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During the last two decades, a number of methods have been developed to objectively measure meat quality attributes.
Hyperspectral imaging technique as one of these methods has been regarded as a smart and promising analytical tool for
analyses conducted in research and industries. Recently there has been a renewed interest in using hyperspectral imaging
in quality evaluation of different food products. The main inducement for developing the hyperspectral imaging system is to
integrate both spectroscopy and imaging techniques in one system to make direct identification of different components and
their spatial distribution in the tested product. By combining spatial and spectral details together, hyperspectral imaging
has proved to be a promising technology for objective meat quality evaluation. The literature presented in this paper clearly
reveals that hyperspectral imaging approaches have a huge potential for gaining rapid information about the chemical
structure and related physical properties of all types of meat. In addition to its ability for effectively quantifying and
characterizing quality attributes of some important visual features of meat such as color, quality grade, marbling, maturity,
and texture, it is able to measure multiple chemical constituents simultaneously without monotonous sample preparation.
Although this technology has not yet been sufficiently exploited in meat process and quality assessment, its potential is
promising. Developing a quality evaluation system based on hyperspectral imaging technology to assess the meat quality
parameters and to ensure its authentication would bring economical benefits to the meat industry by increasing consumer
confidence in the quality of the meat products. This paper provides a detailed overview of the recently developed approaches
and latest research efforts exerted in hyperspectral imaging technology developed for evaluating the quality of different meat
products and the possibility of its widespread deployment.

Keywords Beef, poultry, fish, pork, computer vision, spectroscopy, hyperspectral imaging, image processing, near infrared,
NIR, spectroscopy, spectrometry

INTRODUCTION

Discoveries and innovations in meat science during the last
century have led to revolutionary changes in meat production,
processing, marketing, and consumption (Beermann, 2009).
Generally, meat is the most valuable livestock product and for
many people serves as their first-choice source of animal pro-
tein. Determination of meat quality parameters has always been
very essential throughout all processes of the food industry be-

Address correspondence to Da-Wen Sun, Food Refrigeration and Comput-
erised Food Technology (FRCFT), School of Biosystems Engineering, Uni-
versity College Dublin, National University of Ireland, Agriculture and Food
Science Centre, Belfield, Dublin 4, Ireland. E-mail: dawen.sun@ucd.ie

cause consumers are always demanding superior quality of meat
and meat products (Desmond et al., 2000; McDonald and Sun,
2001; McDonald et al., 2001; Wang and Sun, 2002a,b). Interest
in meat quality is driven by the need to supply the consumer
with a consistently high quality product at an affordable price.
Indeed, high quality is a key factor for the modern meat indus-
try because a high quality product is the basis for success in
today’s highly competitive market. Meat is a perishable, nutri-
tious, and expensive food commodity, and its quality is related
to individual experience and preference. Although the consumer
decides which kind of products are more desirable, the ultimate
quality of meat is a direct integration of parameters and con-
ditions such as feeding and management of the animals during
their growth, pre-slaughter stress, stunning method, electrical
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stimulation, cooling method and rate, maturing time, freezing
and thawing, and cooking conditions as well as handling and
processing techniques and composition of meat products (Liu
et al., 2003). Meat quality can be defined in terms of consumer
appreciation of texture, flavor, and food safety, which includes
both the health implications of compositional and microbiologi-
cal properties. Regrettably, the great variability in raw meat leads
to highly variable products being marketed without a controlled
level of quality. This problem is aggravated when the industry
is unable to satisfactorily characterize this level of quality and
cannot therefore market products with a certified quality level
(Damez and Clerjon, 2008).

Traditional quality evaluation methods such as the Warner-
Bratzler apparatus to measure maximum shear force for express-
ing meat tenderness and impedance measurements for detecting
frozen meats and fat content are destructive, time consuming, la-
borious, costly, and require lengthy sample preparation, which
are associated with inconsistency and variability due to hu-
man differences (Shackelford et al., 1995; Damez et al., 2008).
Therefore, these methods are not practical when fast analy-
sis and early detection of quality parameters in industrial and
commercial processing are required (Ariana et al., 2006; Boni-
fazi and Serranti, 2008). The current trends in monitoring meat
quality are to move the measurements of quality from the lab-
oratories to the processing lines. These factors accentuate the
need for objective measurement systems due to the fact that the
meat industry needs reliable meat quality information through-
out the production process in order to guarantee high-quality
meat products for consumers (Damez and Clerjon, 2008). The
expectations of consumers for meat quality grow constantly,
which induces the necessity of quality control at several stages
of meat industry such as slaughtering, meat cutting, and distri-
bution (Monin, 1998). Objective and fast assessment of meat
quality have been desirable for a long-time in the industry and
there have been many research efforts in developing the required
instrumentation. Different techniques and methodologies based
on different principles, procedures, and/or instruments are cur-
rently available for measuring different meat quality attributes.

Over the past few years, a number of methods have been
developed to measure meat quality traits in objective ways
(Abouelkaram et al., 1997; 2006; Liu et al., 2003; Vote et al.,
2003; Shackelford et al., 2005; Zell et al., 2009). Imaging tech-
nique is one of these methods that have been applied for visual
evaluation of meat and other food quality and for rapidly iden-
tifying quality problems on the processing line with the mini-
mum of human intervention (Brosnan and Sun, 2004; Du and
Sun, 2004, 2006; Fathi et al., 2010; Kumar and Mittal, 2009;
Mizrach et al., 2009; Pallottino et al., 2010; Schlüter et al., 2009;
Shankar et al., 2008; Singh et al., 2008; Wu et al., 2008; Yang
et al., 2009; Zheng et al., 2006a,b). On the other hand, spec-
troscopic technique is another increasingly growing technique
due to its rapidity, simplicity, and safety, as well as its ability to
measure multiple attributes simultaneously without monotonous
sample preparation. Throughout the last century, spectroscopy
was widely used to detect the chemical composition of meat and

meat products. Near infrared spectroscopy (NIRS) was always
one of the most promising techniques for large-scale meat qual-
ity evaluation. Nowadays, NIRS is successfully used in many
fields including food quality assessment. A number of advan-
tages have been offered by NIRS technology over traditional
quality evaluation methods such as rapid and frequent measure-
ments, no sample preparation is required, suitability for on-line
and at-line use, and simultaneous determination of different
attributes. The main disadvantages of the method are its de-
pendence on the reference method, weak sensitivity to minor
constituents, limited transfer of calibration between different
instruments, complicated spectral data interpretation, and par-
ticularly, the low spatial resolution for analysis of food samples
with non-homogeneous composition as in meats and meat prod-
ucts (Prevolnik et al., 2004).

The conventional spectroscopic technique alone is not able
to provide some fundamental information where spatial distri-
bution of quality parameters is essential to be demonstrated be-
cause it analyzes the sample in bulk and determines an average
composition across the entire sample. Hyperspectral imaging
has thus emerged to integrate both spectroscopic and imaging
techniques in one system to cope with the increasing demand of
safe foods. Also known as “imaging spectroscopy or imaging
spectrometry,” hyperspectral imaging technology is based on
the utilization of an integrated hardware and software platform
that combines conventional imaging and spectroscopy to attain
both spatial and spectral information from each pixel. There is
currently a wide set of applications utilizing hyperspectral tech-
nology ranging from the analysis of food products in laboratory,
to real-time application in line inspection for detecting disease
and contamination. In recent years there has been a growing in-
terest in this technology from researchers around the world for
non-destructive analysis in many research and industrial sec-
tors (ElMasry et al., 2007; 2008; Kim et al., 2004; Cluff et al.,
2008; Bonifazi and Serranti, 2008; Naganathan et al., 2008a;
2008b). Although these systems have not yet been sufficiently
exploited for meat quality assessment, their potential is promis-
ing. This paper thus provides an overview of the traditional meat
quality assessment techniques with emphasize on hyperspectral
imaging technology to substitute these methods. Also, the pa-
per highlights the basic fundamentals of hyperspectral imaging
and the most recent advances in the application of hyperspectral
imaging for different kinds of meat (i.e., beef, pork, poultry, and
fish).

MEAT QUALITY ASSESSMENT

In recent years, the concept of food quality has received a lot
of attention from food producers and retailers as well as from
public authorities and health educators. Generally, the quality
of food covers many aspects, such as functional, technologi-
cal, sensory, nutritional, toxicological, regulatory, and ethical
aspects. Functional and technological quality is related to the
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processing and storing of the food and is traditionally mea-
sured by physical and chemical methods, while the sensory
quality is the eating quality as experienced by the consumer. A
need for ethical quality exists in meat production, where han-
dling of live animals is critical. Meat quality is traditionally
measured by chemical, physical, and sensory methods (AMSA,
2001). Some of these methods are quite time consuming, labo-
rious, and destructive. Today, it is possible to replace most of
these inconvenient methods by instrumental techniques. From
the viewpoint of quality assurance, it is desirable to inspect all
products and thus an ideal sensing method for the meat industry
would be on-line and non-destructive. The suggested system
should be able to predict chemical composition (crude protein,
intramuscular fat, moisture/dry matter, ash, gross energy, myo-
globin, and collagen content), physico-mechanical parameters
(pH value, color, water holding capacity, Warner–Bratzler, and
slice shear force), and sensory attributes (color, shape, marbling,
odor, flavor, juiciness, tenderness, or firmness).

The visual appearance, textural patterns, geometrical fea-
tures, and color of fresh meat products are all important criteria
used by consumers for purchasing high quality meat. These pa-
rameters are linked to some chemical properties such as water
holding capacity, marbling, and protein contents. The purpose
of evaluating meat quality is to identify physical attractiveness
and to predict the palatability of the cooked lean meat. Visible
quality traits are not precise palatability predictors, but are use-
ful indicators to identify cuts that will be tender/tough, juicy/dry,
and flavorful/off-flavor cooked products. The main quality fea-
tures to be evaluated include color, firmness and texture of the
lean, degree of marbling, and color of fat for beef, pork, veal,
and lamb. Poultry and fish are not in this classification because
of the difference in lean and fat content and color patterns and
because they have a negligible fat content.

Quality grade of a carcass is determined according to the
kind of meat, animal gender, and maturity based on color, tex-
ture, marbling, and firmness of the ribeye muscle. In practice,
the quality of meat is normally assessed subjectively by an ex-
perienced grader. This method relies greatly on human skills
leading to subjectivity among different analysts. Because qual-
ity assurance is one of the most important goals of any industry,
an objective and non-destructive method for fast classification
of meat quality is highly required by the meat industry (AMSA,
2001). As suggested by Monin (1998), the key words of success
for any proposed evaluation technique in the meat industry are:

• existence of a real need and an assured (not only hypothetical)
benefit;

• direct relation to the desired quality traits of the end product;
• reasonable prediction accuracy;
• realistic cost, taking into account the unitary value of the

evaluated carcasses or joints;
• rapidity, to comply with slaughter, cutting, or packing rates of

several hundreds or even thousands per hour;
• potential full automation, particularly when high rates of mea-

surements are needed;

• non-invasiveness, as with the continuously increasing concern
of safety, non-invasive techniques will be clearly preferred.

Traditional Methods

There is an assortment of traditional methods and techniques
used in research, industry and processing lines for quality as-
sessment of meat and meat products. Most of these methods do
not fulfil the basic needs of precision, sanitation, and expedi-
tiousness required for the modern food processing facilities. In
addition, the limitation of these methods is that they are only
capable of sampling either a very small area or a very small
number of the overall products, and therefore do not lend them-
selves to high-speed production processes. Furthermore, these
traditional options are costly, owing to the labor and reagents
required to do the testing, poor sampling rates, and the time re-
quired for analysis. Meat inspection technology for high-volume
food processing lines requires instrumentation that is specific
to the processed product, robust, and durable enough for the
harsh environments of processing plants. They also have to be
cost-effective to reflect the competitive nature of the food and
agriculture markets. In meat, it is important to assess the main
quality traits such as color, marbling, water-holding capacity,
drip loss, pH, moisture, and tenderness in such a way as to be
non-destructive, safe, fast, and precise with minimum sample
preparation.

Color

Color is an important feature that is used in conjunction
with other characteristics to determine the grade or suitability
of meat for a particular market. Meat color has a huge influence
on the consumer appeal of a product. As consumers evaluate
product quality partly by appearance, an attractive and stable
color in the meat has a major influence on the buying decision
taken by the consumer. Meat purchasing decisions are influ-
enced by color more than any other quality factors because
consumers use discoloration as an indication of freshness and
wholesomeness. The appearance of meat and meat products
is a complex topic involving animal genetics, ante- and post-
mortem conditions, fundamental muscle chemistry, and many
other factors related to meat processing, packaging, distribu-
tion, storage, display, and final preparation for consumption
(Mancini and Hunt, 2005). There are a number of interacting
factors during processing that can have a significant impact on
meat color, including electrical stimulation, chilling rate, bloom
time, and dark cutting meat. Color is an extremely subjective
and personal parameter because it is very difficult to attribute
numbers to the brains reaction to visual stimuli. Color in meat is
related to the level of the protein pigment, myoglobin, present in
the muscle. Myoglobin is the principal protein responsible for
meat color, although other heme proteins such as hemoglobin
and cytochrome C may also play a role in beef, lamb, pork,
and poultry color (Mancini and Hunt, 2005). Also, meat color
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depends on pigment concentration, pH, the amount of intramus-
cular fat (IMF), and oxido-reduction status (Monin, 1998). The
concentration of myoglobin in grams per kilogram of lean meat
is higher in beef than lamb and pork, while poultry exhibits the
least amount of myoglobin (Feiner, 2006). The color of meat
can be estimated in two main ways: chemically by analyzing the
pigments present or physically by measuring the interaction of
light with meat sample. Several methods are available for objec-
tively measuring the color of foods, some of which depend on
the extraction of pigments from food products followed by spec-
trophotometric determination of pigment concentration. Other
simpler methods consist of numerous combinations of percent-
age reflectance values and tristimulus values. Color measure-
ments through interaction of light are usually done using the
Commission International De I’ Eclairage (CIE) color system,
that provides the reference standard CIELAB or CIEXYZ color
spaces (Commission International De I’ Eclairage, 1978; Agulló
et al., 1990; Yam and Papadakis, 2004; Feiner, 2006). However,
because color images are typically produced for a wide variety
of viewing environments, the International Color Consortium
(ICC) has defined a Color Management System (CMS) that
provides a means for communicating color information among
input, output, and display devices. Currently, many options are
available for instrumental color analysis (e.g., colorimeters and
spectrophotometers). Each instrument offers a variety of options
that allow choosing from various color systems (Hunter, CIE,
and tristimulus); Illuminants (A, C, D65, and Ultralume); angle
of observation and aperture sizes.

There are so many color spaces including hardware-
orientated spaces (RGB (Red Green Blue), CMY(K) (Cyan Ma-
genta Yellow (Black), suited for image acquisition and display),
human-orientated spaces (HSL (Hue Saturation and Lightness),
CIE XYZ, CIE YUV, CIE L∗u∗v∗, and CIE L∗a∗b∗, which give
consideration to human sensory perception and are suited for
image description and interpretation), and instrumental spaces,
by which the meat color can be specified. Color space allows
objective specification and visualization of color. The CIE is
defined as a system that classifies color according to the HVS
(the human visual system). Using this system any color can be
specified in terms of its CIE co-ordinates and hence be confident
that a CIE defined color will match another with the same CIE
definition. In most common instruments, color is usually mea-
sured in the L∗a∗b∗ scale, where L∗ denotes the brightness, a∗

the red-green color and b∗ the blue-yellow color axis. Based on
color measurements, meat can be broadly classified as “red” or
“white” depending on the concentration of myoglobin in mus-
cle fiber. The simplest way currently used in most production
units for determining meat color is usually carried out by com-
paring the color of the rib eye muscle (M. longissimus dorsi)
on the chilled carcass and scored against the meat color ref-
erence standards in that area of the M. longissimus dorsi that
displays the predominant color. Even though color assessors are
well trained, the subjective nature of color assessment means
that there can be variability in grading scores between assessors
which stimulates the need for more objective ways.

Moisture, Drip Loss, and Water Holding Capacity

Moisture as a general term is the total water content of meat.
A smaller portion of water (1%) is tightly bound to protein and
salt structures and known as the bound water. The moisture
content of meat is an important criterion because meat is sold
by weight, so that any depletion of water affects the economic
profits of meat product. Besides, the water content of meat
determines to a large extent the juiciness of meat and thereby the
eating quality. One of the traditional methods for determining
meat moisture content is the oven drying method. Moisture is
lost after slaughter in the form of drip while the carcass is still
in the chilling room and while fresh consumer cuts are in the
retail display counter. Although drip loss has been measured for
years, an international standard procedure is still absent (Otto
et al., 2004). Other traditional methods for determining drip
loss are the filter paper method (Kauffman et al., 1986), the
bag method (Honikel, 1998), the tray method (Lundström and
Malmfors, 1985), and the EZ-DripLoss method (Rasmussen and
Andersson, 1996). The disadvantages of these methods are that
they are performed late in the slaughter process, after cutting.
Sorting at this stage in the slaughter process is of little value
to the packing plant. Moreover, due to the variation in these
methods, the results for drip loss in the literature are difficult
to compare, and therefore there are still efforts being made to
find more suitable methods for determination of this important
criterion.

Water holding capacity (WHC) is the ability of meat to hold
all or part of its own water during application of external forces,
cutting, grinding, pressing, or heating (Zayas, 1997). This ability
depends on the way by which the meat is handled, which also de-
termines the juiciness of meat. From the processor point of view,
it is important to predict the water holding capacity of meat be-
cause it is technologically and financially important for the food
processing industry due to the fact that WHC is an indication for
weight loss in raw, cooked, and processed meats. Unfavorable
water holding capacity or drip loss causes major problems in
the meat industry due to its negative impact on the appearance
of meat and the yield in further processing. It is also responsible
for poor color in cured meat products, such as ham, and can
influence meat palatability traits (Toldrá and Flores, 2000). Var-
ious methods have been utilized for determining WHC such as
drip loss, cooking/heating loss, centrifuge force method, thaw-
ing loss, processing loss, Napole yield, and technological yield
(Prevolnik et al., 2010). Even within the same methodological
approach there exist several techniques. For instance, WHC de-
termined by drip loss could be performed by using bag method,
meat-juice container procedure (EZ drip loss), tray drip loss, or
the filter paper method. Furthermore, the values of WHC de-
pend on many factors such as sampling site, size, and shape of
meat samples, type and duration of treatments, and the physical
principle of water release, which leads to considerable differ-
ences in the results among studies. Although the methods for the
assessment of water holding capacity are rather simple, they are
time-consuming and destructive and thus unsuitable for on-line
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requirements. Difficulties in measuring WHC in meat process-
ing plants in industrial applications require establishing novel,
rapid, non-invasive techniques to overcome the drawbacks of
traditional methods.

Tenderness

Tenderness is an expression of meat texture which is consid-
ered as the most important sensory quality attribute associated
with consumer satisfaction, as consumers regard tenderness as
the primary factor in eating satisfaction, which is also posi-
tively related to juiciness and flavor, and thus they accept to
pay more for tender meat (Lusk et al., 2001; Winger and Hag-
yard, 1994). Meat tenderness is much related to the structure
of the muscle and the biochemical activity aging period be-
tween slaughtering and consumption. Indeed, meat texture is a
complex phenomenon that encompasses characteristics such as
hardness, springiness, chewiness, cohesiveness, and even juici-
ness (AMSA, 2001). Sources of tenderness variation in beef
may be attributed to the animal’s age, sex, breed, and ante-
mortem stress, as well as post-mortem treatments (Muchenje
et al., 2009). For instance, refrigerating carcasses directly after
slaughtering results in a severe contraction of the muscle fibers,
causing an undesirable hardness in meat in a phenomenon best
known as “cold shortening” (Razminowicz et al., 2006).

The most common way to assess meat tenderness is measur-
ing the mechanical properties of meat sample using a Warner-
Bratzler shear force (WBSF) or slice shear force (SSF). For
WBSF determination, six cylindrical, 1.27-cm-diameter cores
are typically removed from each steak; while for SSF determi-
nation, a single 1-cm-thick, 5-cm-long slice is removed from
the lateral end of each sample. For both techniques, samples
should be removed parallel to the muscle fiber orientation and
sheared across the fibers. WBSF uses a V-shaped blade, while
SSF uses a flat blade with the same thickness and degree of
bevel on the shearing edge. However, these two methods are
not suitable for the commercial and fast-paced production envi-
ronment. In the meat marketing system, beef products leave the
packing plant at about three days post-mortem, and reach the
consumer after approximately 14 days. The beef industry needs
an instrument that can scan fresh meat at 2–3 days post-mortem
and predict ultimate 14-day cooked-beef tenderness (Price et al.,
2008). There is a growing concern to incorporate beef tender-
ness measurement into quality grading processes. As a result,
the development of an instrument for fast and non-destructive
prediction of meat quality is a top priority for the meat industry.
Hyperspectral imaging techniques have the promising potential
of assessing all the major quality parameters of meats.

Intramuscular Fat (IMF)

Intramuscular fat (or marbling) is the name of the white flecks
of fat present within the lean in the muscle, and the marbling
score is a measure of the distribution density of fat in the carcass
rib-eye region. Marbling deposition is classified according to the

amount of intramuscular fat distributed in the muscle and varies
among species and tends to increase with age. It contributes pos-
itively to eating satisfaction, as retail cuts with little marbling
are likely to result in cooked products that lack flavor and juici-
ness. As marbling enhances juiciness, it should be uniformly
and finely distributed throughout the lean, as this is preferred
by consumers over marbling that appears as large, coarse flecks
of intramuscular fat (Fernandez et al., 1999). Unfortunately, in
most abattoirs assessing marbling is usually conducted visu-
ally in a subjective way by comparing the proportion of intra-
muscular fat within the M. longissimus dorsi against marbling
reference standards specific for each of the meat species. At
present, the score of beef marbling is largely determined by
the subjective experience of the graders who must be highly
qualified personnel. While humans can be trained to reliably
assess marbling, the fact remains that it is a subjective judgment
and consequently, consistency between marbling assessors can
often vary. An objective method that could evaluate marbling
and/or fat content and characteristics would help meat produc-
ers to select better breeds capable of producing meat with good
IMF distribution and consequently with improved eating qual-
ity. Regarding technologies currently under development, im-
age analysis would appear to offer considerable promise given
that the technology essentially emulates what trained assessors
do. Recent advances in computer technologies and color image
processing techniques have increased the effectiveness of image
analysis in measuring marbling fat properties. Thus, the mar-
bling level could be determined with varying degrees of success
using image analysis technique (Gerrard et al., 1996; Faucitano
et al., 2005; Chen and Qin, 2008).

Novel Techniques

Computer Vision

Computer vision techniques based on the analysis of digital
images are currently used widely for visual evaluation of meat
joints and cuts. This technique is based on the analysis of spatial
information acquired from the digital image of an object, which
includes geometrical, size, appearance, and color features. Com-
puter vision utilizing imaging technique has been developed as
an inspection tool for quality and safety assessment of a variety
of meat products. The flexibility and the non-destructive nature
of this technique help to maintain its attractiveness for applica-
tions in the food industry (Cubero et al., 2011; ElMasry et al.,
2008). Computer vision has been seen as a potential solution for
various automated visual quality evaluation processes.

Image processing and image analysis are the core of com-
puter vision, involving mathematics, computer science, and soft-
ware programming. As the automated visual inspection is the
most common and rapid way for the quality assessment of meat
products applied to production chain, machine vision has been
recognized as a promising approach for the objective assessment
of meat quality. Image processing has the proven ability to assess
basic acceptability traits, namely color and marbling; it is totally
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non-invasive and obviously use of this technology could greatly
improve quality control in the meat industry. Computer vision
systems have found widespread usages in quality evaluation of
different meat products and in the analysis of surface defects
and color classification (Quevedo et al., 2008). Color and tex-
tural features are some representative image features that could
be used to predict and estimate some key quality parameters
of meat (Li et al., 1999; 2001; Quevedo and Aguilera, 2008).
However, it is important to differentiate between the texture
used to express roughness or smoothness of the surface of the
meat sample in an image and the real texture of a meat sample
used to express the mechanical properties or tenderness of this
sample. In image analysis, textural features represent the spatial
distribution of tonal variations and the spatial arrangement of
the grey levels of the pixels in a region of an image (Kavdır and
Guyer, 2004).

Unfortunately, computer vision is ineffective for classifying
objects having similar colors, for detecting invisible defects;
and for predicting quality attributes (e.g., chemical composi-
tion). Although external attributes such as size, shape, color,
texture, and external defects can be easily evaluated by ordinary
computer vision, internal attributes are difficult to be detected
with relatively simple and traditional imaging means (Du and
Sun, 2004). Imaging technology is most effective when quality
attributes of a product are related to its extrinsic characteris-
tics, but it becomes less effective or ineffective when quality
attributes are mainly determined by the intrinsic properties of
the product, such as composition and internal physical charac-
teristics, which are not readily detectable at the surface (Lu and
Chen, 1998).

Spectroscopy

Basically, spectroscopic methods provide detailed finger-
prints of the biological sample to be analyzed using physical
characteristics of the interaction between electromagnetic ra-
diation and the sample material, such as reflectance, transmit-
tance, absorbance, phosphorescence, fluorescence, and radioac-
tive decay. Recently, near-infrared spectroscopy (NIRS) tech-
niques have received considerable attention and been accepted
among researchers as a means for non-destructive sensing of
meat quality as NIRS has the potential for simultaneously mea-
suring multiple quality attributes in a fast and non-destructive
way and without lengthy sample preparation. In this technique,
it is possible to obtain information about the compositional pa-
rameters of the tested samples based on the spectral features
of the sample, but it is not easy to know the location of such
information due to its limited spatial resolution. Applications of
near-infrared spectroscopy have been increased in food product
quality analysis, and it has been widely used to predict the qual-
ity parameters of fresh meat such as tenderness (Venel et al.,
2001; Andrés et al., 2008; Prieto et al., 2008; Rust et al., 2008);
color, cooking loss and sensory characteristics (Prieto et al.,
2009) and pH, water holding capacity, and drip loss (Chan et al.,
2002; Andrés et al., 2008) in order to substitute other commonly
used destructive methods. Unfortunately, NIRS is unable to pro-

vide constituent gradients due to the fact that NIRS techniques
rely on only measuring the aggregate amount of light reflected or
transmitted from a specific area of a sample (point measurement
where the sensor is located), and does not contain information
on the spatial distribution in the sample. Furthermore, spec-
troscopic assessments with relatively small point-source mea-
surements do not contain spatial information, which is highly
important in many food inspection applications. The combina-
tion of the strong points from NIR spectroscopic technique and
vision technique is the hyperspectral imaging.

Hyperspectral Imaging

Traditional imaging technology provides a high spatial reso-
lution but with limited spectral information, hence, it may not be
useful for detecting minor features or chemical concentrations in
a sample. Meanwhile spectroscopy alone provides high spectral
resolution over both visible and near-infrared spectral regions
but with virtually no spatial information (Bonifazi and Serranti,
2008; Ariana and Lu, 2008). Hyperspectral imaging refers to the
imaging of a scene over a large number of discrete, contiguous
spectral bands such that a complete reflectance spectrum can
be obtained for the region being imaged. Hyperspectral images
obviously provide much more detailed information about the
scene than a normal color camera, which only acquires three
different spectral channels corresponding to the visual primary
colors (i.e., red, green, and blue). Hence, hyperspectral imag-
ing leads to a vastly improved ability to classify the objects in
the scene based on their spectral properties. The spectra on the
surface of food materials contain characteristic or diagnostic
absorption features to identify a number of pertinent inherent
characteristics. Moreover, hyperspectral imaging can provide
spectral measurements at the entire surface area of the prod-
uct while conventional spectrometers only give point measure-
ments. By combining the chemical selectivity of spectroscopy
with the power of image visualization, hyperspectral imaging is
particularly useful in situations where multiple quality attributes
must be considered and when either computer vision or spec-
troscopy is not suitable. This is due to the fact that hyperspectral
imaging enables a more complete description of ingredient con-
centration and distribution in any kind of heterogeneous samples
(Gowen et al., 2008). To judge the overall quality of meat prod-
ucts for classification and grading tasks, multiple extrinsic and
intrinsic factors are often needed. For instance, hyperspectral
imaging could be an effective technique to grade meat based
on both extrinsic, like appearance (e.g., size, intramuscular fat,
color), and intrinsic (maturity or tenderness) properties, which
are all important in determining the overall quality of meat. The
non-destructive nature of hyperspectral imaging is an attractive
characteristic for applications on raw materials and final product
quality (Wold et al., 2006; Folkestad et al., 2008).

Other Methods

Other novel methods have been tested for meat quality as-
sessment. Foreign objects in deboned poultry can be detected by
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X-ray imaging based on X-ray absorption. This technique was
combined with the vision system for bone detection in poultry
products to overcome X-ray deficiency in detecting small bones,
with significant results, although further research was recom-
mended (Vachtsevanos et al., 2000). Ultrasound is another tech-
nique applied for composition measurement of chicken meat.
Correlation coefficients for fat and moisture content predicted
with this technique achieved good results compared to standard
methods (Chanamai and McClements, 1999). Moreover, com-
puted tomographic (CT) scanning has been tested for predicting
the lean and fat content of pig carcasses with promising results
(Haseth et al., 2007; Romvari et al., 2006; Furnols et al., 2009).
Because the scope of this review is about hyperspectral imaging
system and its potential in meat quality evaluation, some details
will be given in the next sections about this system.

HYPERSPECTRAL IMAGING SYSTEM

Basic Principles

Due to the combined features of imaging and spectroscopy,
hyperspectral imaging not only provides pertinent extrinsic
characteristics of the product (i.e., shape, size, appearance, and
color) through image feature extraction, but it can also help in
identifying the properties or chemical constituents of the prod-
uct through spectral analysis. A spectral image is a stack of
images of the same object, each at a different spectral narrow
band. However, the field of spectral imaging is divided into three
techniques called multispectral, hyperspectral, and ultraspectral
in addition to panchromatic division in which a spectral image is
acquired at only one band. The distinction between all of these
spectral images could be attributed to the number of bands at
which the images are acquired. Ultraspectral imaging is typi-
cally used for spectral imaging systems with a very fine spec-
tral resolution. Hyperspectral imaging systems are distinguished
from multispectral imaging systems in two main characteristics:
the number of registered spectral bands and spectral resolution.
Multispectral imaging systems typically image the scene in just
a few spectral bands and have a spectral resolution on the order
of 10, while hyperspectral imaging systems acquire images in
hundreds of co-registered bands and have a spectral resolution
on the order of 100. Also, multispectral imaging systems often
have their spectral bands widely and irregularly spaced, while
hyperspectral imaging systems have spectral bands that are con-
tiguous and regularly spaced, leading to a continuous spectrum
measured for each pixel (Ariana and Lu, 2008). Therefore, mul-
tispectral imaging systems do not produce the “spectrum” of
an object. On the other hand, hyperspectral deals with imag-
ing narrow spectral bands over a contiguous spectral range, and
produce the “spectra” of all pixels in the scene. Compared to
the multispectral image, hyperspectral images can increase the
detectability of pixels by exploiting finer detail in the spectral
signatures of the objects being imaged. As a result of their fine
spectral resolution, hyperspectral images provide a significant

amount of information about the physical and chemical compo-
sition of the materials presented in the image.

Components of Hyperspectral Imaging System

There are three common ways to build one hyperspectral
image: tunable filter, whiskbroom, and pushbroom, by which a
hyperspectral image can by collected one image at a time, one
spectrum at a time, or one line image at a time, respectively.
By these ways one- or two-dimensional subset of the hyper-
spectral image is acquired, thus requiring the temporal scanning
of the remaining dimension(s) to obtain a full image. The first
way (tunable filter) is conceptually called wavelength scanning
because it depends on keeping the sample fixed, and obtain-
ing images one wavelength after another. The other two ways
(whiskbroom and pushbroom) are conceptually called spectral
scanning since they depend on scanning the specimen in the
spatial domain by moving the specimen either point-by-point
(whiskbroom) or line-by-line (pushbroom), respectively. Push-
broom acquisition mode is the most common method currently
implemented in recent research work in meat quality evaluation.
It involves moving the object underneath a stationary imaging
system for the acquisition of simultaneous spectral measure-
ments from a sequence of adjacent spatial positions (line-by-
line), to complete a volume of spatial and spectral data (Kim
et al., 2001; Lawrence et al., 2003). As the camera captures only
a line of the illuminated object, the sample is moved past the
objective lens on a motorized transactional stage. By scanning
the entire surface of the specimen, a complete three-dimensional
hyperspectral image called hypercube or data cube is created,
where the first two dimensions represent the spatial information
and the third represents the spectral information (Lu, 2003).
Two-dimensional images acquired at adjacent points on the ob-
ject are stacked to form a three-dimensional hypercube which
may be stored on a hard disk for further analysis.

Pushbroom hyperspectral imaging systems as shown in
Fig. 1 are normally composed of the following components:
a camera containing a cooled two-dimensional light detector,

Figure 1 Components of a pushbroom hyperspectral imaging system.
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spectrograph, translation stage, illumination units, and a com-
puter supported by image acquisition software. In practice, a
camera lens is used to image a scene containing the tested sam-
ple onto a narrow slit that is the entrance to the spectrograph. The
slit acts as a field stop, allowing only light from along a line on
the sample to enter the spectrograph. The light passing through
the slit is dispersed by the spectrograph onto a 2-dimensional
charged coupled device (CCD) detector array. The length and the
width of the “scene line” imaged at a time are thus determined by
the slit length and width, by the lens focal length, and by the dis-
tance between the sample under investigation and lens. The im-
age of the sample projected through the slit is aligned along one
dimension of the CCD (the spatial direction) and the spectrum
of each spatial pixel is dispersed along the other dimension of
the CCD (the spectral direction). The second spatial dimension
of the acquired scene is then constructed as the sample moves
forward by the translation stage, causing the image projected
on the slit to change continuously as the camera acquires new
frames of data. This results in a three-dimensional image “hyper-
cube” with two spatial dimensions and one spectral dimension.
Each “slice” of this cube represents an image taken with a spe-
cific wavelength, and each pixel in this cube is associated with
a spectrum which could be affected by acquisition noise or cali-
bration post-processing. The spatial resolution along the image
is determined by the camera pixel size and point spread size of
the optics.

To characterize the performance of the whole system, it is
pertinent to measure and optimize all parameters that influence
the quality of the obtained spectral image. For instance, the
ideal illumination should be homogeneous illumination over a
large area without radiation damage to the samples. The design
of the illumination system is very critical in all applications
and must be optimized for each particular application (Driver,
2009). Spectrograph is responsible for limiting and controlling
the amount of light reaching the camera, determining the range
of wavelength for the image. The two-dimensional light de-
tectors usually used in the camera of the hyperspectral imaging
systems are generally photovoltaic semiconductor detectors, so-
called charge-coupled device (CCD), or complementary metal
oxide semiconductor (CMOS). In some instruments, several dif-
ferent and overlapping detector elements are used for optimized
sensitivity in different wavelength regions (Goetz, 2000). The
camera, spectrograph, and illumination conditions determine
the spectral range of the system.

Hyperspectral imaging system currently employed differ-
ent spectral ranges to typically yield information from ap-
proximately 200 nm (ultraviolet range) to around 2500 nm
(NIR range). Hyperspectral imaging system in the visible and
very near infrared having a spectral range of 380–800 nm or
400–1000 nm is the most widely used in food analysis applica-
tions. Nowadays, hyperspectral imaging systems in the range
900–1700 nm that provide the accuracy required in today’s
most challenging applications in food analysis are available.
Moreover, some hyperspectral imaging systems that cover the
shortwave infrared (SWIR) region 900–2500 nm are currently

produced by many manufacturers to serve as significant tools
in numerous applications in food and agricultural analyses and
process analytical technologies. The various spectral resolutions
offered by hyperspectral systems enable the detection of subtle
differences in spectral signatures thereby improving identifica-
tion, classification, and prediction capabilities. Choosing suit-
able spectral resolution is very important for determining the
composition and functional properties as well as for detecting
defects, diseases, and contaminants in food products (Ariana
and Lu, 2008).

A hyperspectral imaging system has to be at least calibrated
for distance (spatial), wavelength (spectral), and radiation val-
ues (Lawrence et al., 2003; Ariana and Lu, 2008). Calibration
of acquired images is commonly performed for both extreme
illumination situations: “dark image” and “white reference im-
age.” The detectors of the camera usually generate signals due
to thermal effects, even when there is no light, which is called
“dark current.” The dark current is added to the signal produced;
therefore, the acquired image should be corrected by deducting
this extra signal for further analysis. Such a procedure enables
to compensate the offset due to CCD dark current and separates
the sample reflectance from the system response (Naganathan
et al., 2008a).

Spectral Image

Image Acquisition Modes

Most of the advantages of hyperspectral imaging come from
the possibility of using intact (even irregular) samples directly
without any particular preparation and providing qualitative and
quantitative assessments simultaneously. This fact implies pro-
moting interaction of the radiation with samples to extract the
spectral information and generate many different measurement
modes. Optical measurements through spectroscopy or imaging
techniques are commonly implemented in one of the major four
sensing modes: reflectance, transmittance, transflectance, or in-
teractance. In the reflectance mode, the light reflected by the
illuminated sample is captured by the detector in a specific con-
formation to avoid specular reflection. The transmittance mode
regards acquiring the image with the light source positioned op-
posite to the detector and the sample in between; this method
is commonly used to detect internal defects of the tested sam-
ples. Transflectance is a special way to obtain a transmittance
measurement when optical bundle probes are employed. The
difference in relation to a simple transmittance measurement is
in doubling the optical path as the radiation beam passes twice
through the sample. In interactance mode the light source and the
detector are positioned parallel to each other; this arrangement
must be specially set up in order to prevent specular reflection
entering the detector (Nicolai et al., 2007; Ariana and Lu, 2008).
Hyperspectral imaging for food products have been usually car-
ried out in the visible-NIR (400–1000 nm) or NIR (1000–1700
nm) range (Lawrence et al., 2003; Qiao et al., 2007; 2007a;
2007b; Naganathan et al., 2008a; 2008b; Park et al., 2006a;
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2006b; ElMasry and Wold, 2008). Reflectance is the most com-
mon mode in hyperspectral imaging (Park et al., 1998; Ariana
et al., 2006; Naganathan et al., 2008a; 2008b), although trans-
mittance and fluorescent modes have also been investigated
(Kong et al., 2004; Qin and Lu, 2004; Kim et al., 2004;
Ariana and Lu, 2008; Yoon et al., 2008).

Spectral Image Characteristics

Acquired hyperspectral image is known as “hypercube,”
“spectral cube,” “data cube,” or “spectral volume.” The image
is a three-dimensional block of data, comprising of two spatial
dimensions (of m rows and n columns) and one spectral dimen-
sion (of λ wavelengths) as illustrated in Fig. 2. These images
are made up of hundreds of contiguous wavebands for each
spatial position of a target analyzed and are typically immense,
depending on spatial and spectral resolutions and binning fac-
tors. This has implications for storage, management, and further
image processing and analyses. The amount of data is the great-
est problem that has to be coped with. Assuming to collect an
image of 160 wavebands between 900 and 1700 nm (with 5 nm
bandwidth) with a spatial dimension of 512 × 512 pixels and
8 bits precision (1 byte), the size of the image would be 512 ×
512 × 160 bytes = 41.94 Mega bytes. Therefore, the primary
goal of hyperspectral data analysis is to decrease the data size to
assist in the identification of few key wavelengths for real-time
multispectral imaging implementation.

As a result of spatial and spectral sampling, the fundamen-
tal hyperspectral data structure is a data cube whose face is a
function of the spatial coordinates and its depth is a function
of spectral band (or wavelength). For every band, an image of
the sample could be viewed; whereas for each image pixel a

spectrum characterizing the materials within the pixel could be
drawn; therefore, the hyperspectral image shown in Fig. 2 iden-
tified as I(x,y,λ) can be viewed either as a separate spatial image
I(x,y) at each wavelength (λ), or as a spectrum I(λ) at every pixel
(x,y). Each pixel in a hyperspectral image contains the spectrum
of that specific position. The resulting spectrum acts like a fin-
gerprint which can be used to characterize the composition of
that particular pixel (Bonifazi and Serranti, 2008), which allows
for the recognition of biochemical constituents since regions of
a sample with similar spectral properties have similar chemical
composition (Goetz, 2000; Lu and Chen, 1998). For instance,
the spectral profiles of two different pixels representing different
components of a meat steak (lean and fat) are shown in Fig. 2 in-
dicating that these two pixels show different spectral signatures.
Therefore, without any further manipulation or pre-processing
treatments of these spectral data, the difference in spectral sig-
natures between lean meat pixel and fat pixel of the tested piece
of meat shown in Fig. 2 are noticeably distinguished.

Analyzing Spectral Images

Spectral image is considered as an image cube where the
third dimension is represented by hundreds of contiguous spec-
tral bands. As a result, a spectral pixel is actually a column
vector with dimensions equal to the number of spectral bands
in which each component contains specific spectral informa-
tion provided by a particular channel. Analyzing hyperspec-
tral images and treating their huge data have been a concern
for all applications of this technique in identification, detec-
tion, classification, quantification, discrimination, visualization,
and mapping purposes. Classification enables the recognition of

Figure 2 Typical architecture of the hyperspectral imaging system and the resulting “hypercube” for a piece of meat showing the relationship between spectral
and spatial dimensions. In addition to spatial information retained in the image, each pixel has its own spectrum. (color figure available online.)
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regions with similar spectral characteristics without conducting
chemical background determination of these regions.

For quantitative assessment, it is necessary to pull out the
hidden chemical information from the hyperspectral images by
carrying out correlation between spectral data of tested objects
and real quantities or concentrations of such objects using the
ordinary laboratory assessments. This step is called the cali-
bration process which needs to be tested and validated with
different meat samples. In this aspect, hyperspectral imaging is
considered as an indirect method by using obvious correlations
between spectral measurements and meat component proper-
ties. Taking these calculations and modelling in consideration
the main relevant properties involved can help to improve our
understanding of meat properties and eating quality. Many con-
ventional statistical and chemometric approaches for complex
multivariate analytical methods such as multi-linear regression
(MLR), discriminant analysis (DA), principal component anal-
ysis (PCA), partial least squares (PLS), and artificial neural
networks (ANN) are usually employed for analyzing and clas-
sifying hyperspectral images (Park et al., 1998; Naganathan
et al., 2008b; Qiao et al., 2007; 2007a; 2007b; Xing et al.,
2006; Menesatti et al., 2009). In the spectral domain, a hy-
perspectral image is characterized by its high dimensionality
which needs to be reduced to the most meaningful dimension
without losing the informative power of the original image. A
dimensionality reduction technique is performed to remove re-
dundant information from the hyperspectral image, thus creating
a simplified data. Therefore, various data analysis methodolo-
gies comprising of computer programs and algorithms are re-
quired for that task to analyze hyperspectral images and then
to generate data that describe material properties of the tested
samples.

RECENT APPLICATIONS OF HYPERSPECTRAL
IMAGING IN MEAT QUALITY EVALUATION

From its manifestation during the mid-1980s as a means of
remote sensing explorations, to its current success in several
enormous applications, hyperspectral imaging has found ex-
traordinary interests as a key analytical tool for non-destructive
evaluation of food products and in the inspection of food for
safety and quality. If implemented in processing lines, hyper-
spectral imaging systems will help to further increase through-
put, with precise inspection control over key steps in the
production and packaging process. Extracting a chemical sig-
nature or “spectral fingerprint” information and its spatial dis-
tribution on the product will help producers to correctly sort
products according to quality, to screen or eliminate lower qual-
ity products before processing or packaging, and to price higher
quality products appropriately. Despite the obvious strengths of
hyperspectral imaging techniques, the number of scientific pa-
pers and technical notes describing their practical use in meat
quality evaluation is still limited.

The hyperspectral imaging system has found its way for
many important applications such as classification or sorting
of food into different groups, either to separate out different
types of food items or to sort a single food source into a quality
stack. Also, it is used for uniformity monitoring and inspection
purposes to exclude contaminated or sub-standard food stuffs
from the food-chain with the minimum additional cost. In recent
years several investigations have aroused considerable interest
in the possible applications of hyperspectral imaging for meat
products. As a non-destructive and fast inspection method, hy-
perspectral imaging methods have been intensively studied for
determining properties of meat products, but less for meat as
compared to horticultural products. Table 1 presents the main
research papers published during the last decade where hyper-
spectral imaging systems were applied for quality and compo-
sitional assessment of meat and meat products.

Beef

Attempts on using hyperspectral imaging as a non-
destructive method for assessing beef quality have been investi-
gated by several authors. The majority of the studies in beef are
focused on tenderness prediction (Cluff et al., 2008; Naganathan
et al., 2008a; 2008b; Peng and Wu, 2008) because tenderness is
considered the most important factor in the consumer percep-
tion of beef palatability (Savell et al., 1989). Tenderness is a
property of a cooked product and predicting this property from
a fresh steak poses considerable challenges. Direct evaluation
of tenderness is not available because there is currently no ac-
cepted method available for predicting tenderness on real-time
applications. One of the most common ways for predicting ten-
derness non-destructively is the video imaging technique as an
objective technique instead of the destructive methods such as
Warner-Bratzler shearing force (WBSF) or slice shearing force
(SSF) methods. Research on computer vision-based beef quality
evaluation has shown that texture features computed from mus-
cle images are useful indicators of beef tenderness (Du et al.,
2008; Jackman et al., 2009). The addition of image texture fea-
tures to color and marbling parameters significantly improves
the accuracy of tenderness prediction (Jackman et al., 2010).
On the other hand, several studies have shown that near-infrared
reflectance spectroscopy can be used to predict beef tender-
ness with some successes (Park et al., 1998; Leroy et al., 2003;
Andrés et al., 2008). Similarly, to building prediction models of
tenderness, the data extracted from spectroscopy should be cal-
ibrated against a destructive measurement of tenderness using
WBSF or SSF methods.

Recent studies regarding the assessment of beef tenderness
using hyperspectral imaging have showed encouraging results.
For instance, Naganathan et al. (2008a) and Grimes et al. (2007;
2008) developed a pushbroom hyperspectral imaging system
in the visible and near infrared range of 400-1000 nm with a
diffuse-flood lighting system to predict tenderness of 14-day
post-mortem, cooked beef from hyperspectral images of fresh
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Table 1 Applications of hyperspectral imaging technology in quality evaluation of different meat species sorted by product type

Product Imaging mode Wavelength range (nm) Application Author(s) / year

Beef Reflectance 496–1036 Tenderness prediction Cluff et al., 2008
Reflectance 400–1000 Tenderness prediction Naganathan et al., 2008a
Reflectance 900–1700 Tenderness prediction Naganathan et al., 2008b
Reflectance 400–1100 Tenderness prediction Peng and Wu, 2008
Reflectance 400–1100 Predicting microbial spoilage Peng et al., 2009

Pork Reflectance 430–1000 Classification and marbling estimation. Qiao et al., 2007
Reflectance 430–980 Classification and determination of color,

texture and exudation
Qiao et al., 2007a

Reflectance 400–1000 Determination of drip loss, pH and color. Qiao et al., 2007b
Reflectance 400–1100 Detecting total viable count of bacteria. Peng and Wang (2008)

Chicken Reflectance 430–900 Poultry inspection Lu and Chen, 1998
Reflectance 400–1000 Detection of fecal contaminants Heitschmidt et al., 2007
Fluorescence 425–711 Skin tumor detection Kong, 2003; Kong et al., 2004
Reflectance 400–900 Detection of surface contaminants Lawrence et al., 2004
Reflectance 447–733 Skin tumors detection Nakariyakul and Casasent, 2004; 2007b
Reflectance 400–1024 Contaminant detection on poultry carcasses Nakariyakul and Casasent, 2007a
Reflectance 400–900 Faeces and ingesta detection on the surface of

poultry carcasses
Park et al., 2002

Reflectance 430–900 Detection of fecal contaminants Park et al., 2006b
Reflectance 400–900 Contaminants classification Park et al., 2007
Reflectance/ Transmittance 400–1000 Bone fragment detection in chicken breast

fillets
Yoon et al., 2006; 2008

Reflectance 400–1000 Online inspection and differentiation of
wholesome from diseased chicken

Yang et al., 2009

Fish Transflection 400–1000 Ridge detection and automatic fish fillet
inspection

Sivertsen et al., 2009

Interactance 760–1040 High-speed assessment of water and fat
contents in fish fillets

ElMasry and Wold, 2008b

Reflectance 892–2495 Determination of fish freshness Chau et al., 2009
Transmittance 400–1000 Detection of nematodes and parasites in fish

fillets
Wold et al., 2001; Heia et al., 2007

Interactance 760–1040 Distribution of fat and salt contents in fish
fillets.

Segtnan et al. (2009; 2009)

beef-ribeye steaks (M. longissimus dorsi) between the 12th and
13th ribs (n = 111). Slice shear force values were measured as a
tenderness reference and samples were classified in three differ-
ent categories, namely tender (SSF ≤ 205.80 N), intermediate
(205.80 N < SSF < 254.80 N), and tough (SSF ≥ 254.80 N).
After reflectance calibration, a region-of-interest (ROI) of 200 ×
600 pixels at the center of each steak was selected and principal
component analysis (PCA) was carried out on the ROI images.
The first five principal components explained over 90% of the
variance of all spectral bands in the image. Then, Gray-level
textural co-occurrence matrix (GLCM) analysis was conducted
to extract second-order statistical textural features from the prin-
cipal component images. With a leave-one-out cross-validation
procedure, the model predicted the three tenderness categories
with an accuracy of 96.4%. The result indicated that hyper-
spectral imaging was able to identify all tough samples and has
considerable promise for predicting beef tenderness. However,
before suggesting this method for industrial implementation, the
model must be validated with a new and a larger set of samples.
This hyperspectral imaging system developed is an off-line sys-
tem which needs 10 s to acquire an image of a beef steak, and
10 min to assign a tenderness category. This time could be re-
duced significantly by reducing the high dimensionality of the

hyperspectral images to form a multispectral imaging system
consisting of a few important spectral wavebands for definite
applications.

In another attempt to enhance the performance of hyperspec-
tral imaging system for classifying beef steaks based on their
tenderness, Naganathan et al. (2008b) repeated the same pro-
tocol explained in Naganathan et al. (2008a) but used a hyper-
spectral imaging system in the spectral range of 900–1700 nm
to predict 14-day aged, cooked beef tenderness from the hyper-
spectral images of fresh ribeye steaks (n = 319) acquired. They
used partial least squares regression (PLSR) instead of PCA and
the SSF value as a reference tenderness, and then PLSR loading
vectors were obtained. This model correctly classified 242 out of
314 samples with an overall accuracy of 77.0%. Also, some op-
timal wavelengths (1074, 1091, 1142, 1176, 1219, 1365, 1395,
1408, and 1462 nm) corresponding to fat, protein, and water
absorptions were identified.

Light scattering could potentially be used as an indicator of
beef tenderness and the changes in scattering profiles are be-
lieved to represent the changes in tenderness. The hyperspectral
imaging system can be used to collect the scattering profile of
light coming from the beef sample with very high spatial and
spectral resolutions with short acquisition times. The scattered
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light can thus be captured with high spatial resolution at many
wavelengths simultaneously in the hyperspectral image. Cluff
et al. (2008) developed a non-destructive method using the hy-
perspectral imaging system (496-1036 nm) for predicting the
tenderness of cooked beef (44 strip loin and 17 tenderloin cuts)
by optical scattering of light on fresh beef muscle tissue. In total,
40 hyperspectral images representing scattering profiles at 40
different locations in each steak were acquired, and then these
images were averaged to produce a representative hyperspectral
image with a high signal-to-noise ratio. The results indicated
that tenderness expressed as WBSF values could be predicted
with an R = 0.67, indicating that the optical scattering imple-
mented with hyperspectral imaging has not proved a remarkable
success for predicting current status of tenderness in beef steak.
If the predicted WBSF values were used to classify the sam-
ples into categories “tender” and “intermediate” (there were no
“tough” samples) as described by Naganathan et al. (2008a), the
accuracy would be 98.4%.

Peng and Wu (2008) used a laboratory hyperspectral imag-
ing system in the visible/NIR range between 400 and 1100
nm for assessing tenderness in 5-day aged beef. By applying
a multi-linear regression (MLR) approach they identified the
wavelength of 772 nm as the most correlated wavelength with
beef tenderness expressed as WBSF. Results showed that the
extracted spectral characteristics of hyperspectral images could
successfully predict tenderness with a high correlation coeffi-
cient (r) of 0.94 and standard error of prediction (SEP) of 1.21
kg/cm2.

Pork

Pork quality covers inherent properties decisive for the suit-
ability of the meat for further processing and storage includ-
ing retail display. The main attributes of interest are the water-
holding capacity, color, the fat content and composition, oxida-
tive stability, and uniformity (Rosenvold and Andersen, 2003).
In addition, pork quality is the result of a complex combination
of factors, with interactions among the sensory environment,
genotype, and nutritional environment combining with peri-
mortem metabolism to influence final meat quality (Purslow et
al., 2008). Pork quality can encompass a combination of factors
including taste, appearance, color, leanness, ultimate pH, water-
holding capacity, intramuscular fat, nutritional value, whole-
someness, and safety. The quality of fresh pork varies greatly
and is traditionally classified into different categories based on
color, texture (firmness), and exudation (drip loss) (Warner et
al., 1997; Qiao et al., 2007; Kazemi et al., 2009). The preferred
method of assessing pork quality is via the direct evaluation
of the exposed loin eye at the 10th/11th rib interface of the
M. longissimus dorsi muscle. Pork meats that are classified as
RFN (red or reddish-pink, firm, and non-exudative) have de-
sirable color, firmness, normal water holding capacity, minimal
drip loss, and moderate decline rate of pH. In addition, various
combinations of color, texture, and drip-loss give other quality

grades of pork meat such as RSE (red, soft, and exudative), PFN
(pale, firm, and non-exudative), PSE (pale, soft, and exudative),
and DFD (dark, firm, and dry). The prediction of pork qual-
ity on the slaughter line is not an easy task because some of
the biochemical quality properties have not enough time to be
fully developed. The evaluation of pork quality should be based
on relatively inexpensive and rapid measurements taken in the
slaughter line where carcass identification is available in order to
have better use of the product for further processing and distri-
bution (Toldrá and Flores, 2000). Application of hyperspectral
imaging for direct pork meat quality determination such as drip
loss, pH, marbling, texture, and exudation has recently been
investigated (Qiao et al., 2005; 2007; 2007a; 2007b).

The research groups of Qiao et al. (2007; 2007a; 2007b)
employed a pushbroom hyperspectral imaging system (400-
1000 nm) with a complementary metal–oxide–semiconductor
(CMOS) camera, a spectrograph, a fiber-optic line light and a
conveyor belt controlled by a computer to classify pork to dif-
ferent quality classes and to predict some quality attributes of
pork. Qiao et al. (2007) aimed to classify 40 pork samples of
four quality grades (RFN, PSE, PFN, and RSE). Spectral data
were extracted from a small portion (region of interest) of each
sample to represent each quality class, then the data were an-
alyzed using PCA, and the samples were classified by using
cluster analysis and artificial neural network (ANN). The re-
sults revealed that hyperspectral imaging was able to show the
difference in spectral characteristics of the tested four quality
levels. In their later study, Qiao et al. (2007a) increased the
number of pork samples to 80 steaks and then extracted average
spectral features from the whole pork steak instead of a small
ROI. As they found in their previous study (Qiao et al., 2007),
Qiao et al. (2007a) emphasized that there were spectral differ-
ences among the four classes, indicating that there were some
differences in their physicochemical attributes. The differences
in spectral data suggested a possibility of classifying the quality
classes of pork samples using their spectral features. The rele-
vant wavelengths at which the main difference between the pork
classes occurred were selected by PCA and stepwise regression.
Classification results using these selected wavelengths showed
a performance of 67.5 to 87.5% with the best result of 87.5%
using the wavelengths selected by PCA experienced in the first
derivative spectra.

Qiao et al. (2007b) continued their studies using the same
hyperspectral imaging system for predicting drip-loss, pH, and
color of pork meat. Simple correlation analysis was conducted
between the spectral response at each wavelength and corre-
sponding drip loss, pH, and color, respectively. The simple cor-
relation analyses showed that the highest correlation coefficients
(r) were found at 459, 618, 655, 685, 755, and 953 nm for drip
loss, at 494, 571, 637, 669, 703, and 978 nm for pH, and at
434, 494, 561, 637, 669, and 703 for color. The results using
only spectral data at these wavelengths instead of the whole
spectral range showed that the drip loss, pH, and color of pork
meat could be predicted with correlation coefficients of 0.77,
0.55, and 0.86, respectively. Such findings represent an obvious
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advantage for non-contact pork quality determination as pork
traits and the softness of the lean pork are more difficult to ap-
preciate from the distance, particularly in the case of the RSE
class.

It is well known that all pork meat supplied to the markets
must undergo quality controls in order to guarantee consumer
safety. Unfortunately, there is still no technology for the rapid,
accurate, and non-destructive detection of bacterially spoiled or
contaminated meat. The present traditional methods detecting
bacterial spoilage in meats, such as enumeration methods based
on microscopy, ATP bioluminescence, and the measurement of
electrical phenomena, as well as detection methods based on
immunological, nucleic acid-based procedures, serological, and
molecular approaches are time-consuming, labor-intensive, and
give retrospective information. Furthermore, these methods may
require special personnel training for sample manipulation, or
sample enrichment steps to permit cell recovery and microbial
growth before detection (Peng et al., 2009). Because the safety
and integrity of the food supply is an important requirement
for consumers to ensure superior food quality that is free from
hazards, spoilage and/or contamination, Peng and Wang (2008)
explored the potential of hyperspectral imaging system based
on support vector machines (SVM) for detecting the total viable
count (TVC) of bacteria in pork meat. After the hyperspectral
reflectance images were acquired and pre-processed, a stepwise
discrimination method was then used to determine the optimal
wavelengths which can characterize the gross change of TVC on
pork meat. Five optimal wavelengths (480, 525, 650, 720, and
765 nm) were found to be accounted for about 94% of the total
contribution to TVC prediction. In order to predict the TVC of
pork meat, least square support vector machines (LS-SVM) was
adopted as the modelling method. The prediction model based
on least square support vector machines (LS-SVM) model and
the optimal five wavelengths was able to predict TVC with r
= 0.87 and the results were considerably better than that of
artificial neural networks (ANNs) and multilinear regression
(MLR) methods. This research demonstrated the feasibility of
using the hyperspectral imaging system coupled with LS-SVM
model as a valid means for non-destructive determination of the
level of spoilage of pork meat.

Chicken

Hyperspectral imaging has been intensively utilized for qual-
ity evaluation and monitoring of chicken and poultry products
in off-line and on-line applications throughout many research
endeavors (Windham et al., 2003; 2005; 2005; Lawrence et
al., 2004; Park et al., 2006a; 2006b; 2007; Chao et al., 2008;
Yang et al., 2009). The widely conducted research of hyper-
spectral imaging systems in poultry quality evaluation has been
concentrated on the differentiation between wholesome and un-
wholesome freshly slaughtered chickens, chicken quality clas-
sification, and detection of contaminants and tumors in chicken
carcasses. Some of the developed hyperspectral imaging sys-

tems have already been installed in a real-time inspection line
where spectral image is captured for each bird, and the image is
then processed by the system’s computer to determine whether
or not the bird has a disease, a contaminant, or a systemic de-
fect. In addition, the system could also provide some informa-
tion to detect small birds, broken parts, bruising, tumors, and air
sacs. In order to implement hyperspectral imaging for quality
control to minimize contaminated carcasses reaching the con-
sumer, each contaminant needs to be identified and classified.
The spectral diagnostic system could be used as a non-invasive
tool to monitor production line of chicken carcasses by develop-
ing spectral profiles from hyperspectral images taken during all
stages of production. After developing, calibrating, validating,
and testing the hyperspectral imaging system and generating a
multispectral imaging system with limited effective wavebands
for certain applications in a real-time implementation, the sys-
tem could be deployed in real processing lines. The proposed
system should inspect a huge number of birds in real harsh
working environments.

Contamination Detection in Chicken

The hazard is the potential risk of encountering a biologi-
cal, chemical, or physical agent in food with the potential to
cause an adverse health effect. Recently, consumer concerns
about the safety of meat products have led to the introduction of
legislation to require mandatory inspection of meats and poul-
try. Consumers want some assurance that the product available
for purchase is safe and wholesome. Contamination of poul-
try with bacterial food-borne pathogens can potentially occur
as a result of exposure of the animal carcass to fecal mate-
rials during or after slaughter. During the course of slaughter
and processing, there are opportunities for the alimentary tract,
from crop to colon, to leak or rupture, spilling contents onto the
skin or muscle of broiler carcasses. Fecal and ingesta contam-
inants on poultry carcasses are prohibited due to the potential
presence of bacterial pathogens. Microbial pathogens can be
transmitted to humans by consumption of contaminated under-
cooked or mishandled meat and poultry. The inspection process
currently employed for contamination in poultry carcases is
usually conducted by human visual observation where trained
human inspectors carry out the inspection and examine a small
number of representative samples from a large production run.
In addition to being a very tedious task, the manual inspec-
tion method is both labor intensive and prone to both human
error and inspector-to-inspector variation (Liu et al., 2003b).
Without proper inspection protocols during slaughtering and
processing, the edible portions of the poultry carcasses can be-
come contaminated with bacteria capable of causing illness in
humans. Therefore, regulation emphasized that carcass with vis-
ible fecal contamination has to be removed in order to prevent
cross-contamination among carcasses. For safety purposes, the
identification and separation of poultry carcasses contaminated
by feces and/or ingesta are very important to protect the public
health from a potential source of food-borne illnesses.
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In the area of contamination detection that frequently oc-
curred on the surfaces of poultry carcasses, researchers have
developed hyperspectral imaging systems of different designs
and sensitivities for the identification of fecal matter and in-
gesta. The USDA Agricultural Research Service (ARS) is the
pioneer research institution for developing hyperspectral and
multispectral imaging techniques to detect different contami-
nants on poultry carcasses. Intensive research has been exerted
by USDA ARS for calibrating the hyperspectral imaging sys-
tems, identifying spectral signatures of different contaminants
in the visible and near-infrared regions, developing algorithms
for fecal detection, and spectral image processing and exploit-
ing the system in on-line multispectral application (Park et al.,
2002; Lawrence et al., 2003; Liu et al., 2003b).

In detecting contaminants (feces and ingesta) in poultry car-
casses, several steps are required, as summarized by Park et al.
(2002). First, the spectral data were extracted from normal and
contaminated surfaces either by using VIS/NIR spectrometer or
from the hyperspectral image itself followed by dimensionality
reduction of the hyperspectral data using PCA, followed by the
identification of the dominant wavelengths (434, 517, 565, and
628 nm) based on the highest value of PCA loadings and cali-
bration regression coefficients. Band ratios among the selected
spectral images at these wavelengths were then calculated and
the background noise from the carcasses masked image was

removed. Next, some spatial image processing steps such as
histogram stretching and filtering were applied to the masked
images to visually segregate individual fecal and ingesta con-
taminants. Effective hyperspectral image processing algorithms,
specifically band ratio of dual-wavelength (565/517) images and
histogram stretching were finally developed for the identifica-
tion of fecal and ingesta contamination of poultry carcasses. Test
results indicated that the detection accuracy was 97.3% for linear
and 100% for non-linear histogram stretching. Figure 3 shows
visual results of a poultry carcass with the image-processing
algorithm applied to a calibrated smoothed pre-processed hy-
perspectral image. In the ratio images (I565/I517) as shown in Fig.
3c, there was a notable difference in the contrast between the
carcass and the background and the contaminant which could be
easily detected by employing various threshold values as shown
in Fig. 3e. Although a band-ratio of 3-wavelengths (I576-I616)/
(I529-I616) had some success in contaminant detection as well, a
band-ratio image-processing algorithm with 2-bands (I565/I517)
performed very well with 96.4% accuracy for detecting both
feces (duodenum, ceca, colon) and ingesta contaminants while
some false positive pixels were also detected (Park et al., 2006b).

As proved from these studies, the detection of contaminants
depends on the largest difference in spectral difference between
contaminants and normal skin. Also, the wavelengths at which
the contaminants gave the highest contrast with the normal skin

Figure 3 Hyperspectral imaging for detecting contaminations in poultry carcass. (a) color composite image (pseudo-RGB image) showing contaminated spots
of feces and ingesta; (b) calibrated color image; (c) band ratio image (I565/I517) with a notable difference in contrast between normal skin of the carcass and the
contaminants; (d) background mask; (e) detected contaminants using a threshold of 0.95 with filtering. (color figure available online.)
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would act as optimal wavelengths for this purpose. In their ear-
lier work, Windham et al. (2003) extracted the same optimal
wavelengths (434, 517, 565, and 628 nm) to detect feces and
ingesta on poultry carcasses. Their developed method based on
band ratio (especially with a ratio of 565/517 nm) was able to
detect 100% of the fecal contaminants in a limited population
of broilers. By using another approach, Windham et al. (2005)
determined the effectiveness of hyperspectral imaging for de-
tecting ingesta contamination spots varying in mass from the
crop and gizzard from the upper digestive tract. They applied a
decision tree classifier algorithm to the images at wavelengths
of 517, 565, and 802 nm, producing a Boolean output image
with gizzard and crop contaminates identified. The hyperspec-
tral imaging system was able to detect 100% of the crop and
gizzard contents regardless of the mass or spot size. However,
not every pixel associated with a given spot was detected.

Lawrence et al. (2004) used a scanning monochrometer
that measured the average spectra of uncontaminated skin and
fecal and ingesta contaminants and compared this technique
to another method using ROI from a hyperspectral image to
collect averaged spectra. They reported that both techniques
were able to classify contaminated skin from uncontaminated
skin with 99% accuracy. However, several regular carcass fea-
tures were identified as false positives when the classification
model developed from the monochrometer spectra was applied
to whole-carcass hyperspectral images. A new partial least
squares regression model with meat and skin shadow spectra
was developed resulting in different principal component load-
ings with a classification accuracy of 99.5% and fewer false
positives. Park et al. (2007) tried to develop a classification
method to identify the three typical fecal (duodenum, cecum,
and colon) and ingesta contaminants on the carcasses using a
spectral angle mapper (SAM) supervised classification algo-
rithm with overall accuracy of 90.13%, and a standard deviation
of 5.4%.

Detecting Tumors, Diseases, and Bones

The presence of tumors, diseases, and bones in chicken car-
casses represents serious problems to the producers because
they are not acceptable at all by the consumers and their de-
tection is a big challenge because most of these blemishes are
rather difficult to discern by using the traditional manual inspec-
tion. Therefore, some research endeavors using the hyperspec-
tral imaging technique have been accomplished for detecting
unwholesome chickens from the wholesome ones especially in
production plants (Fletcher and Kong, 2003; Kong, 2003; Kim
et al., 2004; Kong et al., 2004; Nakariyakul and Casasent, 2004;
2007b). Tumor is not as visually obvious as other pathologi-
cal diseases such as septicemia, air sacculitis, and bruise since
its spatial signature appears as shape distortion rather than a
discoloration. Therefore, conventional vision-based inspection
systems operating in the visual spectrum may suffer limita-
tions in detecting skin tumors on poultry carcasses (Du et al.,

2007). In addition, tumors have different spectral responses and
some parts of normal chicken skin even have similar spectral
response to that of tumors, making their identification a difficult
task (Nakariyakul and Casasent, 2004).

Based on the difference between spectral signatures of nor-
mal and blemished skins, relationships between some wave-
bands can further amplify the differences between the two
classes. The spectral map defined from spectral analysis is then
used as an input to a spatial classification depending on struc-
tural properties of the blemishes such as size, filling ratio, and
ratio of major to minor axes. In their experiment for detect-
ing tumors in chicken carcasses, Kim et al. (2004) presented a
method using hyperspectral fluorescence imaging system; how-
ever they failed to detect some tumors that were smaller than
3 mm in diameter. Their resultant detection rate, false positive
rate, and missing rate of the proposed method were 76%, 28%,
and 24%, respectively. The computational speed of tumor de-
tection can be accelerated by selecting only a few optimal wave-
bands from hyperspectral data to identify a subset of significant
spectral bands in terms of information content and to remove
the bands of less importance. For selecting key wavelengths
in tumor detection dilemmas, principal component analysis of
some regions of interests representing normal and tumor areas
provides an efficient mechanism for selecting some narrow-
band wavelength regions for use in a multispectral imaging
system.

As bone fragments embedded in boneless chickens are unde-
sirable by consumers, Yoon et al. (2006; 2008) employed both
transmittance and reflectance hyperspectral imaging methods
for detecting bone fragments in de-boned chicken fillets. Yoon
et al. (2006) used a back-illuminated structured light as a way of
reducing the influence of light scattering and increase contrast
on images. Later, Yoon et al. (2008) applied an image forma-
tion model called illumination-transmittance for correcting non-
uniform illumination effects and thus detecting embedded bones
easily by segmentation. The results are promising, showing that
in conjunction with appropriate image processing algorithms,
the hyperspectral imaging system is an effective technique for
identifying bones on poultry carcasses.

In disease detection, hyperspectral imaging system was suc-
cessfully used to differentiate freshly slaughtered chickens from
diseased chickens (Yang et al., 2009). Because the ideal inspec-
tion regulations require zero tolerance for unwholesome chick-
ens exhibiting symptoms of septicemia or toxemia, these un-
wholesome chickens must be removed from the processing line.
Septicemia is caused by the presence of pathogenic microor-
ganisms or their toxins in the bloodstream, and toxemia results
from toxins produced by cells at a localized infection or from
the growth of microorganisms. Lu and Chen (1998) acquired
hyperspectral images from four classes of poultry carcasses
(normal, cadaver, septicemia, and tumor), observing differences
in the spectra of the relative reflectance between wholesome
and unwholesome carcasses. Also, there were observed differ-
ences among the three classes of unwholesome carcasses from
their respective spectra. Therefore, an online line-scan imaging
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system was developed and tested on an eviscerating line at a
poultry processing plant with 140 birds per minute for differ-
entiation of wholesome and systemically diseased chickens, re-
sulting in identification equivalent to that by human inspectors
(Chao et al., 2008). The system is installed in poultry processing
and inspection plant by acquiring hyperspectral images for 5549
wholesome chicken carcasses and 93 unwholesome chicken car-
casses on a commercial processing line. The imaging system in-
spected over 100,000 chickens on a commercial line during two
eight-hour shifts in continuous operation and achieved over 99%
accuracy in identifying wholesome chickens and over 96% ac-
curacy in identifying unwholesome chickens. Chao et al. (2008)
emphasized that this type of system can perform food safety
inspection tasks accurately and with less variation in perfor-
mance at high speeds, and can help poultry plants to improve
production efficiency and satisfy increasing consumer demand
for poultry products.

Fish

Evaluation of Fish Overall Quality

The term quality in case of fish refers to the aesthetic ap-
pearance and freshness or degree of spoilage which the fish
has undergone (Huidobro et al., 2001). It may also involve in
safety aspects such as free from harmful bacteria, parasites, or
chemicals. Applications of hyperspectral imaging for quality as-
sessment of fish and seafood products are mainly concentrated
on overall fish freshness and chemical composition determina-
tion. Compared with NIR spectroscopy, applications of hyper-
spectral imaging in quality evaluation of fish in both research
and industry are limited although there is a prevailing tendency
of promising success. That is probably because hyperspectral
imaging is still a relatively new technique, and its full potential
has yet to be exploited. If applied in production and packaging
plants, hyperspectral imaging will enable optimized processing
of the raw fish, correct pricing, labeling and documentation, and
quality authentication.

It is believed that a suitable system for objective analysis of
fish freshness would improve the ability to market fish on value
and to monitor and manage the freshness of fish in the supply
chain to reduce waste.

For determining overall freshness of fish as a main element
of fish quality, Chau et al. (2009) employed the hyperspectral
imaging system in the near infrared (NIR) and shortwave in-
frared (SWIR) region of 892–2495 nm for such a task. Instead
of evaluating the fish freshness at specific regions on the fish
surface as in NIR spectroscopy, hyperspectral imaging evaluates
the freshness in all spots (pixels) of the fish surface. The results
showed that there was a difference among the mean spectra of
a whole fish, the fillet flesh, and belly flap regions of a fillet
at several locations of the spectra as indicated in their corre-
sponding spectral curves. These dissimilarities between these
spectra are attributed basically to the significant differences be-

tween chemical compositions of these parts. Mean spectra for
the whole cod fish showed evidence of an increase in reflectance
(decrease in log (1/R)) with storage time. Also, many variations
in reflectance were observed across the body of the tested fish
of different storage time, indicating significant shift of the fish
condition and its freshness status.

As with other foods, safety is a critical issue in the fish in-
dustry. The fish industry must deliver fish and fish products free
from parasites and diseases. Several approaches have been tried
to develop an efficient method to detect parasites, but so far, the
only reasonable solution is the manual inspection and trimming
of each fillet on a candling table. The candling table consists
of a bright diffuse light source that is directed to shine through
the translucent flesh of the fillet (Valdimarsson et al., 1985).
This is a very labor intensive method, where the operator has
to inspect the fillet first and then manually remove the defects
from the fillet. On the other hand, computer vision systems us-
ing only morphological features extracted from digital images
have limited performance, because the parasites appear in any
shape and are often very similar to the flesh features of the fish
fillets. Therefore, it is pertinent to develop a reliable and non-
destructive technique for detecting parasites and other illness
causing agents. Although it is sometimes invisible to human
eyes, parasites and nematodes could be easily detected by hy-
perspectral imaging technology due to the fact that nematodes
in fish flesh presents distinctive spectral fingerprints compared
to the normal fish muscles. Wold et al. (2001) and Heia et al.
(2007) used a hyperspectral system to detect nematodes in cod
(Gadus morhua) fish fillets. Their methodology has proven to
be an effective one for automatic detection of parasites even at
6 mm (Wold et al., 2001) and 8 mm (Heia et al., 2007) below
the fillet surface, which is 2 to 3 mm deeper than what can be
found by manual inspection of fish fillets.

In their experiments for detecting parasites in cod fish fillets,
Wold et al. (2001) used a multispectral imaging system of dif-
ferent bandwidth and exposure time in the transmittance mode
(where the light source is located below the fillet) for detecting
parasites impeded in cod fillets on the basis of spectral char-
acteristics in the visible and near infrared region. The length
of the tested nematodes spanned from 15 to 40 mm, and the
color varied from dark brown, yellow/reddish to almost white.
They noticed a significant difference in the spectral properties
between parasites at different depth and those of normal flesh.
Spectra vary in both intensity and shape, depending on factors
such as the color and depth of the parasite, the concentration
and depth of the blood spot, and the thickness of the dark mus-
cle. Also, the deep parasite has higher transmittance, resulting
in lower contrast compared to white muscle. Image channels in
the near-infrared have the potential to “see” deeper than those in
the visible area, but the best classification is obtained by com-
bining channels from both regions. The method has potential for
online implementation, but further studies are required to verify
feasibility for the fish industry.

In another attempt, Heia et al. (2007) used a hyperspec-
tral imaging system in the range 350-950 nm with a spectral
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resolution of approximately 2 to 3 nm and spatial resolution of
0.5 × 0.5 mm for detecting parasites of different colors and at
different depths in cod fish fillets. After extracting spectral data
from normal flesh with and without parasites, discriminant par-
tial least squares regression model was used for predicting the
presence of parasites in each pixel of the spectral image. Due
to distinctive spectral characteristics of nematodes which differ
sufficiently from those of fish flesh, fairly good classifications
are obtained. In this respect these results are very promising,
indicating that instrumental detection may perform better than
today’s manual procedure. Spectral imaging system as presented
in these studies is proven to be feasible in view of the on-line
requirements of fish-processing industry.

Recently, Sivertsen et al. (2009) developed a hyperspectral
imaging system in transflection mode in which illumination
and measurements were performed on the same side of the
sample for detecting centerlines of cod fish fillets. Transflection
can eliminate the effect of specular reflection, and increase the
signal received from inside the sample. The centerline consists
mainly of blood remnants in arteries and veins that have been
cut off during filleting, which gives the centerline its red/brown
color. By using the ratio between 715 nm and 525 nm bands, the
centerline could be represented as pixels with high intensities
where the surrounding muscle has a lower intensity. A drawback
with this method is that not only did it enhance the centerline,
but also enhanced all areas of high blood content. The results
showed that the centerline can be detected with an average
accuracy of 1 mm from the tail and 77% into the fillet relative
to its total length, although it was claimed that this method
was ready for industrial use with respect to both accuracy and
computational requirements.

Compositional Distribution in Fish

Existence of spectral and spatial details together in one spec-
tral image enables demonstrating the product characteristics and
attributes, uniformity and quality of the tested product. Since ev-
ery pixel in the hyperspectral images has its own spectrum, this
allows the prediction of component concentration at these pixels,
leading to the creation of concentration images to visualize the
chemical composition of different components in maps called
chemical images (Burger and Geladi, 2006). For detailed food
analysis, concentration gradients of certain chemical compo-
nents are often more interesting than average concentrations, no
matter how accurately the latter are determined. With conven-
tional spectroscopy one can either monotonously scan the entire
sample point by point or obtain average properties over the entire
sample using a single measurement. This is where hyperspec-
tral imaging proves to have superior potential. In some circum-
stances, selecting one image plane at a particular wavelength in
the hyperspectral image can highlight the spatial distribution of
sample components, provided that their spectral signatures are
different at the selected wavelength. However, only one image
at a single wavelength is sometimes not able to show all spatial

differences in chemical composition of the sample under inves-
tigation because each component has its own spectral features
at different wavelengths; in addition, some components have
unique spectral features at more than one wavelength. Recently,
some research efforts have been directed towards using the hy-
perspectral imaging technique for determining crude chemical
compositional distribution of fish and demonstrating fish qual-
ity traits in visualized forms (Wold, et al., 2006; ElMasry and
Wold, 2008; Ottestad et al., 2009; Segtnan et al., 2009; 2009).

The first attempt was reported by Wold et al. (2006) for in-
specting dried salted coalfish (bacalao) using non-contact trans-
flectance near infrared spectral imaging system in the visible and
near infrared regions (460-1040 nm). Fish was put on the con-
veyor belt and moved at a speed of approximately 0.1 ms−1, and
the spectral images were acquired with a spectral resolution of
approximately 20 nm at the speed of 10,000 spectra per second.
The fish was scanned line-by-line to collect the entire spectral
image and the final image size varied according to the length of
the fish. The system was evaluated for moisture determination
in 70 dried coalfish, which is an extremely heterogeneous prod-
uct. Partial least square regression (PLSR) was used for making
a calibration model between spectral data and reference values
of water content. Also, the PLSR model was used to predict
water content in each pixel of the spectral image to visualize the
water distribution in the tested fish samples. The best prediction
models obtained correlation values of 0.92 and RMSECV (root
mean square error estimated by cross validation) of 0.7%, which
is much more accurate than today’s traditional manual grading.

The same system was later used by ElMasry and Wold (2008)
in the interactance mode to determine water and fat content
distribution in the fillets of six fish species (Atlantic halibut,
catfish, cod, mackerel, herring, and saithe) in real time. The re-
sulting chemical images were displayed in colors, where the
colors represent different concentrations. Although it is im-
possible to differentiate the fat and water distribution in the
fillet by the naked eye, the spatial distribution of water and
fat could be visualized by the NIR interactance imaging sys-
tem. It was observed that the concentrations of fat and wa-
ter vary drastically among different parts of the same fillet.
This enables early sorting of products and thereby improves
quality management. Also, fish manufacturers who wish to cut
away fillets with certain threshold concentrations could perform
this task easily with limited modification in their production
lines.

In another interesting endeavor for compositional distribu-
tion application in fish, a spectral imaging technique in inter-
actance mode was also used for non-destructive distributional
analysis of fat and salt (NaCl) in salmon fillets during salting,
salt equilibration, and smoking, which are considered very cru-
cial for modern fish processing plants. Segtnan et al. (2009)
acquired spectral images of salted and smoked salmon fillets
and extracted their corresponding average NIR spectra. Cali-
bration models were built between the average NIR spectra and
fat and NaCl values using PLSR, and the models were val-
idated using full cross-validation. The NIR prediction model
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Figure 4 Predicted chemical images for fat (left) and NaCl (right) using NIR interactance imaging (Segtnan et al., 2009). (color figure available online.)

gave an RMSECV of 0.56 and a correlation of 0.86 for the NaCl
content and prediction errors of 1.95 and 1.96% fat in raw and
salted salmon fillets, respectively, with corresponding correla-
tions between predicted fat values and reference values of 0.95
and 0.97. Examples of fat and NaCl prediction images obtained
using NIR interactance models are shown in Fig. 4. From the
industrial point of view, this NIR interactance system could be
a good choice of technique, as it is able to measure fat and NaCl
simultaneously.

LIMITATIONS OF HYPERSPECTRAL IMAGING IN
MEAT APPLICATIONS

Despite these interesting and excellent research efforts which
clearly reflect the great value of hyperspectral imaging tech-
niques in meat quality evaluation, the system is suffering from
some constraints which limit its full exploitation. Some difficul-
ties arise from the hardware capability needed for an efficient
and rapid scanning to acquire the whole image and the subse-
quent analysis of the high amount of data produced. The main
problem associated with hyperspectral imaging system is that it
produces spectral images of substantial amount of data with re-
dundant information known as multicolinearity problem which
poses considerable computational challenges. This makes hy-
perspectral imaging difficult to be implemented in on-line in-
spection of meat or other agricultural products where rapid data
processing is essential, and represents a particular challenge to
equipment designers. The problem for the implementation of
on-line applications due to the big size of hyperspectral images

requires efficient programming tools for handling, displaying,
visualizing, and processing such images in a real-time mode.
Therefore, with such a high amount of raw data produced per
image, hyperspectral systems are currently used off-line in the
laboratory to select some key wavelengths for building mul-
tispectral imaging systems suitable for on-line applications to
meet the speed requirement of real-time production lines (Chao
et al., 2002; Mehl et al., 2004). In this aspect, reducing the
dimensionality of hyperspectral images is advantageous in the
sense of improving the predictability of the calibration model
and simplifying the model by avoiding redundancies and irrel-
evant variables. However, it can be expected that future devel-
opments in system components and more robust and efficient
algorithms will reduce acquisition and processing time, enabling
real-time applications with higher spectral resolutions. On the
other hand, one of the main analytical drawbacks of hyperspec-
tral imaging technique is that it is an indirect method which
means that it needs standardized calibration and model transfer
procedures. Also, hyperspectral imaging is not suitable in case
of homogenous samples because the value of imaging lies in
the ability to resolve spatial heterogeneities in samples. Further-
more, sample movement during image acquisition can cause
unwanted spectral artifacts when heterogeneous samples are
analyzed. However, by considering a wide range of meat prop-
erties during establishing calibration models, it will definitely
enhance the predictability of these models for a wide range
of quality and safety testing practices in the meat industry for
different meat quality traits. Another constraint compared with
the other technologies is the high initial cost of hyperspectral
imaging systems; however, this is expected to be a minor barrier
in the forthcoming years because the increase of commercial
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suppliers could reduce the cost and improve its availability. Fu-
ture improvements in equipment and software and the develop-
ment of novel solutions for more powerful data acquisition and
image processing are likely to decrease costs and increase appli-
cations of this emerging technique for meat quality evaluation
and characterization.

FUTURE TRENDS

The results of previous research works presented in this re-
view confirmed that hyperspectral methods are well suited for
predicting essential properties in meat samples such as tender-
ness, pH, and water holding capacity, and mapping the spatial
distribution of chemical components in different meat products.
It can replace computer vision or spectroscopy in situations
where more accurate classification, sorting, or identification of
foods and agricultural products is required. Hyperspectral imag-
ing techniques may find applications in the meat industry for
simple product inspection, full sample quantification, or for
the segregation of a subset of the measured batch for further
manual inspection. Considering the high spectral resolution of
hyperspectral images used in recent studies, deeper research is
required to extract the useful information and reject the volumi-
nous data that do not contribute to the application.

By integrating with efficient chemometric multivariate data
processing techniques and better configurations, hyperspectral
imaging techniques open many interesting perspectives for both
qualitative and quantitative analysis in food processing in gen-
eral and meat industry in particular. The non-destructive, remote,
and multivariate characteristics of hyperspectral imaging tech-
niques provide an interesting platform for meat quality monitor-
ing and control to move the measurements of meat quality from
the laboratories to the processing lines. Indeed, there are some
industrial approaches leaning in this direction, although they
have not yet been fully exploited, due to limitations and restric-
tions explained above. As a result, it is expected that the hyper-
spectral system will prevail in the near future for more complex
applications in monitoring different stages of most meat pro-
cessing plants. Also, the abundant information characterizing
both chemical and morphological features laid in the spectral
images opens the way to build chemical images to visualize
and quantify the spatial distribution of the functional compo-
nents of meat products during their processing. This particular
feature will enable implementing some difficult applications
such as fraud detection of processed meat products; authen-
tication of superior meat quality; detection of various defects
and diseases; discrimination between different meat qualities;
uniformity distribution of chemical compositions; and monitor-
ing the overall quality. The accurate classification of different
quality grades based on these characters will be very important
for correct pricing, authentication, and categorization of meat
products which provides some economical benefits for produc-
ers by increasing consumer confidence in the supplied meat
products.

CONCLUSION

This review has covered some of the recent applications of
hyperspectral imaging systems in meat quality evaluation. As
a rapid and non-invasive technique, hyperspectral imaging has
already gained wide acceptance among researchers as a com-
petent tool for non-destructive evaluation of meat products. In
support of greater regulatory inspection and consistent with the
food industry’s goal of providing superior meat quality, hyper-
spectral imaging systems greatly enhance the knowledge and
understanding of product parameters along the production pro-
cess. Among the numerous techniques which have been pro-
posed for meat quality evaluation on the fresh intact form, hy-
perspectral imaging technique has great potentials. The main
advantage of this technique is that it is a chemical-free assess-
ment method where sample preparation is eliminated and thus
reduces time for analysis and eliminates expensive traditional
methods. The wide application of this automated system would
seem to offer a number of potential advantages, including re-
duced labor costs, elimination of human error during subjective
judgment, and the creation of product data in visualized forms
in a real time for documentation, traceability, and labelling. In
contrast to NIR spectroscopic and imaging techniques, hyper-
spectral imaging offers a full range of spectral measurements
combined with spatial properties. However, it is necessary for
researchers to overcome technological limitations for imple-
menting hyperspectral imaging in the food industry for meat
quality assessment, so that the meat industry can realistically
benefit from the possibility of performing this non-destructive
technique at an early stage of processing without additional la-
borious and time-consuming chemical analyses, enabling early
sorting of produce and thereby improved quality management.
Considering the continuing improvements in hardware and soft-
ware design and the analytical requirements of the most recent
concepts of quality, it is anticipated that hyperspectral imaging
may progressively become a routine method for meat process
monitoring and for food safety and quality control.
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P. (2006). Development of a computed tomographic calibration method for
the determination of lean meat content in pig carcasses. Acta Veterinaria
Hungarica. 54(1): 1–10.

Rosenvold, K. and Andersen, H. J. (2003). Factors of significance for pork
quality: A review. Meat Science. 64(3): 219–237.

Rust, S.R., Price, D.M., Subbiah, J., Kranzler, G., Hilton, G.G., Vanoverbeke,
D.L., and Morgan, J.B. (2008). Predicting beef tenderness using near-infrared
spectroscopy. Journal of Animal Science. 86: 211–219.

Savell, J.W., Cross, H.R., Francis, J.J., Wise, J.W., Hale, D.S., Wilkes, D.L.,
and Smith, G.C. (1989). National consumer retail beef study: Interaction of
trim level price and grade on consumer acceptance of beef steaks and roasts.
Journal of Food Quality. 12(4): 251–274.
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