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Abstract—This paper considers resource allocation and pricing power, among the users. One example of such a system is the
for the downlink of a wireless network. We describe a model that  Qualcomm High Data Rate (HDR) scheme [1], which is the ba-
applies to either a time-slotted system (e.g. Qualcomm's HDR pro- g for the 1S-856 wireless data standard [3]. In HDR, thebas
posal) or a CDMA system; the main feature of this model is that tation t its t inal duri . fi ’ that
the channel quality varies across the users. We study using a pric- . |on. ra.nsml S 10 & Singie USer -ur||.'19 ar_ly given ,'me .
ing scheme for the allocation of radio resources. We show that to transmission rate a user can receive in a time slot is deteahi
maximize revenue in such a system, the base station should allo-by estimates of the channel conditions which are fed back fro
cate resources in a discriminatory manner, where different users the mobile to the base station. A scheduling algorithm at the
are charged different prices based in part on their channel qual- p,qe station is used to decide which user is transmittedrto du
ity. However optimally allocating resources in this way is shown . . . . o
to require knowledge about each user’s utility function. We con- ing any given time slot, ba_sed In part on_ the channel cor_nhtl_o
sider a suboptimal scheme which does not require knowledge of Of the users. In the following, we consider a model which in-
the users’ utility functions, and show that this scheme is asymp- corporates several features of such a system, and we stady th

totically optimal, in the limit of large demand. Moreover such rgle of pricing on resource allocation in this model.

a scheme is shown to maximize social welfare. We also consider Th - f locati . )
a heuristic scheme for the case of small demand, which does not _e u_se pricing as a means _or allocating resogrce_s In com
require perfect knowledge about the users’ utility functions. We Munication networks has received much attention in recent
provide numerical results that illustrate the performance of this years. For wire-line networks, a sampling of this literatim-
heuristic. cludes the work in [7], [11], [10], and [12]. A number of autko
have also studied pricing in wireless networks, in partacthe
role of pricing to aid in implementing distributed power eon

[. INTRODUCTION trol for the uplink in a CDMA setting; examples of this work

In this paper we study the use of pricing for resource alid?clude [4], [13], [6], and [5]. Regarding related work oreth
cation in a wireless network. We focus on a downlink conflownlink of wireless networks, we mention the work in [9],
munication to a group of untethered users from a single wir§?] in which pricing for the downlink of a CDMA network
network access point, such as a base station in a cellular riggtudied; these papers address both welfare and revende ma
work or a hub in a wireless LAN. The following is restricted tgnization. The emphasis in [9], [17] is on characterizingopd
the downlink for two reasons. First, it is expected that famy  Prices and the resulting resource allocation given knogeeaf
data applications, such as down-loading web pages or muihe .u_sers’ utility functlo_ns. We also mention WOI‘.k by Borstla
media, the traffic load on the downlink will be much largentha'Whiting [2] on scheduling for HDR systems; this work shows
over the uplink, thus efficiently utilizing this link is of meim- that a form of “revenue-based” scheduling is optimal for max
portance. The second reason is that the resource allodation'Mizing the normalized long-term expected throughput. Alg
the uplink involves several fundamentally different isstiean Tthms for adaptively calculating the optimal revenue eeetre
for the downlink,e.g. on the downlink all communication in a S0 givenin [2].
single cell originates at one point so issues of coordimaiad Our focus here is on pricing strategies for revenue maximiza
interference are of lesser importance than on the uplink. tion, i.e. how should a service provider price resources to maxi-

A basic feature of a wireless network is that channel chara@ize revenue. One key difference between this work and much
teristics will vary across the user population. This vaciatis Prior work is that we do not restrict the base station to charg
due to differences in the proximity of a user to the transeniss the same price per resource to all users. Indeed we showothat t
well as multi-path fading and shadowing effects. In thisisgt Maximize revenue it is often advantageous to employ discrim
the transmitter can exploit knowledge of the channel quadit inatory pricing; that is to charge users different pricesezh
send at higher rates to users with better channels, for eleam@n the users’ preferences and channel conditions. It is & wel
by using different modulation and coding choices for digier known fact in microeconomics that price discrimination edn
users. Channel knowledge can also be used for allocating “few a firm with some degree of monopoly power to increase
dio resources” such as time-slots, bandwidth or transomssirevenue. In the wireless setting we show that the optimakpri

charged per user depends on both the user’'s demand for band-
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pages, this seems to be the natural approach. We note thétesex; is the throughput (in number of packets) of usexote
receiver driven approach precludes a straightforwardresite  we allow the transmission time given to each user to be of-an ar
of pricing techniques as in [11] and [12], in which a price i®itrary length; in practical systems the transmission timold
identified with each packet at the transmitter. Also, sineealv likely be constrained to be an integer multiple of some eleme
low the receiver to charge different prices to various usiis tary time-slot, but we ignore this constraint here.
complicates a marking approach as in [8]. Instead of the@bov CDMA system:Consider the downlink in a CDMA system,
approaches, we introduce a pricing scheme, where userstsubmmere users are assigned orthogonal spreading Gotieshis
bids and resources are allocated based on these bids. case, assume that the base station transmits to each usegy dur
The paper is organized as follows. In Section Il we descrilibe entire time frame dI’ seconds. LeP; be the transmission
our model for both a time-slotted system and a CDMA systempower allocated to useér and assume that the base station has
Next, we look at some preliminary approaches for resource al constraint on its total transmission power so that
location. In Section IV, we introduce a utility frameworkéa-
plicitly model a user’s preferences. With an appropriateicé
of variables, the problem of maximizing social welfare iswh Z BsP
to be mathematically equivalent to the problem studied hijyKe =1

etal. in [7]. In Section V we introduce a pricing scheme fol et ;. represent the channel gain of useso thatg; P, is the
allocating radio resources as discussed above. In Sectian V received power at usér Assume that the base station can send
optimal revenue maximizing strategy is given for this pigi to yser; with a rate,r;, (in packets/sec.) that is proportiodal
scheme; this strategy depends on the base station having pekhe received power.e. r; = K¢, P;, for some constank .
fect knowledge of the user's utilities. In Section VIl wedyu yser; will then receivez; = r,T packets in the time frame;

suboptimal strategies that do not require complete knayded  thys we have that, ..., z,; are constrained so that

the user’s utilities. In particular, we give an allocatidrasegy

which requires no knowledge about the utilities, and shaat th M ;

this strategy is asymptotically optimal in the regime ofade- TKg = 2)
mand. Furthermore such a strategy also maximizes social wel i=1 !

fare. Finally in Section VIII we provide some numerical riéssu

to illustrate these ideas. Clearly by identifyingr(h;) with TKg; andT with P these

models are mathematically equivalent. We will describe the
following results in the context of the model in (1), but the
Il. MODEL reader should keep in mind that they apply equally for the sec
In this section we describe a idealized model for the dowQN'd model as well, or any other other situation where a user's
link in a single cell of a wireless network; we choose a simpfgansmission rate depends on some resource in a lineaofashi
model which highlights the possible disparity between siger @nd there is a linear constraint on this resource.
such an environment. We first describe this model in the con-In @ wire-line network, a similar “link” model can be de-
text of a time-slotted system. The resulting model is shawn Yeloped (see.g. [12]) where the throughputdz; }, are con-
also apply to a CDMA system similar to that studied in [9].  Strained as

M
Time slotted systentConsider a system where the base sta- Z z; < CT 3
tion transmits to a single user at any any given time. Assume p L ’
there arelM active users, and far= 1, ..., M the channel be-

»and C' is the constant transmission rate in packets/sec of the

h;. Assume that this state is known exactly at the base statigAk:- Thus the key feature that differentiates the above ehod
Based on this state, lefh;) be the rate in packets per secon fom th? wire-line case is that. In the_ wireless model, thdﬁpac
at which the user can receive data in a time slot with acc@taﬁtS of different user; can require a different portion of fhmk
reliability.* We assume that over the time scales of interest, tfeS0Urces (depending on the valuesrgf;), andy;, respec-
channel state of each user stays fixed; we note this is diffd¥€ly), while in the wire-line case each user's packetsige
ent than the assumption in work such as [2] and in particul§2Me amount of network resources.

prohibits us from exploiting “multi-user diversity” due tone

variations in the users’ channels [15]. Suppose that the &tas 1. M AXIMIZING THROUGHPUTREVENUE

tion schedules transmissions over a fixed length time fraine o S
T seconds. During a frame, the base station allocates for e:&g@
useri a timet; € [0, 7] during which it transmits to that user at
rater(h;), where

tween the base station and usés parameterized by a “state,

uppose that the base station has an infinite supply of data
end to each user, and consider the problem of allocating r
sources among the users to maximize the total system through
put. For the time-slotted model, this corresponds to chapai

M M z; 2We ignore any constraints on the available number of sprgactiules in
Z t; = Z <T. (1) the following. Such considerations can be taken into acctunugh a code
i—1 =1 r(hi) constraint as in [9].

3A linear relationship between rate and power is reasonafla fvide-band

LIn this paper we ignore the possibility of packet losses; wag of incor-  system, provided the base station cannot send at too highaiéa At a high

porating such losses is by assuming th@t;) is the long-term average rate at enough rates, channel capacity considerations tell ughrsatelationship will
which packets can be successfully sent. no longer hold.



transmission time allocatiofty, ..., tys) to maximize the total ~ We consider users with elastic traffic [14k. users who per-
throughput of the system. To achieve this, clearly the btese sceive quality of service solely as a function of the througthp
tion should always allocate the entire time frame to the,umer For this case, we can characterize the service prefererfces o
users, with the best channek. the user(s) with the maximal each user through a quality indicator or utility functiomtlle-
transmission rate(h;). We note that this is similar in spirit to pends on a single variable: the throughput. We will assurat th
the conclusion that have been drawn in several other ssftinthese utility functions are increasing in the throughputais-
such as [16]. Although the resulting allocation achieves tiples of users with elastic traffic are users sending emaihstr
maximal throughput, this policy is extreme and unfair as tmogerring files, and browsing the Web.
of the users will not be able to receive any data, in particima  Consider a fixed usere {1, ..., M} and suppose that; is
the case where the channel states do not change over the tineethroughput of usei. Then, we associate with uséthe
scales of interest. Moreover it does not account for theivela utility function U;(x;). We make the following assumption.
preferences.(serwce requwements) of each user. Assumption 1:For each usei = 1, ..., M, the functionU; :

S_u ppose |_nstead Fhat rece|_vers.(users) agree to pay the t?}%feH R, satisfies the following conditions:
station (service provider) a pricg, i = 1, ..., M, per received o . . . . .
packet. In this scenario, the base station maybe interdsted a. U?- is increasing, strictly concave and twice differentiable,
maximizing its revenue, rather than the throughput. Theecor with U;(0) = 0.

. L o b. There exists constantds;, K», such that for alli, z
sponding maximization problem is given as follows ’ ’ e
ponaing P 9 Ul(z) < K, and|U(z)| < K.

maximiz ef: 2 Utility functions fpr elastig t_raffip with these charactstics are
et commonly used in the pricing literature, seg.[7]. The most
" restrictive assumption here is condition b, which states tie
subject to:z i T, first and second derivate of the utilities are uniformly bded.
— r(hi) ~ This assumption will be used in Section VII. Notice that the

first derivative ofU; is bounded if and only i/} (0) < oco. Also
notice that Assumption 1 does not require that all users tiave
In order to maximize the revenue, the entire time slot shoushme utility function.

be allocated to the user, or users, with the highest index We define the demand functiah; : ®; — R, of user
u;r(h;). Note thatn,; can be interpreted as the revenue per unitas follows. Fori = 1, ..., M, let the functionD; be defined
time the base station receives when it transmits packetsesf usuch thatD; (u) is the optimal solutiong*, to the maximization
i. Itis interesting to note that in the case where the basmestatproblem

wants to maximize the revenue, time slots are not necegsaril max{U;(z) — zu}, u€ R,;.

allocated to the users who pay the highest price per packet or v20

the user with the best channel, but to the users who pay thee goal of this maximization problem is to optimize the tsser
largest amount per unit time. This means that users with a baet benefit given by utility minus cost. Note that in this prob
channel (smalt(h;)) are still able to receive data when they aréem the user faces a trade-off between achieving a highyutili
willing to pay a higher prica:; per packet. In the case where(by choosing a large throughpu) and keeping its cost low
one user has a higher index than all other users, this revenueg(by choosing a small throughpu. Under Assumption 1, the
maximizing policy is again extreme and unfair as the wholbove maximization problem has a unique finite solution fior a
time frame gets allocated to only one user, and all others areso D;(u) is well defined. D;(u) can be interpreted as the
starved. In the case where the indices of all users are eayual, rate (in packets per secondjvould request when the price for
feasible schedule such th@fil t; = T generates the samereceiving one packet is equal#o Furthermore, from Assump-
revenue. Notice that the throughput optimization problem ction 1.b it follows that, for each, there exists some constant
be thought of as a special case of this revenue maximizationma. such that

problem where all users pay the same amaumper received
packet. Di(u) =0, Vu > uimaz-

>0, i=1,..,M.

IV. MAXIMIZING SOCIAL WELFARE In other words, when useéiis charged more tham; 4, it will
reiuest Zero rate.

The above allocation schemes are optimal in the sense tha] ssume now that the service provider wants to optimize the

they maximize either the throughput or the revenue. HOWeVEL o sers' utility. This objective is captured by the lling
as we noted, the resulting allocations are not balari@anost optimization problem

users are starved, except possibly if the indices of all geu

are equal. Also, we did not take into account how the prices M

u; are generated for the revenue maximization problem. In this maximizez Ui(z;)

section, we introduce utility functions as a means of exgbfic i=1

characterizing the service preferences of a user. We then ex Mo (4)
plore an approach, where rather than optimizing the threugh subject to:z: L <T,

put, or revenue, the base station maximizes the so callédlsoc i=1 r(hi)

welfare, or the total utility over all users. x; >0, i=1,...,. M.



Let us compare this to a single link case of the utility maxiai increases. The parametecan then also be thought of as a con-
tion problem studied by Kelly in [7] for a wire-line networka  gestion price where each user is charged the same pricerper ti
that case, the constraint in (1) is replaced by (3) resultirthe slot in the optimal solution (but different prices,, per packet);
optimization problem this price increases as the demand increases. We also pint o
that making the equivalent identification for the CDMA maqdel

M results in users being charged an equal price per unit of powe

maximizez Ui(x:) under the optimal solution.
z; (5) Th_e above procedure for allocating resources may not be
subject to:z: 2 < CT, practical for two reasons.
i=1 (a) First, it is not clear why the base station should be inter
z; >0, i=1,.. M. ested in optimizing the total user utility, rather than the

throughput or the revenue.

For eachi, defineU(ti) = U(tyr(hy)); the quantityf](ti) can (b) Even when the base station wants to optimize the total
be interpreted as an indicator of utility as a function of the  user utility, it may be unrealistic to assume that the base
amount of time allocated to a user. Note if two useendj station knows the utility functions of the individual users
have identical utilitiesl;(x;) = U,(x;), butr(h;) # r(h;) to carry out the above optimization directly.
thenUi(xi) #* Uj(xj), i.e. they will have different utilitiesasa In [7], Kelly proposes a pricing mechanism for wire-line
function of¢;. Using this notation, the optimization in (4) canpacket networks that allows the network to optimize sociellw
be re-written as fare without requiring the network to have any knowledgetdbo
the users’ utility functions. In this approach, users bid e
sources by indicating a willingness to pay, and the netwthok a
cates network resources accordingly. Here, we pursue #asimi
M (6) approach to allocate resources for t_he Fjownlink of a W?Ee_les
subject tOZ t; <T, network. However, rather than considering welfare maxaniz

tion, we assume that the service provider’s objective ismee
maximization.

M
maximizez Ui (t:)
=1

i=1
t; >0, i1=1,..,M.

In this form, this problem can be seen to be mathematically

identical to the problem in (5). Thus the results in [7] can be v RESOURCEALLOCATION THROUGH PRICING

adapted in the current setting as well. In particular, froned-

rem 1 in [7] and the above identification, the following prepo | this section, we consider a receiver driven pricing mecha
sition directly follows. nism for allocating the transmission timgsi = 1,..., M. As

Proposition 1: Let Assumption 1 hold. Then the above maxdiscussed in the introduction, this scheme requires uskes (
imization has an unique solutiofi;, ..., #,,). In addition, receivers) to compete for resources through a bidding mecha

there exists a parametérsuch that nism. Specifically, users submit a price bid and the bas®stat
allocates transmission times based in part on these bidsdim
& = Di(uy), i=1,..., M, frame, users pay a price that is equal to their bid, indepeinde
of the amount of data they receives. the price is a price per
where < frame, as opposed to a price per packet. For our analysis we
w; = L assume that users behave in a selfish waydach user is only
r(h;) interested in maximizing its own net benefit) and users act in

The parametek can be interpreted as the (optimal) Lagrang@ependentlyi(e. they do not collaborate during the bidding
multiplier for the unconstrained optimization problem: process). User adjust their bids over time, based on the allo
cation they receive. The goal of the base station is to aloca

M z; resources in such way that the resulting bids maximize teen
(Z r(hs) - ) In Section I, we considered optimizing revenue given fixed
=1 prices per packet. The mechanism considered here difi@ns fr
The first order conditions for the above optimization proble this in several ways. First, the users submit a price peréram
are then given by (of lengthT") versus a price per packet, and second, the base
station takes into consideration how the users bids change o
time. For this framework, which we describe in more detail
below, we investigate the following questions,

M
maximize ~ Us(z;) — A

i=1

>

Uj (i) —

r(hi)

It can be shown thak increases when the total demand (@) How will the users bid?

M (b) Based on the users’ bid, how should the base station al-

D(u) = Z D;(u) ue R, locate the transmission time in order to maximize its rev-
P enue?



A. Pricing Mechanism Note that under an equilibrium vectorw*(f) =

We consider the following pricing mechanism. In eachwi(/f), - wi,(f)), each useri maximizes its own net
frame, users bid for resources by submitting priceijce %,. Penefit and therefore has no incentive to deviate from its bid
The base station then allocates resources according toca futi: (/). The following proposition gives a useful alternative
tion f(w) = (fi(w), ..., fur(w)) such that characterization of an equilibrium bid vector.

Proposition 2: A bid vectorw* is an equilibrium bid vector
for an allocation strategy if and only if,

D;(u;) ;
) e,

M
> filw) T, forall w € R,
i=1

filw®) =
wheret; = f;(w) is the time that the base station allocates in
each frame to transmit packets for usemotice that we do not wherew. — w; .
require the the entire frame to be allocated. Indeed, some ex b fitwr(h)
amples can be found where the revenue maximizing allocati®fie proof of this follows directly from the definitions above
does not allocate the entire frame. )

To study this pricing scheme, we proceed in a similar manner Base Station Problem

as in [7] and define a user problem and a base station problemiNext, we consider the following question. What allocation
The user problem addresses the issue of howiusleooses the strategy should the base station choose such that it maesmiz
bid w, (based on the last price bid and the time= f;(w) in the revenue? We will proceed in two steps. First, we assume

the last frame). For the base station problem, the goal isitb fithat the base station has perfect global knowledge (knoess th

an allocation strategy that maximizes the revenue. utility function of all users), and derive an allocatigi whose
equilibrium bidding vector maximizes the base station's-re
B. User Problem enue. In the second step, we derive an allocation straftdgy

: , : the case where the base station has only imperfect infoomati
We consider af|>(<§)d allocation strategy= (f1, ..., fu). Let (does not know the users’ utility functions). One would extpe

w®) o (wi?, oo Wt ) be the k;jd vector in théth frame, and ¢ the revenue®(f*) under the allocation strateg§* is in
F@®) = (fi(w®), ... far (w™)) the transmission times al- general larger than the reveni#¥ f) under the allocation strat-
located to users in this frame. The price per packft, that egy f. However, as we will show in the following, the revenue
user: pays in thekth frame is then equal to under the allocatiorf is close tof* when many users are active.

(k)
ug“ = (k)wi ) VI. OPTIMAL ALLOCATION STRATEGY
fi (w)r(hi) In this section, we derive an optimal allocation strategy fo
o B the case where the base station knows each user’s utilit fun
and the transmission raié"’ is equal to tion. LetU; be the utility function of uset, and letD; (u) be the
*) corresponding demand (as defined in Section IV). The revenue
25— w(z ; maximization problem is then given by
7 k) *
u; M
maximize w; Dy (u;
In the above, iffi(’“)(w) =0,we setul(.k) = 00 andek) =0, ; ()
independent of the other variables. We assume that in the M 7)
(k + 1)th frame, uset chooses a bids" ") to maximize its subject to: ) Di(u:) <T,
net benefit under the price", i.e. useri solves the following = (k)
maximization problem, u; >0, i=1,..M.

w; It can be shown that an optimal solutidn;, ..., u},) exists
max U; | T Wi for this maximization problem. If for each, w;D;(u;) is
= U strictly convex, then this optimum will be unique. Otheraijis
We note that this problem is equivalent to the user problemfr there may be multiple optimal solutions, in which case, con-
the second decomposition in [7]. sider (uf, ..., u},) to be one optimal solution, picked arbitrar-
Given the allocation strategf, we then define an equilib- ily. ' From the point of view of revenue maximization, which
rium bid vector as a vectar* (f) = (w?(f), ..., w%, (f)) such ©Ptimalis chosen does not matter.
that for all users = 1, ..., M we have Let L,
AL =wuir(hs)
w!(f) = arg max {Ui <“’L) - w} be the price per unit time the base station charges 4jsard
7 2 v . . . . .
w; >0 U; consider the the following allocation strategy. Given the b
vectorw = (wy, ..., wpr), Set
_ w; (f) % Wi

)T(hi). fi (w):@,

where

i=1,.. M,



where VIl. MANY USERCASE

Af ) . ) .
i = )\—17 i=1,.., M, Suppose that the base station uses the allocation strgtegy
_ ! given by
andA is such that Fiw) = ﬁ’ i=1, ..M,
A
M ‘ M Di(u?) )
Z Wi _ Z i) where) is such that
el SRAUD) o
w;
We then have the following result. Z DU T.
i=1

Proposition 3: Let Assumption 1 hold. Then there exists a
unique equilibrium bidding vectow* = (wf,...,w},) for the Note this allocation strategy does not depend on the usgks’ u
strategyf*. In addition, the revenue under the equilibrium bidity functions. In the following, we analyze this allocatistrat-
ding vector maximizes the base station’s revengewe have egy and show that it has the following properties. In equilib
rium, the above strategy,

*

* w;
U = Frw)r(hy) (a) maximizes the total users’ utility, and
Proof: Assume an equilibrium bidding vecter* exists ~ (b) maximizes the base station’s revenue (in the limit) fier t
for the allocation strategy*. Using the above definitions, the case where many users are active and demand on trans-
price per packet paid by uséat this equilibrium is given by mission resources increases (to infinity).
w* A The first property follows immediately from our discussiaon i
]”(T;MM =t Section IV; we summarize this in the following proposition.
i i 1

Proposition 4: Let Assumption 1 hold. Then there exists a
unique equilibrium bidding vecto#) = (i1, ..., wy;) for the
strategyf. In addition, the rate vectafi, ..., #5,) under the
allocation(f, (), ..., fas (1)) maximizes the total user’s utility.

From Proposition 2, itv* is an equilibrium bidding vector it
must be thatfoi =1, ..., M,

fiw®) = ——= 1(_*11’1)
r(hi) AT Next, we address the second property above. We make the fol-

Thus, from the definition of the allocation strategy, lowing assumption.

Assumption 2:For all @1, . .., @y, such that
Z Y (Au’.‘> — Z Di(u7)
— r(hi) AT — r(hi) ' u; Dy(u;) = ing}éuiDi(ui)a Vi=1,...,M,
Since the demand function of each uges strictly decreas- e have that
ing on [0, u; maz), it follows that there exists a unique that M Di(a)
satisfies this equation, and= \}. Thus if a equilibrium for Z L >T.
f* exists, it is unique and the equilibrium allocation maxiesiz i=1 r(hi)
revenue. This assumption implies that whén7, ..., u%,) is an optimal

To see that an equilibrium exists, let = u; D;(u;); under  splution to the revenue maximization problem given by E}. (7
the allocation strategy*, this bidding vector can be shown tothen we have that

satisfy Proposition 2. Thus it is an equilibrium bidding terc M D;(u})
. Z 7.Z(h_l) = T
The strategyf* allows the base station to maximize rev- i=1 ’

enue. Under the revenue maximizing strategy, the users majitively, this states that there are enough users aotiven-

be charged a different price per time slot; this differs frima  sure that the base station will fully utilize the systemdedite
welfare maximization case discussed above. The differencethe whole frame duratiofi”) under a strategy that maximizes
price depends on the parametgrs i = 1,..., M. An ex- the revenue.

ample where these parameters vary across the users is given iin the next proposition, we show that in the case where many
Sect. VIII. To calculate these parameters requires thabéise users are active (and demand on transmission resources in-
station knows the utility function of each user. Also notatth creases to infinity), then thgis close to optimal.

even if all users had the same utility function they could k& By Assumption 1.b, there exists a positive constdntich
charged a different price per unit time, based on their cennhat for all users = 1, ..., M we have

conditions. As we noted above, assuming that the baserstatio

knows the utility functions of each user may not be practical  |U/(z) — U/(2')| < L|z — 2’|, forallz,2’ € R,.

In the next section, we propose a stratggyhich does not re-

quire the base station to know the users’ utility functionda For each\ > 0, define

show that this strategy is close to optimal for the case where _

many users are active. Dr(X) = max{r(hi) Di(A/r(hi))}-



This can be interpreted as the maximum amount of time anyFor this case, the above informal argument can be used to
user would demand when charg&cper unit time. From As- derive a heuristic. In Eq. (9), the ter; (u;)/Dj(u;) is the
sumption 1, the functiorDr () is well-defined, decreasing, reciprocal of the demand elasticity of ugerEq. (9) illustrates
and there exist3,,,,, such thatD;(\) =0, forall A\ > \,,.... that under the optimal policy* the base station charges users
Proposition 5: Let Assumption 1 and 2 hold. Then we havg‘”th inelastic demand_a higher price to maximize its revenue
that Assume the base station does not have the exact knowledge of
% 7 A 3 the utility function of individual users, but some estimate
P - P < LDp(A . ' .
. IP(f7) (Nl = V), about the demand elasticity of user The base station could
where\ is the price that the base station charges each usettien allocate to userthe transmission time, = f;(w) given

equilibrium per unit time under the stratedy by
We provide an outline for a proof of this proposition in the filw) = %, i=1,..,M,
appendix. At =5
_ As the number of active users increases, it can be shown tW}"Fere)\ is such that
A approaches,,... Remember that the functiady (1)) is de-
creasing im\ and i ws
—l‘ =T
N li}\m DT(/\) =0. i=1 )\ + %h:)

Notice that this strategy always fully utilizes the framévém

This implies that the the differend@(f*) — P(f)‘ vanishes that there is enough demand), whereas the optimal stratesg/ d
as the number of active users increases. Thus Propositio%% necessarily allocate the fu,II frame duratidh

states that the strategdis close to optimal during periods when The termD, (u)/D/(u? ) is & function ofu’; therefore, the

the demand is high and the base station achieves the higlbgf,ste station should (dynamically) change the estimates the
revenue (under the optimal strategy).

: ) . I number of active users changes over time. The hope is that
In the following, we provide an informal derivation for . .
. : . ) when the base station can form a good estimates of the demand
Proposition 5. Using Lagrange multipliers, we can rewtiatt

revenue maximization problem given by Eq. (7) as elasticity of_lnd|V|duaI users, then this strategy shoutdfprm
close to optimal.

M M D(u)
maX|m|ze;uiDi(uz-) - A (; . T) @ VIl CASE STUDY
subjecttou; >0, i=1,..M. We illustrate the above results using a case study. We assume

that the user demands are piecewise-linear functions diyen
The optimal prices:!, i = 1, ..., M, are then given by
C; — a;u, 0<u< &
* i * . e - — a;
wr = A D) Difw) { 0, otherwise
b)) Di(uy)

/!
K2

™)

and for\f = ujr(h;) we have We then have that

C C
=t — 0<u< =
D;(u}) ) D;(u)/Dh(u) = { w W Usus g
A=A — — =1,..,M. 9 ! g
; DIy’ i=1,.., 9) 0, otherwise
Note from Assumption 1.b,D/(u?)| > K% and D;(uf) — 0 Letting A* be the Lagrange multiplier in (8) and setting
aswu; increases. This means that when the number of active A
users mcregsgs (t(') infinity), then the te% will dgcrease - u; r(hi)’
to zero. This implies that when the number of active users is
large, we have (approximately) that the optimal price\} of (9), as a function of\*, is given by
Al = )\; = A, i=1,...M, 3 )\7* + Cg{g’h)’ 0< A< C?";(‘hi)
L UL otherwise

and the strategy becomes (essentially) optimal.

In the case where the optimal stratefjy allocates the whole
A. A Heuristic Allocation Strategy frame duratioril’, the heuristic that we introduced in Section V

We showed in Proposition 5 that in the case where maifyoptimal when the base station can exactly estimate parame
users are active, the revenue maximization and welfare -ma$@rsC; anda; for each usei. However, this means that the base
mization problem are equivalent (in the limit as the the nembstation has exact knowledge of the users’ demand functams,
of user increases to infinity). However, in the case whered least perfect knowledge of the ratfg-. In practice, the base
small number of users are active, the strat¢gyay perform station might not know the exact rat%, i =1,...M, but
significantly worse tharf™. only be able to obtain an estimaie.
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Fig. 1. Revenue under the optimal strateffyas a function of of the number Elg. 8. Revgnue difference(f) fP(f).underthe heuristig and.the strategy
of active users of each group given By(k) = 10(k—1)+100,k = 1,...,60. Jfasa function of of the number of active usersAof each type diveN (k) =
10(k — 1) + 100, k = 1,...,60. The estimater is equal to 1.%& (bottom

curve) and 0.& (top curve).
0.12

0.1f

increase as more users are added. However, as the number of
active users gets large, the difference decreases to zeprea
dicted by Proposition 5.

oosl i Figure 3 illustrates how estimation errors of the ralip =
% affect the performance of the heuristic strategy. In ouecas
004l | study, this ratio is given by
0.01
. Ri=R= =0.5, i=1,.., M.

=002 =

Let R be the estimate by of the rati. We consider two sce-
narios where we assume that the estimatis equal to 1.%,

and 0.8, respectively. Figure 3 that the heuristic outperforms
Fig. 2. Revenue differencB(f*) — P(f) underf* and as a function of of Strategyf when the number of active users is small. When
the number of active users of each type given¥gk) = 10(k — 1) + 100, the number of active users is large, then the performances of
k=1,..,60. the two strategies are identical and equal to the optimdbper
mance. However foRR = 1.3, the heuristic can be worse when

. . dthe number of active users is moderately large.
We compare, via a numerical study, the performance under

the optimal strategy*, the strategyf, and the heuristic strategy
f, for the above type of demand function. We set

-0.02

L L L L L
0 10 20 30 40 50 60

A. Conclusions

We have presented a pricing scheme for the downlink in a
Di(u) = 0.01(1 — u), i=1,.., M. wireless network where different users can receive datéf-at d
ferent rates. In this scheme, users bid in each frame by sub-
mitting a price bid and the base station allocates resourmes
maximize its revenue. We propose a revenue maximizing-strat
egy f* for the base station. This scheme however requires that
the base station know the utility function of each user. Vée al
propose a suboptimal stratedywhich does not require knowl-
edge of the user’s utility functions, and show that this sche

We assume that there al¢ = 3N active users which we can
classify into three different groups corresponding to efiint
channel states; each group with a total\olusers. For users of
group 1 we set(h;) = 1, for users of group 2 we seth;) =
0.5, and for users of group 3 we seth;) = 0.3. We vary the
number of active users of each group according to

N(k) = 10(k — 1) + 100 E—=1...60. is asymptotically optimal, in the limit of many users andyiar
demand. Moreover, such a scheme is shown to maximize social
The frame length is equal t6 = 1. welfare. We also consider a heuristic stratggyvhich does not

Figure 1 shows the revenue under the optimal strategy aseguire perfect knowledge of the users’ utility functioktsing
function of the number of active users. As expected, themage a case study, we show that the revenue urfdsiclose tof* for
increases as the number of active users of each group iesrearge demand. The case study also illustrates the the kieuris

Figure 2 shows compares the revenue under the optimal straperforms better thaif for small demand, given that the base
egy f* and the strategy. The strategy* always performs bet- station can accurately estimate the elasticities of thiviihaal
ter thanf. The difference between the two strategies initiallysers.
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APPENDIX fa(w?) ) n=n
0 otherwise.

Let f* be the allocation strategy from Section VI that max-
imizes the base station's revenue. etindicate the equilib-  The strategyf can be seen to have the equilibrium bid vector

rium bid vector forf* and let w*(f) = (W}, .oy Wy, .., W, ..., w,), this results in the allo-
. f;(ul;;*) if f1* (w*) >0, (10) cation:
"\ imanr(hs) 0f £ (w*) = 0. [ (w*) if i # m,n,

fiw™(f) = fn(w*) + At ifi=m,
frw*) = At ifi=n.

n

Thus for all active users)} is the equilibrium price userpays
per unit time undey*, and for all inactive users\; is the min-
imum price per unit time such that the demand of that user,i

zero. Thus, using Proposition 2 and Assumption 2, it followllﬁ,%:jé;’fZ i_eL -+ M be defined as in (10) for the equilibrium

that .
~ 1 A\ w; (f) TR

2y P (W) - (11) y= Ty Tfd) >0

i=1 v g ui,mawr(hi) if fl(w* (f)) =0.
Assume that undef*, for userm, we have,

We then have that
Ar, > AL foralli =1,..., M,

AS if i £ m,n,
and for usemn we have thaf; (w*) > 0 and No=d N — A if i =m

Ay < AT, for all ¢ such thatf;"(w*) > 0. A+ A,  ifi=mn,



for someA,, > 0, A,, > 0. Let P(f) indicate the revenue
under strategyf. Then we have

P(f) = P(f*) = 8t(Apy = As ) = A f ()
+Anfr(w?) = At(Am + An).

Using Assumption 1.b, there exist a Lipschitz constant 0
such that
A < Lr(hy)?At,

and similarly
A, < Lr(hy)?At.

Thus

P(f) = P(f*) 2 At( X = X = Lr(hon)2 ("))
+ o(At).

¢From this it follows that strategy would achieve a higher
revenue than strategf/ for someAt when

N = X > Lr(h)2 5 (w*).

m

As f* is an optimal strategy, it must be that

X = A | < Lr(hg) 2 f5 (w0

= Lr(hy)Dp,

< LDz(X},)

< LDr(N).
Here we have used that (see Proposition 2)

Frn(w") = ﬁD <7~<Ah—n;>>

and the definition oD7 ().



