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Abstract

Many problems in linear elastodynamics, or dynamic fracture mechanics, can be reduced to Wiener–Hopf functional
equations defined in a strip in a complex transform plane. Apart from a few special cases, the inherent coupling between
shear and compressional body motions gives rise to coupled systems of equations, and so the resulting Wiener–Hopf kernels
are of matrix form. The key step in the solution of a Wiener–Hopf equation, which is to decompose the kernel into a product
of two factors with particular analyticity properties, can be accomplished explicitly for scalar kernels. However, apart from
special matrices which yield commutative factorizations, no procedure has yet been devised to factorize exactly general matrix
kernels.

This paper shall demonstrate, by way of example, that the Wiener–Hopf approximant matrix (WHAM) procedure for
obtaining approximate factors of matrix kernels (recently introduced by the author in [SIAM J. Appl. Math. 57 (2) (1997)
541]) is applicable to the class of matrix kernels found in elasticity, and in particular to problems in QNDE. First, as a
motivating example, the kernel arising in the model of diffraction of skew incident elastic waves on a semi-infinite crack
in an isotropic elastic space is studied. This was first examined in a seminal work by Achenbach and Gautesen [J. Acoust.
Soc. Am. 61 (2) (1977) 413] and here three methods are offered for deriving distinct non-commutative factorizations of the
kernel. Second, the WHAM method is employed to factorize the matrix kernel arising in the problem of radiation into an
elastic half-space with mixed boundary conditions on its face. Third, brief mention is made of kernel factorization related
to the problems of flexural wave diffraction by a crack in a thin (Mindlin) plate, and body wave scattering by an interfacial
crack.
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1. Introduction

This paper will focus on one of the most significant areas that Professor Achenbach has opened up during his
long and distinguished career, namely, the diffraction of elastic waves by material defects. Together with students
and co-workers he generalized the geometrical theory of diffraction (GTD) from the scalar problems encountered
in acoustics or optics to the vectorial models of stress waves found in solids[10,11]. This work directly contributed
to the birth of the now enormous field of quantitative non-destructive evaluation (QNDE) of solids using ultrasonic
waves. In order to apply the GTD it is necessary to determine thediffraction coefficientsfor the scattered field
generated at sharp edges, corners or interfacial boundaries of defects. If the diffraction coefficients are known then
the diffracted fields can be readily calculated; the complete scattered field is determined byadding the various
diffraction contributions from all the edges to the specular components.

In general, the determination of the key diffraction coefficients relies on the solution of canonicalinnerproblems
based on thelocal geometryand material properties. Thus, for example, take a smooth finite crack with a closed
bounding curve, and irradiated by an elastic wave of arbitrary incident direction and wavelength much less than
the typical crack lengthscales. Further, the host body could be inhomogeneous also with a typical inhomogeneity
lengthscalelong compared to the incident wavelength. Then thelocal field diffracted by a small segment of the
crack’s edge is essentially that determined by solution of the problem shown inFig. 1. That is, scattering of an
elastic wave by asemi-infinite planar crackin a homogeneous medium. In thisinner region the crack is of infinite
extent along its edge, and the incident field is inclined at an arbitrary angle to this edge so that the model problem is
fully three-dimensional in nature. In a series of classic papers, Achenbach and Gautesen[12–14]employed Fourier
transform analysis combined with theWiener–Hopf techniqueto solve the above described inner problem for a
variety of different forcings, and thence to employ these to obtain the GTD solution in several cases: including
an infinitely long planar crack of finite-width, and a penny shaped crack. Note that the same approach can also be
successfully applied to the related area of dynamic fracture—under an applied loading the growth rate of a crack will
depend on thelocal behaviour at the crack tip, i.e. only related to the stress-intensity factors (SIFs) of a canonical
inner problem (see, e.g., papers[13,21]).

The success of the GTD to QNDE, and the asymptotic scheme employed for dynamic fracture analysis, relies
on being able to solve the canonical inner problems. Fortunately, there has evolved, over many years, a wide
variety of powerful tools to tackle boundary value problems in canonical domains, and these have been employed,
and continue to be employed (e.g. in the context of electromagnetic diffraction by conical bodies, see[15]) with
great success in obtaining analytical solutions. Such explicit results often provide deep insight into the physical
processes associated with a given model, and are especially convenient for rapid computation. On the other hand,
direct numerical schemes for tacklinginner problems have not proved particularly successful, as they have to
accurately cope with singularities at corners and rapid or instantaneous changes in field quantities. Thus, as QNDE is

Fig. 1. Semi-infinite crack in an isotropic elastic space.
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developed ever further there is a need to extend GTD methods to incorporate increasingly more complex andrealistic
canonical inner problems. For example, the widespread use of composite materials in engineering applications
means that the model problem shown inFig. 1 (discussed in[12]) needs to be extended to include anisotropy
[34].

This paper will focus on the Wiener–Hopf technique[33,36]which has proved remarkably successful over some
70 years since its invention, at obtaining analytical solutions for an enormous variety of physical boundary or initial
value problems. A bibliography incorporating these application areas may be found in[3]. As noted previously,
Achenbach and Gautesen’s[12] pioneering work in the area of elastic wave scattering employed the Wiener–Hopf
technique. There is, however, a severe limitation to the method. For complicated boundary value problems the
solution procedure yields vector rather than scalar Wiener–Hopf equations, for which, as will be shown, there is in
general no solution procedure. The presence of both shear and compressional waves in solids in general gives rise
to such matrix systems, and this has curtailed the efficacy and hence the success of the Wiener–Hopf technique in
the field.

It is the aim of this paper to discuss particular matrix Wiener–Hopf systems that are obtained in elasticity, most
of which arise in dynamic situations. There will be an attempt to address the natural canonical problems which are
of interest in QNDE and which can be seen as generalizations of Achenbach and Gautesen’s[12] original model
(Fig. 1). For brevity only the crucial step in the Wiener–Hopf analysis, namely the factorization of the kernel, will
be discussed in this paper. In the following section, a short discussion is offered on the kernel product decompo-
sition procedure, and its inherent difficulty for matrix kernels. However, for certain matrix kernels a commutative
(or Khrapkov)[28,29] factorization is obtainable, and this is also introduced here. InSection 3, Achenbach and
Gautesen’s kernel is looked at in some detail, and an explicit factorization determined by several methods.Section
4 is concerned with a particular canonical problem in elastodynamics[2] which offers one of the simplest matrix
Wiener–Hopf systems whose kernel does not permit a commutative product factorization. An approximate tech-
nique, based on the introduction of Padé approximants, whose accuracy can be increased to very high levels, is
employed to effect the factorization.Section 5makes mention of a couple of kernels from related, and physically im-
portant, problems in elasticity, and briefly discusses their factorization. Concluding remarks are offered at the end of
Section 5.

2. Scalar and commutative matrix factorization

The Wiener–Hopf technique offers one of the very few approaches to obtaining exact solutions to integral
equations. It is appropriate for equations of either first or second kind, defined over a half-line, and which have
difference kernels. Physical boundary or initial value problems which have the characteristic feature of data defined
on semi-infinite or equivalent planes often reduce to Wiener–Hopf form. The solution method usually proceeds
directly from the boundary value problem to an equation in the complex plane defined in an infinite strip. This
is accomplished by Fourier transformation (or other appropriate transform) or Green’s theorem, and the essential
physical details are manifested in the singularity structure of the Fourier transformed difference kernel often just
called the Wiener–Hopf kernel,K(α) say[33], whereα is the transform parameter. This kernel is usually arranged
to be singularity free in a strip of finite-width in the complexα-plane which contains the real line as|α| → ∞. The
strip is denoted henceforth asD, but note that it need not necessarily be straight, i.e. it does not have to enclose the
whole real line. Solution of the Wiener–Hopf equation is straightforward onceK(α) is decomposed into a product
of two functionsK+(α) andK−(α), whereK+(α) is regular and zero-free in the region above and including the
stripD, denotedD+, andK−(α) is regular and zero-free1 in the region below and includingD, denotedD−. Further,

1 This property is necessary as the inverses of the product factors must also be analytic in their respective half-planes in order for a successful
rearrangement of a Wiener–Hopf equation[33].



314 I.D. Abrahams / Wave Motion 36 (2002) 311–333

K±(α) must have at worst algebraic growth as|α| → ∞ in D±, respectively. Cauchy’s integral theorem provides
a convenient method for obtaining the explicitsum factorizationof a function, e.g. of the form

g(α) = g+(α) + g−(α), (1)

where± denote the above analyticity properties, and so by exponentiation the followingproduct factorizationcan
be deduced (see Theorem C of Noble[33]):

K(α) = exp[g(α)] = K+(α)K−(α), (2)

K±(α) = exp[g±(α)] = exp

{±1

2π i

∫ ∞

−∞
logK(ζ)

ζ − α
dζ

}
, (3)

where the integration path lies inD andα lies above (below)ζ for K+(α) (K−(α)). Sometimes a limiting procedure
is necessary to ensure convergence of these integrals.

For complicated problems in whichK(α) is a scalar function, there are several technical difficulties associated
with computing integrals of the above form(3) (see[6]). It is, therefore, often desirable to replace the exact kernel
with a simpler one which approximates it accurately in the strip of analyticity, and from which approximate and
well behaved product factors,K±(α) can be derived. This is an interesting and quite well studied area, see, e.g.
[5,17,18,30], and the references mentioned therein, but for brevity it will only be discussed further inSection 4in
the context of matrix factorization.

This paper is concerned with vector functional Wiener–Hopf equations in which the kernel is a square matrix
K(α). This presents two potential obstacles: one has been addressed already by the author and is not considered here
[8]; the second is the generalization of the factorization procedure indicated by(2). For any matrix function,K(α),
the logarithmG(α) = log(K(α)) can be defined, for example by its power series expansion log[I + (K(α)− I)] =
K(α) − I − (1/2)(K(α) − I)2 + · · · , whereI is the identity matrix, or otherwise. Then the sum split ofG(α) is
accomplished by the Cauchy type integrals acting on each element of the matrix. However, the final step to obtain
the product factors, i.e.

exp{G+(α) + G−(α)} = exp{G+(α)} exp{G−(α)} (4)

is trueif and only ifG+(α) andG−(α), and hence the product factors ofK(α), commute:2

K+(α)K−(α) ≡ exp{G+(α)} exp{G−(α)} = exp{G−(α)} exp{G+(α)} ≡ K−(α)K+(α). (5)

This difficulty was first discussed by Heins[24] in 1950! For general matrices,K(α), this commutative property
will not hold, and, although no procedure is presently available for tackling such arbitrary matrix Wiener–Hopf
problems, Gohberg and Krein[22] have proved the existence of product factors in all cases.

Fortunately, many physically interesting problems naturally give rise to kernels which, although intrinsically
matrix in form, have a commutative factorization or can be reworked (by pre- and/or post-multiplication by suitable
matrices) into such form. Khrapkov[28,29], in papers concerned with the stresses in elastostatic wedges with
notches, was the first author to express the commutative factorization in a form which indicates the sub-algebra
associated with this class of kernels, and this is discussed further below. Many other authors have also examined
the commutative case, including Daniele[19], Rawlins[35], Hurd [25], and Jones[27]. Meister and Speck[32]
introduced an alternative and rather elegant decomposition method to that offered by Khrapkov (which is touched
on in the following section), but the precise relationship between the two approaches has yet to be fully established.
Citations to other such works are to be found in[3]. As the Khrapkov form will be useful in later sections, it is
valuable to briefly discuss here the commutative factorization procedure.

2 The necessity for commutativity may easily be verified by expanding both sides of(4) using the usual definition of the Taylor series for
matrix exponentials.
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2.1. Khrapkov factorization

As will now be demonstrated, matrices which permit a commutative factorization can be reduced to scalar
factorizations of the above forms(1) and (2). The approach taken here is that employed by Khrapkov[28,29], which
is in factequivalentto the exponential form suggested by others, e.g. Heins[24] (see also[33]) and Daniele[19].

For purposes of clarity, the following discussion is restricted to matrix kernels of 2× 2 order, but the arguments
can, in fact, be generalized to matrices of any size[27]. It is generally acceptedthat any square matrix kernel which
permits a commutative factorization can be rearranged (by suitable pre- and post-multiplication by entire matrices)
into the following Khrapkov form:

K(α) = a(α)I + b(α)J(α), (6)

whereI is the identity matrix,a(α), b(α) are arbitrary scalar functions ofα analytic in the stripD and with algebraic
behaviour at infinity, andJ(α) is a square matrix with entire elements. Further,J(α) has the important property that
its elements are of algebraic growth at infinity and its square is

J2(α) = 
2(α)I (7)

in which
2(α) is apolynomialin α. As a consequence of this last property, a commutative product factorization
of K(α) can be posed as

K(α) = Q−(α)Q+(α), (8)

whereQ±(α) and their inverses are analytic in the regionsD±, and these factors take the general form

Q±(α) = r±(α)

{
cosh [
(α)θ±(α)]I + 1


(α)
sinh [
(α)θ±(α)]J(α)

}
. (9)

Note that
(α) has branch-points in both half-planes in general, but these are not present inQ±(α) because the
latter are in fact functions of the square of
(α). The problem is reduced to solving for the scalar functionsr±(α),
θ±(α) and these can be determined by multiplyingQ+(α) by Q−(α) and equating with(6). It is found that

r+(α)r−(α) cosh [
(α)(θ+(α) + θ−(α))] = a(α), (10)

r+(α)r−(α)


(α)
sinh [
(α)(θ+(α) + θ−(α))] = b(α), (11)

or rearranging gives

[r+(α)r−(α)]2 = a2(α) − 
2(α)b2(α), (12)

θ+(α) + θ−(α) = 1


(α)
tanh−1

[

(α)b(α)

a(α)

]
. (13)

So,θ±(α) are found from the sum split formula(1)

θ±(α) = ±1

2π i

∫
C

tanh−1[
(ζ)f (ζ )]


(ζ)(ζ − α)
dζ, ±α aboveC, (14)

andr±(α) are given employing the representation(2).
The Khrapkov commutative factorization just described does indeed produce product factors with the requisite

analyticity properties. Further, the inverses ofQ±(α) are also analytic inD±. Unfortunately, as will be shown in
later sections, in general a Wiener–Hopf kernel cannot be cast into the form(6). However, it will be shown that an
approximatefactorization can be achieved via a two-stage process: first to cast the kernel into Khrapkov form, in
which J(α) satisfies(7) but is not entire, and then second to remove singularities in respective half-planes arising
from an approximation toJ(α).
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3. Diffraction by a semi-infinite crack in an elastic solid

Almost certainly the first non-trivial matrix Wiener–Hopf kernel to be studied in the context of elastodynamics
was that discussed by Achenbach and Gautesen[12,13]. It is interesting in that, although simple in form, it does
not in fact permit a commutative factorization. However, the associated Wiener–Hopf equation can still be solved
fairly easily, as will be demonstrated, by deriving product factorsK−(α), K+(α), analytic in respective overlapping
half-planesD−, D+, but whose inverses arenot analytic in these respective regions. The latter have offending
simple poles which are easilyremovedto enable the usual Wiener–Hopf procedure to follow through. Thistrick
is not satisfactory in general, because the inverse product factor may contain branch-cut and other complicated
singularities in the required domain of analyticity which cannot be easily removed.

Gohberg and Krein’s result[22] indicates that a product split definitely exists for whichK±(α) and [K±]−1(α)

are analytic inD±, and so the purpose of this section is to derive their forms here. First, it is instructive to offer
Achenbach and Gautesen’spseudo-factorization, and this will be followed by the method offered by Meister and
Speck[32]. Finally, and not previously presented in the literature, an explicit non-commutative product factorization
derived via the Khrapkov form will be discussed in the last subsection.

Fig. 1 illustrates the model examined by Achenbach and Gautesen[12]. A longitudinal plane wave, of radian
frequencyω, is incident upon a semi-infinite crack (occupying the planey = 0, −∞ < z < ∞, x < 0 as
shown) in an isotropic homogeneous elastic solid. For steady-state motions, the material is defined in terms of the
density,ρ, and wavenumbers,kL andkT, of longitudinal and transverse body waves, respectively. The ratio of these
wavenumbers is defined as

k = kT

kL
, (15)

which is always greater than unity. The forcing wave is skew incident onto the crack edge, and so its wavenumber
component in thez-direction, defined as

kLη, (16)

say, is non-zero. Note that 0< η ≤ 1. If a Fourier transform in thex-direction is taken, with transform variableα
scaled onkL, then the boundary value problem can be reduced to two Wiener–Hopf equations, one scalar equation
for motions symmetric about the planey = 0 and the other a coupled pair of equations relating antisymmetric
strains and displacements. The kernel of the latter Wiener–Hopf system, of interest in this article, can be written as
the 2× 2 matrix

K(α) = 1

η2 + α2

(
η2δ(

√
η2 + α2) + α2d(

√
η2 + α2) αη(δ(

√
η2 + α2) − d(

√
η2 + α2))

αη(δ(
√
η2 + α2) − d(

√
η2 + α2)) α2δ(

√
η2 + α2) + η2d(

√
η2 + α2)

)
, (17)

where

d(ζ ) = −R(ζ )

k2δ(ζ )
, (18)

in which ζ =
√
η2 + α2,

R(ζ ) = (2ζ 2 − k2)2 − 4ζ 2γ (ζ )δ(ζ ) (19)

is the Rayleigh function and

γ (ζ ) = (ζ 2 − 1)1/2, δ(ζ ) = (ζ 2 − k2)1/2. (20)

The latter functions have branch-points, respectively, atζ = ±1,ζ = ±k, and the associated cuts are taken to±i∞.
Thus, the strip of analyticity for the kernel(17) is defined to enclose the real line in theα-plane, indented to pass
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belowthe cuts running from+
√

1 − η2, +
√
k2 − η2, and above the cuts emanating from−

√
1 − η2, −

√
k2 − η2.

The functionsγ (ζ ), δ(ζ ) are made single-valued by choosing the Riemann surface such that

γ (0) = −i, δ(0) = −ik. (21)

With this choice the Rayleigh function(19)has just two zeros in theζ -plane, located on the real line at

ζ = ±k0, (22)

where it can be shown that

k0 > k > 1, (23)

and soR(
√
η2 + α2) has zeros at

α = α0 = ±
√
k2

0 − η2, (24)

which are also real.
The kernel(17)is identical to that studied by Achenbach and Gautesen[12] apart from a scalar constant. However,

the notation is slightly different to that employed there in order to be consistent with later sections of this article.
Three approaches are now presented to factorize this kernel, the last being useful to following sections which
introduce the Wiener–Hopf approximant matrix (WHAM) method.

3.1. Achenbach and Gautesen’s factorization

The product factorization of the matrix kernel(17)offered by Achenbach and Gautesen[12] is

K(α) = K̂−(α)K̂+(α), (25)

where

K̂+(α) = 1

η − iα
D+(α)C(α), K̂−(α) = 1

η + iα
C(α)D−(α), (26)

C(α) =
(

α −η

−η −α

)
, D±(α) =

(
d± 0

0 δ±

)
, (27)

in whichd± andδ± are the scalar product factors of the scalar functionsd(
√
η2 + α2)andδ(

√
η2 + α2), respectively.

Clearly,K̂−(α) is analytic in the lower half-plane with an explicit simple pole inD+ atα = iη, but its inverse is

[K̂−]−1(α) = 1

η − iα




1

d− 0

0
1

δ−


C(α), (28)

which is not analytic inD− because of the pole atα = −iη. Similarly,K̂+(α) is analytic inD+ but [K̂+(α)]−1 has a
simple pole atα = +iη. In contrast, the following two procedures will yieldproperproduct factorizations ofK(α).

3.2. Meister and Speck’s factorization

It is interesting to offer a factorization proposed by Meister and Speck[32] because it relies on writingK(α) as
a sum of the two singular matrices

A(α) = 1

η2 + α2

(
α2 −αη

−αη η2

)
, B(α) = 1

η2 + α2

(
η2 αη

αη α2

)
. (29)
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The latter have the useful properties

AB = BA = 0, (30)

and

A2 = A, B2 = B. (31)

Hence, by inspection

K(α) = d(

√
η2 + α2)A(α) + δ(

√
η2 + α2)B(α), (32)

which may be expressed as

K(α) = (d−A(α) + q2δ
−B(α))

(
1

q1
A(α) + 1

q2
B(α)

)
(d+q1A(α) + δ+B(α)) (33)

for arbitrary constantsq1, q2, andd±, δ± are given as before. Note that the left most matrix in(33) is analytic in
D− if q2 is chosen toremovethe pole atα = −iη occurring in bothA andB. It is easy to show that the required
value is

q2 = d−

δ−

∣∣∣∣
α→−iη

, (34)

and similarly to keep the right most matrix pole free in the upper half-plane then

q1 = δ+

d+

∣∣∣∣
α→+iη

. (35)

Now, d(
√
η2 + α2) andδ(

√
η2 + α2) are even functions ofα and so

q1 = 1

q2
= λ, (36)

say. It now remains, to effect a successful factorization ofK(α), to factorize the inner matrix. This is achieved by
Meister and Speck[32] more-or-less by inspection, which is possible in this case because there are just two simple
poles atα = ±iη. Here, for brevity, just the result is stated

(
1

λ
A(α) + λB(α)

)
= 1

λ(1 + λ2)




α − iλ2η

α − iη
i

i
λ2α − iη

α − iη
1






α + iλ2η

α + iη
−i

λ2α + iη

α + iη

−iλ2 λ2


 , (37)

where the left (right) hand matrix together with its inverse is analytic inD− (D+). Multiplying the relevant terms
in (33) and (37)yields Meister and Speck’s factorization

K(α) = K−(α)K+(α), (38)

K−(α) = 1√
λ(1 + λ2)




αd− − iληδ−

α − iη

i

λ

αλd− + iηδ−

α + iη

i
αλδ− − iηd−

α − iη

1

λ

αδ− + iληd−

α + iη


 , (39)

K+(α) = 1√
λ(1 + λ2)




αd+ + iληδ+

α + iη
−i

αλδ+ + iηd+

α + iη

−iλ
αλd+ − iηδ+

α − iη
λ
αδ+ − iληd+

α − iη


 . (40)
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3.3. Modified Khrapkov factorization

The first step in the factorization procedure is to rearrange the kernel(17) into Khrapkov-likeform. This may be
achieved by choosing

a(α) = 1
2(d + δ), b(α) = 1

2(d − δ) (41)

in (6), and

J(α) = 1

α2 + η2


 α2 − η2 −2αη

−2αη −(α2 − η2)


 (42)

so that

J2(α) = I, (43)

i.e.
(α) ≡ 1 in the split functionsQ±(α) (9). The other scalar quantities can be shown to be

r±(α) =
√
d±δ±, θ±(α) = 1

2
log

(
d±

δ±

)
. (44)

The commutative product split(8) would complete the factorization were if not for the fact thatJ(α) is not entire
as required, but has poles atα = ±iη. Thus, it is necessary to remove the pole inQ±(α) in the upper (lower)
half-plane, and this can be achieved in the following straightforward manner. A meromorphic matrix function is
introduced into the factorization(8)

K(α) = Q−(α)M(α)M−1(α)Q+(α), (45)

so that

K−(α) = Q−(α)M(α), K+(α) = M−1(α)Q+(α), (46)

are analytic inD−, D+, respectively. Note that the introduction ofM(α) in this particular fashion leads to a
non-commutative factorizationas clearly

K+(α)K−(α) �= K(α). (47)

The form ofM(α) is chosen to have the same singularities asJ(α), to have the same reflection properties asJ(α),
i.e. diagonal elements even inα and off-diagonal elements odd inα, and to tend to the identity matrix as|α| → ∞.
Thus, an acceptable form ofM(α) is assumed to be

M(α) =




1 + a

α2 + η2

αb

α2 + η2

αc

α2 + η2
1 + d

α2 + η2


 , (48)

wherea, b, c, andd have to be evaluated. Pre-multiplying this matrix byQ−(α) and expanding and collecting terms
with double poles atα = ±iη gives

sinhθ−(α)

(α2 + η2)2

(
(α2 − η2)a − 2α2ηc α(α2 − η2)b − 2αηd

−α(α2 − η2)c − 2αηa −(α2 − η2)d − 2α2ηb

)
. (49)

It is clear that this expression has simple poles rather than double poles if and only if

a = ηc, d = −ηb, (50)
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in which caseQ−(α)M(α) can be shown to have the singular terms

sinhθ−

α2 + η2

(
ηc cothθ− + (α2 − η2) − ηc αb cothθ− − (2η − b)α

αc cothθ− − (2η + c)α −ηb cothθ− − (α2 − η2) − ηb

)
. (51)

The pole atα = −iη (in D−) can be removed from the left most column by setting

c = 2η

cothθ+(iη) − 1
, (52)

where the relationθ−(−iη) = θ+(+iη) has been utilized, and similarly the right-hand column gives

b = 2η

cothθ+(iη) + 1
. (53)

Thus,M(α) has been explicitly determined, and the specified values(50), (52) and (53)yield K−(α) analytic in
D− as required.

It now remains to deduce two points: first that [K−(α)]−1 is also analytic inD−, and second that this choice of
M(α) also rendersK+(α) (46) and its inverse regular inD+. As regards the former, asK−(α) is analytic inD−
then [K−(α)]−1 will be too unless|K−(α)| introduces spurious singularities intoD−. Clearly,Q−(α) does not do
this as|Q−(α)| = (r−(α))2, and

|M(α)| =
(

1 + ηc

α2 + η2

)(
1 − ηb

α2 + η2

)
− η2bc

(α2 + η2)2
≡ 1, (54)

in view of (50), (52) and (53). Thus,|K−(α)| = |Q−(α)||M(α)| is regular inD− as required. Note that the particular
form of M(α) (48) is chosento enable the determinant to take the constant value unity. As regardsK+(α), it can
be shown to be regular inD+ by multiplying out [M(α)]−1Q+(α) and checking the coefficients of the simple
and double poles. However, it is easier to note from the symmetry inK(α), Q+(α) andM(α), thatK+(α) can be
expressed as

K+(α) =
(

1 0
0 −1

)
[K−(−α)]−1

(
1 0
0 −1

)
, (55)

from which it follows immediately thatK+(α) and [K+(α)]−1 are both analytic inD+.
In summary, three different factorization procedures have been presented for the matrix kernelK(α) given in

(17). The first does not yield inverse product factors with the correct analyticity properties, and so cannot be seen
as a successful split in the sense defined by Gohberg and Krein[22]. Note that all three product factorizations
are non-commutative, and are surprisingly different in their forms. Only the last approach, which introduces a
meromorphic matrixM(α) offers a constructive algorithmic approach to the factorization procedure, and, as shall
now be shown, is generalizable to more complex kernels.

4. The elastic dock problem

The aim of this section is to demonstrate the WHAM procedure recently proposed by the author[3] for obtaining
explicit approximateproduct factors for a general class of non-commutative matrix kernelsK(α). It must be
emphasized that the only other constructive approach offered in the literature for general matrix factorization is
that presented by Wickham[37] and Lewis et al.[31]. However, their approach, although having several aspects
in common with the present method, employs integral equation methods which do not yield explicit kernel factors.
It is also much more difficult to apply in practice. Usually matrices yield non-commutative factorizations because
they contain multiple branch-cut functions, infinite sequences of poles or zeros, or a combination of both of these
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singularity structures. In certain special cases the factorization procedure can be completed by subtraction of a finite
or infinite family of poles from both sides of the Wiener–Hopf equation (see the previous section for an example of
the former, and for the latter, see works by Idemen[26], Abrahams[1], Abrahams and Wickham[9] and references
quoted therein). The method to be expounded here is based on the replacement of certain scalar components of
the matrix function byPadé approximants. This allows the level of approximation to be increased to very high
accuracies whilst at the same time offering a surprisingly simple factorization form. Note that the actual boundary
value problem that the modified kernel satisfies is immaterial (although this topic will be addressed in a forthcoming
article by the author); all that is required is that the exact and modified kernels take values which are close to each
other in the strip of analyticityD and that the approximate kernel be factorizable by some means.

The clearest method for illustrating the factorization procedure is to examine a specific example, in this case the
diffraction of monochromatic elastic waves by a discontinuity in boundary conditions on an elastic half-space. The
forcing shall be taken to induce only displacements in the(x, y)-plane (plane strain), where the body occupies the
regiony > 0, −∞ < z < ∞, and the boundary is taken as traction-free ony = 0, x > 0 but fixed (displacements
zero) ony = 0, x < 0. This is the elastic analogue of the classical semi-infinite dock problem in linear water
wave theory; here the Rayleigh surface waves on the traction-free part of the surface are reflected and scattered into
body waves by the rigid portion of the boundary. Following[2], Fourier transforms can be employed to reduce the
boundary value problem to a matrix Wiener–Hopf equation in which the kernel has the form

K(α) = 1

R(α)

(−iα[2α2 − k2 − 2γ (α)δ(α)] −k2δ(α)

k2γ (α) −iα[2α2 − k2 − 2γ (α)δ(α)]

)
. (56)

Here, as before,α is the transform parameter, andk, R(α), γ (α) andδ(α) are given in(15), (19) and (20).
In elastodynamic problems, the presence in theα-plane of two branch-cut functionsγ (α), δ(α), leads in general

to matrix Wiener–Hopf equations with non-commutative kernels. The boundary value problem discussed herein is
merely the simplest non-trivial example of this class, and other more interesting physical cases will be mentioned
in the following section. The approximate approach to be employed here is applicable to all such problems, and
was first propounded for a model concerned with diffraction at an interface between two (scalar) acoustic materials
[3]. The procedure followed is along the lines indicated at the end of the previous section, but with one extra
step, namely theapproximationof the kernel. Firstly, the kernel(56) is rearranged into a form which contains
a scalar function with finite branch-cuts. This function is then replaced by its Padé approximant, and an upper
bound on the error in taking the approximate kernel can be estimated. A partial factorization is achieved using
the Khrapkov (commutative) formulation, but the approximate factors achieved in this way contain poles in their
indicated half-planes of analyticity. Finally, by insertion of suitable meromorphic matrices, the offending poles are
removed. This yields an explicit, but approximate non-commutative matrix decomposition.

4.1. Approximate kernel

Following the approach ofSection 3.3, the kernel for the elastic dock problem(56)can be made to look to be of
Khrapkov form if it is rewritten as

K(α) = a(α)I + b(α)J(α), (57)

where

a(α) = −iα

R(α)
[2α2 − k2 − 2γ (α)δ(α)], b(α) = k2f (α)δ(α)

R(α)
, (58)

J(α) =


 0 − 1

f (α)

f (α) 0


 , (59)
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Fig. 2. The complexα-plane illustrating the branch-points off (α) (60) at ±1, ±k and the position of the cuts. Also shown are the upper and
lower regionsD± with a strip of common analyticityD inside which lies the inverse contourC of the integrals in(82) and (85). The stripD is
suitably chosen so thatC is bounded away from the branch-points.

and

f (α) =
√

γ (α)

δ(α)
=
(

α2 − 1

α2 − k2

)1/4

. (60)

As required

J2(α) = −I, (61)

butJ(α) is not itself entire as it containsf (α), which has two finite branch-cuts atα ∈ [1, k], α ∈ [−1,−k] joining
the branch-points at 1,k and−1,−k, respectively (seeFig. 2). Also,f (α) → 1 as|α| → ∞ in any direction. This
function is replaced by its [N/N ] Padé approximant, denotedfN(α), where

f (α) ≈ fN(α) = PN(α)

QN(α)
, (62)

andPN(α),QN(α) are the polynomials

PN(α) = a0 + a1α
2 + a2α

4 + · · · + aNα2N, (63)

QN(α) = 1 + b1α
2 + b2α

4 + · · · + bNα2N, (64)

in whichN is any positive integer. The notation employed here is slightly different from that given in[16] but is
consistent with[3], in which details regarding the properties of Padé approximants are given. The essential points
to mention here are that the coefficients ofPN(α),QN(α), namelyan, bn are determineduniquelyby equating the
Taylor series expansion off (α), (60), with that offN(α), (62), up to orderα4N at any point(s) of regularity. Here, in
fact, two-point Padé approximants are employed (discussed in some detail in[5]), where the points at the origin and
infinity are chosen for convenience. This ensures thatfN(∞) = 1, which means that the approximate factorization
is exactat infinity. Further, the 2N zeros and 2N poles offN(α) are simple and all lie on the real line segments
α ∈ [1, k], α ∈ [−1,−k]. TheN positive real zeros ofPN(α),QN(α) are denoted aspn, andqn, respectively, are
ordered as

1 < p1 < p2 < p3 < · · · < pN < k, 1 < q1 < q2 < q3 < · · · < qN < k, (65)
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and the negative zeros are positioned at−pn, and−qn, respectively. Thus, the Padé approximantfN(α) replaces
the finite branch-cuts off (α) with a distribution of zeros and poles along the same line segments, and, as will be
shown, approximates the function very closely away from these singularities.

The crucial point to note here is that the approximate kernel

KN(α) = a(α)I + b(α)JN(α), (66)

where the scalarf (α) has been replaced by its Padé approximantfN(α) in

JN(α) =


 0 − 1

fN(α)

fN(α) 0


 , (67)

anda(α), b(α) are given in(58), will be shown to beexactly factorizable(cf. the kernel(17)). However, first an
argument must be given as to why these factors do indeed approximate the exact factors ofK(α). If K+(α) is
the product factor ofK(α), analytic, of algebraic growth and with a regular inverse inD+, then because of the
properties of functions of a complex variable, its maximum modulus onD+ must occur on its boundary, namely
∂D+ (which includes the point at infinity). The approximation toK+(α), K+

N(α), which has the same analyticity
property and is exact at infinity, also has its maximum modulus on∂D+. Therefore, because the difference function
K+(α)− K+

N(α) is also analytic inD+ so it attains its maximum modulus on∂D+ ≡ ∂D, which is at afinite point
in the stripD. By the same argumentsK−(α) − K−

N(α) is analytic inD− and attains its maximum modulus at a
finite point on its bounding strip inD, which for the purposes of this argument, is also taken as∂D.

Now, suppose the approximate kernel has the known factors

KN(α) = K+
N(α)K−

N(α), (68)

and by definitionK(α) andKN(α) tend to the same value as|α| → ∞ in D. Further, the particular choice of
stripD (seeFig. 2), which is bounded by unity away from the branch-cuts off (α), implies that the absolute error,
|1 − [K(α)]−1/KN(α)| is bounded by a small constant,ε say forα ∈ ∂D. Thus,

K(α) − KN(α) = εK(α)G(α), 0 < ε � 1, (69)

max|G(α)| = 1, α ∈ ∂D. (70)

It is now possible to show, from the above considerations, that

K±
N(α) = K±(α)(1 + o(1)), α ∈ ∂D, (71)

but it is expected, in fact, that the error in the approximation is actually O(ε) in the stripD (which can be proved for
certain classes of scalar kernels[5]). Furthermore, the error in approximatingK±(α) by K±

N(α) actuallydecreases
asα moves into the interior regions of analyticityD± away from the point of maximum error onD. Hence it can
be expected, and indeed this is borne out by numerical experiment[2], that for a given Padé number the actual error
in the factorization at an interior point of interest is in fact a good deal smaller than that suggested by the upper
boundε.

To determine the size of maximum error,ε, for a given Padé number it is simplest to define a (percentage) error
function as

eN(α) = 100×
∣∣∣∣1 − fN(α)

f (α)

∣∣∣∣ , α ∈ D. (72)

As f (α) is an even function, it is sufficient to confine attention to values ofeN(α) on the right half of a typical
contourC lying inD (Fig. 2), henceforth denoted asC1. A convenient parametric representation of the semi-infinite
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Fig. 3. The erroreN (α(t)), (72), plotted on a log-scale versus the parametert , (73), for N = 2,4,6,11 andν = 0.3.

contourC1 is

α =




k

(
1 + exp

{
iπ(t − 2k)

2k

})
, 0 < t < 2k,

t, t > 2k,

(73)

and in Fig. 3, eN(α(t)) is illustrated for a range of approximant numbers and typical Poisson’s ratioν = 0.3
(k = 1.8703). The ordinate is given on a logarithmic scale because of the dramatic increase in accuracy with
increasingN . From this graph remarkable accuracy can be seen for modest Padé number; for example one can
be confident that a factorization is accurate to better than 5× 10−4% error with a Padé approximationN = 4, or
2 × 10−6% for N = 6, for this value of Poisson’s ratio. Thus, it can be concluded that a satisfactory approximate
non-commutative factorization ofK(α) (56)can be obtained to any specified accuracy as long as the factorsK±

N(α)

of KN(α) (66) can be determined explicitly.

4.2. Khrapkov partial decomposition

In this section, a commutative factorization ofKN(α) is obtained which, whilst removing most singularities from
the respected regions of imposed analyticity, will contain poles at the zeros ofPN(α), QN(α) (63) and (64). These
will then be removed in the final step of the factorization procedure. For mathematical convenience, it is more useful
to factorizeLN(α), where

LN(α) = b(α)I − a(α)JN(α), (74)

and so

KN(α) = LN(α)JN(α) (75)

in view of (61). Thus, the Khrapkov factors ofLN(α) take the form (see(9))

L±
N(α) = r±(α)[ cosθ±(α)I + sinθ±(α)JN(α)], (76)
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in which
(α) has taken the value i, so that(13) and (14)become, after simplification,

[r+(α)r−(α)]2 = γ (α)δ(α) − α2

R(α)
, (77)

θ+(α) + θ−(α) = tan−1
(

iα[2α2 − k2 − 2γ (α)δ(α)]

k2f (α)δ(α)

)
(78)

for α ∈ D. Thus, the scalar sum and product factorizations of the functions on the right-hand sides of(77) and (78),
respectively, are required. To obtain explicit integral expressions forθ±(α) it is convenient to factorize theeven
function

c(α) = 1

α
tan−1g(α), (79)

where

g(α) = iα[2α2 − k2 − 2γ (α)δ(α)]

k2f (α)δ(α)
, (80)

and

c(α) ∼ i

|α| tanh−1
(

1

k2

)
, α → ±∞, α ∈ D. (81)

Therefore, Cauchy’s integral theorem can be employed (see Theorem B, p. 13 of Noble[33]) to obtain after
simplification

θ±(α) = ±α2

π i

∫
C1

tan−1g(ζ )

ζ(ζ 2 − α2)
dζ, (82)

whereα lies above (below) the contourζ for θ+(α) (θ−(α)) andC1 is that half of the contourC (Fig. 2) which goes
from 0 to+∞. Note that

θ−(α) = −θ+(−α), (83)

and it can be shown that

θ+(α) ∼ 1

π
tanh−1

(
1

k2

)
log(2α) + B + o(1) (84)

as|α| → ∞, α ∈ D+, whereB is the constant

B = i

π

∫
C1

(
tan−1g(ζ )

ζ
− i tanh−1(1/k2)

γ (ζ )

)
dζ. (85)

In view of the fact that the coefficient of the logarithm function in(84) is real, it is easily proved that cosθ+(α) and
sinθ+(α) are bounded as|α| → ∞ in D+.

The product factorization of(77)can be achieved in a manner similar to that outlined in Section 2.5.2 of Freund
[21]. Omitting all details it is found that

r−(α) = r+(−α), (86)

r+(α) = eiπ/4

√
2(α + k0)1/2

(
k2 + 1

k2 − 1

)1/4

e-+(α), α ∈ D+, (87)
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where

-+(α) = − 1

2π

∫ k

1
tan−1

(√
ζ 2 − 1

√
k2−ζ 2

ζ 2

)
dζ

ζ + α
+ 1

2π

∫ k

1
tan−1

(
4ζ 2

√
ζ 2 − 1

√
k2 − ζ 2

(2ζ 2 − k2)2

)
dζ

ζ + α
,

(88)

andk0 is the Rayleigh wavenumber given by the positive real zero ofR(α) (19). By inspection,-+(α) = O(α−1)

as|α| → ∞ in D+, and so

r+(α) ∼ e−iπ/4

√
2

(
k2 + 1

k2 − 1

)1/4

α−1/2, |α| → ∞, α ∈ D+. (89)

This completes the commutative partial decomposition ofKN(α).

4.3. Non-commutative factorization

Suppose anupper× lower factorization of(56) is required rather than alower × uppersplit derived in the last
section for kernel(17). Then the matrix factorsL+

N(α) andL−
N(α)JN(α) of KN(α) (75)are analytic inD+ andD−,

respectively, except for simple poles at the zeros ofPN(α),QN(α) occurring infN(α). These must be removed,
in an identical fashion to that discussed inSection 3.3, in order to complete the factorization procedure. Thus, as
before, a regularizing matrix,M(α), is introduced such that (cf.Eq. (46))

K+
N(α) = L+

N(α)M(α), (90)

K−
N(α) = M−1(α)L−

N(α)JN(α), (91)

so that

KN(α) = K+
N(α)K−

N(α) = L+
N(α)L−

N(α)JN(α). (92)

As before, the introduction ofM(α) leads to a non-commutative factorization as

K−
N(α)K+

N(α) �= KN(α). (93)

The regularizing matrixM(α) must suppressall the simple poles occurring in the half-planes of intended analyticity,
and it therefore must consist of meromorphic elements which are generalizations of that used previously(48). The
procedure described in Appendix A of Abrahams[3] can be employed here toconstructthe following ansatz for
M(α):

M(α) =




1 +
N∑

n=1

An

α − pn

+
N∑

n=1

Bn

α + pn

N∑
n=1

En

α − pn

+
N∑

n=1

Fn

α + pn

−
N∑

n=1

Cn

α − qn
−

N∑
n=1

Dn

α + qn
1 −

N∑
n=1

Gn

α − qn
−

N∑
n=1

Hn

α + qn




(94)

which, in fact, is more general than that required for the kernel in[3]. It should be stated that, as Wiener–Hopf
factorization is unique only up to arbitrary constant matrix factors, different forms forM(α) could have been equally
well employed.

To evaluate the as yet unknown coefficientsAn throughHn, the right-hand sides of(90) and (91)are expanded
in order to suppress the spurious poles. For example, the(1,1) element ofK+

N(α) is given, from(76) and (94), by

r+(α) cosθ+(α)

{
1+

N∑
n=1

An

α − pn

+
N∑

n=1

Bn

α + pn

+ 1

fN(α)
tanθ+(α)

(
N∑

n=1

Cn

α − qn
+

N∑
n=1

Dn

α + qn

)}
, (95)
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which has simple poles inD+ at α = pn, n = 1, . . . , N . It does not have poles atα = qn because 1/fN(α) has
zeros at these points. WritingfN(α) and its inverse as Mittag–Leffler expansions

fN(α) = 1 +
N∑

n=1

αn

α2 − q2
n

,
1

fN(α)
= 1 +

N∑
n=1

βn

α2 − p2
n

, (96)

where the partial sum coefficients are

αn = 2qnPN(qn)

Q′
N(qn)

, βn = 2pnQN(pn)

P ′
N(pn)

(97)

with ′ denoting differentiation with respect toα, then(95) is pole free inD+ if and only if

Am = − βm

2pm

tanθ+(pm)

N∑
m=1

(
Cn

pm − qn
+ Dn

pm + qn

)
, m = 1, . . . , N. (98)

Similarly the (1, 1) element of [K−
N(α)]−1 is

− 1

r+(−α)
sinθ+(−α)

{
1 +

N∑
n=1

An

α−pn

+
N∑

n=1

Bn

α + pn

+ 1

fN(α)
cotθ+(−α)

(
N∑

n=1

Cn

α − qn
+

N∑
n=1

Dn

α+qn

)}
,

(99)

which is free of poles inD− if and only if

Bm = + βm

2pm

cotθ+(pm)

N∑
m=1

(
Cn

pm + qn
+ Dn

pm − qn

)
, m = 1, . . . , N. (100)

Note that use has been made of the symmetry properties(83) and (86)in the above equations. Repeating this procedure
for the(2,1) elements ofK+

N(α), [K−
N(α)]−1 gives two more equations relatingAm throughDm. Concatenating all

four equations into matrix form allows them to be written as the following pair of equations:

YA = XC, ZC = 1 + XTA, (101)

where

A = (A1, A2, . . . , AN,B1, . . . , BN)T, C = (C1, . . . , CN,D1, . . . , DN)T, (102)

Y is a diagonal matrix with elements

2p1

β1
cotθ+(p1), . . . ,

2pN

βN

cotθ+(pN),
2p1

β1
tanθ+(p1), . . . ,

2pN

βN

tanθ+(pN), (103)

Z is a diagonal matrix with elements

2q1

α1
cotθ+(q1), . . . ,

2qN
αN

cotθ+(qN),
2q1

α1
tanθ+(q1), . . . ,

2qN
αN

tanθ+(qN), (104)
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X =




−1

p1 − q1

−1

p1 − q2
· · · −1

p1 − qn

−1

p1 + q1

−1

p1 + q2
· · · −1

p1 + qN

−1

p2 − q1

−1

p2 − q2
· · · −1

p2 − qN

−1

p2 + q1

−1

p2 + q2
· · · −1

p2 + qN

...
...

...
...

−1

pN − q1
· · · −1

pN − qN

−1

pN + q1
· · · −1

pN + qN

1

p1 + q1

1

p1 + q2
· · · 1

p1 + qN

1

p1 − q1

1

p1 − q2
· · · 1

p1 − qN

...
...

...
...

1

pN + q1
· · · 1

pN + qN

1

pN − q1
· · · 1

pN − qN




, (105)

and

1 = (1,1,1, . . . ,1)T, (106)

which is a constant column vector of length 2N . It is a simple matter to solve the coupled system

C = (Z − XTY−1X)−11, A = Y−1XC. (107)

Eliminating the poles from the(2,1), and(2,2) elements of the matrix factors leads to the complementary system
of equations for the remaining coefficients

E = (Y − XZ−1XT)−11, G = Z−1XTE, (108)

where

E = (E1, . . . , EN, F1, . . . , FN)T, G = (G1, . . . ,GN,H1, . . . , HN)T. (109)

This completes the evaluation ofM(α). From(107) and (108)it is straightforward to show, as before, that

det(M(α)) = 1, (110)

and soM−1(α) does not introduce spurious singularities. The product factorsK±
N(α) have now been determined

explicitly in terms of the commutative partial factorsL±
N(α) and the regularizing matrixM(α) or its inverse. It is

easy to check thatK±
N(α) have all the required properties; they are analytic inD±, have well-defined inverses in

D± and finally have algebraic growth at infinity inD±. In particular, results(76), (84), (89) and (94)reveal that

K±
N(α) ∼ O(α−1/2), |α| → ∞, α ∈ D±. (111)

As already mentioned, the approximate factors tend to the exact result asN → ∞, i.e.

K±
N(α) → K±(α) (112)

as long asα lies in the respective half-plane of analyticity. IfK+(α) is required inD−, say, then inaccurate results
may be obtained, even for largeN , unless it is approximated by

K+(α) ≈ K(α)K−
N(α), α ∈ D−, (113)

whereK(α) is theexactkernel(56).
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5. Further model problems and conclusions

The procedure outlined in the previous section can be utilized for a large number of canonical problems in
dynamic elasticity, whether in fracture dynamics or in QNDE. The Wiener–Hopf kernels for two such examples are
briefly discussed in this section.

5.1. Scattering by a crack in a moderately thin plate

First, consideration is given to scattering of flexural waves by a semi-infinite crack in amoderatelythin elastic
plate. Such a problem is important for the inspection of thin component structures, such as airplane or other vehicle
fuselages, rotor blades in jet engines, etc., to determine defects or inclusions. Achenbach and Gautesen’s[12]
model may be considered as the limiting case when the specimen’s thickness tends to infinity; here the thickness is
moderately small compared to characteristic wavelengths of monochromatic elastic waves (of radian frequencyω,
say) and so a plate theory that in addition to flexural motion includes the effects of transverse shear and rotary inertia
(usually referred to as Mindlin theory[23]) is employed. Omitting all details for brevity[7], motions antisymmetric
about the line of the crack satisfy a Wiener–Hopf equation whose kernel is

K(α) = 1

γ3(α)(k
2
1 − k2

2)

(
K11(α) K12(α)

−K12(α) K22(α)

)
, (114)

where

K11(α) = k−4
3 {−(2α2 − k2

3)
2(k2

1 − k2
2) + 2(1 − ν)k2

3α
2γ3(α)(γ1(α) − γ2(α))

−4α2γ3(α)(k
2
2γ1(α) − k2

1γ2(α))}, (115)

K22(α) = α2(k2
1 − k2

2) − k2
1k

2
2k

2

k4
f

γ3(α)(γ1(α) − γ2(α)) + k2

k4
f

γ3(α)(k
2
2γ1(α) − k2

1γ2(α)), (116)

K12(α) = αk−2
3 {(2α2 − k2

3)(k
2
1 − k2

2) + 2γ3(α)(k
2
2γ1(α) − k2

1γ2(α))}. (117)

Here, as before,α is the Fourier transform variable related to the direction parallel to the crack, non-dimensionalized
with respect to the wavenumber of longitudinal waves, and the three (non-dimensionalized) bulk wavenumbersk1,k2
andk3 depend uponω but are independent ofα. They are given in terms of longitudinal and transverse wavenumbers,
kL andkT, and the wavenumber for non-dimensionalized flexural (bending) waveskf , via

k2
1 + k2

2 = k2 + 1, k2
1k

2
2 = k2 − k4

f , k2
3 = κ2k2

1k
2
2, (118)

where, as before,k = kT/kL. The constantν is Poisson’s ratio andκ, introduced in Mindlin plate theory to better
approximate the shear forces, may be chosen according to different criteria, but normallyκ2 < 1 [23]. Finally, the
kernel elements contain the branch-cut functions

γj = (α2 − k2
j )

1/2, Reγj ≥ 0, j = 1,2,3, (119)

which fully specifies the matrix kernel(114).
Algebraic manipulation allows the kernel to be rearranged into Khrapkov form

K(α) = 1

2

(
1 1

−1 1

)
Q(α)

(
1 −1
1 1

)
(120)

in which Q(α) is

Q(α) = δ(α)I +
√
β(α)β(−α)J(α) (121)
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with I the identity,

β(α) = 1

2γ3(α)(k
2
1 − k2

2)
(K11(α) − K22(α) + 2K12(α)), (122)

δ(α) = 1

2γ3(α)(k
2
1 − k2

2)
(K11(α) + K22(α)). (123)

Also,

J(α) =




0 f (α)

1

f (α)
0


 , J2(α) = I, (124)

and the scalar function to be approximated is

f (α) =
√

β(α)

β(−α)
. (125)

Solution by the WHAM can now be carried out in the manner discussed previously; i.e.,f (α) is chosen to tend to
unity at infinity, and so is replaced by its [N/N ] Padé approximantfN(α) in Q(α). However, here the form off (α)

is a little different, exhibiting the reflectional property

f (α) = 1

f (−α)
, (126)

and so its approximant takes a similar form. Suppose now thatfN(α) hasP poles in the upper half-plane atα = pn,
n = 1,2, . . . , P (pn /∈ D−) andQ poles in the region below the strip atα = −qn, n = 1,2, . . . ,Q. Thus, there is,
in totalP +Q = N simple poles in the complex plane, and due to the symmetry(126)there areN simple zeros of
fN(α) at

α = −pn, n = 1,2, . . . , P , α = qn, n = 1,2, . . . ,Q (127)

in the lower and upper regions, respectively. Thus,fN(α) and its inverse may be expressed as Mittag–Leffler
expansions

fN(α) = 1 +
P∑

n=1

αn

pn − α
+

Q∑
n=1

βn

qn + α
, P + Q = N, (128)

1

fN(α)
= 1 +

P∑
n=1

αn

pn + α
+

Q∑
n=1

βn

qn − α
, (129)

where both tend to unity at infinity by virtue offN(α) being a two-point Padé approximant off (α). The coefficients
αn, andβn are easily determined and by inspection of the wayfN(α) appears inQN(α) (the approximation ofQ(α)),
the ansatz forM(α) is now posed

M(α) =




1 +
P∑

n=1

An

pn − α
+

Q∑
n=1

Bn

qn + α
−

P∑
n=1

Cn

pn − α
−

Q∑
n=1

Dn

qn + α

P∑
n=1

Cn

pn + α
+

Q∑
n=1

Dn

qn − α
1 +

P∑
n=1

An

pn + α
+

Q∑
n=1

Bn

qn − α




, (130)

whereAn, Bn, Cn, andDn are constants that must be determined as previously. With the information provided
above an approximate explicit factorization can be accomplished without too much difficulty[7].
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5.2. Scattering by an interfacial crack

The second example illustrating applications of the WHAM is scattering by a crack in an interface between two
dissimilarelastic materials. The model is identical to that discussed by Achenbach and Gautesen[12] except that
the region above the crack (y > 0) has material properties denoted by a suffix 2, whereas below the crack (y < 0)
the material is denoted by the suffix 1. Then, the boundary value problem can be shown to reduce to a matrix
Wiener–Hopf equation with kernel

K(α) =




0 −iα iη

0 iη iα

1 0 0


Q−1(α)




−iα 0 iη

iη 0 iα

0 1 0




−1

, (131)

in which

Q(α) =

N(2) − N(1) 0

0
0 0 g(α)


 , (132)

whereg(α) is the scalar function

g(α) = − 1

µ1δ1
− 1

µ2δ2
, (133)

andN(j)(α) is the 2× 2 matrix

N(j)(α) = 1

µjRj


 α2 + η2 + δ2

j − 2γj δj (−1)j k2
j δj

(−1)j k2
j γj (α2 + η2)(α2 + η2 + δ2

j − 2γj δj )


 . (134)

The notation is the same as that employed inSection 3, namelyδj , γj andRj are given in(19) and (20)with
parameterk → kj and argument

√
α2 + η2. Also,µj is the shear modulus in mediumj .

It can be shown that this 3× 3 kernel(131)can be rearranged into Khrapkov form with a scalar function which
is approximated in the usual way. For brevity this is not discussed further, but instead it is clear that the kernel in
(131)must reduce to that in(17) when medium 2 and medium 1 are identical. Whenk1 = k2 = k, by inspection
Q(α) reduces to

Q(α) = 2k2

µR




0 δ 0

γ 0 0

0 0 d


 , (135)

and so multiplying out the matrices in(131)gives

K(α) = −µ

2(α2 + η2)




η2δ + α2d αη(δ − d) 0

αη(δ − d) α2δ + η2d 0

0 0
δd

γ


 . (136)

Clearly, this 3× 3 kernel has reduced to a 2× 2 matrix (top left) which is exactly that given in(17) except for a
constant, plus a scalar function. The former is the kernel of the Wiener–Hopf system for antisymmetric motions in
y, the direction perpendicular to the crack, and the latter that for symmetric motions.
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5.3. Concluding remarks

This paper has offered a brief summary of the role of the Wiener–Hopf technique in elastodynamics, relevant
to QNDE and fracture dynamics, and in particular has demonstrated a practical and constructive method for the
approximate factorization of matrix kernels arising from such problems. A fuller description of the method which
employs Padé approximants, and further applications, can be found in other papers by the author[2–5]. As mentioned
in Section 2, the replacement of scalar kernels by Padé generated rational functions can be seen as a direct gener-
alization of Koiter’s approach[30]. However, the WHAM method has several important advantages over Koiter’s,
and other, approximate and exact factorization techniques (e.g. contrast the approach of the author[4] with that
offered by Daniele[20]). First the approximation can be extended to any order, hence improving accuracy almost
indefinitely. Second, the automatic generation of the polynomial coefficients from the Taylor series expansion seems
to present an optimal choice in regard to accuracy; to illustrate this,Fig. 3 revealed an error of less than 10−8%
for the modest Padé numberN = 11! Third, the Padé coefficients are generated by inversion of a linear algebraic
system, which means that the procedure is quick and accurate using packages such as Matlab or Mathematica. In[5]
several physically important scalar kernels are discussed, and the advantage, in terms of ease of use and increase in
computational speed, of the approximate kernels is demonstrated. Lastly, and most importantly, the WHAM method
is the only approximate approach which is directly applicable to matrix as well as scalar systems.

References

[1] I.D. Abrahams, Scattering of sound by three semi-infinite planes, J. Sound Vib. 112 (1987) 396–398.
[2] I.D. Abrahams, Radiation and scattering of waves on an elastic half-space: a non-commutative matrix Wiener–Hopf problem, J. Mech.

Phys. Solids 44 (1996) 2125–2154.
[3] I.D. Abrahams, On the solution of Wiener–Hopf problems involving noncommutative matrix kernel decompositions, SIAM J. Appl. Math.

57 (1997) 541–567.
[4] I.D. Abrahams, On the non-commutative factorization of Wiener–Hopf kernels of Khrapkov type, Proc. R. Soc. London A 454 (1998)

1719–1743.
[5] I.D. Abrahams, The application of Padé approximants to Wiener–Hopf factorization, IMA J. Appl. Math. 65 (2000) 257–281.
[6] I.D. Abrahams, J.B. Lawrie, On the factorization of a class of Wiener–Hopf kernels, IMA J. Appl. Math. 55 (1995) 35–47.
[7] I.D. Abrahams, A.N. Norris, Diffraction of flexural waves by cracks and strips using Mindlin plate theory: a matrix Wiener–Hopf analysis,

Quart. J. Mech. Appl. Math., submitted.
[8] I.D. Abrahams, G.R. Wickham, General Wiener–Hopf factorization of matrix kernels with exponential phase factors, SIAM J. Appl. Math.

50 (1990) 819–838.
[9] I.D. Abrahams, G.R. Wickham, The scattering of water waves by two semi-infinite opposed vertical walls, Wave Motion 14 (1991) 145–168.

[10] J.D. Achenbach, Wave Propagation in Elastic Solids, North-Holland, Amsterdam, 1973.
[11] J.D. Achenbach, A.K. Gautesen, H. McMaken, Ray Methods for Waves in Elastic Solids—With Applications to Scattering by Cracks,

Pitman, Boston, 1982.
[12] J.D. Achenbach, A.K. Gautesen, Geometrical theory of diffraction for 3D elastodynamics, J. Acoust. Soc. Am. 61 (1977) 413–421.
[13] J.D. Achenbach, A.K. Gautesen, Elastodynamic stress-intensity factors for a semi-infinite crack under 3D loading, ASME J. Appl. Mech.

44 (1977) 243–249.
[14] J.D. Achenbach, A.K. Gautesen, A ray theory for elastodynamic stress-intensity factors, ASME J. Appl. Mech. 45 (1978) 123–129.
[15] V.M. Babich, D.B. Dement’ev, B.A. Samokish, V.P. Smyshlyaev, On evaluation of the diffraction coefficients for arbitrary “nonsingular”

directions of a smooth convex cone, SIAM J. Appl. Math. 60 (2000) 536–573.
[16] G.A. Baker Jr., P. Graves-Morris, Padé Approximants, 2nd Edition, Cambridge University Press, Cambridge, UK, 1996.
[17] G.F. Carrier, Useful approximations in Wiener–Hopf problems, J. Appl. Phys. 30 (1959) 1769–1774.
[18] D.G. Crighton, Asymptotic factorization of Wiener–Hopf kernels, Wave Motion 33 (2000) 51–65.
[19] V.G. Daniele, On the factorization of Wiener–Hopf matrices in problems solvable with Hurd’s method, IEEE Trans. Antennas Propagat.

26 (1978) 614–616.
[20] V.G. Daniele, On the solution of two coupled Wiener–Hopf equations, SIAM J. Appl. Math. 44 (1984) 667–680.
[21] L.B. Freund, Dynamic Fracture Mechanics, Cambridge University Press, Cambridge, UK, 1993.
[22] I.C. Gohberg, M.G. Krein, Systems of integral equations on a half-line with kernels depending on the difference of arguments, Am. Math.

Soc. Trans. Ser. 2 (14) (1960) 217–287.
[23] K.F. Graff, Wave Motion in Elastic Solids, Dover, New York, 1991.



I.D. Abrahams / Wave Motion 36 (2002) 311–333 333

[24] A.E. Heins, Systems of Wiener–Hopf equations, in: Proceedings of the Symposia on Applied Mathematics, Vol. II, McGraw-Hill, New
York, 1950, pp. 76–81.

[25] R.A. Hurd, The Wiener–Hopf Hilbert method for diffraction problems, Can. J. Phys. 54 (1976) 775–780.
[26] M. Idemen, A new method to obtain exact solutions of vector Wiener–Hopf equations, Z. Angew. Math. Mech. 59 (1976) 656–658.
[27] D.S. Jones, Factorization of a Wiener–Hopf matrix, IMA J. Appl. Math. 32 (1984) 211–220.
[28] A.A. Khrapkov, Certain cases of the elastic equilibrium of an infinite wedge with a non-symmetric notch at the vertex subjected to

concentrated forces, Appl. Math. Mech. (PMM) 35 (1971) 625–637.
[29] A.A. Khrapkov, Closed form solutions of problems on the elastic equilibrium of an infinite wedge with nonsymmetric notch at the apex,

Appl. Math. Mech. (PMM) 35 (1971) 1009–1016.
[30] W.T. Koiter, Approximate solution of Wiener–Hopf type integral equations with applications, Parts I–III, Koninkl. Ned. Akad.

Wetenschap. Proc. B 57 (1954) 558–579.
[31] P.A. Lewis, J.A.G. Temple, E.J. Walker, G.R. Wickham, Calculation of diffraction coefficients for a semi-infinite crack embedded in an

infinite anisotropic linearly elastic body, Proc. R. Soc. London A 454 (1998) 1781–1803.
[32] E. Meister, F.-O. Speck, Wiener–Hopf factorization of certain non-rational matrix functions in mathematical physics, in: The Gohberg

Anniversary Collection, Vol. II, Birkhauser, Basel, 1989, pp. 385–394.
[33] B. Noble, Methods Based on the Wiener–Hopf Technique, 2nd Edition, Chelsea Press, New York, 1988.
[34] A.N. Norris, J.D. Achenbach, Elastic wave diffraction by a semi-infinite crack in a transversely isotropic material, Quart. J. Mech. Appl.

Math. 37 (1984) 565–580.
[35] A.D. Rawlins, The solution of a mixed boundary value problem in the theory of diffraction by a semi-infinite plane, Proc. R. Soc. London

A 346 (1975) 469–484.
[36] L.A. Weinstein, The Theory of Diffraction and the Factorization Method, The Golem Press, Boulder, CO, 1969.
[37] G.R. Wickham, Mode conversion, corner singularities and matrix Wiener–Hopf factorization in diffraction theory, Proc. R. Soc. London

A 451 (1995) 399–423.


	On the application of the Wiener-Hopf technique to problems in dynamic elasticity
	Introduction
	Scalar and commutative matrix factorization
	Khrapkov factorization

	Diffraction by a semi-infinite crack in an elastic solid
	Achenbach and Gautesen's factorization
	Meister and Speck's factorization
	Modified Khrapkov factorization

	The elastic dock problem
	Approximate kernel
	Khrapkov partial decomposition
	Non-commutative factorization

	Further model problems and conclusions
	Scattering by a crack in a moderately thin plate
	Scattering by an interfacial crack
	Concluding remarks

	References


