but instead of using the RMA’s
heteroscedasticity assumption we estimate the
form of the heteroscedasticity. Note that both
procedures are estimates of actuarially fair
rates and differ only in the treatment of het-
eroscedasticity. This allows us to consider the
effect of the heteroscedasticity assumption on
the actuarial performance of the program.

Our results suggest that arbitrarily impos-
ing a specific form of heteroscedasticity or
homoscedasticity in insurance rate calculations
is unwise. The magnitude of the rate effects

in many cases is quite large and could poten-
tially introduce significant rate inaccuracies
into an area-yield program. Based on earlier
versions of this work,the USDA/RMA has now
adopted the approach suggested in this arti-
cle and applied it to GRP and GRIP programs
nationally. While the standard RMA assump-
tion is often not rejected in major corn and
soybean producing regions, the new approach
appears to provide more actuarially sound
results in many cotton counties and in many
lower-yielding, higher-risk corn and soybean
producing counties.

Data and Methods

County-yield data for corn, soybeans, and cot-
ton were obtained from NASS. The time span
for the data is 1955–2006. We include only
those counties with a complete yield history.
This filtering of counties was consistent with
the program design procedures followed by
RMA. In addition, we attempt to avoid thin
data problems that could potentially distort our
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results and thus eliminated counties with less
than 5,000 total acres of the relevant crop.

Trend Estimation

Researchers have considered numerous func-
tional forms and specifications for yield trend
models. Several previous studies explored the
relative merits of alternative functional forms
for trend estimation (e.g., Goodwin and Ker
1998; Harri et al. 2009; Ker and Coble 2003).
Determining the correct functional form or
model to describe technological change is
important for crop insurance rate estimation.
Since crop yields tend to trend upward,it is nec-
essary to remove the trend effect of technology.
Approaches include deterministic and stochas-
tic trend models, although Harri et al. (2009)
found limited support for stochastic trends in
crop yields.

In evaluating alternative ways of model-
ing trend, we considered a number of differ-
ent functional forms and estimation methods.
These include a simple linear trend and more
sophisticated functional forms like the one- or
two-knot linear spline model currently used in
the design of the GRP and GRIP programs and
various nonparametric models.We also consid-
ered L1, L2, M-estimation and Bayesian esti-
mation procedures.3 Alternative models and
estimation methods resulted in no measurable
change in our results and conclusions regarding
heteroscedasticity assumptions.4

In this article we report the results from
a two-knot linear spline model with robust
M-estimation, which is the approach RMA
recently adopted on the basis of work related
to this study. M-estimation techniques are a
hybrid of L2 and L1 methods in that they
are less sensitive to outliers than L2 but
tend to be more efficient than the L1 meth-
ods. M-estimators can be used when out-
liers in the dependent variable (yields) are
possible. In our estimation, we iterate using
Huber weights until convergence and then use
bisquare weights for two iterations.5 Specifi-
cally, we minimize

∑T
t=1 f (et , c) = ∑T

t=1 f (yt −
β ′xt) using first the Huber function and then
the bi-square function for two iterations. They

3 L1 and L2 regressions are respectively, median and SSE-
minimizing regression, and M estimation is a hybrid approach
between L1 and L2.

4 Results with alternative models and estimation methods not
presented here are available from the authors.

5 This is the default in S-Plus.

are defined as follows:

Huber function =

f (e, c) =
⎧⎨
⎩

1 if |e| < c
c
|e| otherwise

Bisquare function :

f (e, c) =

⎧⎪⎨
⎪⎩

(
1 −

(e
c

)2
)2

if |e| < c

0 otherwise

where c is a constant (we use the default value,
1.345, for the Huber function, and 4.685 for the
bi-square function).

To increase the stability of trend estima-
tors over time and across space, we impose
temporal and spatial priors6 on the knots for
the spline models—an approach that RMA
has also recently adopted. The two-knot linear
spline model is defined as:

yt = γ1 + γ2t + γ3d1(t − knot1)(1)

+ γ4d2(t − knot2) + et

d1 = 1 if t ≥ knot1, 0 otherwise,

d2 = 1 if t ≥ knot2, 0 otherwise

where yt is the yield at time t, t = 1, T , and, γ1,
γ2, γ3, γ4, knot1, and knot2 are parameters to
be estimated.We make no specific assumptions
about the distribution of et .

Heteroscedasticity Assumptions and Derived
Rates

We calculate the proportional, absolute, and
empirical GRP rates by modeling yield
heteroscedasticity as a function of the pre-
dicted yield. Traditionally, the RMA proce-
dures have implicitly assumed a special case
of this heteroscedasticity function. Model-
ing yield heteroscedasticity as a function of
predicted yield will allow testing the vari-
ous assumptions regarding heteroscedasticity
that have been used in previous research.
These different assumptions on the form of

6 We imposed a Bayesian uniform prior on the knot point by
imposing the temporal restriction that the knot cannot change by
more than three years in either direction from the previous year.
We also imposed a Bayesian uniform prior on the knot point by
imposing the spatial restriction that the knot cannot be more than
three years in either direction from the average of the knots for all
counties within the crop reporting district.
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Table 2. Differences of Absolute (A) and Data Determined (E) Rates and Proportional (P)
and Data Determined (E) Rates for Restricted Spline Trend

Crop Het form Mean SD Min Max

Coverage Level 65%
Corn A-Ea −0.001 0.014 −0.316 0.202

P-Eb 0.016 0.041 −0.187 0.431
Soybeans A-Ea −0.003 0.009 −0.088 0.039

P-Eb 0.001 0.009 −0.082 0.042
Cotton A-Ea −0.003 0.016 −0.161 0.007

P-Eb 0.138 0.149 −0.168 0.362

Coverage Level 90%
Corn A-Ea −0.003 0.014 −0.272 0.135

P-Eb 0.028 0.041 −0.157 0.447
Soybeans A-Ea −0.006 0.014 −0.115 0.036

P-Eb 0.007 0.015 −0.089 0.057
Cotton A-Ea −0.006 0.017 −0.101 0.032

P-Eb 0.139 0.142 −0.105 0.358

Note: Table 2 presents the differences between rates for the three different heteroscedasticity assumptions for each crop and two coverage levels. The mean,
standard deviation, maximum, and minimum of the absolute differences by crop and coverage level are reported.
a Difference between absolute and empirical heteroscedasticity.
b Difference between proportional and empirical heteroscedasticity.

heteroscedasticity can be represented by the
following relationship:

(2) var(et) = σ 2[E(yt)]β = σ 2ŷβ
t

where var(et) is the variance of the error term
in (1). The case of β = 0 indicates homoscedas-
tic errors. When β = 1 the variance of yields
moves in direct proportion to the predicted
(trending) yield. Finally, the case of β = 2 sug-
gests that the standard deviation of yields
moves in proportion to the predicted (trend-
ing) yield (i.e., that the coefficient of variation
is constant).

We estimate equation (2) using the following:

(3) ln(ê2
t ) = α + βln(ŷt) + εt

where êt is the error term from equation (1),
ŷ is the predicted value from a trend line esti-
mation. To calculate rates, the residuals from
equation (1) are adjusted as follows:7

(4) e_adjt = êt
ŷβ̂

T+2

ŷβ̂
t

7 When heteroscedasticity is present this would lead to inef-
ficient parameters for the mean equation and invalid standard
errors. Correcting for heteroscedasticity would certainly address
both issues. However, obtaining efficient parameter estimates for
the mean equation and corrected standard errors for these parame-
ters would have no effect on the main results of the study, the effect
of heteroscedasticity assumptions on insurance premium rates.

where T is the length of the yield series and
ŷT+2 is the two-year-ahead out-of-sample yield
forecast. We use β̂ = 2 to obtain the adjusted
residuals for calculating the proportional rate,
β̂ = 0 to obtain the adjusted residuals for calcu-
lating the absolute rate, and the estimate of β̂
from equation (3) to obtain the adjusted resid-
uals for calculating the empirical rate.We cal-
culate the indemnity received by the insured,
indem, for each of these three scenarios using
the following formula:

(5) indemt = max

[(
yc − y∗

t

yc

)
(ŷT+2)(scale), 0

]

where

yc = ŷT+2
∗cov

y∗
t = ŷT+2 + e_adjt

cov is the coverage level, and scale = 1. The
GRP rate is then calculated using:

(6) r = E(indemt)/ŷT+2.

In table 2 we present the rates for the three
different heteroscedasticity assumptions for
each crop and two coverage levels. Because
aggregation will hide important differences,we
present the mean, standard deviation, maxi-
mum,and minimum of the absolute differences
by crop and coverage level.The results indicate
that while on average the absolute rates are
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lower than the empirical rates, the difference
between the two rates can be large. For exam-
ple, for corn the differences range from as low
as 32% to as high as 20%. Also, while on aver-
age the proportional rates are higher than the
empirical rates, the difference between the two
rates can be as low as 19% and as high as 45%.
Similar differences are found for cotton, while
smaller differences are revealed for soybeans.

To provide a measure of the insurance
premium differences between the alternative
heteroscedasticity assumptions, we conducted
a county-level analysis for corn, soybeans, and
cotton in several states. We first obtained the
total actual 2007 area plan insurance liability
for all acres covered under an area prod-
uct policy and for each county. Because the
RMA’s experience has traditionally been based
on the proportional heteroscedasticity assump-
tion, we examine the difference between the
rates calculated under this assumption and
the empirical rates for each county. We mul-
tiply this difference by the total liability in
each county to obtain the difference in the
total premium if the empirical rates were used
instead of the proportional rates. We calcu-
late total premiums for major corn, soybean,
and cotton producing states, including Illinois,
Indiana, Iowa, Minnesota, Missouri, Ohio, and
Wisconsin for corn and soybeans,andAlabama,
Arkansas, Georgia, Louisiana, Mississippi, and
Tennessee for cotton.

These results, reported in table 1, suggest
that while the mean total premium differences
for each state are not large, there is consid-
erable variation in total premium differences,
even within a certain state. As an example, for
Logan County, Illinois, the proportional rate is
3.9% and the empirical rate is 10.7% or 2.75
times higher. This rate difference results in a
difference in total premiums of $6.4 million. In
another example, in Macoupin County, Illinois,
the proportional rate is 4.5% and the empirical
rate is 2.3%, or about half of the proportional
rate, resulting in a difference in total premium
of $2.3 million. These large county-level differ-
ences in the premiums obviously may lead to
important selection and actuarial performance
issues.

Heteroscedasticity Tests

The results noted above demonstrate that
heteroscedasticity assumptions can have sig-
nificant impacts on premium rates and thus
on total premium. We find that neither
homoscedastic error terms, nor the constant

proportional heteroscedasticity assumption
are strongly supported. Previous work usu-
ally tests different assumptions regarding the
form of heteroscedasticity using equation (3).
For example, if the test8 fails to reject
H0 : β = 0, then one can assume homoscedas-
ticity when calculating insurance rates. Alter-
natively, if a test of H0 : β = 2 is not
rejected,one may impose the proportional het-
eroscedasticity correction in rate calculations.

We tested different forms of heteroscedastic-
ity using the RMA temporal model, a two-knot
linear spline model with robust M-estimation
and temporal and spatial priors. Our results
were robust across the various temporal mod-
els and estimation methodologies previously
discussed. Using the estimated residuals result-
ing from the two-knot linear spline model,
we tested the assumptions of homoscedastic-
ity and a constant coefficient of variation using
equation (3) and L2 estimation. The results
of these tests are reported in table 3. We
also tested for time-varying heteroscedasticity
using a spline model similar to equation (1),
and the results, not surprisingly, are very simi-
lar to those presented with respect to predicted
yields, since predicted yields follow a time
trend.

The results in table 3 indicate that nei-
ther assumption is overwhelmingly supported
by the data and both assumptions are some-
times rejected. For example, for corn the
proportional heteroscedasticity assumption is
rejected for 467 counties,or 41% of the total. In
addition, in 95 out of 668 counties where we fail
to reject the proportional heteroscedasticity
assumption,we also fail to reject the alternative
assumption of homoscedasticity. This means
that for these 95 counties the current RMA
rates that are based on the proportional het-
eroscedasticity assumption may also be incor-
rect. In 185 of the 467 corn counties (or 40%)
where we reject proportional heteroscedastic-
ity the parameter β̂ in equation (3) was greater
than two,and in the remaining 282 counties this
parameter was less than two.

Geographically, counties for which the β̂
parameters are less than two are concentrated
in the riskier portion of the Great Plains,
while those with β̂ parameters estimated to
be greater than two are scattered in the Corn
Belt and in the more productive portions of the
eastern United States. Similarly, of the 230 soy-
beans counties where we reject proportional

8 We use a simple t-test to test these hypotheses.
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Table 3. Fail to Reject Cases of Different Heteroscedasticity Assumptions for Corn, Soybeans
and Cotton Counties for the Restricted Spline Trend Estimator

Heteroscedasticity Fail to reject one Fail to reject both
Crop assumption assumption assumptions

Corn Proportional
Heteroscedasticity 668 (59) 95 (14)

Absolute
Heteroscedasticity 276 (24) 95 (14)

Soybeans Proportional
Heteroscedasticity 653 (74) 140 (16)

Absolute
Heteroscedasticity 357 (40) 140 (16)

Cotton Proportional
Heteroscedasticity 52 (36) 37 (26)

Absolute
Heteroscedasticity 66 (46) 37 (26)

Note: Numbers in parentheses are percentage values.

heteroscedasticity, in 130 counties (or 57%)
the parameter β̂ in equation (3) was greater
than two and in the remaining 100 counties this
parameter was less than two. The geographi-
cal pattern for the soybeans estimates of β̂ is
quite similar to that of corn. For cotton, in 6 of
the 91 counties where we reject proportional
heteroscedasticity (or 7%) the β̂ parameter in
equation (3) was greater than two, while in the
remaining 85 counties this parameter was less
than two. In contrast to corn and soybeans, the
counties found to have β̂ less than two tend to
be in higher-yield regions and those areas with
irrigation.

Table 3 also shows that we reject homosce-
dasticity with corn in 859 counties or 76 percent

of the total. Results are similar for the other
two crops, soybeans and cotton.

To examine whether spatial patterns exist in
our test of proportional heteroscedasticity, we
mapped the county-by-county results for each
of the three crops. A spatial pattern of reject-
ing the assumption suggests differences are in
part due to the nature of mean yield and yield
risk. Figure 1 maps the county-by-county tests
of proportional heteroscedasticity forcorn. For
the most part, we fail to reject proportional
heteroscedasticity in the major Corn Belt coun-
ties. Specifically, most of southern Minnesota,
Iowa, Central Illinois, and western Indiana fail
to reject proportional heteroscedasticity. Con-
versely,we reject proportional heteroscedastic-
ity in most counties in the Great Plains regions

Decision Reject Fail to Reject

Figure 1. Test of the proportionality assumption for corn
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Decision Reject Fail to Reject

Figure 2. Test of the proportionality assumption for soybeans

of Kansas, Nebraska, South Dakota and North
Dakota that have mostly dryland production.
Other areas which tend to be more marginal
corn producing regions, such as the Eastern
Seaboard and the Southeast,are shown to have
mixed results.

Figure 2 illustrates the results for soybeans.
Again rejection of proportional heteroscedas-
ticity occurs more often in lower-yielding,
higher-risk soybean producing counties. In
contrast, in very few counties in Illinois, Indi-
ana, Iowa,Missouri,Ohio,andWisconsin is pro-
portional heteroscedasticity rejected. Overall,
proportional heteroscedasticity is rejected less
often for soybeans than corn.

The proportional heteroscedasticity tests for
cotton are shown in figure 3. Cotton has some
very distinct spatial production patterns. Pro-
portional heteroscedasticity is rejected in the
Texas high plains,Georgia,and North Carolina.
Conversely, results for Arizona, California,
Louisiana, and most of Mississippi are consis-
tent with proportional heteroscedasticity.

In general, the results for these three crops
show that proportional heteroscedasticity is
most often rejected in lower-yielding, riskier
regions, which in many cases are also regions
with a less pronounced yield trend. An inter-
esting implication is that we fail to reject the
RMA maintained assumption in the regions
where most production and insured acreage
occur. Conversely, this also suggests that RMA
assumptions have resulted in inaccurate rates
and poor program performance in riskier,more
marginal regions.

In order to provide a picture of the distribu-
tion of the insurance policies in areas where

we reject or fail to reject the proportional
heteroscedasticity assumption, we calculate
the percentages of total area-based insurance
premium located in counties where we reject
the assumption. These are around 18%, 20%,
and 34% for corn,soybeans,and cotton,respec-
tively. In light of Woodard, Sherrick, and
Schnitkey’s (2009) arguments that a constant
yield CV is inappropriate for the individual
coverage products offered by RMA, we also
calculate the percentage of total premium for
theActual Production History (APH) program
located in counties where we reject the propor-
tional heteroscedasticity assumption.TheAPH
program has around 32%, 30%, and 40% for
corn, soybeans and cotton, respectively.

Out-of-Sample Comparisons

In this section we ascertain whether the
heteroscedasticity assumptions which drive
differences in premium rates are economically
significant. We do so by assuming the role of an
insurance company that can choose to retain
or cede policies, such as is the case under the
Standard Reinsurance Agreement (SRA) cur-
rently in place in the federal crop insurance
program (see Coble, Dismukes, and Glauber
(2007) for details of the SRA). As the insur-
ance company, we calculate rates the same as
RMA with one exception—we estimate the
degree of heteroscedasticity (as reflected in the
beta parameter in the above regression model)
and correct the residuals accordingly, whereas
the RMA assumes a constant CV. If our rates
are higher than the RMA, we cede the poli-
cies as we believe them to be underpriced and
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Decision Reject Fail to Reject

Figure 3. Test of the proportionality assumption for cotton

thus expect a loss. Conversely, we retain poli-
cies where our rates are lower than the RMA’s
rates as we believe they are overpriced and
thus we expect to earn a profit. Given the real-
ized yields, we can compare the loss ratio of
the policies we retained to the loss ratio of the
policies we ceded to RMA to derive a mea-
sure of the economic rents that could be lost by
RMA in the event of incorrect heteroscedastic-
ity assumptions.We do this at the 90% coverage
level for each crop.

To operationalize this approach, we use the
data from 1955–1992 and then calculate the
rates for RMA and the insurance company
(under the two different heteroscedasticity
assumptions) for 1993. The underwriting gains
and losses are then calculated using the actual
1993 yields. We then repeat this using the data
from 1955–1993 and recover the underwriting
gains and losses for each contract for 1994. We
continue until we use the data from 1955–2006
and calculate the underwriting gains and losses
for 2007. We then calculate the loss ratio of
the policies retained and ceded over the fif-
teen years. Using bootstrapping techniques,9

9 We start with the pool of insurance rates for each state calcu-
lated using the RMA’s methodology and the alternative method-
ology. The pool of these rates for each state contains n times
15 observations, where n is the number of counties in the state
and 15 is the number of years that we repeat the process. From this
pool, we select 10,000 bootstrapped samples of size 15. For each of
these samples, we compare the rates from the two methodologies
and group the policies into ceded and retained. Finally,we calculate
the loss ratio of the policies retained and ceded. This process gives
us the distribution of the loss ratio under the null hypothesis that
the rates from the two methods are the same. By comparing the
actual loss ratio with these 10,000 simulated values of the loss ratio
under the null, we obtain the bootstrapped p-value.

we calculate the statistical significance of dif-
ferences under the null hypothesis that distin-
guishing the degree of heteroscedasticity does
not give rise to economic rents. Under this
null hypothesis, the ratio of loss ratios from
ceded and retained policies should equal one,
meaning the insurance company is indifferent
in selecting the policies.

In the case described above, the RMA
assumes a constant CV for all crop/county com-
binations. For interest and completeness we
consider two additional cases and repeat the
above out-of-sample evaluation of the gain in
rating accuracy. In the first case, RMA assumes
homoscedasticity for all crop/county combi-
nations. In the second case, RMA tests both
assumptions and uses the assumption that is
not rejected. When both or neither assumption
are rejected, a constant CV is assumed.

The results when RMA assumes a con-
stant CV are presented in table 4. Similar
results10 were found for the other two cases
when RMA assumes homoscedasticity and
when RMA selects between these two forms
of heteroscedasticity, respectively. For each
crop/state combination in table 4 the follow-
ing measures are reported. The “program loss
ratio” is the loss ratio based on the base or
current RMA methodology and the respective
heteroscedasticity assumption. The “loss ratio
of retained policies” is the loss ratio of the
policies retained in the repeated comparison
between the relevant alternative methodology

10 These results, not presented here, are available from the
authors.
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Table 4. Out-of-Sample Comparison of Data Determined (E) and Proportional (P) Rates for
Restricted Spline Trend for Coverage Level 90 Percent

Program Loss ratio Loss ratio Percent of Ceded to
loss of ceded of retained policies retained Bootstrapped

Crop State ratio policies policies retained ratio P value

Corn IL 0.693 0.928 0.670 0.914 1.386 0.093
IN 0.983 1.172 0.955 0.872 1.226 0.126
IA 1.355 2.499 1.197 0.879 2.089 0.047
MN 1.496 2.458 1.399 0.908 1.758 0.016
MO 1.004 1.463 0.984 0.959 1.490 0.011
OH 1.518 1.658 1.065 0.854 1.557 0.078
WI 1.545 1.892 1.318 0.604 1.436 0.043

Soybeans IL 1.427 1.978 1.120 0.641 1.764 0.092
IN 1.338 1.482 1.275 0.698 1.162 0.145
IA 2.206 2.385 2.142 0.738 1.113 0.106
MN 3.173 3.522 3.078 0.785 1.145 0.055
MO 1.059 1.157 1.011 0.673 1.142 0.142
OH 2.471 2.904 2.325 0.750 1.249 0.114
WI 2.189 2.892 2.099 0.886 1.378 0.034

Cotton AL 7.971 15.598 5.197 0.733 2.996 0.061
LA 6.400 8.251 5.432 0.656 1.516 0.051
MS 2.332 3.505 1.917 0.739 1.818 0.051
TN 2.091 2.995 1.457 0.588 2.058 0.070

Note: Table 4 presents the results of an out-of-sample test of the hypothesis that significant economic rents can be lost by RMA as a result of incorrect
assumptions about heteroscedasticity. The results support the hypothesis.

and the RMA methodology. The “loss ratio of
ceded policies” is the loss ratio of the policies
ceded. The “ceded/retained ratio” is obtained
by dividing the loss ratios of ceded and retained
policies. The “bootstrapped p-value” provides
the probability that the alternative method-
ology, when the degree of heteroscedasticity
is estimated, is less accurate than the RMA
methodology. The percentage of retained poli-
cies is the percentage of policies retained under
the alternative methodology.

The results in table 4 support the hypothe-
sis that significant economic rents can be lost
by RMA as a result of incorrect assumptions
about heteroscedasticity. The “ceded/retained
ratios” for all crop/state combinations are
greater than one and the bootstrapped p-values
show statistical significance in the majority of
crop/state combinations.

Conclusions

Based on the results of this analysis, we
conclude that one should not arbitrarily
impose proportional heteroscedasticity or
homoscedasticity in crop risk simulations that
may be used for insurance rate calculations.
Our results show that researchers may fail

to reject either of the commonly used
heteroscedasticity assumptions.

We also consider allowing the data to deter-
mine the form of heteroscedasticity. Admit-
tedly, these estimates are limited by the same
small samples as the tests of standard assump-
tions. This led us to also consider an out-of-
sample simulation that showed the empirically
estimated heteroscedasticity model is superior
in the majority of cases.

Our results have important practical impli-
cations for the RMA of the USDA in deter-
mining rates for area-based yield and rev-
enue insurance programs. The agency must
rate thousands of county-crop programs each
year. Our work shows that assuming pro-
portional heteroscedasticity or homoscedastic-
ity could lead to selection problems across
counties and crops and therefore give rise
to poor program performance. However, the
standard RMA assumption is most often
rejected in marginal production regions where
less liability exposure occurs. Ultimately, our
results suggest that rates can be quite sensi-
tive to maintained heteroscedasticity assump-
tions. We therefore recommend allowing the
data to select the most appropriate spec-
ification of heteroscedasticity. USDA/RMA
adopted these recommendations for rating
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area products beginning in the 2009 crop
year.

References

Coble, K. H., R. Dismukes, and J. W.
Glauber, 2007. Private Crop Insurers and
the Reinsurance Fund Allocation Deci-
sion. American Journal of Agricultural
Economics 89(August): 582–595.

Coble, K. H., R. Heifner, and M. Zuniga. 2000.
Implications for Crop Yield and Revenue
Insurance for Produces Hedging. Journal
of Agricultural and Resource Economics
25: 539–551.

Deng, X. H., B. J. Barnett, and D. V. Vede-
nov. 2007. Is There a Viable Market for
Area-Based Crop Insurance? American
Journal of Agricultural Economics 89 (2):
508–519.

Fackler, P., D. L. Young, and G. A. Carlson.
1993. Estimates of Trend and Variability
Patterns in U.S. Crop Yield Series. Unpub-
lished manuscript, Department of Agri-
cultural and Resource Economics, North
Carolina State University.

Glauber, J. W. Crop Insurance Reconsidered.
2004. American Journal of Agricultural
Economics 86 (5): 1179–1195.

Goodwin, B. K., and A. P. Ker. 1998. Non-
parametric Estimation of Crop Yield
Distributions: Implications for Rating
Group-Risk Crop Insurance Contracts.
American Journal of Agricultural Eco-
nomics 80(February): 139–153.

Halcrow, H. G. 1949. Actuarial Structures for
Crop Insurance. Journal of Farm Eco-
nomics, 31(August): 418–443.

Harri, A., K. H. Coble, C. Erdem, and T.
O. Knight. 2009. Crop Yield Normality:
A Reconciliation of Previous Research.
Review of Agricultural Economics 31(1):
163–182.

Just, R. E. and R. D. Pope. 1978. Stochastic
Specification of Production Functions and
Economic Implications, Journal of Econo-
metrics 7: 67–86.

Just, R. E., and Q. Weninger. 1999. Are
Crop Yields Normally Distributed? Amer-
ican Journal of Agricultural Economics
81(May): 287–304.

Ker, A. P., and K. H. Coble. 2003. Modeling
Conditional Yield Distributions. Ameri-
can Journal of Agricultural Economics 85:
291–304.

Ker, A, P. and B. K Goodwin. 2000. Non-
parametric Estimation of Crop Insurance
Rates Revisited.American Journal ofAgri-
cultural Economics 82 (2): 463–478.

Miranda, M. J. 1991. Area-Yield Crop Insur-
ance Reconsidered. American Journal of
Agricultural Economics 73(May):233–242.

Miranda, M. J., and J. W. Glauber. 1997. Sys-
temic Risk, Reinsurance and the Failure
of Crop Insurance Markets. American
Journal of Agricultural Economics 79:
206–215.

Moss, C. B., and J. S. Shonkwiler. 1993.
Estimating Yield Distribution with a
Stochastic Trend and Nonnormal Errors.
American Journal of Agricultural Eco-
nomics 75(November): 1056–1062.

Norwood, B., M. C. Roberts, and J. L.
Lusk. 2004. Ranking Crop Yield Models
Using Out-of-Sample Likelihood Func-
tions. American Journal of Agricultural
Economics 86(November): 1032–1043.

Ozaki,V., B. K. Goodwin, and R. Shirota. 2008.
Parametric and Nonparametric Statistical
Modeling of Crop Yield: Implications for
Pricing Crop Insurance Contracts. Applied
Economics 40: 1151–1164.

Ramirez, O. A. 1997. Estimation and Use
of a Multivariate Parametric Model for
Simulating, Heteroskedastic, Correlated,
Nonnormal Random Variables: The Case
of Corn Belt Corn, Soybean and Wheat
Yields. American Journal of Agricultural
Economics 79(February): 191–205.

Ramirez, O. A., S. Misra, and J. Field. 2003.
Crop-Yield Distributions Revisited.Amer-
ican Journal of Agricultural Economics
85(February): 108–120.

Ramirez, O. A., T. McDonald. Ranking Crop
Yield Models: 2006. A Comment. Amer-
ican Journal of Agricultural Economics
88(November): 1105–1110.

Skees, I. R., I. R. Black, and B. I. Barnett. 1997.
Designing and Rating an Area Yield Crop
Insurance Contract. American Journal of
Agricultural Economics 79(May):430–438.

Ozaki, V. A., S. K. Ghosh, B. K. Goodwin, R.
Shirota. 2008. Spatio-Temporal Modeling
of Agricultural Yield Data with an Appli-
cation to Pricing Crop Insurance Con-
tracts. American Journal of Agricultural
Economics 90(4): 951–961.

Woodard, J. D., B. J. Sherrick, and G. D.
Schnitkey. 2009. Crop Insurance Ratemak-
ing under Trending Liabilities. Unpub-
lished working paper,University of Illinois
at Urbana–Champaign.

 at Pennsylvania State U
niversity on M

ay 18, 2016
http://ajae.oxfordjournals.org/

D
ow

nloaded from
 

http://ajae.oxfordjournals.org/

	Data and Methods
	Trend Estimation
	Heteroscedasticity Assumptions and Derived Rates
	Heteroscedasticity Tests
	Out-of-Sample Comparisons

	Conclusions
	References

