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Abstract We propose a gesture recognition technique

based on RFID: cheap and unintrusive passive RFID tags

can be easily attached to or interweaved into user clothes,

which are then read by RFID antennas. These readings can

be used to recognize hand gestures, which enable interac-

tion with applications in an RFID-enabled environment.

For instance, it allows people to interact with large displays

in public collaboration spaces without the need to carry a

dedicated device. We propose the use of multiple hypoth-

esis tracking and the use of subtag count information to

track the motion patterns of passive RFID tags. To the best

of our knowledge, this work is the first on motion pattern

tracking using passive RFID tags. Despite the reading

uncertainties inherent in passive RFID technology, our

experiments show that the proposed gesture recognition

technique has an accuracy of up to 93%.

Keywords RFID � Gesture recognition �
Space partitioning

1 Introduction

Ubiquitous computing enables omnipresent and intuitive

interaction of people with their surrounding environment.

The use of hand gestures for natural human computer

interaction attracts great interest. Hand gesture recognition

systems allow us to interact with and control computing

devices and applications in intelligent environments [10].

Hand gesture recognition techniques can be mainly

divided into vision-based and device-based techniques.

Pavlovic et al. [17] give a comprehensive review of vision-

based gesture recognition techniques. The challenges in

such techniques are cluttered backgrounds and varying

illuminations, especially in public places. Moreover,

recording user movements using video is resource intensive.

Device-based hand gesture recognition techniques use

glove-based equipments or accelerometer-enabled devices

such as the Wiimote to measure user movements. Glove-

based techniques [13, 19] are relatively intrusive for users.

A less intrusive glove-based gesture recognition technique

is proposed by Rahman et al. [24]: an infrared (IR) camera

tracks an infrared emitter attached to a user’s hand gloves

and produces a sequence of motion points to recognize the

intended hand gesture. Similarly, in the study by [26], on

both user hands, thumb and index finger are equipped with

retro-reflective markers that are tracked by a Wiimote. A

finger pairing and pinch recognition method is then used to

discriminate the hands and to initiate actions. The line-of-

sight alignment requirement is the main drawback of sys-

tems based on IR technology. Accelerometer-enabled

devices, on the other hand, while accurate and less intru-

sive, are not readily available in public places.

In this paper, we propose the use of passive radio-fre-

quency identification (RFID) to facilitate natural user

interaction. RFID is an effective automatic identification

technology that allows for easy proximity sensing of tag-

ged objects. Objects tagged with small inexpensive and

unintrusive passive RFID tags can be sensed from a few

centimeters up to several meters. Passive RFID tags
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operate without a battery, and it is possible to tag large

collections of objects with multiple tags. All RFID tags

contain unique identification numbers along with other data

to easily identify tagged objects.

Typically, RFID tags are used for supply chain man-

agement and automatic identification of objects [2, 4].

They also allow us to augment physical objects and the

environment with digital information [25] and to monitor

indoor human activities [8] or to detect people’s interac-

tions with RFID-tagged objects [11]. RFID tags have also

been deployed as landmarks on the floor or within the

environment to support navigation of mobile robots

equipped with RFID readers [16, 20]. Moreover, many

location-sensing techniques have been developed that use

RFID technology, which are discussed in Sect. 2.

We propose the use of multiple hypothesis tracking to

track the motion patterns of RFID tags and recognize a

gesture. We use a combined tag consisting of multiple

subtags to increase the readout reliability of the RFID

readers. We also incorporate the subtag count information

to improve the accuracy of our technique. Since there is no

line-of-sight requirement, the user can easily draw the

intended gesture. New gestures can also be easily added to

the system as no training is required. Furthermore, multiple

users can use the system without increasing the system

complexity.

Because of the various error sources in passive RFID

systems, reliable operation as the tag moves in the envi-

ronment is inherently difficult and presents a significant

challenge [15]. Particularly in a multi-tag and multi-reader

configuration false-negative readings occur [12], i.e., a

present tag is not detected. Researchers suggested different

ways to deal with the resulting uncertainty in passive RFID

systems, such as the use of the percentage of positive tag

reads [28] or simple filtering mechanisms [7], which are

only applicable if the object is stationary. To the best of our

knowledge, we are the first to study the motion pattern

tracking of passive RFID tags in a multi-reader, multi-tag

environment.

We have implemented a prototype of our system and

conducted a detailed performance evaluation. Our results

show that the system can recognize hand gestures with up

to 93% accuracy, without requiring any learning or train-

ing. We also show our initial findings for independent

gesture recognition of two users.

Our system provides support for a variety of applica-

tions. Users could interact with large displays in public

collaboration spaces without the need to carry a device, use

hand gestures to interact with devices like turning on a

projector in a lecture theater, moving an advertisement

page on a public display, or control gaming devices. Tag-

ged gloves, for example, can be designed to be worn by a

user for the purpose of recognizing her interactions with

objects in her physical surroundings.

In the remainder of this paper, we first discuss differ-

ent location-sensing techniques using RFID technology

(Sect. 2). Section 2 also describes space partitioning, which

is the positioning technique that we use to track RFID tag

motions. Section 3 details our setup. Our proposed tracking

technique is described in Sects. 3.1 and 3.2. We then show

the experimental results and evaluate the performance in

Sect. 4. We conclude in Sect. 5.

2 Related work

There are a number of location-sensing techniques based

on active RFID technology that measures the received

signal strength (RSS) to estimate a tag’s location [5]. RSS

is usually severely affected by the propagation environ-

ment and the tagged object properties. Moreover, it cannot

be universally approximated with a distance-dependent

path loss model. Therefore, the use of RSS in tag locali-

zation is more accurate for active tags since they carry a

power source and hence have more stable performance

within crowded environments.

To localize passive RFID tags, some researchers use

angulation technique to estimate the direction of arrival of a

tag signal by measuring phases [23, 29] or the relative

strength ratio [21] of the received signal at several receiving

antennas. Nikitin et al. [23] also estimate distance to the tag

by measuring tag phase at different frequencies. Further-

more, Wilson et al. [28] use the percentage of positive tag

reads as an indication of distance and Chawla et al. [9] infer

a tag’s position based on the relative power level that is

necessary for a reader to detect the tag.

A number of passive RFID-based location-sensing

systems use only the presence information from RFID

readers to localize a tag. RFID readers can only sense the

presence of a tag within their detection fields, providing

proximity information of the tag, but they cannot directly

determine the tag’s distance to the reader. However, one

positive detection of a tag greatly reduces its possible

locations, since it indicates that the tag is in the reader’s

detection field. However, the bigger the detection field of

the reader is, the more uncertainty is in the localization of

the tag.

The tag readings from a mobile RFID reader from dif-

ferent vantage points can be combined to reduce the

uncertainty in a tag’s location and to estimate the where-

abouts of the tag more precisely. This technique has been

employed in design of Ferret [18] and Sherlock [22] to

estimate the position of tagged objects in a room swept by

readers.
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The area of uncertainty can also be reduced if the out-

puts of several readers are combined and analyzed. Mul-

tiple stationary RFID readers/antennas attached to readers

can be used to detect the presence or absence of a tag.

Combining the detection results of all antennas provides a

more accurate estimation of the location of a tag at a given

time: the monitored area is divided into multiple partitions

so that each partition is in detection fields of a particular set

of antennas. We refer to the technique of using stationary

RFID antennas to partition a space as space partitioning.

Figure 1 shows the partitioning of a rectangular space

using two directional antennas A1 and A2. The monitored

area is divided into four partitions p1 to p4 by the two

antennas. These partitions are distinguishable in the sense

that each partition is covered by detection fields of a dif-

ferent set of antennas. A tag detected by both antennas, for

example, is estimated to be in partition p3; whereas, a tag

detected by A1 only, is estimated to be in partition p1.

We differentiate the created partitions by their assigned

codes. In an arrangement of n antennas, an n-bit binary

code (BC) of partition pi is BC½pi� ¼ bc1; bc2; . . .; bcn: The

kth bit is set if partition pi is within the detection field of the

kth antenna. The codes of partitions p1 to p4 in Fig. 1a are

shown in Fig. 1b.

A basic implementation of this technique is presented in

the study by [14], in which a table surface is equipped with

an array of omni-directional RFID antennas and is hence

divided into many distinguishable partitions. When a multi-

tagged object is placed on the equipped surface, the par-

tition each individual tag is within is determined based

on the reading results gathered from readers. Bouet and

Pujolle [6] have also used space partitioning to localize

tagged objects in a room equipped with equally distanced

arranged RFID readers on its floor and ceiling. A tag’s

position is estimated as the center of gravity of the different

volumes formed by the intersection of the reader detection

fields.

Existing passive RFID-based location-sensing tech-

niques mainly focus on localization of stationary tagged

objects [6, 9, 14, 21, 23, 28, 29]. A few of the proposed

methods also try to localize and track moving objects [23,

28, 29] under particular conditions. However, none is

capable of accurate online tracking of arbitrarily moving

tags. In the study by [29], it is assumed that the tag is

moving along a straight line, perpendicular to the reader at

a fixed distance apart and at a known speed. Also, in the

study by [23], the tagged object is moving along one of the

several straight lines, perpendicular to the reader and it

stops periodically to allow the reader to take measurements

of the RSS and phase of the received tag signal on all

frequency channels. Wilson et al. [28] try to estimate the

speed of a mobile reader moving perpendicular to a set of

tags at a known distance apart.

We propose the use of multiple hypothesis tracking

along with subtag count information to track a tag’s motion

and recognize its gesture. Next section describes our

experimental setup to simplify the description of our

algorithm, described in Sects. 3.1 and 3.2.

3 Our RFID-based gesture recognition system

We have built an experimental system using the Skye-

Module M9 UHF reader from SkyeTek [1] (Fig. 2a) and

their linear broadband UHF antennas (Fig. 2b). We chose

UHF tags ISO 18000-6C since they are small and com-

patible with the RFID readers we use (Fig. 2c).

The read range of a M9 SkyeTek reader interrogating

ISO 18000-6C passive tags is around two and a half meters,

when the transmitter’s power output is set to the maximum

of 27 dBm. A sample detection field of a UHF SkyeTek

antenna interrogating ISO 18000-6C passive tags in a

140 cm by 130 cm area on a desk is shown in Fig. 3a. The

area is divided into equally sized square cells, with the side

equal to the width of the used tags, which is 10 cm. To

measure the field, the tag is placed in parallel to the antenna

in each cell and the transmitter’s power output is set to 21

dBm.

The tag-antenna orientation plays an important role in

determining whether the tag receives enough energy to be

detected by the antenna. Particularly, when a tag’s antenna

is perpendicular to the reader’s antenna, it is not detectable

in a large area within the antenna’s detection field

(Fig. 3b), comparing with when the tag is in parallel to the

antenna (Fig. 3a). To increase the reading reliability of a

tag when it is close enough to the antenna, we use a

combined tag instead of a single tag.

As shown in Fig. 2d, our combined tag consists of four

individual colocated tags, where each tag is rotated 45

degrees to its neighbor tag. All single tags, or subtags, in a

combined tag have different identifiers but they are com-

bined to represent one ‘‘super’’ tag: if one of the subtags is

oriented such that it is not detectable by the antenna,

another subtag with a different orientation with respect to

(a) (b)

Fig. 1 Space partitioning using two antennas
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the antenna might be detectable. Our experiments showed

that a combined tag of four subtags is optimal to provide a

consistent antenna field for an arbitrary orientation while

keeping the tag’s reading time small. In the remainder of

this paper, we simply use tag to refer to our combined

supertag.

The tests were conducted in a busy student laboratory.

We monitored a 80cm by 80cm square area on a desk in the

laboratory (Fig. 4a). Similar to the fields shown in Fig. 3,

the square monitored area is divided into 64 equally sized

square cells C00; . . .;C77; as shown in Fig. 4b, with the side

equal to the width of the used tag, which is 10 cm.

The reader works in inventory mode, which runs an anti-

collision protocol to read many tags simultaneously. It is

connected to three antennas (A1-A3) via a multiplexer,

which are placed just outside the monitored area (Fig. 4a).

Time slicing is used to avoid an interference between the

antennas. The three antennas are sequentially energized,

which in turn return the tag identifiers in their detection

fields.

The reader is connected to a laptop via a USB connec-

tion. Using the provided API, we developed a C program,

which periodically returns an inventory of tags within the

range of each antenna. RFID readings are then passed to

Fig. 2 Our a reader b antenna c single tag d combined tag

(a) (b)Fig. 3 Sample antenna’s field,

when the tag is a parallel b
perpendicular to the antenna

(a) (b)Fig. 4 Our monitored area
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the gesture recognizer, which takes a multiple hypothesis

approach to recognize the gestures as described in Sect.

3.2.

3.1 Space partitioning

In Sect. 2, we explained how a monitored area can be

divided into different partitions by a number of antennas

with overlapping fields. Figure 5a shows the partitioning of

our monitored area into ten partitions, at a given time. The

binary code assigned to each partition is shown in Fig. 5b.

Partition p1, for example, is assigned a binary code of 100,

since it is only in the detection field of Antenna A1.

The position and orientation of the antennas are deter-

mined based on the size of the monitored area and the

shape of the antenna fields. They are placed such that they

overlap as much as possible while minimizing the upper-

bound on spatial resolution of the monitored area, such that

the largest diameter of partitions is less than the minimum

size of the intended gestures.

We propose the use of subtag counts, the number of

detected subtags, as another measure to partition a space.

Our experiments show that the subtag counts are an indi-

cation of the relative position of a supertag to the antenna,

regardless of the tag-antenna orientation. Figure 6, for

example, shows the subtag counts (of a supertag composed

of four subtags) detectable by an antenna, in the same area

as Fig. 3.

At any given time, in a system with n antennas, an n-bit

binary code, BC[Ck], is assigned to each cell Ck, the jth

digit of which is set if any subtag of a supertag in cell Ck is

detectable by antenna Aj.

To further improve the accuracy of our tracking method,

we also use subtag count information. A count code,

CC[Ck], is also assigned to each cell Ck, at any given time.

The jth digit of CC[Ck] is set to m if m subtags of a

supertag in cell Ck are detectable by antenna Aj.

Because of false-negative and false-positive readings,

there are always unavoidable uncertainties about the

presence of RFID tags. Tags outside the defined range of an

antenna might be read at times, and similarly, there is no

guarantee that all tags within the range of an antenna are

read at all times. This is the biggest challenge in designing

a passive RFID-based system, especially when antennas

are in close proximity.

To cope with uncertainties in RFID readings, instead of

assigning a fixed code to each cell of the monitored area,

we consider a set of possible codes with their corre-

sponding weights. The weight assigned to each code shows

how probable the occurrence of that particular code is.

Consequently, each cell Ck is assigned two sequences of

pairs of possible codes, BCSEQ and CCSEQ, with their

associated weights as shown below, where n is the number

of antennas and t is the number of subtags in a supertag:

BCSEQ : fðBC1;WðCk;BC1ÞÞ; . . .; ðBCp;WðCk;BCpÞÞg; pmax ¼ 2n

CCSEQ : fðCC1;WðCk;CC1ÞÞ; . . .; ðCCq;WðCk;CCqÞÞg; qmax ¼ ðt þ 1Þn

The code weights are the number of times that a specific

code is read by placing the tag in each cell and being read

multiple times. To minimize the error in the tracking

accuracy, the codes are measured multiple times at

different dates and times of the day and with different

tag-antenna orientations.

(a) (b)

Fig. 5 a The partitioning of our monitored area b Partitions’ codes

Fig. 6 Space partitioning based on subtag counts in the field of a

single antenna

(a) (b) (c)

Fig. 7 a Possible local moves (b–c) Illegal local moves

Pers Ubiquit Comput (2012) 16:225–234 229

123



On the other hand, at any given time, a total weight,

W(Ci, BC, CC) is assigned to each cell, which is a

weighted sum of BC and CC as:

WðCi;BC;CCÞ ¼ WðCi;BCÞ þ a�WðCi;CCÞ; a\1

We give less weight to W(Ci, CC), since it is more

vulnerable to environmental changes. In other words, the

movement pattern of the tag, the position of the user etc.

have more impact on the number of detectable subtags;

whereas BC shows if any of the subtags, no matter how

many, are detectable and hence is less vulnerable to the

environmental changes.

3.2 RFID-based gesture recognition

Whenever a user draws a gesture by moving a tag on the

monitored area, a sequence of readings from RFID anten-

nas is generated. The RFID readings are used to estimate

the track of a tag T, as a sequence of traversed cells:

TrackðTÞ ¼ X1 � X2. . .Xk�1 � Xk;Xi 2 fC00;C01; . . .g;

which is later mapped to a gesture.

The basic approach used to track a tag is to generate a

set of hypotheses to account for all possible tracks of the

tag based on the received RFID readings. The key principle

of this approach is that the track update decisions are

deferred until more RFID readings are received. In our

method, we also incorporate the tag movement pattern

information to overcome the uncertainties in RFID read-

ings and improve the results.

We assume that the tag is either moving horizontally or

vertically, as shown in Fig. 7a. The antennas’ reading

speed is high enough to ensure that the tag does not move

more than one cell away between any two consecutive

readings. Furthermore, Fig. 7b, c show two illegal local

movements, both assuming that the tag is always moving

forward.

Multiple hypothesis tracking is generally used for

solving the data association problem in multiple target

tracking (MTT) systems [3]. However, in tracking multiple

RFID tags, data association is not an issue, since the tag

IDs are transferred to the readers at detection time, and

hence, the readings can be associated with the tags without

any ambiguity. Thus, the problem of tracking multiple tags

can be decomposed into a set of smaller problems of

tracking individual tags. Therefore, tracking of several tags

can be done independently and hence simultaneously.

A flow diagram of our gesture recognition algorithm is

shown in Fig. 8. On the receipt of new data (the kth set of

antenna readings), BCk and CCk codes are generated in

CODEGEN (code generator), as explained in Sect. 3.1. The

INI (initiator) process creates a hypothesis tree once BC0 is

received, which includes as its children the cells Ci with

W(Ci,BC0) [ 0.

On the receipt of new codes BCk and CCk at time

k, HPGEN (hypotheses generator) expands each hypothesis

into a set of new hypotheses by considering all possible

new locations of the tag, which are determined by con-

sidering the possible movements of the tag. Each branch of

the hypothesis tree represents a possible track of the tag,

and nodes of the tree are the cells the tag has traversed. A

hypothesis list is also created that contains all possible

current locations of the tag along with the corresponding

track weight, SWi, which is the sum of the weights of all

cells contained in that track. The track weight is later used

to assess track validation as well as track selection.

Since the complete hypothesis tree for every gesture

grows exponentially as more readings are processed, there

is a clear potential explosion in the number of possible

tracks (hypotheses) that our system can generate. There-

fore, we use two pruning techniques to keep this potential

growth in check, track-based and weight-based pruning

methods, which both eliminate unlikely hypotheses. In the

track-based pruning method, the number of hypotheses is

reduced by eliminating the tracks that are not within the set

of validated paths, following the rules illustrated in

Fig. 7a–c. Moreover, it can be assumed that the tag does

not remain in the same cell for long—the speed of the tag is

greater than a threshold. In weight-based pruning, on the

other hand, the tracks are evaluated based on their weight

and tracks that are unlikely to reach the minimum weight

requirement are removed from the hypothesis tree. This

allows us to use a threshold to reject all tracks rather than

picking the nearest matched track.

Fig. 8 Our gesture recognizer architecture
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In a real-time variant of our system, the size of the

hypothesis tree is significantly reduced by simply pruning

the tracks with consecutive occurrences of the same cells.

Details on run time of the system are included in Sect. 4.

Figure 9 shows a sample hypothesis tree after three sets of

readings are received for our real-time gesture recognition

system. The crossed out nodes are the invalid new positions

because they are a return to an immediate cell, as shown in

Fig. 7b.

The tree expansion process continues until the end of the

gesture, which is recognized by a long sequence of the

same readings, indicating that the tag is stationary. After

the last validation phase, the most likely tracks are the ones

with SW [b 9 SWmax (b = 0.95, in our tests). For each

likely track, the GESREC (gesture recognizer) process then

finds the gesture that best matches that track, using Algo-

rithm 1. The output gesture is the one with maximum

probability of occurrence. If no valid gesture matches any

of the likely tracks, recognition fails.

We use a strict matching algorithm, which first converts

the sequence of traversed cells to a sequence of directional

moves. Sequences of the same movements are recognized,

which can only contain single movements of other

directions. The sequences of different movements are then

looked up in our defined gesture dictionary. Figures 10a–d,

for example, show the matching process of four tracks to

gestures, while Fig. 10b and c show two sample cases

where no valid gesture matches the results.

4 Gesture recognition experiments

In this section, we will report and evaluate the results of our

gesture recognition experiment. The experiments show that

our system can recognize hand gestures with up to 93%

accuracy, without requiring any learning or training. We

will also present our initial findings for independent gesture

recognition of two users (Sect. 4.2). We will first discuss the

factors that influence the accuracy of this technique.

The accuracy of the proposed gesture recognition tech-

nique depends on the size of the partitions relative to the

gestures. For best performance, the created partitions must

be small enough to ensure that every gesture element—

same direction movements—crosses more than one parti-

tion. Otherwise, without further information, inferring the

direction of a tag’s movement is not possible.

Fig. 9 The hypothesis tree

(a) (b) (c) (d)

Fig. 10 Matcher
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The number of antennas, the shape of their detection

fields, their relative positions and orientations determine

the resolution of the space partitioning and, as a result, the

accuracy of the gesture recognition technique. Therefore,

the main challenge is to identify the required number of

antennas, their placement and orientation such that the

monitored area is divided into partitions with desired sizes.

In particular, it is desirable to minimize the upper-bound on

the spatial resolution of the monitored area, such that the

largest diameter of partitions is less than the minimum size

of the gesture elements.

In general, the accuracy can be increased by dividing the

area into smaller partitions, which can be achieved by

employing more antennas. As each antenna requires its

own time slot to interrogate the tags, employing a larger

number of antennas requires faster hardware (this applies

to antennas as well as tags) and a faster singulation pro-

tocol. However, there is always a trade-off between cost

and accuracy, as more antennas introduce higher costs and

require more space for an actual deployment.

4.1 Single gestures test results

We have evaluated the performance of our gesture recog-

nition technique by testing an alphabet of gestures. Any set

of gestures can be defined for a service that are natural in

the given context. Figure 11 shows our example gestures.

Gesture G1, for example, is performed when the user

moves the tag from left to right on a line, anywhere within

the monitored area. Gestures G5 to G12 consist of two

elements each.

Users perform gestures by moving the supertag on the

surface of the desk. Since the antennas are working in

different time slots, one reading cycle equals n times the

interrogation time of one antenna. In our experiments, the

reading cycle time is three times the interrogation time of

an antenna, which equals 3 9 160 ms. Gestures have dif-

ferent sizes, and in average, they cross nine cells and are

performed in an average of 4.5 s with an average speed of

0.2 m/s. They are also performed in different parts of the

monitored area.

We collected quantitative data to determine the per-

centage of correctly recognized gestures. A total of 120

samples was collected: ten samples of each gesture.

Table 1 shows the number of correctly recognized samples

(CR) for each gesture in our alphabet.

A recognition error occurs when the system is unable to

match the track to a unique gesture, or it outputs a gesture

other than the drawn one. In the latter case, the output

gesture (OG) is shown on the third row of Table 1. The

average rate of correctly recognized gestures of all 120 (ten

of each gesture shown in Fig. 11) gestures was 93%.

Algorithm 1 The matcher algorithm

Data: TrackðTÞ ¼ fX1;X2; . . .;Xkg where Xi 2 fC00;C01; . . .g
Result: The Intended Gesture : G 2 f possible gestures }

Convert Track(T) to a sequence of movements

SEQo ¼ fm1;m2; . . .;mk�1g where mi 2 fu; d; l; rg:
=�� u:up ; d:down ; r:right ; l:left �=:

foreach mi in the SEQo do

if mi = mi-1 and mi-1 = mi?1 then

mi  mi�1

end

end

foreach Consecutive occurrences of character ‘c’ in SEQo do

=�� More than one consecutive occurrence of ‘c’ �=

Add a single ‘c’ to the SEQn.

end

if SEQn is in the dictionary then output G; else fail ;

Fig. 11 Example gestures

Table 1 Recognition results

Gesture G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12

CR 10 9 10 9 10 9 10 9 10 9 7 10

OG – – – G10 – – – – – – G7 –
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4.2 Double gestures test results

Like all modern RFID systems, our used M9 SkyeTek

readers employ an anti-collision and singulation technique

that allows tags to be accessed in an ordered way. The read

time of the singulation protocol is approximately linearly

correlated with the number of tags. In practice, larger

number of tags require longer read times, which means that

in order to achieve a comparable recognition rate when

more tags are in the field, the gesture speed must be

decreased or faster singulation protocols and technologies

have to be applied.

Our M9 SkyTek reader is relatively slow with a tag

interrogation rate of 25 tags per second; in addition, it does

not allow direct programmatic access to the singulation

protocol for faster interrogation times. In fact, the passive

tag read rate can be upto 500 tags per second [27], which is

20 times faster than our M9 SkyeTek reader. This means

that a commercial system is likely to be able to recognize

much faster gesture movements, by employing faster

technologies and therefore acquiring a comparable recog-

nition rate even when more supertags are employed.

To demonstrate that we can get comparable results when

more gestures are to be recognized, we have used two

supertags to perform two gestures simultaneously.

Using two supertags, the interrogation time of an

antenna is increased to 270 ms, which makes the reading

cycle time 3 9 270 ms. Gestures have different sizes and

in average, they cross seven cells and are performed in an

average of 7 s with an average speed of 0.12 m/s. They are

also performed in different parts of the monitored area and

with different relative distance to each other.

An alphabet of four double gestures, as shown in

Fig. 12, is tested. We collected quantitative data to deter-

mine the percentage of correctly recognized double ges-

tures. A total of 40 double samples were collected: ten

samples of each double gesture.

Table 2 shows the number of correctly recognized

samples (CR) for gestures of both users in the alphabet

shown in Fig. 12. If the system outputs a gesture other than

the drawn one, the output gesture (OG) is shown on the

third and fifth row of Table 2 for the first and second user,

respectively. The average rate of correctly recognized

gestures of all 40 double gestures (ten of each double

gesture shown in Fig. 12) was 85%.

Our proposed system is capable of real-time gesture

recognition. In fact, we have also evaluated a real-time

variant of our system, which runs around 100 times faster

than the original system with a very similar accuracy (still

more than 90% recognition rate for our gesture alphabet).

In this near real-time gesture recognition system, the size

of the hypothesis tree is significantly reduced by simply

pruning the tracks with consecutive occurrences of the

same cells. The system can recognize the gestures of 6–11

cells long, in an average computation time of 13–430 ms.

The original system is a more flexible algorithm that can

recognize more general gestures but requires more time

due to its larger search space. It can recognize gestures of

6–11 cells long in an average computation time of

50–45000 ms. It is important to mention that the gesture

recognizer runs on a 2.16-GHz Intel Core 2 Duo with 2 GB

of RAM laptop.

Although the proposed technique has been evaluated in

a relatively small setup, our approach scales in several

dimensions. Firstly, it can be extended to larger areas by

using more powerful antennas or simply by employing

more antennas. Secondly, it can be extended to recognize

independent gestures by different users. Multiple users, for

example, could interact with a large display in a public area

by performing the gestures at different positions. Lastly,

the partitioning resolution can be increased by using more

antennas to make recognition of finer resolution gestures

possible—at the cost of increased read times.

It is important to mention that our technique requires no

learning or training. As RFID readers improve in range,

cost and reliability, this technique will become more robust

and viable.

5 Conclusions and future work

In this paper, we presented the design and evaluation of a

hand gesture recognition technique based on RFID, which

can be used to develop intuitive interfaces for ubiquitous

applications. We proposed the use of multiple hypothesis

tracking and the use of subtag count information to track

the motion patterns of passive RFID tags and hence the

hand gestures. Our gesture recognition technique was able

to recognize gestures with up to 93%. We alsoFig. 12 Example double gestures

Table 2 Recognition results

Gesture G13 G14 G15 G16

CR-User1 9 7 10 10

OG-User1 – G1 – –

CR-User2 8 7 8 9

OG-User2 G4 – G1 G9
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demonstrated our initial findings to recognize independent

gestures by different users. Due to the low cost of passive

RFID tags and the fact that they operate without a battery,

we believe that passive RFID technology is unintrusive and

easy to use and, therefore, forms a promising solution for

gesture recognition.
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