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Abstract

Many problems in linear elastodynamics, or dynamic fracture mechanics, can be reduced to Wiener—Hopf functional
equations defined in a strip in a complex transform plane. Apart from a few special cases, the inherent coupling between
shear and compressional body motions gives rise to coupled systems of equations, and so the resulting Wiener—Hopf kernels
are of matrix form. The key step in the solution of a Wiener—Hopf equation, which is to decompose the kernel into a product
of two factors with particular analyticity properties, can be accomplished explicitly for scalar kernels. However, apart from
special matrices which yield commutative factorizations, no procedure has yet been devised to factorize exactly general matrix
kernels.

This paper shall demonstrate, by way of example, that the Wiener—Hopf approximant matrix (WHAM) procedure for
obtaining approximate factors of matrix kernels (recently introduced by the author in [SIAM J. Appl. Math. 57 (2) (1997)
541)) is applicable to the class of matrix kernels found in elasticity, and in particular to problems in QNDE. First, as a
motivating example, the kernel arising in the model of diffraction of skew incident elastic waves on a semi-infinite crack
in an isotropic elastic space is studied. This was first examined in a seminal work by Achenbach and Gautesen [J. Acoust.
Soc. Am. 61 (2) (1977) 413] and here three methods are offered for deriving distinct non-commutative factorizations of the
kernel. Second, the WHAM method is employed to factorize the matrix kernel arising in the problem of radiation into an
elastic half-space with mixed boundary conditions on its face. Third, brief mention is made of kernel factorization related
to the problems of flexural wave diffraction by a crack in a thin (Mindlin) plate, and body wave scattering by an interfacial
crack.
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1. Introduction

This paper will focus on one of the most significant areas that Professor Achenbach has opened up during his
long and distinguished career, namely, the diffraction of elastic waves by material defects. Together with students
and co-workers he generalized the geometrical theory of diffraction (GTD) from the scalar problems encountered
in acoustics or optics to the vectorial models of stress waves found in §lids ] This work directly contributed
to the birth of the now enormous field of quantitative non-destructive evaluation (QNDE) of solids using ultrasonic
waves. In order to apply the GTD it is necessary to determindiffiaction coefficientdor the scattered field
generated at sharp edges, corners or interfacial boundaries of defects. If the diffraction coefficients are known ther
the diffracted fields can be readily calculated; the complete scattered field is determiaddibgthe various
diffraction contributions from all the edges to the specular components.

In general, the determination of the key diffraction coefficients relies on the solution of carianigbroblems
based on théocal geometryand material properties. Thus, for example, take a smooth finite crack with a closed
bounding curve, and irradiated by an elastic wave of arbitrary incident direction and wavelength much less than
the typical crack lengthscales. Further, the host body could be inhomogeneous also with a typical inhomogeneity
lengthscaldong compared to the incident wavelength. Thenltwal field diffracted by a small segment of the
crack’s edge is essentially that determined by solution of the problem sholig.id. That is, scattering of an
elastic wave by aemi-infinite planar crackn a homogeneous medium. In thimer region the crack is of infinite
extent along its edge, and the incident field is inclined at an arbitrary angle to this edge so that the model problem is
fully three-dimensional in nature. In a series of classic papers, Achenbach and G§l®edetjemployed Fourier
transform analysis combined with thiener—Hopf techniquo solve the above described inner problem for a
variety of different forcings, and thence to employ these to obtain the GTD solution in several cases: including
an infinitely long planar crack of finite-width, and a penny shaped crack. Note that the same approach can also be
successfully applied to the related area of dynamic fracture—under an applied loading the growth rate of a crack will
depend on théocal behaviour at the crack tip, i.e. only related to the stress-intensity factors (SIFs) of a canonical
inner problem (see, e.g., papéts,21).

The success of the GTD to QNDE, and the asymptotic scheme employed for dynamic fracture analysis, relies
on being able to solve the canonical inner problems. Fortunately, there has evolved, over many years, a wide
variety of powerful tools to tackle boundary value problems in canonical domains, and these have been employed,
and continue to be employed (e.g. in the context of electromagnetic diffraction by conical bodigg]s@eath
great success in obtaining analytical solutions. Such explicit results often provide deep insight into the physical
processes associated with a given model, and are especially convenient for rapid computation. On the other hanc
direct numerical schemes for tacklimgner problems have not proved particularly successful, as they have to
accurately cope with singularities at corners and rapid or instantaneous changes in field quantities. Thus, as QNDE i

incident wave

Fig. 1. Semi-infinite crack in an isotropic elastic space.



I.D. Abrahams/Wave Motion 36 (2002) 311-333 313

developed ever further there is a need to extend GTD methods to incorporate increasingly more comeédistiad
canonical inner problems. For example, the widespread use of composite materials in engineering applications
means that the model problem shownFig. 1 (discussed iff12]) needs to be extended to include anisotropy

[34].

This paper will focus on the Wiener—Hopf technid88,36]which has proved remarkably successful over some
70 years since its invention, at obtaining analytical solutions for an enormous variety of physical boundary or initial
value problems. A bibliography incorporating these application areas may be fo(iB[d #s noted previously,
Achenbach and Gautesepl] pioneering work in the area of elastic wave scattering employed the Wiener—Hopf
technique. There is, however, a severe limitation to the method. For complicated boundary value problems the
solution procedure yields vector rather than scalar Wiener—Hopf equations, for which, as will be shown, there is in
general no solution procedure. The presence of both shear and compressional waves in solids in general gives rise
to such matrix systems, and this has curtailed the efficacy and hence the success of the Wiener—Hopf technique in
the field.

It is the aim of this paper to discuss particular matrix Wiener—Hopf systems that are obtained in elasticity, most
of which arise in dynamic situations. There will be an attempt to address the natural canonical problems which are
of interest in QNDE and which can be seen as generalizations of Achenbach and Galiieaniginal model
(Fig. 2). For brevity only the crucial step in the Wiener—Hopf analysis, namely the factorization of the kernel, will
be discussed in this paper. In the following section, a short discussion is offered on the kernel product decompo-
sition procedure, and its inherent difficulty for matrix kernels. However, for certain matrix kernels a commutative
(or Khrapkov)[28,29] factorization is obtainable, and this is also introduced her&dction 3 Achenbach and
Gautesen’s kernel is looked at in some detail, and an explicit factorization determined by several nSstbibols.

4 is concerned with a particular canonical problem in elastodynaf2joshich offers one of the simplest matrix
Wiener—Hopf systems whose kernel does not permit a commutative product factorization. An approximate tech-
nique, based on the introduction of Padé approximants, whose accuracy can be increased to very high levels, is
employed to effect the factorizatioBection Smakes mention of a couple of kernels from related, and physically im-
portant, problems in elasticity, and briefly discusses their factorization. Concluding remarks are offered at the end of
Section 5

2. Scalar and commutative matrix factorization

The Wiener—Hopf technique offers one of the very few approaches to obtaining exact solutions to integral
equations. It is appropriate for equations of either first or second kind, defined over a half-line, and which have
difference kernels. Physical boundary or initial value problems which have the characteristic feature of data defined
on semi-infinite or equivalent planes often reduce to Wiener—Hopf form. The solution method usually proceeds
directly from the boundary value problem to an equation in the complex plane defined in an infinite strip. This
is accomplished by Fourier transformation (or other appropriate transform) or Green’s theorem, and the essential
physical details are manifested in the singularity structure of the Fourier transformed difference kernel often just
called the Wiener—Hopf kernek (@) say[33], wherex is the transform parameter. This kernel is usually arranged
to be singularity free in a strip of finite-width in the compleplane which contains the real line j@ag — oco. The
strip is denoted henceforth @5 but note that it need not necessarily be straight, i.e. it does not have to enclose the
whole real line. Solution of the Wiener—Hopf equation is straightforward éhee is decomposed into a product
of two functionsk +(«) andK ~ (), whereK + () is regular and zero-free in the region above and including the
stripD, denoted>t, andK ~ («) is regular and zero-fréén the region below and includir, denoted>—. Further,

1 This property is necessary as the inverses of the product factors must also be analytic in their respective half-planes in order for a successful
rearrangement of a Wiener—Hopf equat[88].
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K*(a) must have at worst algebraic growth|ag — oo in D, respectively. Cauchy’s integral theorem provides
a convenient method for obtaining the expl®itm factorizatiorof a function, e.g. of the form

g@) =g (@) +g (@), )

where+ denote the above analyticity properties, and so by exponentiation the follprodgct factorizatiorcan
be deduced (see Theorem C of Nof38]):

K(a) =explg(@)] = KT (@)K (o), 2
+1

K* () = explgT(@)] = exp{_ /OO Md;} ’

210 J_ oo C—« 3
where the integration path liesThandx lies above (below) for K+ () (K~ («)). Sometimes a limiting procedure
is necessary to ensure convergence of these integrals.

For complicated problems in whicki («) is a scalar function, there are several technical difficulties associated
with computing integrals of the above for{B) (se€g[6]). It is, therefore, often desirable to replace the exact kernel
with a simpler one which approximates it accurately in the strip of analyticity, and from which approximate and
well behaved product factor& * («) can be derived. This is an interesting and quite well studied area, see, e.g.
[5,17,18,30] and the references mentioned therein, but for brevity it will only be discussed furtSerction 4in
the context of matrix factorization.

This paper is concerned with vector functional Wiener—Hopf equations in which the kernel is a square matrix
K («). This presents two potential obstacles: one has been addressed already by the author and is not considered he
[8]; the second is the generalization of the factorization procedure indicat@). lor any matrix functionk («),
the logarithmG («) = log(K («)) can be defined, for example by its power series expansioh4o@K («) — 1)] =
K(a) — | — (1/2)(K(a) — D% + - - -, wherel is the identity matrix, or otherwise. Then the sum spliGifx) is
accomplished by the Cauchy type integrals acting on each element of the matrix. However, the final step to obtain
the product factors, i.e.

exp(GT (a) + G~ ()} = exp(GT ()} exp{G ™~ ()} 4)
is trueif and only ifG* («) andG~(«), and hence the product factorstofx), commute?
KT (a)K ™ (o) = exp{GT ()} exp(G ™ (x)} = exp{G ™ (a)} exp{GT (o)} = K™ ()K" (). (5)

This difficulty was first discussed by Heifid4] in 1950! For general matricek («), this commutative property
will not hold, and, although no procedure is presently available for tackling such arbitrary matrix Wiener—Hopf
problems, Gohberg and Krej@2] have proved the existence of product factors in all cases.

Fortunately, many physically interesting problems naturally give rise to kernels which, although intrinsically
matrix in form, have a commutative factorization or can be reworked (by pre- and/or post-multiplication by suitable
matrices) into such form. Khrapkd8,29], in papers concerned with the stresses in elastostatic wedges with
notches, was the first author to express the commutative factorization in a form which indicates the sub-algebra
associated with this class of kernels, and this is discussed further below. Many other authors have also examinec
the commutative case, including Dani¢l®], Rawlins[35], Hurd [25], and Jone$27]. Meister and Spec32]
introduced an alternative and rather elegant decomposition method to that offered by Khrapkov (which is touched
on in the following section), but the precise relationship between the two approaches has yet to be fully established.
Citations to other such works are to be found3h As the Khrapkov form will be useful in later sections, it is
valuable to briefly discuss here the commutative factorization procedure.

2 The necessity for commutativity may easily be verified by expanding both sid@$ osing the usual definition of the Taylor series for
matrix exponentials.
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2.1. Khrapkov factorization

As will now be demonstrated, matrices which permit a commutative factorization can be reduced to scalar
factorizations of the above forni$) and (2) The approach taken here is that employed by Khrapk®\29], which
is in factequivalentio the exponential form suggested by others, e.g. Heihs(see alsd33]) and Danield19].

For purposes of clarity, the following discussion is restricted to matrix kernels<o? ®rder, but the arguments
can, in fact, be generalized to matrices of any §78. It is generally acceptethat any square matrix kernel which
permits a commutative factorization can be rearranged (by suitable pre- and post-multiplication by entire matrices)
into the following Khrapkov form:

K(a) = a(@)l + b(a)I(a), (6)

wherel is the identity matrixa(«), b(«) are arbitrary scalar functions efanalytic in the stripD and with algebraic
behaviour at infinity, and(«) is a square matrix with entire elements. Furtlés,) has the important property that
its elements are of algebraic growth at infinity and its square is

PP(a) = A% ()l (7)

in which A2(«) is apolynomialin «. As a consequence of this last property, a commutative product factorization
of K(a) can be posed as

K(@) = Q (@)Q*(a), (8)

whereQ* («) and their inverses are analytic in the regi@s, and these factors take the general form

1
Q* () = r+(a) { cosh [A(@)0+ ()]l + NG sinh [A(a)Gi(a)]J(a)} . 9)
Note thatA(«) has branch-points in both half-planes in general, but these are not presghitdan because the
latter are in fact functions of the square®ta). The problem is reduced to solving for the scalar functiong),
0+ (o) and these can be determined by multiply@d (o) by Q~ («) and equating witli6). It is found that

ry(a@)r—(a) cosh A(a) (04 (o) + 60— ()] = a(w), (10)
PO @) i [Ae) 0 (o) + - (@))] = bleo). (11)
A(a)

or rearranging gives

[ (@r—(@)]* = a®(@) — A*(@)b?(@), (12)

1 _1 [A@)b(@)

9.‘,.((1) + 9_((1) = m tanh [W} . (13)

S0,64 (o) are found from the sum split formu(4)
_ #1 [ tanh A F(©)]
O+(x) = ﬁ/c ADC — o) d¢, Zaabovel, (14)

andry («) are given employing the representati@j

The Khrapkov commutative factorization just described does indeed produce product factors with the requisite
analyticity properties. Further, the inverses@f («) are also analytic irD*. Unfortunately, as will be shown in
later sections, in general a Wiener—Hopf kernel cannot be cast into the®rkiowever, it will be shown that an
approximatefactorization can be achieved via a two-stage process: first to cast the kernel into Khrapkov form, in
which J(«) satisfieq7) but is not entire, and then second to remove singularities in respective half-planes arising
from an approximation td(«).
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3. Diffraction by a semi-infinite crack in an elastic solid

Almost certainly the first non-trivial matrix Wiener—Hopf kernel to be studied in the context of elastodynamics
was that discussed by Achenbach and GautEk2i 3] It is interesting in that, although simple in form, it does
not in fact permit a commutative factorization. However, the associated Wiener—Hopf equation can still be solved
fairly easily, as will be demonstrated, by deriving product fackorga), K * (), analytic in respective overlapping
half-planesD~, D™, but whose inverses amot analytic in these respective regions. The latter have offending
simple poles which are easitgmovedio enable the usual Wiener—Hopf procedure to follow through. fridk
is not satisfactory in general, because the inverse product factor may contain branch-cut and other complicatec
singularities in the required domain of analyticity which cannot be easily removed.

Gohberg and Krein’s resul22] indicates that a product split definitely exists for whi¢k (o) and K*]1(«)
are analytic inD*, and so the purpose of this section is to derive their forms here. First, it is instructive to offer
Achenbach and Gautesemseudo-factorizatigrand this will be followed by the method offered by Meister and
SpecK32]. Finally, and not previously presented in the literature, an explicit non-commutative product factorization
derived via the Khrapkov form will be discussed in the last subsection.

Fig. lillustrates the model examined by Achenbach and GautdsgnA longitudinal plane wave, of radian
frequencyw, is incident upon a semi-infinite crack (occupying the plane- 0, —co < z < o0, x < 0 as
shown) in an isotropic homogeneous elastic solid. For steady-state motions, the material is defined in terms of the
density,p, and wavenumbers, andkr, of longitudinal and transverse body waves, respectively. The ratio of these
wavenumbers is defined as

kT
k=—, 15
o (15)
which is always greater than unity. The forcing wave is skew incident onto the crack edge, and so its wavenumber

component in the-direction, defined as
kLn, (16)

say, is non-zero. Note that9 n < 1. If a Fourier transform in the-direction is taken, with transform variable

scaled ork, then the boundary value problem can be reduced to two Wiener—Hopf equations, one scalar equation
for motions symmetric about the playe= 0 and the other a coupled pair of equations relating antisymmetric
strains and displacements. The kernel of the latter Wiener—Hopf system, of interest in this article, can be written as
the 2x 2 matrix

@ = (n25</r;2+—a2> +e?d(/?+a?) an(G/n?+a?) —d(/n? +a?) ) | a7
AN an((n? +a?) —d(/n? +a?)  @?5(/12 +0?) + 1Pd (VP + a?)

where

d() = ,:2';8 , (18)
inwhich¢ = /n2 + a2,

R(¢) = (207 = k)% — 4% (0)8(2) (19)
is the Rayleigh function and

y(@)=@*=DY2  80) =2 -KHY2 (20)

The latter functions have branch-points, respectively,at+1, ¢ = +k, and the associated cuts are takefitico.
Thus, the strip of analyticity for the kern€l7) is defined to enclose the real line in thglane, indented to pass
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belowthe cuts running fror/1 — 72, +/k2 — n2, and above the cuts emanating freny/1 — 12, —/k2 — n2.
The functionsy (¢), §(¢) are made single-valued by choosing the Riemann surface such that

y(0) = —i, 8(0) = —ik. (22)
With this choice the Rayleigh functiaii9) has just two zeros in the-plane, located on the real line at

¢ = *ko, (22)
where it can be shown that

ko > k > 1, (23)

and soR (v/n? + «?2) has zeros at

o =a0=:i:,/kg—n2, (24)

which are also real.

The kerne[17)is identical to that studied by Achenbach and Gaut§s2japart from a scalar constant. However,
the notation is slightly different to that employed there in order to be consistent with later sections of this article.
Three approaches are now presented to factorize this kernel, the last being useful to following sections which
introduce the Wiener—Hopf approximant matrix (WHAM) method.

3.1. Achenbach and Gautesen’s factorization

The product factorization of the matrix kerr(&l7) offered by Achenbach and Gautegég] is

K(@) =K~ (@K* (), (25)
where
KT (@) = — D¥(@)C(e), K (@)= H%C(a)D_(a), (26)
Cl) = ( 3 _">, D* (@) — (di 0 ) (27)
-7 -« 0 s*

inwhichd* ands* are the scalar product factors of the scalar functitiRéy? + «2) ands (v/n? + a2), respectively.
CIearIy,R‘(a) is analytic in the lower half-plane with an explicit simple poleldt ata = in, but its inverse is

1

— 0

K Ye)=—— | ¢ C), (28)
n—ia 0 i
=

which is not analytic irD~ because of the pole at= —iz. Similarly,K *(«) is analytic inD* but [K * ()] "> has a
simple pole atr = +in. In contrast, the following two procedures will yigbdoperproduct factorizations df («).

3.2. Meister and Speck’s factorization

It is interesting to offer a factorization proposed by Meister and Sfgegjdbecause it relies on writing (o) as
a sum of the two singular matrices

1 a®  —ap 1 % an
Ald) = —— , B(x) = . 29
(@) 772 + a2 ( —an nz ) (@ n2 + a2 (an o? (29)
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The latter have the useful properties

AB =BA =0, (30)
and

A2=A, B2=B. (31)

Hence, by inspection

K(a) = d(/n? + a®)A(a) + 8(/n? + a?)B(), (32)
which may be expressed as
1 1
K(a) = (d"A(a) + g2 B(@)) <q—A(0t) + q—B(Oé)) (d*q1A(@) + 87 B(@)) (33)
1 2
for arbitrary constantss, ¢», andd*, 8T are given as before. Note that the left most matrix38) is analytic in
D~ if g2 is chosen taemovethe pole atx = —in occurring in bothA andB. It is easy to show that the required
value is
q-
8 a——in

and similarly to keep the right most matrix pole free in the upper half-plane then

5+
a——+In
Now, d(v/n? + «?) ands(v/n? + «2) are even functions af and so
1
q2

say. It now remains, to effect a successful factorizatioK i), to factorize the inner matrix. This is achieved by
Meister and Specl32] more-or-less by inspection, which is possible in this case because there are just two simple
poles atx = +in. Here, for brevity, just the result is stated

2
L L o~ atinZy 2Pt

o —in . - .
—A(@) +B@) | = —— o+i o+ , 37
(x @ ()> S ) 1 37

_ 1 —ia2 22
o—in

where the left (right) hand matrix together with its inverse is analyti®in(D). Multiplying the relevant terms
in (33) and (37)yields Meister and Speck’s factorization

K@) =K~ (@)K (a), (38)
ad” —ixnd~  iaid” +ind”
1 _ . - .
K@) = ——— o=t oa et (39)
/A(1+ 22) ioc)»éi —ind :_Loz8 + iAnd
a—in A a+in
adt +irns™ iak8+—|—ind+
1 - . -\
K*(a):— o+1In o +1n . (40)

/A1 + A2) _ikakd+ —inst )\oc6+ —iand™

a—in a—in
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3.3. Modified Khrapkov factorization

The first step in the factorization procedure is to rearrange the krfighto Khrapkov-likeform. This may be
achieved by choosing

a@)=3d+8), bl =3d-3 (41)
in (6), and

@) = % (a2 - —2an ) 42)

ac+n —2an _(az _ nz)

so that

() =1, (43)
i.e. A(w) = 1 in the split function®* («) (9). The other scalar quantities can be shown to be

rE) = VdESE, 0i(0) = %Iog (;l—i) . (44)

The commutative product spli8) would complete the factorization were if not for the fact thét) is not entire

as required, but has polesat= =+in. Thus, it is necessary to remove the poleQfi(«) in the upper (lower)
half-plane, and this can be achieved in the following straightforward manner. A meromorphic matrix function is
introduced into the factorizatiof8)

K(@) = Q™ (@)M (@M 1(@)Q" (), (45)
so that
K (@) =Q (@M@, K@ =M1x)Q" (), (46)

are analytic inD~, DT, respectively. Note that the introduction bf(«) in this particular fashion leads to a
non-commutative factorizaticas clearly

KT (@)K (a) #K(a). (47)

The form ofM (@) is chosen to have the same singularitied @3, to have the same reflection propertiesas),
i.e. diagonal elements evendmand off-diagonal elements odddn and to tend to the identity matrix 8| — oo.
Thus, an acceptable form bf («) is assumed to be
a ab
1
+ a2+ 2 PR
M(a) = , (48)
ac d
R 1+ ——
a2 4 2 a2+ 2

wherea, b, ¢, andd have to be evaluated. Pre-multiplying this matrix®y («) and expanding and collecting terms
with double poles at = +in gives

sinho—(a) { (@®—n®a—2anc  a(a® —n?)b — 2und “9)
@ +12)2 \ —q@?— n?)c —2ana  —(a? — n?d — 2a?nb '
Itis clear that this expression has simple poles rather than double poles if and only if

a=nc, d = —nb, (50)
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in which caseQ ™ (@¢)M («) can be shown to have the singular terms

sinho— [ nccothd~ + (@? — n?) — ne abcothd™ — (2n — b)a (51)
@+ 02\ gccothd~ — 2p+c)a —nbcothd~ — (@2 —n2) —nb )
The pole atx = —in (in D~) can be removed from the left most column by setting
2n
= -t 52
“7 Cotho+(in) — 1 (52)
where the relatiod~ (—in) = 6™ (+in) has been utilized, and similarly the right-hand column gives
2
b= 4 (53)

cothd+(in) +1°

Thus,M (@) has been explicitly determined, and the specified valGe¥ (52) and (53Yyield K~ («) analytic in
D~ as required.

It now remains to deduce two points: first thit{(«)] 1 is also analytic ifD~, and second that this choice of
M () also renderK * («) (46) and its inverse regular i®*. As regards the former, a6~ («) is analytic inD~
then K~ («)] 1 will be too unlesgK ~ ()| introduces spurious singularities irfd-. Clearly,Q~ («) does not do
this as|Q~ (a)| = (r—(«))?, and

ne nb n’bc
M =14 —— 1-— — =1 4
Ml ( " 0t2+n2>< az+n2> @242~ " (4)

in view of (50), (52) and (53)Thus,|K ~(a)| = |Q («)||M («)| is regular inD~ as required. Note that the particular
form of M () (48) is choserto enable the determinant to take the constant value unity. As reffards), it can
be shown to be regular i by multiplying out M («)] Q% («) and checking the coefficients of the simple
and double poles. However, it is easier to note from the symmetyén, QT («) andM (a), thatK +(«) can be
expressed as

ra=(g o) wcart(p ). (55)

from which it follows immediately thak * (o) and K T («)] ~ are both analytic irD™.

In summary, three different factorization procedures have been presented for the matrixKkemnglven in
(17). The first does not yield inverse product factors with the correct analyticity properties, and so cannot be seen
as a successful split in the sense defined by Gohberg and R2inNote that all three product factorizations
are non-commutativeand are surprisingly different in their forms. Only the last approach, which introduces a
meromorphic matriM («) offers a constructive algorithmic approach to the factorization procedure, and, as shall
now be shown, is generalizable to more complex kernels.

4. Theelastic dock problem

The aim of this section is to demonstrate the WHAM procedure recently proposed by the[aitboobtaining
explicit approximateproduct factors for a general class of non-commutative matrix kedély. It must be
emphasized that the only other constructive approach offered in the literature for general matrix factorization is
that presented by WickhafB7] and Lewis et al[31]. However, their approach, although having several aspects
in common with the present method, employs integral equation methods which do not yield explicit kernel factors.
It is also much more difficult to apply in practice. Usually matrices yield non-commutative factorizations because
they contain multiple branch-cut functions, infinite sequences of poles or zeros, or a combination of both of these
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singularity structures. In certain special cases the factorization procedure can be completed by subtraction of a finite
or infinite family of poles from both sides of the Wiener—Hopf equation (see the previous section for an example of
the former, and for the latter, see works by Iderf@6], Abrahamg1], Abrahams and Wickhaf®] and references

quoted therein). The method to be expounded here is based on the replacement of certain scalar components of
the matrix function byPadé approximantsThis allows the level of approximation to be increased to very high
accuracies whilst at the same time offering a surprisingly simple factorization form. Note that the actual boundary
value problem that the modified kernel satisfies is immaterial (although this topic will be addressed in a forthcoming
article by the author); all that is required is that the exact and modified kernels take values which are close to each
other in the strip of analyticitfp and that the approximate kernel be factorizable by some means.

The clearest method for illustrating the factorization procedure is to examine a specific example, in this case the
diffraction of monochromatic elastic waves by a discontinuity in boundary conditions on an elastic half-space. The
forcing shall be taken to induce only displacements in(they)-plane (plane strain), where the body occupies the
regiony > 0, —oco < z < 0o, and the boundary is taken as traction-freeyca 0, x > 0 but fixed (displacements
zero) ony = 0, x < 0. This is the elastic analogue of the classical semi-infinite dock problem in linear water
wave theory; here the Rayleigh surface waves on the traction-free part of the surface are reflected and scattered into
body waves by the rigid portion of the boundary. Follow[g@}) Fourier transforms can be employed to reduce the
boundary value problem to a matrix Wiener—Hopf equation in which the kernel has the form

1 ( —ia[20? — k2 — 2y (@)8 ()] —k25(a) )

K(a) = — ]
R(a) k2y () —ia[20? — k% — 2y (@)8()]

(56)

Here, as beforey is the transform parameter, akhdR («), y (@) ands(«) are given in(15), (19) and (2Q)

In elastodynamic problems, the presence indtfane of two branch-cut functions(«), §(«), leads in general
to matrix Wiener—Hopf equations with non-commutative kernels. The boundary value problem discussed herein is
merely the simplest non-trivial example of this class, and other more interesting physical cases will be mentioned
in the following section. The approximate approach to be employed here is applicable to all such problems, and
was first propounded for a model concerned with diffraction at an interface between two (scalar) acoustic materials
[3]. The procedure followed is along the lines indicated at the end of the previous section, but with one extra
step, namely th@pproximationof the kernel. Firstly, the kerngb6) is rearranged into a form which contains
a scalar function with finite branch-cuts. This function is then replaced by its Padé approximant, and an upper
bound on the error in taking the approximate kernel can be estimated. A partial factorization is achieved using
the Khrapkov (commutative) formulation, but the approximate factors achieved in this way contain poles in their
indicated half-planes of analyticity. Finally, by insertion of suitable meromorphic matrices, the offending poles are
removed. This yields an explicit, but approximate non-commutative matrix decomposition.

4.1. Approximate kernel

Following the approach ddection 3.3the kernel for the elastic dock problg6) can be made to look to be of
Khrapkov form if it is rewritten as

K(a) = a(@)!l + b(a)I(a), (57)
where
i e _ K@i
ala) = R(@) [2a° — k= 2y (@)$(a)], b(a) = Ra) (58)
0o .1
J(a) = fl) |, (59)

fla) 0
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Fig. 2. The complex:-plane illustrating the branch-points ¢gf«) (60) at +1, £k and the position of the cuts. Also shown are the upper and
lower regionsD* with a strip of common analyticitf inside which lies the inverse contodrof the integrals i(82) and (85) The stripD is
suitably chosen so thatis bounded away from the branch-points.

and
R AC)NE w?-1 1/4
= 10— (55 (60
As required
() = —I, (61)

butJ(w) is not itself entire as it contains(«), which has two finite branch-cutsate [1, k], « € [—1, —k] joining
the branch-points at k,and—1, —k, respectively (seEig. 2). Also, f (o) — 1 as|a| — oc in any direction. This
function is replaced by itsN /N] Padé approximant, denoteg@ («), where

Py(a)
fl@)~ fn(@) on@)’ (62)
and Py («), Qn () are the polynomials
Py (o) = ap + a1a® + aza®* + - +aya®, (63)
On(a) =14 bra? + bpa* + - + bya®V, (64)

in which N is any positive integer. The notation employed here is slightly different from that givejrbut is
consistent witH3], in which details regarding the properties of Padé approximants are given. The essential points
to mention here are that the coefficientsiaf(«), O n («), namelya,, b, are determinedniquelyby equating the

Taylor series expansion gf(«), (60), with that of fy («), (62), up to ordexr*" at any point(s) of regularity. Here, in

fact, two-point Padé approximants are employed (discussed in some dg&#)i) imhere the points at the origin and
infinity are chosen for convenience. This ensures fhabo) = 1, which means that the approximate factorization

is exactat infinity. Further, the & zeros and & poles of fy («) are simple and all lie on the real line segments

o € [1,k], @ € [—1, —k]. The N positive real zeros oPy (), Oy () are denoted ag,,, andg,,, respectively, are
ordered as

l<pi<pr<ps<---<ppy <k, l<qgi<qr<gqz<---<qgny <k, (65)



I.D. Abrahams/Wave Motion 36 (2002) 311-333 323

and the negative zeros are positioned-af,, and—g,, respectively. Thus, the Padé approximgn{w) replaces
the finite branch-cuts of («) with a distribution of zeros and poles along the same line segments, and, as will be
shown, approximates the function very closely away from these singularities.

The crucial point to note here is that the approximate kernel

Ky (@) =a(@)l + b(a)dn (@), (66)

where the scalaf («) has been replaced by its Padé approxim@anix) in
0 1
In(e) = vt | (67)
S () 0

anda(a), b(a) are given in(58), will be shown to beexactly factorizabldcf. the kernel(17)). However, first an
argument must be given as to why these factors do indeed approximate the exact fakt¢ws.df K («) is
the product factor oK (@), analytic, of algebraic growth and with a regular inversebih, then because of the
properties of functions of a complex variable, its maximum modulu®drmust occur on its boundary, namely
DT (which includes the point at infinity). The approximationkd («), K;(a), which has the same analyticity
property and is exact at infinity, also has its maximum modulug®h. Therefore, because the difference function
K¥ (o) — Kj{,(oz) is also analytic ifD™ so it attains its maximum modulus @™ = 3D, which is at dinite point
in the stripD. By the same argumenks™ (o) — Ky () is analytic inD~ and attains its maximum modulus at a
finite point on its bounding strip i®, which for the purposes of this argument, is also takedias

Now, suppose the approximate kernel has the known factors

Ky () = K@Ky (@), (68)

and by definitionK (@) andK y («) tend to the same value &| — oo in D. Further, the particular choice of
strip D (seeFig. 2), which is bounded by unity away from the branch-cuty af), implies that the absolute error,
11— [K(@)]"1/K y ()] is bounded by a small constantsay fora: € 4D. Thus,

K@) — Ky(a) =eK(@)G(a), O0<ex1, (69)

maxG(a)| =1, «edD. (70)
It is now possible to show, from the above considerations, that

K%(@) =K*@)(1+0(1), «edD, (71)

but it is expected, in fact, that the error in the approximation is actualty @ the stripD (which can be proved for
certain classes of scalar kernf$). Furthermore, the error in approximatiig- («) by Kﬁ(a) actuallydecreases
asa moves into the interior regions of analyticiy™ away from the point of maximum error db. Hence it can
be expected, and indeed this is borne out by numerical exper[Riettiat for a given Padé number the actual error
in the factorization at an interior point of interest is in fact a good deal smaller than that suggested by the upper
bounde.

To determine the size of maximum errerfor a given Padé number it is simplest to define a (percentage) error
function as

S (@)
f@)

As f(«) is an even function, it is sufficient to confine attention to valuegxaix) on the right half of a typical
contourC lying in D (Fig. 2), henceforth denoted &s. A convenient parametric representation of the semi-infinite

ey () = 100 x ‘1— , aeD. (72)
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en(a(t))
0.001
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10~7
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10—11

Fig. 3. The erroey (a (1)), (72), plotted on a log-scale versus the parametéf3), for N = 2,4, 6, 11 andv = 0.3.

contourCy is

k<1+exp{M}>, 0<t <2k,
a= 2k (73)

t, t > 2k,

and inFig. 3 en(x(?)) is illustrated for a range of approximant numbers and typical Poisson’swratio0.3

(k = 1.8703). The ordinate is given on a logarithmic scale because of the dramatic increase in accuracy with
increasingN. From this graph remarkable accuracy can be seen for modest Padé number; for example one can
be confident that a factorization is accurate to better tharl® 4% error with a Padé approximatiovi = 4, or

2 x 107%% for N = 6, for this value of Poisson’s ratio. Thus, it can be concluded that a satisfactory approximate
non-commutative factorization &f(«) (56) can be obtained to any specified accuracy as long as the fafcﬁjts)

of K y () (66) can be determined explicitly.

4.2. Khrapkov partial decomposition

In this section, a commutative factorizationkof; () is obtained which, whilst removing most singularities from
the respected regions of imposed analyticity, will contain poles at the ze®s(af), Oy (@) (63) and (64) These
will then be removed in the final step of the factorization procedure. For mathematical convenience, it is more useful
to factorizel y (o), where

Ly (a) = b))l —a(e)Iy (@), (74)
and so
Ky(@) =Ln(e)In(e) (75)

in view of (61). Thus, the Khrapkov factors afy () take the form (se€9))
L (@) = re(@)[cosfs(@)] + sinfs(@)dy(@)], (76)
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in which A(«) has taken the value i, so th@i3) and (14pbecome, after simplification,

)8 (o) — a?
@) = YO 2 (77)
()
o[22 — k2 — 2y (@)8()]
k2 f ()8 (et)
for o € D. Thus, the scalar sum and product factorizations of the functions on the right-hand gidésasfd (78)

respectively, are required. To obtain explicit integral expressiong.fae) it is convenient to factorize theven
function

04 (a) +6_(a) = tan~t ( (78)

c(a) = O—Jl-tan_lg(a), (79)
where
_ ia[20? — k% — 2y (a)8 ()]
gle) = K2 f (@) (@) (80)
and
cla) ~ L'[anh_1 (i> , a— too, aeD. (81)
|| k2

Therefore, Cauchy’s integral theorem can be employed (see Theorem B, p. 13 of [B®pléo obtain after
simplification

Ot(a) =

2 -1
+o f tan™g(¢) dz. (82)
C

i 15(52_0[2)

whereq lies above (below) the contoarfor 6. () (6— («)) andC; is that half of the contouf (Fig. 2) which goes
from 0 to+o00. Note that

6 () = —60;(~a), (83)

and it can be shown that

04 (o) ~ %tanh*1 <ki2> log(2e) + B + o(1) (84)

as|a| — oo, @ € DT, whereB is the constant

; -1 ; -1 2
B i (tan g(0) 3 itanh—(1/k )) de
¢ Y (&)

T Je,
In view of the fact that the coefficient of the logarithm functior{&4)is real, it is easily proved that cés («) and
sind, (a) are bounded ag| — oo in D+.
The product factorization df77) can be achieved in a manner similar to that outlined in Section 2.5.2 of Freund
[21]. Omitting all details it is found that

(85)

r—(a) =ry(-a), (86)
N T
— (o) +
O g (1) O e o0
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where
1ok (VoL de 1R (a2 d
€+(a):——/ tan > +—/ tan — ,
2r J1 ¢ (+a  2m)q (2¢2 — k2?) +a

(88)

andkg is the Rayleigh wavenumber given by the positive real zerB @f) (19). By inspection/, (o) = O(a~1)

as|a| — coin DT, and so

e im/4 /12 L1\ YA

€ (E+- a2, ja| - 00, e Dt (89)
V2 \k2-1

This completes the commutative partial decompositiol gf«).

ry(a) ~

4.3. Non-commutative factorization

Suppose anpperx lower factorization 0f(56) is required rather thanlawer x uppersplit derived in the last
section for kerne{17). Then the matrix factors 7, v (e) andL  (er)Jy (@) of Ky (o) (75)are analytic i+ andD—,
respectively, except for simple poles at the zero?@ta) On(a) occurring in fy (a). These must be removed,
in an identical fashion to that discussedSaction 3.3in order to complete the factorization procedure. Thus, as
before, a regularizing matri® («), is introduced such that (dEq. (46)

Ky (@) =Ly (@M (), (90)

Ky (@ =M a)L y @Iy (@), (91)
so that

K (a) = Ky @Ky (@) =L} @)Ly @)y (@). (92)
As before, the introduction d¥l («) leads to a non-commutative factorization as

Ky (@K (@) # Ky (a). (93)

The regularizing matri¥ (o) must suppresall the simple poles occurring in the half-planes of intended analyticity,
and it therefore must consist of meromorphic elements which are generalizations of that used préi@jubhe
procedure described in Appendix A of Abrahaf8f can be employed here tmnstructthe following ansatz for

M (a):

N N N N
Y e
_la_pn la+pn _101—Pn — o+ pn
M () = " - " - (94)
N N N N
I g -3 Gy
n:la_q” n=1“+¢1n ‘x_CIn nl“"“]n

which, in fact, is more general than that required for the kern¢Bjnlt should be stated that, as Wiener—Hopf
factorization is unique only up to arbitrary constant matrix factors, different formd fay could have been equally
well employed.

To evaluate the as yet unknown coefficieA{sthroughH,,, the right-hand sides ¢P0) and (91)are expanded
in order to suppress the spurious poles. For examplg1tt element oK ;; v (@) is given, from(76) and (94) by

N

B, 1 Yoo N D,
+Z(x+pn+f/v(a)tan9+(a)<za +;a+qn>}, (95)

n=1 =1 4n

An
74 () COSA () 1+Z
n=1 ® = Pn
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which has simple poles it ata = p,,n = 1,..., N. It does not have poles at= ¢, because Afy(«) has
zeros at these points. Writingy («) and its inverse as Mittag—Leffler expansions

N o 1 N 8
@=14+) ———, ——=1+ -, 96
T ;az—qﬁ fn(@) ;oﬁ—p?, (©0)
where the partial sum coefficients are
2g, PN (g, 2
= q . N(Qz)’ B, = pn/QN(pn) (97)
QN(C]n) PN(pn)

with ’ denoting differentiation with respect éq then(95) is pole free inD™ if and only if

Bm < C D, )
A, = ——= tand (pm) + , m=1...,N. 98
" 2pm pm Z Pm — 4n Pm + qn ( )

Similarly the (1, 1) element oK, ()] 1 is

5>

N N
coté, (—a) (Z Cn_y > ai’; ) } :
n=1 n

1
o sind, (—a) {1+ >

a—pn — 105+Pn .N(a) n:]_a_qn
(99)
which is free of poles irD~ if and only if
ﬁm < C Di‘l )
B, = cotfy (pm) + , m=1... N. 100
" 2pm Z Pmtdn  Pm—qn (100)

Note that use has been made of the symmetry prop€8@¢and (86)n the above equations. Repeating this procedure
for the (2, 1) elements oK 7, N, [Ky(@]~ —1 gives two more equations relatirg, throughD,,. Concatenating all
four equations into matrix form allows them to be written as the following pair of equations:

YA=XC, ZC=1+X"A, (101)
where
A= (A1, Ao, ...,AN,B1,...,BN)", C=(Ci,...,Cn,D1,...,DN), (102)

Y is a diagonal matrix with elements
2p1 2pN 2p1 2pN
PLcott (pr), ..., Loty (pr),  Lrtanoy (pa), ..., LY tane, (py), (103)
B1 BN B1 BN

Z is a diagonal matrix with elements

2q1 2q9n 2q1 2q9n
N cotdy (qo). ... TV cotb(gn).  “tanby(qy). .... X tandy (gn). (104)
o1 oUN o1 oUN
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-1 -1 -1 -1 -1 -1
P1—q1 P1—q2 P1—¢qn pP1+q1 p1+q2 pP1+gN
-1 -1 -1 -1 -1 -1
P2—q1 p2—q2 pP2—qnN p2+tq1 p2+4q2 P2 +gn
X — -1 -1 -1 _ -1 i (105)
PN —q1 PN —4gN PNt q1 PN +gnN
1 1 1 1 1 1
pi+q1 p1+q2 pi+gn  pr—q1 p1—q2 DP1—¢N
1 1 1 1
PN +q1 PN +49n PN —q1 PN — 4N
and
1=(L11,....17, (106)

which is a constant column vector of lengthV 2It is a simple matter to solve the coupled system
C=@Z-X"YIx)11, A =Y IXcC. (107)

Eliminating the poles from th&, 1), and(2, 2) elements of the matrix factors leads to the complementary system
of equations for the remaining coefficients

E=(Y-Xxz"x"h 11, G =2z2"XTE, (108)
where
E=(Ew....En,F1, ..., Fy)", G=(G1,...,Gn,H1,...,Hy) . (109)

This completes the evaluation Bf(«). From(107) and (108}t is straightforward to show, as before, that

detM (a)) = 1, (110)
and soM ~1(«) does not introduce spurious singularities. The product fatt(é(rex) have now been determined
explicitly in terms of the commutative partial factdr% («) and the regularizing matrik () or its inverse. It is

easy to check tha(f,(a) have all the required properties; they are analyti®if, have well-defined inverses in
D* and finally have algebraic growth at infinity . In particular, result§76), (84), (89) and (94jeveal that

Ki(@) ~O0@™?), |af - oo, aeD* (111)
As already mentioned, the approximate factors tend to the exact resultas, i.e.
K¥ (@) — K (@) (112)

as long asy lies in the respective half-plane of analyticityKft () is required inD~, say, then inaccurate results
may be obtained, even for lar@e unless it is approximated by

KT (@) ~K@Ky@), aeD, (113)

whereK («) is theexactkernel(56).



I.D. Abrahams/Wave Motion 36 (2002) 311-333 329

5. Further model problems and conclusions

The procedure outlined in the previous section can be utilized for a large number of canonical problems in
dynamic elasticity, whether in fracture dynamics or in QNDE. The Wiener—Hopf kernels for two such examples are
briefly discussed in this section.

5.1. Scattering by a crack in a moderately thin plate

First, consideration is given to scattering of flexural waves by a semi-infinite cracknivdaratelythin elastic
plate. Such a problem is important for the inspection of thin component structures, such as airplane or other vehicle
fuselages, rotor blades in jet engines, etc., to determine defects or inclusions. Achenbach and G§i®ésen’s
model may be considered as the limiting case when the specimen’s thickness tends to infinity; here the thickness is
moderately small compared to characteristic wavelengths of monochromatic elastic waves (of radian frequency
say) and so a plate theory that in addition to flexural motion includes the effects of transverse shear and rotary inertia
(usually referred to as Mindlin theofg3]) is employed. Omitting all details for brevify], motions antisymmetric
about the line of the crack satisfy a Wiener—Hopf equation whose kernel is

__ 1 [ Kul K@)
= ya(e) (k% — k3) (—Klz((x) Kzz(a)> ’ (114)

where

K11(@) = k3 H{— (20 — k3)2(k% — k) + 2(1 — v)k30?y3(@) (y1(@) — y2(@))

—4ay3(a) (kZy1(e) — K2ya(a))), (115)
2,12 2 k:lz.k%k2 kz 2 2
Kaa(e) = a®(kf = k) — £ =73 (1) = v2(@) + -5 73(@ k3ra(@) = kra(@), (116)
f f
K1o(@) = akz {(20? — k3) (k2 — k3) + 2y3(@) (k3y1(@) — k2ya())). (117)

Here, as beforey is the Fourier transform variable related to the direction parallel to the crack, non-dimensionalized
with respect to the wavenumber of longitudinal waves, and the three (non-dimensionalized) bulk wavehyripers
andkz depend upomw but are independent af They are given in terms of longitudinal and transverse wavenumbers,
k. andkt, and the wavenumber for non-dimensionalized flexural (bending) waye&®

KR+kd=k2+1, kS =k>—kf, k5 =w2k3k3, (118)

where, as beforé, = kt/k_. The constant is Poisson’s ratio and, introduced in Mindlin plate theory to better
approximate the shear forces, may be chosen according to different criteria, but narfnalty/[23]. Finally, the
kernel elements contain the branch-cut functions

yji=(@*—kHY? Rey; =0, j=123 (119)

which fully specifies the matrix kern€l14).
Algebraic manipulation allows the kernel to be rearranged into Khrapkov form

1 _
k@=3(% 1)e@(r 7) (120)

in whichQ(«) is
Qo) = d(@)! + v B(a)B(—a)I(@) (121)
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with | the identity,

Bla) = W(Kll(a) — K22(ar) + 2K12(a)), (122)
d(a) = W(Kll(a) + K22(a)). (123)
Also,
0 flo
Joy=| 1 . P =1, (124)
fa)

and the scalar function to be approximated is

fla) = ﬂﬂ((_oz). (125)

Solution by the WHAM can now be carried out in the manner discussed previously;(e.is chosen to tend to
unity at infinity, and so is replaced by it N] Padé approximanfy («) in Q(«). However, here the form of («)
is a little different, exhibiting the reflectional property

1
fla) = m, (126)

and so its approximant takes a similar form. Suppose nowfthat) hasP poles in the upper half-planeat= p,,
n=12,...,P(p, ¢ D7)andQ poles in the region below the stripat= —¢,,n = 1, 2,..., Q. Thus, there is,
in total P + Q = N simple poles in the complex plane, and due to the symn{&g§)there areV simple zeros of
Jn(a) at

a=-p,, n=12 ..., P, a=q,, n=212,...,0 (127)
in the lower and upper regions, respectively. Thfig(«) and its inverse may be expressed as Mittag—Leffler
expansions
0

P
Un Bn
=1+ + , P+Q=N, 128
(@) nzﬂpn_a ’;qﬁa 0 (128)
P 0
1 (o7] ﬁn
=1+ + , 129
fn(@) ;pwra ;qn—a (129)

where both tend to unity at infinity by virtue ¢fy («) being a two-point Padé approximantftfe). The coefficients
a,, andg, are easily determined and by inspection of the Wiayw) appears ifQ v (@) (the approximation o («)),
the ansatz foM («) is now posed

P 0 P 0

An Bn Cn Dn
1+ + ~ -
M () = , (130)
P Q Q

,
MR D B IR DD D
n

— o —
n=1 n=1 4n n=1 Pn n=1 n

whereA,, B,, C,, and D,, are constants that must be determined as previously. With the information provided
above an approximate explicit factorization can be accomplished without too much difficdulty
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5.2. Scattering by an interfacial crack

The second example illustrating applications of the WHAM is scattering by a crack in an interface between two
dissimilarelastic materials. The model is identical to that discussed by Achenbach and Gdufscept that
the region above the crack & 0) has material properties denoted by a suffix 2, whereas below the grack)
the material is denoted by the suffix 1. Then, the boundary value problem can be shown to reduce to a matrix
Wiener—Hopf equation with kernel

-1

0 —ix in —ia 0 in
K@=]|0 in i« |Q )| in 0 i« , (131)
1 0 O 0O 1 0
in which
0
N@ — ND
Q) = o |. (132)
00 g(@)
whereg (@) is the scalar function
1 1
g@)=——— — —, (133)
n1d1  p2é2

andNY) (@) is the 2x 2 matrix
(a2+n2+5]2.—2yj5, (—1)7k23; )

N(j)(oz) — A
(—1)7k2y; (@ + n?)(@® +n? + 82 — 2y;8))

(134)
wjR;j

The notation is the same as that employedettion 3 namelys;, y; and R; are given in(19) and (20)with

parametek — k; and argumeny/a? + n2. Also, u; is the shear modulus in medium
It can be shown that this 8 3 kernel(131)can be rearranged into Khrapkov form with a scalar function which
is approximated in the usual way. For brevity this is not discussed further, but instead it is clear that the kernel in
(131) must reduce to that i 7) when medium 2 and medium 1 are identical. When= k2 = k, by inspection
Q(x) reduces to

2

o 0 § 0
Qo) = M_R y 0 0], (135)
0 0 d

and so multiplying out the matrices {h31)gives

28 +a%d an@—d) O

_ _ 2 2
0 0 —
14

Clearly, this 3x 3 kernel has reduced to ax22 matrix (top left) which is exactly that given i{17) except for a
constant, plus a scalar function. The former is the kernel of the Wiener—Hopf system for antisymmetric motions in
v, the direction perpendicular to the crack, and the latter that for symmetric motions.
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5.3. Concluding remarks

This paper has offered a brief summary of the role of the Wiener—Hopf technique in elastodynamics, relevant
to QNDE and fracture dynamics, and in particular has demonstrated a practical and constructive method for the
approximate factorization of matrix kernels arising from such problems. A fuller description of the method which
employs Padé approximants, and further applications, can be found in other papers by tHe-abithss mentioned
in Section 2 the replacement of scalar kernels by Padé generated rational functions can be seen as a direct genel
alization of Koiter’s approacf80]. However, the WHAM method has several important advantages over Koiter’s,
and other, approximate and exact factorization techniques (e.g. contrast the approach of thiglautittothat
offered by Danield20]). First the approximation can be extended to any order, hence improving accuracy almost
indefinitely. Second, the automatic generation of the polynomial coefficients from the Taylor series expansion seems
to present an optimal choice in regard to accuracy; to illustrate Figs,3 revealed an error of less than 846
for the modest Padé numbar = 11! Third, the Padé coefficients are generated by inversion of a linear algebraic
system, which means that the procedure is quick and accurate using packages such as Matlab or Mathé®jatica. In
several physically important scalar kernels are discussed, and the advantage, in terms of ease of use and increase
computational speed, of the approximate kernels is demonstrated. Lastly, and most importantly, the WHAM method
is the only approximate approach which is directly applicable to matrix as well as scalar systems.
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