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1 Introduction

Automated driving holds the promise of improving traffic safety, alleviating
highway congestion and saving fuel. The continuous increase in processor speed
over the last decade has led to an increased effort in research on automated
driving in several countries [1]. However, autonomous tactical level driving (i.e.
having the ability to do traffic maneuvers in complex, urban type environments)
is still an open research problem.

As little as a decade ago, it was widely accepted that the visual world could
be completely segmented into identified parts prior to analysis. This view was
supported in part by the belief that additional computing cycles would even-
tually be available to solve this problem. However the complexity of vision’s
initial segmentation can easily be unbounded for all practical purposes, so that
the goal of determining a complete segmentation of an individual scene in real
time is impractical. Thus to meet the demands of ongoing vision, the focus has
shifted to a more piecewise and on-line analysis of the scene, wherein just the
products needed for behavior are computed as needed. Such products can be
computed by visual routines [14], special purpose image processing programs
that are designed to compute specific parameters that are used in guiding the
vehicle.

This paper describes the development and testing of visual routines for
vehicle control. It addresses the generation of visual routines from images using
appearance based models of color and shape. The visual routines presented here
are a major component of the perception subsystem of an intelligent vehicle.
The idea of visual routines is compelling owing to the fact that being special-
purpose vast amounts of computation can be saved. For this reason they have
been used in several simulations (eg. [9]), but so far they have been used in
image analysis only in a few restricted circumstances.
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2 Photo-realistic simulation

Autonomous driving is a good example of an application where it is necessary
to combine perception (vision) and control. However, testing such a system
in the real world is difficult and potentially dangerous, especially in complex
dynamic environments such as urban traffic.

Given recent advances in computer graphics, both in terms of the quality
of the generated images and the rendering speed, we believe that a viable
alternative to initial testing in the real world is provided by integrating photo-
realistic simulation and real-time image processing. This allows testing the
computer vision algorithms under a wide range of controllable conditions, some
of which would be too dangerous to do in an an actual car. The resultant
testbed leads to rapid prototyping.

Terzopoulos pioneered the use of simulated images in his animat vision
architecture. However, in their approach all the processing is carried out in
software, one of the motivations for the architecture being that it avoids the
difficulties associated with “hardware vision” [13]. In our case, the graphical
output from the simulator is sent to a separate subsystem (host computer
with pipeline video processor) where the images are analyzed in real-time and
commands are sent back to the simulator (figure 1). The images are generated
by an SGI Onyx Infinite Reality engine which uses a model of a small town and
the car. Visual routines are scheduled to meet the temporary task demands
of individual driving sub-problems such as stopping at lights and traffic signs.
The output of the visual routines is used to control the car which in turn affects
the subsequent images. In addition to the simulations, the routines are also
tested on similar images generated by driving in the real world to assure the
generalizability of the simulation.

The simulator can also be used with human subjects who can drive a kart
through the virtual environment while wearing head mounted displays (HMD).
A unique feature of our driving simulator is the ability to track eye movements
within a freely moving VR helmet which allows us to explore the scheduling
tradeoffs that humans use. This provides a benchmark for the automated driver
and also is a source for ideas as to priorities assigned by the human driver. In
particular, the fixation point of the eyes at any moment is an indicator of
the focus of attention for the human operator. Experiments show that this
fixation point can be moved at the rate of one fixation every 0.3 to 1 second.
Studying the motion of this fixation point provides information on how the
human driver is allocating resources to solve the current set of tactical driving-
related problems.

3 Perceptual and Control Hierarchy

The key problem in driving at a tactical level is deciding what to attend to. In
our system this problem is mediated by a scheduler, which decides which set of
behaviors to activate. The central thesis is that, at any moment, the demands
of driving can be met by a small number of behaviors. These behaviors, in turn,
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Figure 1: The graphical output of the simulator is sent to the real-time image
processing hardware (Datacube color digitizer and MV200 processing board)
which is connected to a host computer. The host analyzes the incoming images
and sends back to the simulator controls for the vehicle and virtual camera.

invoke a library of visual routines. Recent studies have shown that humans also
switch among simple behaviors when solving more complex tasks [4].

The hierarchy of perception and control levels that forms the framework for
driving is presented in figure 2. While not exhaustive, all the relevant levels
in implementing a behavior are represented. At the top a scheduler selects
from a set of task-specific behaviors the one that should be activated at any
given moment. The behaviors use wvisual routines to gather the information
they need and act accordingly. Finally, the visual routines are composed from
an alphabet of basic operations (similar to Ullman’s proposal [14]).

The hierarchy in Figure 2 has many elements in common with that of Mau-
rer and Dickmanns [6]. The main difference is one of emphasis. We have
focused on the role of perception in vehicle control, seeking to compute task-
related invariants that simplify individual behaviors.

To illustrate how modules on different levels in the hierarchy interact, con-
sider the case when the scheduler activates the stop sign behavior. To determine
whether there is a stop sign within certain range, the stop sign detection visual
routine is invoked. The routine in its turn uses several basic operations to
determine if a stop sign is present. For instance, it uses color to reduce the
image area that needs to be analyzed. If there are any red blobs, they are
further verified to see if they represent stop signs by checking distinctive image
features. Finally, the routine returns to its caller with an answer (stop sign
found or not).

If no stop sign was detected, that information is passed to the scheduler
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Figure 2: Hierarchy of perceptual and control modules. At the top level, the
scheduler selects the behavior that is currently active. This behavior uses one or
more visual routines to gather the information it needs to take the appropriate
decisions. The routines are composed from a set of low-level basic operations.
Shaded modules are the ones currently implemented.

which can then decide what behavior to activate next. On the other hand, if a
stop sign was found, the agent has to stop at the intersection to check for traffic.
For that, it needs to know where the intersection is, so the intersection detection
routine will be activated. It can use static image features (eg. lines, corners)
to determine where in the image the intersection is located. At the behavior
level this information can be used for visual servoing until the intersection is
reached.

The shaded modules in figure 2 are the ones that have been implemented
so far. Road following has been intensely studied for more than a decade [1],
[7] and it was successfully demonstrated at high speeds and over extended
distances. Therefore we decided not to duplicate these efforts initially and
instead to take advantage of the simulated environment. In our experiments
the car is moving on a predefined track and the driving program controls the
acceleration (the gas and break pedals ).

3.1 Basic operations

At the lowest level in the hierarchy are basic operations. These are simple low-
level functions which can be used in one or more of the higher level task-specific
visual routines. The implementation uses special real-time image processing
hardware, namely two Datacube boards. One is a color digitizer (Digicolor)
and the other is the main processing board (MV200).

Color. The role of the color primitive is to detect blobs of a given color.
An incoming color image is digitized in the Hue, Saturation, Value color space.
Colors are defined as regions in the hue-saturation sub-space and a lookup table



is programmed to output a color value for every hue-saturation input pair. A
binary map corresponding to the desired color is further extracted and analyzed
using a blob labeling algorithm. The end result is a list of bounding rectangles
for the blobs of that color.

Static features. The role of the static feature primitive is to detect objects
of a specific appearance. It uses steerable filters, first proposed by Freeman
and Adelson [3], who showed how a filter of arbitrary orientation and phase
can be synthesized from a set of basis filters (oriented derivatives of a two-
dimensional, circularly symmetric Gaussian function). Other researchers have
used these filters for object identification [8]. The idea is to create a unique
index for every image location by convolving the image at different spatial
resolutions with filters from the basis set. If M filters are applied on the image
at N different scales, an M x N element vector response is generated for every
image position. For appropriate values of M and N, the high dimensionality
of the response vector ensures its uniqueness for points of interest.

Searching for an object in an image is realized by comparing the index of
a suitable point on the model with the index for every image location. The
first step is to store the index (response vector) r™ for the chosen point on
the model object. To search for that object in a new image the response r! at
every image point is compared to r™ and the one that minimizes the distance
dim = ||r' — r™|| is selected, provided that d;,, is below some threshold.

More details about the color and static feature primitives and their real-time
implementation on the Datacube hardware are given in [10].

Dynamic features. The goal of this primitive is to detect features that
expand or contract in the visual field. The primitive combines three separate
characteristics. Each of these have been explored independently, but our design
shows that there are great benefits when they are used in combination, given
the particular constraints of the visual environment during driving. The first
characteristic is that of the special visual structure of looming itself. In driving,
closing or losing ground with respect to the vehicle ahead creates an expansion
or contraction of the local visual field with respect to the point of gaze [5].
The second one is that the expansion and contraction of the visual field can be
captured succinctly with a log-polar mapping of the image about the gaze point
[11]. The third characteristic is that the looming is detected by correlating the
responses of multiple oriented filters.

Starting from I;, the input image at time ¢, the first step is to create LP;,
the log-polar mapping at time ¢t. This is done in real time on the pipeline video
processor using the miniwarper, which allows arbitrary warps. Since dilation
from the center in the original image becomes a shift in the new coordinates,
detecting looming in the original input stream I; translates into detecting hor-
izontal shifts in the stream of transformed images LP;, with 0 < < ¢4z

Another reason for using a log-polar mapping is that the space-variant sam-
pling emphasizes features in the foveal region while diminishing the influence
of those in the periphery of the visual field (figure 4 left). This is useful in the
car following scenario, assuming fixation is maintained on the leading vehicle,
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Figure 3: Stop sign detection routine.

since it reduces the chance of false matches in the periphery.

The Dynamic Feature Map (DFM) indicates the regions in the image where
a specified shift is present between LP; and LP;_,. DF M, ; denotes the map
at time ¢t with a shift value s and is obtained by correlating LP; with LP?
(where the superscript indicates the amount of shift).

In order to reduce the number of false matches, the correlation is performed
in a higher dimensional space by analyzing the responses of five different filters
(from the same basis set as in the static feature case).

3.2 Visual Routines

Basic operations are combined into more complex, task-specific routines. Since
the routines are task-specific, they make use of high level information (eg. a
geometric road model, known ego-motion, etc.) to limit the region of the image
that needs to be analyzed, which leads to reduced processing time. We have
implemented routines for stop light, stop sign and looming detection.

Stop light detection. The stop light detection routine is an application of
the color blob detection primitive to a restricted part of the image. Specifically,
it searches for red blobs in the upper part of the image. If two red blobs are
found within the search area, then a stop light is signaled.

Currently, the search window is fixed a priori. Once we have a road detection
routine, we will use that information to adjust the position and size of the
window dynamically.

Stop sign detection. The area searched for stop signs is the one on the
right side of the road (the white rectangle in the right side of every image in
figure 3). First, the color primitive is applied to detect red blobs in this area,
which are candidates for stop signs. Since other red objects can appear in
this region (such as billboards, brick walls, etc.) the color test alone is not
enough for detecting the stop signs, being used just as a “focus of attention”
mechanism to further limit the image area that is analyzed.
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Figure 4: The overall looming detection routine combines the results of two

dynamic feature maps, one using a positive shift, another using a negative
shift.

Once a red blob is detected, the static feature primitive is applied to de-
termine whether any of the filter responses r;y in that area (dashed white
rectangle) matches the previously stored response for a stop sign r™. If the er-
ror (difference) is below some predetermined threshold, a stop sign is reported.

The two routines have been tested both in simulation and on real world
video sequences. Sample results are presented in [10]

Looming detection. The looming detection routine applies two instances
of the dynamic feature primitive (for two equal shifts of opposite signs) on
consecutive frames in log-polar coordinates. Figure 4 illustrates the main steps
and some intermediate results for the case when the leading car is approaching
(expanding from I; ; to I;). Consequently, features on the car shift to the
right from LP;_; to LP; and show up in DF M, but not in DFM_ ;.

A single dynamic feature map DF M, is computed as the difference of
DFM,; and DFM_,;. By taking the difference of the two maps, the sen-
sitivity to speeds in the region where the distributions for s and —s overlap
is reduced. This is visible in figure 4, where features from the building in the
background are present in both DF M, and DFM_,;, but cancel each other
in DF M;, which contains only the features corresponding to the car.

DF M; is analyzed for blobs and the list of blobs (with size, centroid and
sign) is returned. The sign indicates whether it is a dilation or a contraction.
If there is more than one blob, the correspondence is determined across frames
based on the distance between them. The tracking can be further simplified by
analyzing only a sub-window of the dynamic feature map corresponding to a
region of interest in the original image (eg. the lower part if the shadow under
the lead vehicle is tracked).

3.3 Driving Behaviors

Visual routines are highly context dependent, and therefore need an envelop-
ing construct to interpret their results. For example, the stop light detector
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Figure 5: Finite state machines used for two driving behaviors (A traffic light be-
havior and B stop sign behavior).

assumes the lights are in a certain position when gaze is straight ahead, thus
the stop light behavior has to enforce this constraint. To do this, the behaviors
are implemented as finite state machines, presented in figure 5.

Traffic light behavior. The initial state is “Look for stop lights”, in
which the traffic light detection routine is activated. If no red light is detected
the behavior returns immediately. When a red light is detected, the vehicle is
instructed to stop and the state changes to “Wait for green light” in which the
red light detector is executed. When the light changes to green, the routine
will return “No red light” at which time the vehicle starts moving again and
the behavior completes.

Stop sign behavior. In the “Look for stop signs” state the stop sign de-
tection routine is activated. If no sign is detected the behavior returns immedi-
ately. When a stop sign is detected, the agent needs to stop at the intersection.
Since we don’t have an intersection detector yet, once the stop sign is detected,
the state changes to “Track stop sign” in which the vehicle moves forward while
tracking the sign. When the sign is no longer visible, a new state is entered in
which the agent stops and pans the camera left and right.

Car following behaviors. The looming detection routine can be used to
build a car following behavior. Two such behaviors are presented, one purely
reactive and another one that tries to maintain a constant distance to the
leading vehicle.

Reactive behavior. This behavior does not model the motion of the leading
vehicle. It has a default speed Vs, at which the vehicle is moving if nothing is
detected by the looming routine. When there is something looming in front of
the vehicle, the routine returns the horizontal coordinate of the corresponding
blob centroid in the DF M and its sign. Based on these two inputs, the desired
speed Vjes is computed to ensure that the maximum brake is applied when
the leading vehicle is close and approaching and the maximum acceleration
is applied when the distance to the lead vehicle is large and increasing. The
actual vehicle speed is determined by the current speed, the desired speed and
vehicle dynamics.

Constant distance behavior. This behavior tries to maintain a constant



distance to the leading vehicle by monitoring the position of the blob centroid
Z. in the dynamic feature map. The desired relative distance is specified by
the corresponding horizontal position in log-polar coordinates xg4.s. The error
signal Zepr = Xges — x. is used as input to a proportional plus integral (PI)
controller whose output is the vehicle desired speed.

3.4 Scheduling

Given a set of behaviors, and a limited processing capacity, the next problem
to address is how to schedule them in order to ensure that the right behavior
is active at the right time. This issue has been addressed by other researchers
and several solutions have been proposed: inference trees [9], and more recently,
distributed architectures with centralized arbitration [12].

We are currently investigating different alternatives for the scheduler design.
So far our principal method is to alternate between the existing behaviors, but
there are important subsidiary considerations. One is that the performance
of difficult or important routines can be improved by scheduling them more
frequently. Another is that the performance of such routines can be further
improved by altering the behavior, for example by slowing down. The effect of
different scheduling policies is addressed in [10].

4 Experiments

The two car following behaviors have been tested in simulation. The lead-
ing vehicle is moving at a constant speed of 48 km/h and the initial distance
between vehicles was around 20 meters.

For the reactive case, the default speed was set to 58 km/h. The results
are shown in the center column of figure 6: the upper plot is the vehicle speed,
and the lower one is the relative distance. The reactive characteristic of the
behavior is noticeable in the speed profile, which has a seesaw pattern. The
distance to the leading car varies significantly, which is to be expected since
the controller has no model of the relative position of the vehicles.

In the case of the constant distance behavior, the desired position was set
initially to correspond to a relative distance of about 20 meters, and after 10
seconds it was changed to a relative distance of about 11 meters. The upper
right plot in figure 6 shows the speed profile of the vehicle, which is closer to
the speed of the leading vehicle than in the reactive case. Also, the relative
distance (lower right plot) varies significantly less around the desired value.
The response to the step change is relatively slow (about 10 seconds to get
at the new relative distance), but this is determined by the parameters of the
controller. We have not extensively experimented with the possible parameter
values, the main focus so far being to show that the looming detection routine
provides a robust enough signal that can be used in a car following behavior.

The leftmost column in figure 6 shows the results for a human driving in the
same virtual environment. The fact that humans also exhibit a characteristic
sawtooth pattern in speed change may suggest that they rely on the looming
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Figure 6: Vehicle speed (up) and distance between vehicles (down) for a human
driver (left) and two instances of the robot driver with different car following
behaviors: reactive (center) and constant distance (right). The results show
that the former has an absolute error of about 5 meters and the latter about
1.5 meters.

cue for car following (as opposed to using other image cues to estimate the
relative distance).

The tests here have assumed the functioning of the tracking system that can
identify the rough position of the lead vehicle during turns. This information is
in the optic flow of the dilation and contraction images in that vertical motion
of the correlation images indicates turns. Figure 7 shows the real angular
offset (dotted line) and the value recovered from the vertical position of the
blob corresponding to the lead vehicle in the dynamic feature map (solid line).
The right side shows the same data, after removing the lag. Our future plan is
to use the measured angular offset to control the panning of the virtual camera
in order to maintain fixation on the lead vehicle when it turns.

5 Conclusions

Driving is a demanding dynamically changing environment that places severe
temporal demands on vision. These demands arise owing to the need to do a
variety of things at once. One way to meet them is to use specially-designed
visual behaviors that are geared to sub-parts of the task. Such visual behaviors
in turn use visual routines that are specialized to location and function. Our
hypothesis is that:

1. The complex behavior of driving can be decomposed into a large library
of such behaviors, and

2. At any moment the tactical demands of driving can be meet by special
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Figure 7: Left: Angular offset of the lead vehicle in the visual field of the
follower for a road segment with two turns (the camera is looking straight
ahead); Right: Same data, after removing the lag due to rendering and image
processing.

purpose hardware that runs just a collection of these behaviors, and

3. The appropriate subset of such routines can be selected by a scheduling
algorithm that requires a much slower temporal bandwidth.

We demonstrated this design by implementing three such behaviors, a stop
sign behavior, a traffic light behavior and a car following behavior. All three
take advantage of special purpose video pipeline processing to execute in ap-
proximately 100 milliseconds, thus allowing real-time behavior.

The tests of the looming behavior show that it is extremely robust, and is
capable of following cars over a wide range of speeds and following distances.
The obvious alternate strategy for car-following would be to track points on
the lead car. This has been tried successfully [2] but requires that the tracker
identify points on the vehicle over a wide variety of illumination conditions.
In contrast the method herein does not require that the scene be segmented
in any way. It only requires that the visual system can track the lead vehicle
during turns and that the relative speeds between them are slower than their
absolute speeds.

As of this writing, the various behaviors have only been tested under sim-
ple conditions. Future work will test the robustness of the scheduler under
more complicated driving scenarios where the demands of the visual behav-
iors interact. Omne such example is that of following a car while obeying traffic
lights.

The demonstration system is a special design that allows the output of a
Silicon Graphics Onyx Infinite Reality to be sent directly to the video pipeline
computer. The results of visual processing are then sent to the car model
and appropriate driving corrections are made. This design is useful for rapid
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prototyping, allowing many situations to be explored in simulation that would
be dangerous, slow or impractical to explore in a real vehicle.
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