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Therapeutic gene transfer to the nervous system
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The past few years have been marked by substantial progress in preclinical
studies of therapeutic gene transfer for neurologic disease using viral-based
vectors. In this article, the authors review the data regarding (1) treatment of
focal neuronal degeneration, exemplified by Parkinson disease, ischemia, and
trauma models; (2) treatment of global neurologic dysfunction, exemplified by
the mucopolysaccharidoses and other storage diseases; (3) peripheral nervous
system diseases including motor neuron disease and sensory neuropathies;
and (4) the use of vectors expressing neurotransmitters to modulate functional
neural activity in the treatment of pain. The results suggest that a number of
different viral vectors may be appropriate for gene transfer to the central ner-
vous system for specific disease processes, and that for the peripheral nervous
system herpes simplex virus–based vectors appear to have special utility. The
results of the first human gene therapy trials for neurologic disease, which are
just now beginning, will be crucial in defining the next step in the development
of this therapy. Journal of NeuroVirology (2003) 9, 165–172.
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Introduction

It has been 30 years since gene therapy was first for-
mally proposed as a treatment for genetically deter-
mined inherited disorders (Friedmann and Roblin,
1972). Despite the setback caused by the well-
publicized death of one patient in a gene therapy
trial in 1999 (Carmen, 2001), the first successful
human gene therapy, for X-linked severe combined
immunodeficiency in children, has been reported
(Cavazzana-Calvo et al, 2000). In recent years, several
proposed human gene therapy protocols for neuro-
logic disease have been reviewed by the recombinant
DNA advisory committee (RAC) of the National Insti-
tutes of Health (NIH) and a number of these are now
in clinical trial. It is thus an apt time to consider the
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progress of gene therapy for neurologic disease, and
the prospects for future advances in the field.

There are several reasons that therapeutic gene
transfer or “gene therapy” might be particularly ap-
propriate for treating conditions affecting the nervous
system. More unique RNA sequences are expressed
in brain than in any other tissue and a large pro-
portion of the identified genetic diseases display a
neurologic component to the phenotype. The blood-
brain barrier limits the penetration of systemically
administered macromolecules into brain, and macro-
molecules injected directly into the ventricles pene-
trate only a short distance into brain parenchyma. In
many cases, the regional specialization of brain func-
tion dictates that a therapeutic intervention may be
best achieved by the local expression of a transgene
product such as a neurotrophic or antiapoptotic fac-
tor. In addition, the widespread and redundant use
of a limited repertoire of neurotransmitters and re-
ceptors in diverse pathways in the nervous system
means that the local production of neurotransmitters
achieved by therapeutic gene transfer may be used to
achieve desired outcomes while avoiding unwanted
adverse side effects that would result from activa-
tion of the same receptors in other pathways by a
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systemically administered drug. Nonviral means of
gene transfer, such as liposomes, have generally
proven ineffective for gene transfer to the ner-
vous system. On the other hand, a number viral-
based vectors, including those based on viruses such
as lentivirus (LV) or herpes simplex virus (HSV)
that naturally infect the nervous system, or devel-
oped from viruses like adenovirus (Ad) or adenoas-
sociated virus (AAV) that are not naturally neu-
rotropic, have proven effective in different model
systems.

In this review, we summarize the published data
to date regarding therapeutic gene transfer using vi-
ral vectors in animal models of neurologic disease,
and describe several human trials of therapeutic gene
transfer for neurologic disease that have been ap-
proved by regulatory agencies, some of which are
now enrolling patients. The review is focused on pre-
clinical studies in animal models of neurologic dis-
ease, and their translation to human therapy. Progress
in four different specific applications relevant to neu-
rologic disease will be reviewed: (1) treatment of fo-
cal neuronal degeneration, exemplified by Parkinson
disease, ischemia, and trauma models; (2) treatment
of global neurologic dysfunction, exemplified by the
mucopolysaccharidoses and other storage diseases;
(3) peripheral nervous system diseases including mo-
tor neuron disease and sensory neuropathies; and
(4) the use of vectors expressing neurotransmitters
to modulate functional neural activity in the treat-
ment of pain. The use of gene transfer to modify
cells that are subsuquently implanted into brain or
spinal cord (Blesch et al, 2002; Tuszynski, 1997),
and the reports regarding the use of gene transfer in
the treatment of glioblastoma, either by direct cell
killing, immunologic effects, or suicide gene therapy
(Andratschke et al, 2001; Markert et al, 2001), will
not be considered in this review. The basic biology
of the principal vectors that are used in these ap-
plications has been reviewed elsewhere (Kennedy,
1997).

Treatment of focal neurodegeneration:
Parkinson disease, stroke, and trauma

Focal neurodegeneration would appear to be an ideal
target for therapeutic gene transfer. Despite the fact
that the pathogenic mechanisms underlying progres-
sive cell death in neurodegenerative disease are in-
completely understood, several peptides that act ei-
ther as trophic factors or to interrupt the apoptotic
cascade intracellularly have been identified. It is
unlikely that such potent substances delivered ei-
ther systemically or intrathecally would not cause
serious adverse effects (Apfel, 2001). Because gene
transfer offers the possibility of local production of
such factors to prevent neurodegeneration, a num-
ber of investigators have focused on this possibil-
ity. Idiopathic Parkinson disease (PD), a condition

characterized by degeneration of dopaminergic (DA)
neurons in the substantia nigra (SN), has the advan-
tage of a very restricted anatomic target (the SN) and
well-characterized animal models. The first studies
of gene transfer in PD, employing the model of 6-
hydroxydopamine (6-OHDA)–induced degeneration
of DA cells in the SN, demonstrated that intrastriatal
injection of an Ad vector expressing the glial cell–
derived neurotrophic factor (GDNF) prevented the
degeneration of DA neurons, resulting in both his-
tologic and behavioral correction of the disease phe-
notype (Bilang-Bleuel et al, 1997). Subsequent stud-
ies have confirmed these results using AAV-based
vectors (Mandel et al, 1997, 1999), other Ad vec-
tors (Choi-Lundberg et al, 1998; Connor et al, 1999;
Bjorklund et al, 2000), replication-defective HSV vec-
tors (Yamada et al, 1999), and LV vectors (Bensadoun
et al, 2000). Protection of DA neurons from 6-OHDA
toxicity in vivo has also been reported in experi-
ments in which the antiapoptotic peptide Bcl-2 was
expressed using an HSV vector in the rat (Yamada
et al, 1999). Both the LV (Kordower et al, 2000) and
AAV (Bjorklund et al, 2000) experiments have been
shown to protect DA neurons in primates. No hu-
man trials to prevent cell death in PD based on the
preclinical data generated have been proposed to
date.

An alternate gene transfer approach to the treat-
ment of PD utilizes gene transfer designed to en-
hance neurotransmitter production in the striatal cir-
cuitry damaged in PD. The most obvious candidate
is tyrosine hydroxylase (TH), the rate-limiting en-
zyme in dopamine synthesis. Injection of an AAV
vector expressing TH into striatum was first demon-
strated to reverse one behavioral abnormality in the
6-OHDA model of PD (Kaplitt et al, 1994), and sim-
ilar results were obtained with an HSV-based am-
plicon vector expressing TH (During et al, 1994).
However the size of the human striatum, the likely
requirement that dopamine production will need
be closely regulated to avoid adverse effects, com-
bined with the complexity and variability of PD
symptomatology, make this type of therapy problem-
atic. Modulation of neurotransmitter effect can be
achieved by enhancing prodrug conversion. It has
been demonstrated that transfer of the gene coding for
the aromatic acid decarboxylase (AADC) enhances
the conversion of DOPA, administered systemically,
to dopamine (Sanchez-Pernaute et al, 2001). The first
human PD gene transfer trial, on the other hand,
has proposed to transfer the gene coding for glu-
tamic acid decarboxylase (GAD) in order to increase
γ -aminobutyric acid (GABA) expression in the ex-
trapyramidal pathway (During et al, 2001). In the
phase I trial that has been proposed, the vector will be
inoculated along with the placement of a deep brain
stimulator into the subthalamic nucleus.

Therapeutic results of focal gene transfer has been
demonstrated in models of ischemic brain injury
in rodents using a variety of vectors. Expression of
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interleukin-1 receptor antagonist from an Ad vec-
tor (Betz et al, 1995), Bcl-2 from an HSV amplicon
vector (Lawrence et al, 1997) or from an AAV vec-
tor (Shimazaki et al, 2000), GDNF from an AAV vec-
tor (Tsai et al, 2000), and heat shock protein (HSP)
72 from an HSV amplicon (Hoehn et al, 2001) have
all been shown to attenuate the amount of cell loss
in a variety of models of transient and permanent
ischemia. Although these “proof-of-principle” stud-
ies, demonstrate a biological activity of gene trans-
fer, not all of the studies have been correlated with
behavioral outcomes that would be required to sup-
port the clinical use, and in all of these studies, the
vectors have been injected prior to the ischemic in-
sult, which would severely limit the clinical situa-
tions for which such gene transfer would be applica-
ble. Similar results have also been demonstrated in
models of nervous system trauma. Injection of HSV
vectors expressing Bcl-2 or GDNF up to 30 min af-
ter spinal root avulsion improves motor neuron sur-
vival and preserves expression of choline acetyltrans-
ferase in lesioned motor neurons (Natsume et al,
2002; Yamada et al, 2001). Intraspinal injection of
a plasmid encoding Bcl-2 complexed in a lipsome
immediately following spinal cord section has been
demonstrated to protect neurons of Clark’s nucleus
and the red nucleus from injury-induced degener-
ation (Shibata et al, 2000; Takahashi et al, 1999),
and intraspinal application of vascular endothelial
growth factor (VEGF) using an Ad vector appears to
ameliorate the effect of a corticospinal tract injury in
rodents (Facchiano et al, 2002). Injection of an Ad
vector expressing neurotrophin-3 (NT-3) into spinal
cord after dorsal root injury enhanced the regenera-
tion of a subpopulation of dorsal root axons (proba-
bly myelinated A fibers), into and through the CNS
environment (Zhang et al, 1998). Injection of Ad vec-
tors expressing fibroblast growth factor-2 (FGF2) or
nerve growth factor (NGF) 16 days after dorsal root
injury induced robust axonal regeneration into nor-
mal as well as ectopic locations within the dorsal
spinal cord, resulting in near-normal recovery of ther-
mal sensory function (Romero et al, 2001). Fewer un-
wanted adverse effects were seen with FGF2 than
with NGF.

Correction of global brain disease:
Mucopolysaccharidoses and other
storage diseases

Gene transfer has also been applied to the treat-
ment of diseases that affect the central nervous sys-
tem globally. In these cases, the aim of gene trans-
fer is a diffuse distribution of the corrective gene
product throughout the nervous system. It was orig-
inally demonstrated that administration of a re-
combinant Ad vector expressing beta-glucuronidase
directly into the lateral ventricles of mutant mice in-
creased the beta-glucuronidase activity in crude brain

homogenates to 30% of heterozygote activity. Histo-
chemical demonstration of beta-glucuronidase activ-
ity in brain revealed that the enzymatic activity was
found principally in ependymal cells and choroids
plexus (Ohashi et al, 1997). An adenovirus vector
expressing aspartylglucosaminidase (AGA) injected
intraventricularly into the brain mice with aspartyl-
glucosaminuria (AGU) resulted in AGA expression
in the ependymal cells lining the ventricles and dif-
fusion of AGA into the neighboring neurons. One
month after administration of the wild-type Ad-AGA,
a total correction of lysosomal storage in the liver and
a partial correction in brain tissue surrounding the
ventricles was observed (Peltola et al, 1998). Similar
results have been demonstrated in the mucopolysac-
charidosis (MPS) VII mouse injected with an Ad
vector expressing beta-glucuronidase, with the dis-
tribution of enzyme activity and phenotypic correc-
tion increased by mannitol-induced disruption of the
brain–cerebrospinal fluid (CSF) barrier (Ghodsi et al,
1999). Using the same models, others have shown
that AAV vectors expressing beta-glucuronidase in-
jected directly into brain parenchyma can result in
phenotypic correction (Sferra et al, 2000; Skorupa
et al, 1999). Wolfe and coworkers reported that the
AAV vector not only produced the normal enzyme
from infected cells at the injection sites, but that the
secreted enzyme was also disseminated along most
of the neuraxis, resulting in widespread reversal of
the hallmark pathology. The extensive area of cor-
rection surrounding the transduction sites suggested
that a limited number of appropriately spaced sites
of gene transfer may provide overlapping spheres of
enzyme diffusion to cover a large volume of brain
tissue (Bosch et al, 2000a, 2000b; Skorupa et al,
1999). AAV-mediated correction has been reported
to improve cognitive function in the murine model
of MPS VII as measured by the Morris water maze
test (Frisella et al, 2001). More recently, Davidson
and coworkers have demonstrated that injection of
a feline immunodeficiency virus (FIV)-based vector
expressing beta-glucuronidase into striatum unilater-
ally resulted in bihemispheric correction of the char-
acteristic cellular pathology and that treatment of
beta-glucuronidase–deficient mice with established
impairments in spatial learning and memory resulted
in a dramatic recovery of behavioral function (Brooks
et al, 2002).

In the mouse model of MPS IIIB resulting from
a defect in alpha-N-acetylglucosaminidase (NaGlu),
an NaGlu-expressing AAV vector injected into brain
resulted in 6 months of expression of recombinant
NaGlu (rNaGlu) in multiple brain regions of adult
MPS IIIB mice. The vector transduced an area of 400
to 500 microns surrounding the infusion sites, but
after 6 months, the correction of glycose aminogly-
can storage involved neurons of a much larger area
(Fu et al, 2002). In a mouse model of metachromatic
leucodystrophy, Naldini and coworkers demon-
strated that a lentiviral vector encoding a functional
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arylsulfatase A (ARSA) gene injected into the brain of
adult mice with germ-line inactivation of the mouse
gene encoding ARSA resulted in sustained expres-
sion of active enzyme throughout a large portion
of the brain, with long-term protection from devel-
opment of neuropathology and hippocampal-related
learning impairments (Consiglio et al, 2001).

Correction of phenotypic deficits in both histol-
ogy and behavior in MPS mice using gene transfer
has been impressive, and the reversal of established
deficits (Brooks et al, 2002) represents an important
clinical feature in consideration of the development
of a practical treatment. Several features of this model
should be kept in mind. The relevant gene product
is taken up by cells throughout the brain by bind-
ing to mannose-6-phosphate receptors. Thus, global
correction of these diseases can be achieved by trans-
duction of a fraction of cells within the brain as long
as the gene product released from the cells is ade-
quately distributed through the brain. In other mod-
els using enzyme replacement, it has been noted that
replacement of as little as 10% of the normal enzyme
activity may be sufficient to correct the phenotype.
Regarding the application to human disease, issues
of volume of distribution need to be explored. Even
though correction of an animal model has not yet
been demonstrated, a human trial of gene transfer to
treat Canavan disease using liposomes to transfer as-
partoacylase has been reported (Leone et al, 2000),
and the same group has now begun a similar study in
children using an AAV vector.

Diseases of the peripheral nervous system:
Polyneuropathy and motor neuron disease

The peripheral nervous system presents a number
of challenges that are distinct from the central ner-
vous system, but the underlying rationale for the use
of gene therapy is similar. Studies with recombinant
peptides have demonstrated that a number of neu-
rotrophic factors, including NGF, NT-3, insulin-like
growth factor (IGF), and vascular epithelial growth
factor (VEGF) can prevent the degeneration of pe-
ripheral sensory axons that results in polyneuropa-
thy (Apfel, 1999). But these potent short-lived pep-
tides cannot be administered to patients in the same
doses that are effective in the animal models because
of unwanted adverse systemic effects (Apfel, 2002).
One approach to this problem is to selectively trans-
duce dorsal root ganglion neurons to express a neu-
rotrophic factor in order to achieve local (autocrine or
paracrine) protective effect while avoiding systemic
side effects. In this regard, HSV-based vectors are par-
ticularly well suited because of the natural tropism of
the wild-type virus that affords efficient uptake into
dorsal root ganglion (DRG) neurons from peripheral
inoculation of the vector (Mata et al, 2001).

Using transduction of DRG neurons by peripheral
inoculation of an HSV vector, we have demonstrated

a protective effect against the development of neu-
ropathy in three different models of polyneuropa-
thy. Selective large fiber nerve degeneration caused
by overdose of pyridoxine (PDX) can be prevented
by subcutaneous inoculation of an HSV-based vec-
tor containing the coding sequence for NT-3, mea-
sured by the amplitude and conduction velocity of
the evoked sensory response, as well as preservation
of H-wave amplitude (Chattopadhyay et al, 2002).
Treated animals show preservation of a population of
large myelinated fibers that otherwise degenerate in
this condition, and the preservation of electrophys-
iologic and histologic parameters is reflected in be-
havioral testing of treated animals (Chattopadhyay
et al, 2002). Inoculation of an HSV-based vector ex-
pressing NGF under the control of the human cy-
tomgalovirus promoter (HCMV) prior to the start
of PDX intoxication provides a similar protective
effect (Chattopadhyay et al, 2003). Similarly, in-
jection of an replication-incompetent HSV vector
expressing NGF under the control of the HCMV
promoter 2 weeks after the induction of diabetes
(by injection of streptozotocin) prevents the devel-
opment of neuropathy, measured by reduction in
evoked sensory nerve amplitude, and also increases
expression of neuropeptides in the DRG (Goss et al,
2002a). Similar results have been obtained in a model
of drug-induced sensory neuropathy resulting from
administration of cisplatin (Chattopadhyay et al,
personal communication). Iatrogenic neuropathies
caused by chemotherapy for cancer are models that
may be tested in human disease. A similar protective
effect has been observed by transfer of VEGF using a
plasmid injected into muscle in models of ischemic
and diabetic neuropathy (Schratzberger et al, 2000,
2001), although one must assume that the protective
effect in those models results from circulating lev-
els of VEGF achieved by muscle transduction and
thus may not avoid the potential for systemic side
effects.

Motor neuron disease is a serious and fatal af-
fliction without currently effective treatment. Like
polyneuropathies, administration of trophic factors
appears to slow the progression of the disease in
rodent models, but a human trial of ciliary neu-
ronotrophic factor (CNTF) in motor neuron disease
had to be abandoned because of the cytokine-like
side effects of the systemically administered trophic
factor (Apfel, 2002). An AAV-based vector express-
ing GDNF has been demonstrated to protect a mo-
tor neuron-like cell line from apoptotic cell death in
vitro (Keir et al, 2001). After intramuscular injection
of the NT-3 adenoviral vector, pmn mice (a model
of motor neuron disease) showed a 50% increase in
life span, reduced loss of motor axons, and improved
neuromuscular function as assessed by electromyog-
raphy. These results were further improved by coin-
jecting an adenoviral vector coding for CNTF (Haase
et al, 1997). Administration of an adenoviral vector
expressing cardiotrophin 1 (CT-1) to newborn pmn
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mice led to sustained CT-1 expression in the injected
muscles and bloodstream, prolonged survival of an-
imals, and improved motor functions. CT-1–treated
mice showed a significantly reduced degeneration of
facial motor neurons and phrenic nerve myelinated
axons. The terminal innervation of skeletal muscle,
grossly disturbed in untreated pmn mice, was al-
most completely preserved in CT-1–treated pmn mice
(Bordet et al, 1999). This approach relies on sys-
temic release from injected muscle, and thus may
not avoid the problems of systemic administration.
Achieving adequate systemic levels from muscle
transduction in larger animals may prove difficult.
To date, no vectors have been created from viruses
that would naturally target motor neurons in a man-
ner similar to the targeting of DRG neurons by HSV-
based vectors, and efforts to construct vectors that
would target to motor neurons have to date been
unsuccessful.

Gene transfer for the treatment of pain

In a manner analagous to the correction of PD by us-
ing gene transfer to achieve focal neurotransmitter
release (transduction with a TH vector to produce
DA, transduction with a GAD-expressing vector
to produce GABA), several studies have demon-
strated that gene transfer may be used to provide
an analgesic effect in the treatment of pain. Opi-
ate drugs are exceptionally potent analgesic agents,
but the action of these drugs on central and pe-
ripheral opioid receptors resulting in nausea, se-
dation, respiratory suppression, and constipation
or urinary retention, respectively, limit the dose
that may be used. Continued use of opiate drugs
in chronic pain leads to tolerance, and addiction
is also a problem. Several different gene transfer
approaches have been taken to the treatment of
pain.

Iadarola and coworkers demonstrated that a recom-
binant Ad encoding a secreted form beta-endorphin
injected intrathecally into lumbar CSF transduced
meningeal cells, and that beta-endorphin secretion
attenuated inflammatory hyperalgesia, without af-
fecting basal nociceptive response (Finegold et al,
1999). HSV-mediated gene transfer to deliver and ex-
press opioid peptides to be released from primary af-
ferent terminals may be used to alter the physiology
of postsynaptic neurons, affecting nociceptive trans-
mission in the spinal dorsal horn. An HSV vector
containing the human proenkephalin gene injected
subcutaneously in the foot produces an antihyper-
algesic effect in rodents (Wilson et al, 1999), and
a 50% reduction in the spontaneous pain behavior
during the delayed phase of the formalin test of in-
flammatory pain (Goss et al, 2001). The naltrexone-
reversible analgesic effect in inflammatory pain is
maximal 1 week after vector inoculation, and can
be reestablished by reinoculation of the vector af-

ter the initial effect has waned (Goss et al, 2001).
In the spinal nerve ligation (SNL) model of neuro-
pathic pain, injection of the vector 1 week after SNL
produced a naloxone-reversible antiallodynic effect
that was continuous, persisted for several weeks, and
could also be reestablished by reinoculation of the
vector after the original effect had waned. In the neu-
ropathic pain model, vector-mediated enkephalin ex-
pression enhances the effect of morphine, reduc-
ing the ED50 of morphine from 1.8 mg/kg to 0.15
mg/kg, and the vector continues to provide an an-
tiallodynic effect in the face of tolerance to morphine
induced by repeated injection of the drug (Hao, per-
sonal communication). A similar analgesic effect for
HSV-mediated expression of proenkephalin has been
demonstrated in a model of polyarthritis (Braz et al,
2001), and in a rodent model of pain caused by cancer
in bone (Goss et al, 2002b). We have presented a pro-
posal for a phase I human trial of the proenkephalin-
expressing vector in the treatment of pain resulting
from cancer metastatic to bone to the RAC in June,
2002.

Summary and conclusion

In the last 5 years, substantial progress has been made
in moving gene transfer for neurologic disease from
a hypothetical possibility to a real treatment. The
data considered in this review suggest that a num-
ber of different vectors (Ad, AAV, LV, HSV) may be
used for focal gene transfer to the central nervous
system. The choice among these vectors will ulti-
mately be decided by the results of the human trials,
and practical aspects of manufacturing. For global
distribution within the brain, it would appear that
the smaller vectors (AAV and LV) may be advanta-
geous, but the problem of delivering a gene prod-
uct to the entire human brain from focal injections
would appear to be daunting. For peripheral sensory
nervous system applications, including the preven-
tion of neuropathy and the treatment of pain, HSV,
because of its natural tropism to sensory neurons,
would appear to be the vector of choice. No vectors
with similar tropism to motor neurons have yet been
demonstrated.

As outlined in this review, potent therapeutic ef-
fects of gene transfer have now been demonstrated in
several relevant models of different neurologic dis-
eases. A human trial of gene transfer for Canavan dis-
ease (using liposomes and AAV vectors) is underway,
and trials for Parkinson disease (using an AAV vector
expressing GAD) and for the treatment of pain (us-
ing an HSV vector expressing proenkephalin) have
passed through the RAC to the Food and Drug Ad-
ministration (FDA). Although novel vectors that may
extend the range of therapeutic options continue to
be developed, the observations from the first human
trials will be crucial in defining the next step in the
development of this therapy.
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