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Enhancing the Signal-to-Noise Ratio of ICA-Based
Extracted ERPs

Steven Lemm?®*, Gabriel Curio, Yevhen Hlushchuk, and Klaus-Robert Miiller

Abstract—When decomposing single trial electroencephalog-
raphy it is a challenge to incorporate prior physiological knowl-
edge. Here, we develop a method that uses prior information
about the phase-locking property of event-related potentials in a
regularization framework to bias a blind source separation algo-
rithm toward an improved separation of single-trial phase-locked
responses in terms of an increased signal-to-noise ratio. In par-
ticular, we suggest a transformation of the data, using weighted
average of the single trial and trial-averaged response, that redi-
rects the focus of source separation methods onto the subspace
of event-related potentials. The practical benefit with respect to
an improved separation of such components from ongoing back-
ground activity and extraneous noise is first illustrated on artificial
data and finally verified in a real-world application of extracting
single-trial somatosensory evoked potentials from multichannel
EEG-recordings.

Index Terms—Bioelectrical potentials, electroencephalogram
(EEG), independent component analysis (ICA), signal-to-noise
ratio.

1. INTRODUCTION

HE analysis of “single-trial” EEG data is an important

research issue because variable behavior could poten-
tially be traced back to variable brain states. Single-trial
analysis, however, suffers from the superposition of task-rel-
evant signals by task-unrelated brain activities, resulting in a
low signal-to-noise ratio (SNR) of the observed single trial
responses. For the specification of the SNR, throughout this
paper, we will refer to the event-related potentials (ERPs) as the
signals and consequently refer to all nonphase-locked neural
activity as well as to nonneural artifacts as interfering noise.
Accordingly, the major goal of data processing prior to ERP
single trial analysis is to enhance this SNR significantly, i.e.,
isolating the phase-locked ERP signal from the interfering
noise.
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To this end, the analysis of EEG data is mostly focussed
on the averaged responses to repeated identical stimuli. This
procedure takes advantage of the fact that the phase locked
ERPs remain under trial-averaging, whereas nonneural artifacts
and ongoing “background” activity, that are of arbitrary phase
to the stimulus, are diminished in the average. Consequently,
averaging over trials increases the SNR for phase-locked ERPs,
but has the drawback of masking single-trial variability of the
task-related responses, e.g., in amplitude or latency. A more
advanced averaging technique, called periodic stacking [1],
aims to overcome this problem by simultaneously extracting
averaged and differential responses. Since the method implicitly
relies on trial-averaging the analysis of possible interactions
between the single trial responses and the ongoing activity
remains a challenge.

Other techniques suggested to improve the SNR for single
trial analysis are based on temporal or spatial filtering. Com-
monly used are bandpass, notch or Laplace filters as well as
principle component analysis (PCA) or more sophisticated tech-
niques such as wavelet denoising [2], independent component
analysis (ICA) or more general blind source separation (BSS).
In general, ICA models an N-dimensional multi-variate time
series x as a linear combination of M statistically independent
sources s, i.e., x = As. The aim of ICA is to estimate the
mixing matrix A given only the observations x. Typically it is
assumed that the number of sources is less or equal the number
of sensors. In that case, the linear mixture is invertible and the
source signals s can be recovered. On the opposite in order to
solve an under-determined system (less sensors than sources,
M > N) usually requires additional assumptions about the un-
derlying sources, such as sparsity or super-Gaussian distribu-
tions [3]-[5]. In this paper, we address this issue by exploiting
prior knowledge about the sources, especially we utilize the
phase-locked characteristic of ERP signals to improve on their
extraction.

The practical use of ICA for decomposing brain signals
was first introduced in [6], [7]. Nevertheless, the application
of ICA/BSS to neurophysiological signals, especially the de-
composition of event-related potentials in human scalp EEG,
is a challenging task because of the multitude of active brain
sources contrasting with the relative paucity of sensors. Addi-
tionally nonstationarity is a general issue for EEG data analysis
and can strongly effect the solution of ICA.

Commonly, the source separation task is approached by de-
composing averaged data which takes advantage from utilizing
the increased SNR for phase-locked brain responses; however,
the analysis of their single-trial latency or amplitude variability
is compromised by nonphase-locked sources which are not
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modeled in the averaged data. It is important to note that in
general spatial projections, that are estimated on trial-averaged
data, are not suitable to study the underlying single trials,
since these filters for recovering the evoked responses are not
invariant/orthogonal against the interfering single-trial noise.
Notably, as trial-averaging ideally cancels out nonphase-locked
sources leaving (a few) phase-locked event-related sources, the
intrinsic dimensionality of the data is reduced and so overfitting
becomes an issue, when applying ICA/BSS. This is usually
counterbalanced by projecting onto a lower dimensional sub-
space prior to the application of ICA (cf. [8]-[11]). However,
the derived spatial filters of ICA/BSS applied to averaged data
are often not meaningfully applicable, or at least not optimal,
for the decomposition of the single-trial EEG.

The alternative approach, i.e., applying ICA/BSS to event-re-
lated single-trial EEG epochs, isless studied [ 12]-[14] and suffers
from the nonstationarity of EEG as well as from the poor SNR
of single-trial ERPs, embedded in ongoing EEG. Furthermore
one unanswered question for the application of BSS remains:
“How many sources?” Since the answer to that question directly
addresses the issue whether ICA/BSS has to solve an under- or
an over-determined system, the question about the number of
sources is a fundamental data analytical issue rather than just a
philosophical one. Albeit in the latter case the answer directly de-
pends on the functional or spatial resolution at which one defines
cortical sources. Throughout this paper we will assume that the
number of sources exceeds the number of sensors. Consequently,
we are facing the problem of under-determined BSS. As pointed
out in [15], under these circumstances standard ICA/BSS tech-
niques tend to extract mainly the strong signal sources, i.e., non-
neural artifacts and nonphase-locked background brain activity
which are often much larger in amplitude than the ERPs one is
interested in. Thus the statistical optimization criteria (contrast
functions) of ICA/BSS, such as kurtosis, negentropy, time lagged
covariance matrices, are rather dominated by the noise sources
than by the weak ERP sources. In addition, cortical ERP sources
are usually active just for a brief period of time. For these rea-
sons ICA/BSS of single-trial EEG data is diverted to extract pri-
marily the dominant sources instead of minor sources of weak,
shortlasting event-related response. Consequently, ICA/BSS has
been mainly used as a tool for removing strong artifacts such as
eye blinks, power line noise or muscle movements from ongoing
physiologicalrecordings [7]-[9],[16],[17] and only occasionally
for the separation of single-trial data into functionally indepen-
dent sources [12], [13], [18], [19].

In this paper, we introduce a regularization approach to bias
blind source separation methods toward an improved separa-
tion of single-trial ERPs. The proposed method is specifically
tailored to trade off between single-trial decomposition and the
separation of the averaged responses. We, therefore, suggest a
linear, temporal transformation of the data, which is invariant
under the assumed linear mixing model, but will redirect the
focus of the ICA/BSS on the extraction of the phase-locked
components. This is realized by increasing the SNR of the
subspace spanned by the event-related phase-locked compo-
nents prior to the decomposition. Additionally the invariance of
the proposed transformation with respect to the linear mixing
model ensures that the information about the spatial distribution

of the raw signals is kept, especially about the noise sources.
Consequently, the obtained spatial filter are applicable in order
to decompose the raw single trial EEG. The introduction of the
method in Section II is followed by an experimental section.
There we illustrate the benefit of the proposed approach in
terms of an increased SNR of extracted evoked components in a
controlled scenario using artificially generated data and finally
present results of recovered somatosensory evoked potentials
(SEPs) from EEG-recordings.

II. METHOD
A. Mathematical Background

For notational convenience, let z¥(t), ¢ = 1,...,N, k =
1,....,K,t=1,...,T denote the EEG-signal at the IV scalp-
electrodes of K repeated single trials, each recorded for 7" sam-
ples. We consider the data x generated as a stationary linear
mixture of M > N independent sources s, i.e., X = As.
Without loss of generality we will assume that the event-related,
phase-locked sources are embedded in an M, -dimensional sub-
space spanned by the first M. < N independent sources. The
remaining M — M. dimensions are characterized by artifacts
and nonphase-locked background brain sources, that are of ar-
bitrary phase relative to the stimulus, such that trial-averaging
leads to

K
. 1 ko .
I(IE};EE s; =0, Vi> M, (D)
k=1
| X
i _E k_3. ;<
KlggoKk_ls’ 5, %20, Vi< M, 2)

where 5; is the expected phase-locked response of the i-th
event-related source. Note that (2) does not restrict to identical
single-trial responses for the event-related sources. It only
assumes the existence of stimulus locked components that will
not asymptotically vanish under trial-averaging. Consequently
(2) also covers ERPs that undergo single trial variability either
in amplitude or in latency.

For a recorded, mixed EEG-signal z. at electrode c¢ this
asymptotically leads to

: 1 o k : 1 o k
dm g 2 ee = dm g D A
k=1 k=1 1=1
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The latter implies, that trial-averaging asymptotically only
maintains the information about the phase-locked components
and converges to the M,.-dimensional subspace spanned by
the phase-locked sources. Implicitly we assume stationarity of
the spatial coupling of the ERP sources with the electrodes,
represented by the columns A. ;, 7 < M, of the mixing matrix.

B. Temporal Transformation

As carried out in [15] in an under-determined environment
(more linearly mixed sources than sensors), BSS techniques
tend to extract sources, that are most prominent with respect
to the statistical measures, such as kurtosis, negentropy or time



LEMM et al.: ENHANCING THE SNR OF ICA-BASED EXTRACTED ERPs

lagged covariance. In order to redirect the focus of ICA/BSS
on the event-related, phase-locked signal subspace, we utilize
property (3) and define a filter L(x) of the mixed data, that will
enhance the signal along the direction of the event-related com-
ponents, while dampening all noise directions. In order to con-
trol the degree of the signal amplification, a regularization pa-
rameter A € [0,1) is included

La(x): x" — (1= Nx" 4+ )%, Vk 4)

where X represents the trial-average. Verbalized, each single
trial k is replaced by the weighted average, more precisely the
convex combination, of itself and the trial-average. Raising the
parameter A from zero toward one will increasingly replace
the single-trial responses by the averaged responses. Simulta-
neously the noise contained in the single trial will be monoton-
ically suppressed. Consequently the distribution of the data be-
comes more and more concentrated onto the subspace spanned
by the phase-locked ERP components. Thus the signal strength
in direction of phase-locked components is enhanced in com-
parison to the noise. Furthermore, basic calculations reveal that
the transformation in (4) is linear and, thus, invariant under the
assumed mixture model, i.e., Ly(x) = ALx(s). Additionally,
the spatial information about the noise processes is preserved
since the transformation is invertible for all A € [0,1). As
a consequence this implies, that a demixing matrix W), esti-
mated on the transformed data L) (x) directly applies to the raw
single-trial data x. Note that A equal zero corresponds to raw
single-trial data, while A — 1 applies to the trial-averaged data.!
Consequently, by virtue of the transformation in (4) we are able
to trade off between ICA/BSS on single trial data in noisy envi-
ronments and the decomposition of the averaged responses. Es-
pecially this particular processing of the single trial data, prior
to the application of any ICA/BSS algorithm, will enable us to
redirect the focus of the separation onto the event-related signal
subspace we are interested in, while maintaining the informa-
tion about the structure of the single-trial EEG noise space.

In order to obtain improved ERP-components, we simply
apply an ICA/BSS method at several degrees of regular-
ization A € [0,1) and decompose the raw data using the
correspondingly estimated demixing matrices W . This yields
different estimations of the underlying independent sources,
ie.,yn = Wyx. Ateach degree A we then identify the extracted
phase-locked component and evaluate its signal quality. Finally,
we simply take the decomposition of the data that extracts the
ERP-component best. Since a maximum search over all feasible
A also covers the nonregularized, standard ICA/BSS solution at
A = 0, the SNR of the standard solution is at least maintained.

As a performance measure of an extracted phase-locked
source we use its SNR

SNR(y,) =

Vary (Ex, [yF(t)])
Ex [Var, (yf(t) — Ex [yf (1)])]
Var, (3i(t))

T Ex [Var, (5 (1) — ()] ©

ITn the case of A\ = 1 (decomposition of the averaged data), the transforma-
tion L (x) is not invertible; thus, the estimated filter Wy are not meaningfully
applicable in order to decompose the single trial data.

603

Fig. 1. Three simulated EEG channels, given as stationary linear mixture of
four artificially generated sources, i.e. ERP, 10 Hz, white Gaussian noise and
1/ f noise.

This definition uses the same notation for the estimated indepen-
dent sources y as introduced by ¥ (¢) and defines the SNR for
a single component y; as the ratio of the variance of the trial-av-
eraged ERP (signal) and the expected variance of single trial
residual deviation (noise).

III. EXPERIMENTS

In this section, we are demonstrating the advantage of the pro-
posed method for the extraction of single-trial ERPs. We, there-
fore, first study its application in a controlled environment of ar-
tificially generated data. In the artificial setting, we embed one
single simulated ERP-component in a three dimensional noisy
environment and compare the gain of our method in relation to
a standard ICA/BSS approach. The application to artificial data
is followed by real world examples of improved extraction of
SEPs from multichannel EEG-recordings.

In either case, for the decomposition of the multivariate data
into independent sources we use the TDSEP/SOBI-algorithm
[20], [21], that achieves the independence by simultaneous di-
agonalization of covariance matrices obtained from temporarily
delayed signals.

A. Artificial Data

1) Data Generation: To meet the assumption of under-de-
termined BSS while keeping things simple, we simulate three
EEG channels as a linear mixture of four independent artifi-
cial sources (simulated ERP, 10 Hz narrow band source, white
Gaussian and 1/ f noise; see Fig. 1). In order to validate our ap-
proach at different degrees of difficulty, we generated different
data sets by scaling the amplitude of the normalized ERP-com-
ponent with a factor o € [0.01, 10], while keeping the nonphase-
locked sources normalized and the mixing matrix A fixed. In
particular, A was chosen as

where D is the diagonal matrix, such that the Euclidean norm of
the columns of A is normalized to unity. Each of the simulated
data sets consists of 100 single trials. The task for the ICA/BSS
algorithm is to recover the ERP component from the simulated
single trial EEG.

Notably, for any arbitrary decomposition of the data corre-
sponding to a given complete basis of R3, there will always be
at least one component that contains a part of the phase-locked
ERP signal. Furthermore from the specific choice of the mixing
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Fig. 2. Left: Comparison of the optimal solutions found by the proposed
method and by nonregularized, standard ICA. More precisely it presents the
relative gain in the SNR of the extracted phase-locked component for the
different data sets (indexed by o € [0.01,10]). For very weak signals there
is an almost no improvement, due to the fact that even the average shows
no clear ERP-signal (illustrated by the inserted plots). Right: Corresponding
optimal degree of regularization, at which the SNR is maximized for each
data set. Note in cases where all degrees of regularization yield the same
SNR, we conservatively prefer lower degrees. Especially for the data sets with
ERP amplitude 0 < 0.1 the SNR is equal at each degree of regularization,
consequently the optimum refers to the standard ICA solution at A = 0.

matrix it follows immediately that there exist no projection/sep-
aration which perfectly recovers the ERP signal, i.e, a direction
with infinite SNR. Therefore, the goal of the regularization ap-
proach is to find the separation of the data, such that the ERP
signal is recovered just by one independent component and at a
high SNR.

2) Results and Discussion: For each data set, indexed by
o € [0.01,10] we transform the single trials according to
(4) at different values of A € [0,1), and finally applied the
TDSEP/SOBI algorithm on the transformed data separately.
For each data set this yields a collection of decomposition
matrices {Wy} and correspondingly, by applying each W to
the raw data set, in differently recovered independent sources.
For each separation we determined the ERP component as the
independent source with the largest SNR according to (5). We
then define the optimal degree of regularization for each data
set as the A, that provides the maximum in the SNR of the
extracted ERP component.

For each data set we will refer to the ratio between the
SNR at the optimal level of regularization and the SNR of
the standard ICA (A = 0) as the relative gain. In Fig. 2
(left), we depict the relative gains for all data sets, indexed
by o € [0.01,10]. At level of low ERP amplitudes e.g. below
o = 0.1 there is no improvement, which is to be expected since
the ERP signal is buried under a strong noise floor, even on
average due to the small amount of single trials (100). Thus the
spatial direction of the trial-average is still dominated by the
dominant nonphase-locked components rather than by the ERP
sources and consequently the regularization cannot provide a
strong enough bias toward the ERP subspace. This changes
drastically as the strength of the raw ERP signal increases with
a peak performance at ¢ = (0.8. When the ERP becomes even
more pronounced in the raw data we observe that the relative
gain—although above one—starts to decay. This coincides with
the level, at which the ERP source in the mixture becomes
stronger pronounced and even the nonregularized ICA starts to
focus on its extraction. It is worth to mention that even in this
situation, when ICA/BSS starts to extract the ERP signal by
itself, the regularization approach gains a bit of improvement.
To give an impression about the strength of the provided bias,
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Fig. 3. SNR of the three recovered sources as a functions of the regularization
parameter A for one specifically chosen artificial data set at an ERP amplitude
level of & = 0.8. The solid line reflects the SNR of independent source that
is associated with ERP. The regularization almost triples the SNR for the ERP
source compared with the SNR of the unregularized standard ICA solution at
A = 0. The inserted plots shows the trial averages (100 single trials) for the
three recovered sources at three exposed degrees of regularization, i.e., A =
{0,0.8,0.95}. At A\ = 0 the ERP signal is split into two components, at A =
0.8 the SNR of the ERP source has a clear maximum. For even higher degrees
of regularization, at A = 0.95 the ERP is represented in one component, but at
a low SNR, mainly due over regularization.

the trial-averaged ERPs of the simulated EEG channel with
the best SNR on the raw data (second channel) are shown
as inserted plots in the left panel of Fig. 2 at three different
levels of ERP amplitude, i.e., o = {0.1,0.8,3}.

The right panel of Fig. 2 provides information about the
optimal degree of regularization corresponding to the maximum
SNR for each data set. As discussed previously, for the data
sets with an ERP amplitude below o = 0.1, even regularization
does not help to extract the ERP source of marginal signal
strength. For these data set the SNR remains unchanged at
each degree of regularization. In such a case of equal SNRs,
we conservatively prefer smaller values for the optimal degree
of regularization, hence for these data sets the optimal )\ equals
to zero. If the ERP becomes slightly more pronounced in the
raw data, but still at a low level, it requires a high degree of
regularization (about A = 0.99) in order to extract the weak
ERP source from the over-complete mixture. For data sets with
an even larger ERP amplitude, the degree of regularization, that
is needed for recovering the ERP signal, reduces continuously.

In order to elaborate more deeply on the properties of the
regularization scheme, we will further study one exemplarily
chosen data set at an ERP amplitude level of o = 0.8. For that
particular data set Fig. 3 shows the evolution of the SNR of the
three decomposed sources as functions of the regularization
parameter A. At A = 0 the SNR of the corresponding standard
ICA/BSS solution (noregularization) can be obtained. Obviously
the nonregularized, standard ICA/BSS does not focus on the
extraction of the ERP signal, which is evident by both, alow SNR
and the existence of two sources with a SNR distinct from zero.
Increasing the degree of regularization forces the separation
process to focus on the extraction of the ERPinto one independent
component and increases the SNR of the extracted phase-locked
component. For that particular data set the maximum in the
SNR suggests an optimal degree of regularization at A = 0.8.
Increasing the regularization further more, the SNR of the
extracted ERP component starts to decay, but in contrast to
the nonregularized ICA solution, the ERP component is not
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split in two sources, but still covered by one single independent
component. The observed decrease in the SNR can be best
explained by a phenomena termed over-regularization, in a sense
that the noise is no longer adequately modeled in the transformed
data and consequently the estimated spatial filters become less
invariant against the single-trial noise, yielding a decreasing
SNR of the extracted ERP component. For this specific data
set the optimal SNR roughly yields to an improvement by a
factor of 2.8 compared to the SNR of unregularized solution
at A = 0.

B. Somatosensory Evoked Potentials

In order to illustrate the usefulness on real data, we apply the
proposed method to five data sets of single trial EEG recordings
of SEPs.

SEPs exited by median nerve stimulations (MNSs) are well
studied and various cortical responses with different timing and
amplitudes are known, e.g., the earliest responses are at the con-
tralateral primary somatosensory cortex (SI) [22]-[24] that is
activated at 18—150 ms, while later responses at ipsilateral SI
[23], [24] and bilateral activations with similar timing in the sec-
ondary somatosensory cortex (SII) [24] can be observed.

1) Data Acquisition: 1In the present study, we will examine
experiments of SEP from five healthy subjects. The SEPs were
excited by weak MNS delivered at the right wrist at an intensity
of 25% above the individual sensory threshold, but well below
the individual motor threshold. The intensities of the delivered
stimuli for the different subjects range from 1.9-2.8 mA at a
constant impulse-width of 0.2 ms. Each data set consists of 100
single trials of weak MNS. The used inter-stimulus interval was
about 3 s with an additive uniformly distributed jitter ([0-250]
ms). The EEG was recorded in a magnetically shielded room
from 56 electrodes, placed on a subset of the 10-10 system [25].
The recordings were carried out against nose reference and sam-
pled at 1 kHz. Prior to the analysis, a bandpass filter in the range
of [0.1, 80] Hz was applied to the data.

2) Results and Discussion: Once again, the goal for each
data set is to extract single trial SEP from the interferences,
such as ongoing activity or nonneural artifacts. For each data
set we transform the single trials according (4) at different
values of A € [0,0.95], and finally applied the ICA/BSS
algorithm to the transformed data separately. For each data set
this yields a collection of decomposition matrices {Wy} and
correspondingly, by applying each W) to the raw data sets, in
differently recovered independent sources. At all degrees of
regularization, the estimated independent components could
either be distinguished by its phase-locked or nonphase-locked
property. Throughout all degrees of regularization we identi-
fied one component from each data set that was persistently
extracted and could clearly be identified by means of similarity
of the spatial distribution and similar time courses of the
trial-averaged signal. In particular, these components enable us
to directly quantify the improvement in the SNR depending on
the degree of regularization. Similar as in Section III-A2 we
will refer to the ratio of the SNR of an ERP source, recovered
at a specific degree of regularization, and the SNR of an ERP
source obtained by the standard ICA/BSS solution (A = 0) as
the relative gain. Fig. 4 shows the relative gain as a function of
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Fig. 4. Relative gain in the SNR of the extracted ERP component for five
different data sets. The relative gain is given as a function of the regularization
parameter A. Starting at A = 0, the SNR of the standard unregularized ICA, the
SNR improves for all data sets along with an increasing degree of regularization
up to a clear maximum. Even the relative improvement strongly varies for the
different data sets, ranging from a factor of 1.2 (dark dashed) to a factor of 3.5
(dark solid), as well as the optimal degree of regularization, which varies from
0.3 to 0.9.
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Fig. 5. Estimated SNR of the decomposed phase-locked source as a function
of the regularization parameter A for one particular data set (light dashed line in
Fig. 4). The corresponding scalp patterns and the averaged ERPs are exemplarily
shown at three degrees of regularization, i.e., A = {0;0.55;0.9}. The scalp
distribution of the source are almost identical, as well as the averaged responses,
emphasizing the equality of the sources.

the regularization parameter A for the extracted SEP sources
from the five different data sets. For each data set the SNR of
the extracted SEP source continuously ascend with increasing
degree of regularization up to a clear maximum. The achieved
peak performance in the relative improvement for the different
data sets ranges from 25% to 270%. The different quantities in
the performance gain resemble the observed differences of the
obtained achievement on the artificial data, see Fig. 2. Again
the differences may due to different statistical confidence about
the provided spatial bias, directly related to the ratio between
the signal strength of the ERP source and the interfering noise.

Further, we will more deeply study one exemplarily chosen
data set. For this particular data set the development of SNR
itself rather than the relative gain is shown in Fig. 5. At three
different degrees of regularization, A € {0,0.55,0.9}, the spa-
tial distribution at the scalp and the averaged evoked response
of the recovered ERP component are inserted, emphasizing the
sameness of the extracted sources. With A, starting at zero (non-
regularized, standard ICA solution), the SNR increases mono-
tonically up to a clear maximum at A = 0.55. This maximum
in SNR can be interpreted as the best separation into the signal
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and the noise space, with respect to this component. Increasing
A furthermore drives the system into a state where the averaged
signals prevail and the extracted component becomes less in-
variant against the single trial noise, which is reflected in the
decrease of the SNR.

IV. CONCLUSION

We have proposed a new approach that improves the decom-
position of single-trial ERPs utilizing prior knowledge about
the phase-locked property of the signals of interest. By virtue
of a linear, temporal transformation of the data we enabled
the ICA/BSS to trade off between single-trial decomposition
and the separation of the averaged responses. Especially the
suggested method is incorporated into a regularization scheme,
providing a parameter for controlling the degree of refocusing
ICA/BSS on the subspace spanned by the phase-locked sources.
However, the proposed transformation does not depend on the
specific choice of the source separation method in use and
can be applied prior to any ICA/BSS algorithm or even PCA.
Beyond this, the estimated spatial filters determined from the
application of ICA/BSS to the transformed data are directly
applicable to decompose the raw single trial data, since the
proposed transformation is invertible and invariant under the
assumed linear mixing model. Furthermore it is of importance,
that in cases when the search for the maximum in SNR over
different degrees of regularization also considers A = 0 the
proposed method will always improve or at least, trivially,
maintain the separation quality of the nonregularized ICA/BSS
algorithm. Nevertheless, it is an open issue, how to identify
identical ERP components throughout different degrees of
regularization automatically. In the present study, we solved
the issue of identification by visual inspection of the spatial
distribution and the averaged signal of the independent sources.

The benefit of the proposed method was verified by an im-
proved SNR of extracted phase-locked components from both,
simulated data and multichannel EEG-recordings of single-trial
MNSs. Although the set-up for the simulated data was quite
artificial, one could clearly observe and quantify the gain,
achieved by regularizing the ICA/BSS methods, in terms of an
improved SNR of the recovered ERP source. Simultaneously
this example on simulated data reveals the limitation of the
method: if the underlying signal of interest is too weak com-
pared to the noise or the number of trial is too limited, such that
the ERP remains hidden even under trial averaging, then also
regularization cannot help. The application to the multichannel
EEG-recordings, lead to an improvement of the SNR for the
extracted SEP components ranging from 25% to 270% for the
five different data sets.

Since single-trial analysis is a topical issue in neuroscience
that often suffers from poor SNR, our approach for improving
the SNR of single-trial phase-locked responses has many ap-
plications, e.g., for the study of single-trial variability of cor-
tical responses to identical stimuli. Further studies will apply
this method to enhance the statistical significance of the analysis
of single-trial variability of event-related responses, possibly re-
lated to behavioral variability.
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