
In D. Kriegman, G. Hager, S. Morse editors, ‘‘The Confluence of Vision and Control’’

 Springer Verlag, 1998. In press.

Visual Routines for Vehicle Control�Garbis Salgian Dana H. BallardComputer Science DepartmentUniversity of RochesterRochester, NY 146271 IntroductionAutomated driving holds the promise of improving tra�c safety, alleviatinghighway congestion and saving fuel. The continuous increase in processor speedover the last decade has led to an increased e�ort in research on automateddriving in several countries [1]. However, autonomous tactical level driving (i.e.having the ability to do tra�c maneuvers in complex, urban type environments)is still an open research problem.As little as a decade ago, it was widely accepted that the visual world couldbe completely segmented into identi�ed parts prior to analysis. This view wassupported in part by the belief that additional computing cycles would even-tually be available to solve this problem. However the complexity of vision'sinitial segmentation can easily be unbounded for all practical purposes, so thatthe goal of determining a complete segmentation of an individual scene in realtime is impractical. Thus to meet the demands of ongoing vision, the focus hasshifted to a more piecewise and on-line analysis of the scene, wherein just theproducts needed for behavior are computed as needed. Such products can becomputed by visual routines [14], special purpose image processing programsthat are designed to compute speci�c parameters that are used in guiding thevehicle.This paper describes the development and testing of visual routines forvehicle control. It addresses the generation of visual routines from images usingappearance based models of color and shape. The visual routines presented hereare a major component of the perception subsystem of an intelligent vehicle.The idea of visual routines is compelling owing to the fact that being special-purpose vast amounts of computation can be saved. For this reason they havebeen used in several simulations (eg. [9]), but so far they have been used inimage analysis only in a few restricted circumstances.�This research was supported by NIH/PHS research grant 1-P41-RR09283
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2 Photo-realistic simulationAutonomous driving is a good example of an application where it is necessaryto combine perception (vision) and control. However, testing such a systemin the real world is di�cult and potentially dangerous, especially in complexdynamic environments such as urban tra�c.Given recent advances in computer graphics, both in terms of the qualityof the generated images and the rendering speed, we believe that a viablealternative to initial testing in the real world is provided by integrating photo-realistic simulation and real-time image processing. This allows testing thecomputer vision algorithms under a wide range of controllable conditions, someof which would be too dangerous to do in an an actual car. The resultanttestbed leads to rapid prototyping.Terzopoulos pioneered the use of simulated images in his animat visionarchitecture. However, in their approach all the processing is carried out insoftware, one of the motivations for the architecture being that it avoids thedi�culties associated with \hardware vision" [13]. In our case, the graphicaloutput from the simulator is sent to a separate subsystem (host computerwith pipeline video processor) where the images are analyzed in real-time andcommands are sent back to the simulator (�gure 1). The images are generatedby an SGI Onyx In�nite Reality engine which uses a model of a small town andthe car. Visual routines are scheduled to meet the temporary task demandsof individual driving sub-problems such as stopping at lights and tra�c signs.The output of the visual routines is used to control the car which in turn a�ectsthe subsequent images. In addition to the simulations, the routines are alsotested on similar images generated by driving in the real world to assure thegeneralizability of the simulation.The simulator can also be used with human subjects who can drive a kartthrough the virtual environment while wearing head mounted displays (HMD).A unique feature of our driving simulator is the ability to track eye movementswithin a freely moving VR helmet which allows us to explore the schedulingtradeo�s that humans use. This provides a benchmark for the automated driverand also is a source for ideas as to priorities assigned by the human driver. Inparticular, the �xation point of the eyes at any moment is an indicator ofthe focus of attention for the human operator. Experiments show that this�xation point can be moved at the rate of one �xation every 0.3 to 1 second.Studying the motion of this �xation point provides information on how thehuman driver is allocating resources to solve the current set of tactical driving-related problems.3 Perceptual and Control HierarchyThe key problem in driving at a tactical level is deciding what to attend to. Inour system this problem is mediated by a scheduler, which decides which set ofbehaviors to activate. The central thesis is that, at any moment, the demandsof driving can be met by a small number of behaviors. These behaviors, in turn,2
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Figure 2: Hierarchy of perceptual and control modules. At the top level, thescheduler selects the behavior that is currently active. This behavior uses one ormore visual routines to gather the information it needs to take the appropriatedecisions. The routines are composed from a set of low-level basic operations.Shaded modules are the ones currently implemented.which can then decide what behavior to activate next. On the other hand, if astop sign was found, the agent has to stop at the intersection to check for tra�c.For that, it needs to know where the intersection is, so the intersection detectionroutine will be activated. It can use static image features (eg. lines, corners)to determine where in the image the intersection is located. At the behaviorlevel this information can be used for visual servoing until the intersection isreached.The shaded modules in �gure 2 are the ones that have been implementedso far. Road following has been intensely studied for more than a decade [1],[7] and it was successfully demonstrated at high speeds and over extendeddistances. Therefore we decided not to duplicate these e�orts initially andinstead to take advantage of the simulated environment. In our experimentsthe car is moving on a prede�ned track and the driving program controls theacceleration (the gas and break pedals ).3.1 Basic operationsAt the lowest level in the hierarchy are basic operations. These are simple low-level functions which can be used in one or more of the higher level task-speci�cvisual routines. The implementation uses special real-time image processinghardware, namely two Datacube boards. One is a color digitizer (Digicolor)and the other is the main processing board (MV200).Color. The role of the color primitive is to detect blobs of a given color.An incoming color image is digitized in the Hue, Saturation, Value color space.Colors are de�ned as regions in the hue-saturation sub-space and a lookup table4



is programmed to output a color value for every hue-saturation input pair. Abinary map corresponding to the desired color is further extracted and analyzedusing a blob labeling algorithm. The end result is a list of bounding rectanglesfor the blobs of that color.Static features. The role of the static feature primitive is to detect objectsof a speci�c appearance. It uses steerable �lters, �rst proposed by Freemanand Adelson [3], who showed how a �lter of arbitrary orientation and phasecan be synthesized from a set of basis �lters (oriented derivatives of a two-dimensional, circularly symmetric Gaussian function). Other researchers haveused these �lters for object identi�cation [8]. The idea is to create a uniqueindex for every image location by convolving the image at di�erent spatialresolutions with �lters from the basis set. If M �lters are applied on the imageat N di�erent scales, an M �N element vector response is generated for everyimage position. For appropriate values of M and N , the high dimensionalityof the response vector ensures its uniqueness for points of interest.Searching for an object in an image is realized by comparing the index ofa suitable point on the model with the index for every image location. The�rst step is to store the index (response vector) rm for the chosen point onthe model object. To search for that object in a new image the response ri atevery image point is compared to rm and the one that minimizes the distancedim = jjri � rmjj is selected, provided that dim is below some threshold.More details about the color and static feature primitives and their real-timeimplementation on the Datacube hardware are given in [10].Dynamic features. The goal of this primitive is to detect features thatexpand or contract in the visual �eld. The primitive combines three separatecharacteristics. Each of these have been explored independently, but our designshows that there are great bene�ts when they are used in combination, giventhe particular constraints of the visual environment during driving. The �rstcharacteristic is that of the special visual structure of looming itself. In driving,closing or losing ground with respect to the vehicle ahead creates an expansionor contraction of the local visual �eld with respect to the point of gaze [5].The second one is that the expansion and contraction of the visual �eld can becaptured succinctly with a log-polar mapping of the image about the gaze point[11]. The third characteristic is that the looming is detected by correlating theresponses of multiple oriented �lters.Starting from It, the input image at time t, the �rst step is to create LPt,the log-polar mapping at time t. This is done in real time on the pipeline videoprocessor using the miniwarper, which allows arbitrary warps. Since dilationfrom the center in the original image becomes a shift in the new coordinates,detecting looming in the original input stream It translates into detecting hor-izontal shifts in the stream of transformed images LPt, with 0 � t < tmaxAnother reason for using a log-polar mapping is that the space-variant sam-pling emphasizes features in the foveal region while diminishing the in
uenceof those in the periphery of the visual �eld (�gure 4 left). This is useful in thecar following scenario, assuming �xation is maintained on the leading vehicle,5



Apply steerable filters
on area around red blob

r i
x,y

m

at multiple scales r iApply steerable filters
r m

r

detection

err = 

if min(err) < threshold
x,y

signal stopsign

-x,y

Red blob

Figure 3: Stop sign detection routine.since it reduces the chance of false matches in the periphery.The Dynamic Feature Map (DFM) indicates the regions in the image wherea speci�ed shift is present between LPt and LPt�1. DFMs;t denotes the mapat time t with a shift value s and is obtained by correlating LPt with LP st�1(where the superscript indicates the amount of shift).In order to reduce the number of false matches, the correlation is performedin a higher dimensional space by analyzing the responses of �ve di�erent �lters(from the same basis set as in the static feature case).3.2 Visual RoutinesBasic operations are combined into more complex, task-speci�c routines. Sincethe routines are task-speci�c, they make use of high level information (eg. ageometric road model, known ego-motion, etc.) to limit the region of the imagethat needs to be analyzed, which leads to reduced processing time. We haveimplemented routines for stop light, stop sign and looming detection.Stop light detection. The stop light detection routine is an application ofthe color blob detection primitive to a restricted part of the image. Speci�cally,it searches for red blobs in the upper part of the image. If two red blobs arefound within the search area, then a stop light is signaled.Currently, the search window is �xed a priori. Once we have a road detectionroutine, we will use that information to adjust the position and size of thewindow dynamically.Stop sign detection. The area searched for stop signs is the one on theright side of the road (the white rectangle in the right side of every image in�gure 3). First, the color primitive is applied to detect red blobs in this area,which are candidates for stop signs. Since other red objects can appear inthis region (such as billboards, brick walls, etc.) the color test alone is notenough for detecting the stop signs, being used just as a \focus of attention"mechanism to further limit the image area that is analyzed.6
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Figure 4: The overall looming detection routine combines the results of twodynamic feature maps, one using a positive shift, another using a negativeshift.Once a red blob is detected, the static feature primitive is applied to de-termine whether any of the �lter responses rix;y in that area (dashed whiterectangle) matches the previously stored response for a stop sign rm. If the er-ror (di�erence) is below some predetermined threshold, a stop sign is reported.The two routines have been tested both in simulation and on real worldvideo sequences. Sample results are presented in [10]Looming detection. The looming detection routine applies two instancesof the dynamic feature primitive (for two equal shifts of opposite signs) onconsecutive frames in log-polar coordinates. Figure 4 illustrates the main stepsand some intermediate results for the case when the leading car is approaching(expanding from It�1 to It). Consequently, features on the car shift to theright from LPt�1 to LPt and show up in DFMs;t but not in DFM�s;t.A single dynamic feature map DFMt is computed as the di�erence ofDFMs;t and DFM�s;t. By taking the di�erence of the two maps, the sen-sitivity to speeds in the region where the distributions for s and �s overlapis reduced. This is visible in �gure 4, where features from the building in thebackground are present in both DFMs;t and DFM�s;t, but cancel each otherin DFMt, which contains only the features corresponding to the car.DFMt is analyzed for blobs and the list of blobs (with size, centroid andsign) is returned. The sign indicates whether it is a dilation or a contraction.If there is more than one blob, the correspondence is determined across framesbased on the distance between them. The tracking can be further simpli�ed byanalyzing only a sub-window of the dynamic feature map corresponding to aregion of interest in the original image (eg. the lower part if the shadow underthe lead vehicle is tracked).3.3 Driving BehaviorsVisual routines are highly context dependent, and therefore need an envelop-ing construct to interpret their results. For example, the stop light detector7
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A BFigure 5: Finite state machines used for two driving behaviors (A tra�c light be-havior and B stop sign behavior).assumes the lights are in a certain position when gaze is straight ahead, thusthe stop light behavior has to enforce this constraint. To do this, the behaviorsare implemented as �nite state machines, presented in �gure 5.Tra�c light behavior. The initial state is \Look for stop lights", inwhich the tra�c light detection routine is activated. If no red light is detectedthe behavior returns immediately. When a red light is detected, the vehicle isinstructed to stop and the state changes to \Wait for green light" in which thered light detector is executed. When the light changes to green, the routinewill return \No red light" at which time the vehicle starts moving again andthe behavior completes.Stop sign behavior. In the \Look for stop signs" state the stop sign de-tection routine is activated. If no sign is detected the behavior returns immedi-ately. When a stop sign is detected, the agent needs to stop at the intersection.Since we don't have an intersection detector yet, once the stop sign is detected,the state changes to \Track stop sign" in which the vehicle moves forward whiletracking the sign. When the sign is no longer visible, a new state is entered inwhich the agent stops and pans the camera left and right.Car following behaviors. The looming detection routine can be used tobuild a car following behavior. Two such behaviors are presented, one purelyreactive and another one that tries to maintain a constant distance to theleading vehicle.Reactive behavior. This behavior does not model the motion of the leadingvehicle. It has a default speed Vdef , at which the vehicle is moving if nothing isdetected by the looming routine. When there is something looming in front ofthe vehicle, the routine returns the horizontal coordinate of the correspondingblob centroid in the DFM and its sign. Based on these two inputs, the desiredspeed Vdes is computed to ensure that the maximum brake is applied whenthe leading vehicle is close and approaching and the maximum accelerationis applied when the distance to the lead vehicle is large and increasing. Theactual vehicle speed is determined by the current speed, the desired speed andvehicle dynamics.Constant distance behavior. This behavior tries to maintain a constant8



distance to the leading vehicle by monitoring the position of the blob centroidxc in the dynamic feature map. The desired relative distance is speci�ed bythe corresponding horizontal position in log-polar coordinates xdes. The errorsignal xerr = xdes � xc is used as input to a proportional plus integral (PI)controller whose output is the vehicle desired speed.3.4 SchedulingGiven a set of behaviors, and a limited processing capacity, the next problemto address is how to schedule them in order to ensure that the right behavioris active at the right time. This issue has been addressed by other researchersand several solutions have been proposed: inference trees [9], and more recently,distributed architectures with centralized arbitration [12].We are currently investigating di�erent alternatives for the scheduler design.So far our principal method is to alternate between the existing behaviors, butthere are important subsidiary considerations. One is that the performanceof di�cult or important routines can be improved by scheduling them morefrequently. Another is that the performance of such routines can be furtherimproved by altering the behavior, for example by slowing down. The e�ect ofdi�erent scheduling policies is addressed in [10].4 ExperimentsThe two car following behaviors have been tested in simulation. The lead-ing vehicle is moving at a constant speed of 48 km/h and the initial distancebetween vehicles was around 20 meters.For the reactive case, the default speed was set to 58 km/h. The resultsare shown in the center column of �gure 6: the upper plot is the vehicle speed,and the lower one is the relative distance. The reactive characteristic of thebehavior is noticeable in the speed pro�le, which has a seesaw pattern. Thedistance to the leading car varies signi�cantly, which is to be expected sincethe controller has no model of the relative position of the vehicles.In the case of the constant distance behavior, the desired position was setinitially to correspond to a relative distance of about 20 meters, and after 10seconds it was changed to a relative distance of about 11 meters. The upperright plot in �gure 6 shows the speed pro�le of the vehicle, which is closer tothe speed of the leading vehicle than in the reactive case. Also, the relativedistance (lower right plot) varies signi�cantly less around the desired value.The response to the step change is relatively slow (about 10 seconds to getat the new relative distance), but this is determined by the parameters of thecontroller. We have not extensively experimented with the possible parametervalues, the main focus so far being to show that the looming detection routineprovides a robust enough signal that can be used in a car following behavior.The leftmost column in �gure 6 shows the results for a human driving in thesame virtual environment. The fact that humans also exhibit a characteristicsawtooth pattern in speed change may suggest that they rely on the looming9
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Figure 6: Vehicle speed (up) and distance between vehicles (down) for a humandriver (left) and two instances of the robot driver with di�erent car followingbehaviors: reactive (center) and constant distance (right). The results showthat the former has an absolute error of about 5 meters and the latter about1.5 meters.cue for car following (as opposed to using other image cues to estimate therelative distance).The tests here have assumed the functioning of the tracking system that canidentify the rough position of the lead vehicle during turns. This information isin the optic 
ow of the dilation and contraction images in that vertical motionof the correlation images indicates turns. Figure 7 shows the real angularo�set (dotted line) and the value recovered from the vertical position of theblob corresponding to the lead vehicle in the dynamic feature map (solid line).The right side shows the same data, after removing the lag. Our future plan isto use the measured angular o�set to control the panning of the virtual camerain order to maintain �xation on the lead vehicle when it turns.5 ConclusionsDriving is a demanding dynamically changing environment that places severetemporal demands on vision. These demands arise owing to the need to do avariety of things at once. One way to meet them is to use specially-designedvisual behaviors that are geared to sub-parts of the task. Such visual behaviorsin turn use visual routines that are specialized to location and function. Ourhypothesis is that:1. The complex behavior of driving can be decomposed into a large libraryof such behaviors, and2. At any moment the tactical demands of driving can be meet by special10
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Figure 7: Left: Angular o�set of the lead vehicle in the visual �eld of thefollower for a road segment with two turns (the camera is looking straightahead); Right: Same data, after removing the lag due to rendering and imageprocessing.purpose hardware that runs just a collection of these behaviors, and3. The appropriate subset of such routines can be selected by a schedulingalgorithm that requires a much slower temporal bandwidth.We demonstrated this design by implementing three such behaviors, a stopsign behavior, a tra�c light behavior and a car following behavior. All threetake advantage of special purpose video pipeline processing to execute in ap-proximately 100 milliseconds, thus allowing real-time behavior.The tests of the looming behavior show that it is extremely robust, and iscapable of following cars over a wide range of speeds and following distances.The obvious alternate strategy for car-following would be to track points onthe lead car. This has been tried successfully [2] but requires that the trackeridentify points on the vehicle over a wide variety of illumination conditions.In contrast the method herein does not require that the scene be segmentedin any way. It only requires that the visual system can track the lead vehicleduring turns and that the relative speeds between them are slower than theirabsolute speeds.As of this writing, the various behaviors have only been tested under sim-ple conditions. Future work will test the robustness of the scheduler undermore complicated driving scenarios where the demands of the visual behav-iors interact. One such example is that of following a car while obeying tra�clights.The demonstration system is a special design that allows the output of aSilicon Graphics Onyx In�nite Reality to be sent directly to the video pipelinecomputer. The results of visual processing are then sent to the car modeland appropriate driving corrections are made. This design is useful for rapid11
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