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Abstract—This paper considers resource allocation and pricing
for the downlink of a wireless network. We describe a model that
applies to either a time-slotted system (e.g. Qualcomm’s HDR pro-
posal) or a CDMA system; the main feature of this model is that
the channel quality varies across the users. We study using a pric-
ing scheme for the allocation of radio resources. We show that to
maximize revenue in such a system, the base station should allo-
cate resources in a discriminatory manner, where different users
are charged different prices based in part on their channel qual-
ity. However optimally allocating resources in this way is shown
to require knowledge about each user’s utility function. We con-
sider a suboptimal scheme which does not require knowledge of
the users’ utility functions, and show that this scheme is asymp-
totically optimal, in the limit of large demand. Moreover such
a scheme is shown to maximize social welfare. We also consider
a heuristic scheme for the case of small demand, which does not
require perfect knowledge about the users’ utility functions. We
provide numerical results that illustrate the performance of this
heuristic.

I. I NTRODUCTION

In this paper we study the use of pricing for resource allo-
cation in a wireless network. We focus on a downlink com-
munication to a group of untethered users from a single wired
network access point, such as a base station in a cellular net-
work or a hub in a wireless LAN. The following is restricted to
the downlink for two reasons. First, it is expected that for many
data applications, such as down-loading web pages or multi-
media, the traffic load on the downlink will be much larger than
over the uplink, thus efficiently utilizing this link is of more im-
portance. The second reason is that the resource allocationfor
the uplink involves several fundamentally different issues than
for the downlink,e.g. on the downlink all communication in a
single cell originates at one point so issues of coordination and
interference are of lesser importance than on the uplink.

A basic feature of a wireless network is that channel charac-
teristics will vary across the user population. This variation is
due to differences in the proximity of a user to the transmitter as
well as multi-path fading and shadowing effects. In this setting,
the transmitter can exploit knowledge of the channel quality to
send at higher rates to users with better channels, for example
by using different modulation and coding choices for different
users. Channel knowledge can also be used for allocating “ra-
dio resources” such as time-slots, bandwidth or transmission
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power, among the users. One example of such a system is the
Qualcomm High Data Rate (HDR) scheme [1], which is the ba-
sis for the IS-856 wireless data standard [3]. In HDR, the base
station transmits to a single user during any given time slot; the
transmission rate a user can receive in a time slot is determined
by estimates of the channel conditions which are fed back from
the mobile to the base station. A scheduling algorithm at the
base station is used to decide which user is transmitted to dur-
ing any given time slot, based in part on the channel conditions
of the users. In the following, we consider a model which in-
corporates several features of such a system, and we study the
role of pricing on resource allocation in this model.

The use pricing as a means for allocating resources in com-
munication networks has received much attention in recent
years. For wire-line networks, a sampling of this literature in-
cludes the work in [7], [11], [10], and [12]. A number of authors
have also studied pricing in wireless networks, in particular the
role of pricing to aid in implementing distributed power con-
trol for the uplink in a CDMA setting; examples of this work
include [4], [13], [6], and [5]. Regarding related work on the
downlink of wireless networks, we mention the work in [9],
[17] in which pricing for the downlink of a CDMA network
is studied; these papers address both welfare and revenue maxi-
mization. The emphasis in [9], [17] is on characterizing optimal
prices and the resulting resource allocation given knowledge of
the users’ utility functions. We also mention work by Borst and
Whiting [2] on scheduling for HDR systems; this work shows
that a form of “revenue-based” scheduling is optimal for max-
imizing the normalized long-term expected throughput. Algo-
rithms for adaptively calculating the optimal revenue vector are
also given in [2].

Our focus here is on pricing strategies for revenue maximiza-
tion, i.e. how should a service provider price resources to maxi-
mize revenue. One key difference between this work and much
prior work is that we do not restrict the base station to charge
the same price per resource to all users. Indeed we show that to
maximize revenue it is often advantageous to employ discrim-
inatory pricing; that is to charge users different prices based
on the users’ preferences and channel conditions. It is a well
known fact in microeconomics that price discrimination canal-
low a firm with some degree of monopoly power to increase
revenue. In the wireless setting we show that the optimal price
charged per user depends on both the user’s demand for band-
width as well as the channel conditions.

Another difference with much of the literature is that we con-
sider a pricing framework that is receiver driven,i.e. we view
the receiver, rather than the sender, as paying for service.For
the applications mentioned above, such as down-loading web



pages, this seems to be the natural approach. We note that a
receiver driven approach precludes a straightforward extension
of pricing techniques as in [11] and [12], in which a price is
identified with each packet at the transmitter. Also, since we al-
low the receiver to charge different prices to various users, this
complicates a marking approach as in [8]. Instead of the above
approaches, we introduce a pricing scheme, where users submit
bids and resources are allocated based on these bids.

The paper is organized as follows. In Section II we describe
our model for both a time-slotted system and a CDMA system.
Next, we look at some preliminary approaches for resource al-
location. In Section IV, we introduce a utility framework toex-
plicitly model a user’s preferences. With an appropriate choice
of variables, the problem of maximizing social welfare is shown
to be mathematically equivalent to the problem studied by Kelly
et al. in [7]. In Section V we introduce a pricing scheme for
allocating radio resources as discussed above. In Section VI an
optimal revenue maximizing strategy is given for this pricing
scheme; this strategy depends on the base station having per-
fect knowledge of the user’s utilities. In Section VII we study
suboptimal strategies that do not require complete knowledge of
the user’s utilities. In particular, we give an allocation strategy
which requires no knowledge about the utilities, and show that
this strategy is asymptotically optimal in the regime of large de-
mand. Furthermore such a strategy also maximizes social wel-
fare. Finally in Section VIII we provide some numerical results
to illustrate these ideas.

II. M ODEL

In this section we describe a idealized model for the down-
link in a single cell of a wireless network; we choose a simple
model which highlights the possible disparity between users in
such an environment. We first describe this model in the con-
text of a time-slotted system. The resulting model is shown to
also apply to a CDMA system similar to that studied in [9].

Time slotted system:Consider a system where the base sta-
tion transmits to a single user at any any given time. Assume
there areM active users, and fori = 1, . . . ,M the channel be-
tween the base station and useri is parameterized by a “state,”
hi. Assume that this state is known exactly at the base station.
Based on this state, letr(hi) be the rate in packets per second
at which the user can receive data in a time slot with acceptable
reliability.1 We assume that over the time scales of interest, the
channel state of each user stays fixed; we note this is differ-
ent than the assumption in work such as [2] and in particular
prohibits us from exploiting “multi-user diversity” due totime
variations in the users’ channels [15]. Suppose that the base sta-
tion schedules transmissions over a fixed length time frame of
T seconds. During a frame, the base station allocates for each
useri a timeti ∈ [0, T ] during which it transmits to that user at
rater(hi), where

M
∑

i=1

ti =

M
∑

i=1

xi

r(hi)
≤ T. (1)

1In this paper we ignore the possibility of packet losses; oneway of incor-
porating such losses is by assuming thatr(hi) is the long-term average rate at
which packets can be successfully sent.

Herexi is the throughput (in number of packets) of useri. Note
we allow the transmission time given to each user to be of an ar-
bitrary length; in practical systems the transmission timewould
likely be constrained to be an integer multiple of some elemen-
tary time-slot, but we ignore this constraint here.

CDMA system:Consider the downlink in a CDMA system,
where users are assigned orthogonal spreading codes.2 In this
case, assume that the base station transmits to each user during
the entire time frame ofT seconds. LetPi be the transmission
power allocated to useri, and assume that the base station has
a constraint on its total transmission power so that

M
∑

i=1

Pi ≤ P.

Let gi represent the channel gain of useri, so thatgiPi is the
received power at useri. Assume that the base station can send
to useri with a rate,ri, (in packets/sec.) that is proportional3

to the received power,i.e. ri = KgiPi, for some constantK.
User i will then receivexi = riT packets in the time frame;
thus we have thatx1, . . . , xM are constrained so that

M
∑

i=1

xi

TKgi

≤ P. (2)

Clearly by identifyingr(hi) with TKgi andT with P these
models are mathematically equivalent. We will describe the
following results in the context of the model in (1), but the
reader should keep in mind that they apply equally for the sec-
ond model as well, or any other other situation where a user’s
transmission rate depends on some resource in a linear fashion
and there is a linear constraint on this resource.

In a wire-line network, a similar “link” model can be de-
veloped (seee.g. [12]) where the throughputs,{xi}, are con-
strained as

M
∑

i=1

xi ≤ CT, (3)

and C is the constant transmission rate in packets/sec of the
link. Thus the key feature that differentiates the above model
from the wire-line case is that in the wireless model, the pack-
ets of different users can require a different portion of the“link”
resources (depending on the values ofr(hi), andgi, respec-
tively), while in the wire-line case each user’s packets need the
same amount of network resources.

III. M AXIMIZING THROUGHPUT/REVENUE

Suppose that the base station has an infinite supply of data
to send to each user, and consider the problem of allocating re-
sources among the users to maximize the total system through-
put. For the time-slotted model, this corresponds to choosing a

2We ignore any constraints on the available number of spreading codes in
the following. Such considerations can be taken into account through a code
constraint as in [9].

3A linear relationship between rate and power is reasonable for a wide-band
system, provided the base station cannot send at too high of a rate. At a high
enough rates, channel capacity considerations tell us thatthis relationship will
no longer hold.



transmission time allocation(t1, ..., tM ) to maximize the total
throughput of the system. To achieve this, clearly the base sta-
tion should always allocate the entire time frame to the user, or
users, with the best channel,i.e. the user(s) with the maximal
transmission rater(hi). We note that this is similar in spirit to
the conclusion that have been drawn in several other settings,
such as [16]. Although the resulting allocation achieves the
maximal throughput, this policy is extreme and unfair as most
of the users will not be able to receive any data, in particular in
the case where the channel states do not change over the time
scales of interest. Moreover it does not account for the relative
preferences (service requirements) of each user.

Suppose instead that receivers (users) agree to pay the base
station (service provider) a priceui, i = 1, ...,M , per received
packet. In this scenario, the base station maybe interestedin
maximizing its revenue, rather than the throughput. The corre-
sponding maximization problem is given as follows

maximize
M
∑

i=1

xiui

subject to:
M
∑

i=1

xi

r(hi)
≤ T,

xi ≥ 0, i = 1, ...,M.

In order to maximize the revenue, the entire time slot should
be allocated to the user, or users, with the highest indexni =
uir(hi). Note thatni can be interpreted as the revenue per unit
time the base station receives when it transmits packets of user
i. It is interesting to note that in the case where the base station
wants to maximize the revenue, time slots are not necessarily
allocated to the users who pay the highest price per packet or
the user with the best channel, but to the users who pay the
largest amount per unit time. This means that users with a bad
channel (smallr(hi)) are still able to receive data when they are
willing to pay a higher priceui per packet. In the case where
one user has a higher indexni than all other users, this revenue
maximizing policy is again extreme and unfair as the whole
time frame gets allocated to only one user, and all others are
starved. In the case where the indices of all users are equal,any
feasible schedule such that

∑M

i=1 ti = T generates the same
revenue. Notice that the throughput optimization problem can
be thought of as a special case of this revenue maximization
problem where all users pay the same amountu per received
packet.

IV. M AXIMIZING SOCIAL WELFARE

The above allocation schemes are optimal in the sense that
they maximize either the throughput or the revenue. However,
as we noted, the resulting allocations are not balanced,i.e. most
users are starved, except possibly if the indices of all the users
are equal. Also, we did not take into account how the prices
ui are generated for the revenue maximization problem. In this
section, we introduce utility functions as a means of explicitly
characterizing the service preferences of a user. We then ex-
plore an approach, where rather than optimizing the through-
put, or revenue, the base station maximizes the so called social
welfare, or the total utility over all users.

We consider users with elastic traffic [14],i.e. users who per-
ceive quality of service solely as a function of the throughput.
For this case, we can characterize the service preferences of
each user through a quality indicator or utility function that de-
pends on a single variable: the throughput. We will assume that
these utility functions are increasing in the throughput. Exam-
ples of users with elastic traffic are users sending email, trans-
ferring files, and browsing the Web.

Consider a fixed useri ∈ {1, ...,M} and suppose thatxi is
the throughput of useri. Then, we associate with useri the
utility function Ui(xi). We make the following assumption.

Assumption 1:For each useri = 1, ...,M , the functionUi :
ℜ+ 7→ ℜ+ satisfies the following conditions:

a. Ui is increasing, strictly concave and twice differentiable,
with Ui(0) = 0.

b. There exists constants,K1, K2, such that for alli, x,
U ′

i(x) ≤ K1 and|U ′′
i (x)| ≤ K2.

Utility functions for elastic traffic with these characteristics are
commonly used in the pricing literature, seee.g. [7]. The most
restrictive assumption here is condition b, which states that the
first and second derivate of the utilities are uniformly bounded.
This assumption will be used in Section VII. Notice that the
first derivative ofUi is bounded if and only ifU ′

i(0) < ∞. Also
notice that Assumption 1 does not require that all users havethe
same utility function.

We define the demand functionDi : ℜ+ 7→ ℜ+ of user
i as follows. Fori = 1, ...,M , let the functionDi be defined
such thatDi(u) is the optimal solution,x∗, to the maximization
problem

max
x≥0

{Ui(x) − xu}, u ∈ ℜ+.

The goal of this maximization problem is to optimize the user’s
net benefit given by utility minus cost. Note that in this prob-
lem the user faces a trade-off between achieving a high utility
(by choosing a large throughputx) and keeping its cost low
(by choosing a small throughputx). Under Assumption 1, the
above maximization problem has a unique finite solution for all
u, so Di(u) is well defined. Di(u) can be interpreted as the
rate (in packets per second)i would request when the price for
receiving one packet is equal tou. Furthermore, from Assump-
tion 1.b it follows that, for eachi, there exists some constant
ui,max such that

Di(u) = 0, ∀u ≥ ui,max.

In other words, when useri is charged more thanui,max, it will
request zero rate.

Assume now that the service provider wants to optimize the
total users’ utility. This objective is captured by the following
optimization problem.

maximize
M
∑

i=1

Ui(xi)

subject to:
M
∑

i=1

xi

r(hi)
≤ T,

xi ≥ 0, i = 1, ...,M.

(4)



Let us compare this to a single link case of the utility maximiza-
tion problem studied by Kelly in [7] for a wire-line network.In
that case, the constraint in (1) is replaced by (3) resultingin the
optimization problem

maximize
M
∑

i=1

Ui(xi)

subject to:
M
∑

i=1

xi ≤ CT,

xi ≥ 0, i = 1, ...,M.

(5)

For eachi, defineÛ(ti) = U(tir(hi)); the quantityÛ(ti) can
be interpreted as an indicator of utility as a function of the
amount of time allocated to a user. Note if two usersi andj
have identical utilities,Ui(xi) = Uj(xj), but r(hi) 6= r(hj)

thenÛi(xi) 6= Ûj(xj), i.e. they will have different utilities as a
function of ti. Using this notation, the optimization in (4) can
be re-written as

maximize
M
∑

i=1

Ûi(ti)

subject to:
M
∑

i=1

ti ≤ T,

ti ≥ 0, i = 1, ...,M.

(6)

In this form, this problem can be seen to be mathematically
identical to the problem in (5). Thus the results in [7] can be
adapted in the current setting as well. In particular, from Theo-
rem 1 in [7] and the above identification, the following propo-
sition directly follows.

Proposition 1: Let Assumption 1 hold. Then the above max-
imization has an unique solution(x̂1, ..., x̂M ). In addition,
there exists a parameterλ̂ such that

x̂i = Di(ui), i = 1, ...,M,

where

ui =
λ̂

r(hi)
.

The parameter̂λ can be interpreted as the (optimal) Lagrange
multiplier for the unconstrained optimization problem:

maximize
M
∑

i=1

Ui(xi) − λ̂

(

M
∑

i=1

xi

r(hi)
− T

)

.

The first order conditions for the above optimization problem
are then given by

U ′
i(xi) −

λ̂

r(hi)
= U ′

i(xi) − ui = 0, i = 1, ...,M.

It can be shown that̂λ increases when the total demand

D(u) =

M
∑

i=1

Di(u), u ∈ ℜ+,

increases. The parameterλ̂ can then also be thought of as a con-
gestion price where each user is charged the same price per time
slot in the optimal solution (but different prices,ui, per packet);
this price increases as the demand increases. We also point out
that making the equivalent identification for the CDMA model,
results in users being charged an equal price per unit of power
under the optimal solution.

The above procedure for allocating resources may not be
practical for two reasons.

(a) First, it is not clear why the base station should be inter-
ested in optimizing the total user utility, rather than the
throughput or the revenue.

(b) Even when the base station wants to optimize the total
user utility, it may be unrealistic to assume that the base
station knows the utility functions of the individual users
to carry out the above optimization directly.

In [7], Kelly proposes a pricing mechanism for wire-line
packet networks that allows the network to optimize social wel-
fare without requiring the network to have any knowledge about
the users’ utility functions. In this approach, users bid for re-
sources by indicating a willingness to pay, and the network allo-
cates network resources accordingly. Here, we pursue a similar
approach to allocate resources for the downlink of a wireless
network. However, rather than considering welfare maximiza-
tion, we assume that the service provider’s objective is revenue
maximization.

V. RESOURCEALLOCATION THROUGH PRICING

In this section, we consider a receiver driven pricing mecha-
nism for allocating the transmission timesti, i = 1, ...,M . As
discussed in the introduction, this scheme requires users (the
receivers) to compete for resources through a bidding mecha-
nism. Specifically, users submit a price bid and the base station
allocates transmission times based in part on these bids. Ineach
frame, users pay a price that is equal to their bid, independent
of the amount of data they receive,i.e. the price is a price per
frame, as opposed to a price per packet. For our analysis we
assume that users behave in a selfish way (i.e. each user is only
interested in maximizing its own net benefit) and users act in-
dependently (i.e. they do not collaborate during the bidding
process). User adjust their bids over time, based on the allo-
cation they receive. The goal of the base station is to allocate
resources in such way that the resulting bids maximize revenue.

In Section III, we considered optimizing revenue given fixed
prices per packet. The mechanism considered here differs from
this in several ways. First, the users submit a price per frame
(of lengthT ) versus a price per packet, and second, the base
station takes into consideration how the users bids change over
time. For this framework, which we describe in more detail
below, we investigate the following questions,

(a) How will the users bid?

(b) Based on the users’ bid, how should the base station al-
locate the transmission time in order to maximize its rev-
enue?



A. Pricing Mechanism

We consider the following pricing mechanism. In each
frame, users bid for resources by submitting price bidwi ∈ ℜ+.
The base station then allocates resources according to a func-
tion f(w) = (f1(w), ..., fM (w)) such that

M
∑

i=1

fi(w) ≤ T, for all w ∈ ℜM
+ ,

whereti = fi(w) is the time that the base station allocates in
each frame to transmit packets for useri. Notice that we do not
require the the entire frame to be allocated. Indeed, some ex-
amples can be found where the revenue maximizing allocation
does not allocate the entire frame.

To study this pricing scheme, we proceed in a similar manner
as in [7] and define a user problem and a base station problem.
The user problem addresses the issue of how useri chooses the
bid wi (based on the last price bid and the timeti = fi(w) in
the last frame). For the base station problem, the goal is to find
an allocation strategyf that maximizes the revenue.

B. User Problem

We consider a fixed allocation strategyf = (f1, ..., fM ). Let
w(k) = (w

(k)
1 , ..., w

(k)
M ) be the bid vector in thekth frame, and

f(w(k)) = (f1(w
(k)), ..., fM (w(k))) the transmission times al-

located to users in this frame. The price per packet,u
(k)
i , that

useri pays in thekth frame is then equal to

u
(k)
i =

w
(k)
i

f
(k)
i (w)r(hi)

,

and the transmission ratex(k)
i is equal to

x
(k)
i =

w
(k)
i

u
(k)
i

.

In the above, iff (k)
i (w) = 0, we setu(k)

i = ∞ andx
(k)
i = 0,

independent of the other variables. We assume that in the
(k + 1)th frame, useri chooses a bidw(k+1)

i to maximize its

net benefit under the priceu(k)
i , i.e. useri solves the following

maximization problem,

max
wi≥0

{

Ui

(

wi

u
(k)
i

)

− wi

}

.

We note that this problem is equivalent to the user problem from
the second decomposition in [7].

Given the allocation strategyf , we then define an equilib-
rium bid vector as a vectorw∗(f) = (w∗

1(f), ..., w∗
M (f)) such

that for all usersi = 1, ...,M we have

w∗
i (f) = arg max

wi≥0

{

Ui

(

wi

ui

)

− wi

}

,

where

ui =
w∗

i (f)

fi(w∗)r(hi)
.

Note that under an equilibrium vectorw∗(f) =
(w∗

1(f), ..., w∗
M (f)), each useri maximizes its own net

benefit and therefore has no incentive to deviate from its bid
w∗

i (f). The following proposition gives a useful alternative
characterization of an equilibrium bid vector.

Proposition 2: A bid vectorw∗ is an equilibrium bid vector
for an allocation strategyf if and only if,

fi(w
∗) =

Di(ui)

r(hi)
, i = 1, . . . ,M,

whereui =
w∗

i

fi(w∗)r(hi)
.

The proof of this follows directly from the definitions above.

C. Base Station Problem

Next, we consider the following question. What allocation
strategy should the base station choose such that it maximizes
the revenue? We will proceed in two steps. First, we assume
that the base station has perfect global knowledge (knows the
utility function of all users), and derive an allocationf∗ whose
equilibrium bidding vector maximizes the base station’s rev-
enue. In the second step, we derive an allocation strategyf̂ for
the case where the base station has only imperfect information
(does not know the users’ utility functions). One would expect
that the revenueP (f∗) under the allocation strategyf∗ is in
general larger than the revenueP (f̂) under the allocation strat-
egy f̂ . However, as we will show in the following, the revenue
under the allocation̂f is close tof∗ when many users are active.

VI. OPTIMAL ALLOCATION STRATEGY

In this section, we derive an optimal allocation strategy for
the case where the base station knows each user’s utility func-
tion. LetUi be the utility function of useri, and letDi(u) be the
corresponding demand (as defined in Section IV). The revenue
maximization problem is then given by

maximize
M
∑

i=1

uiDi(ui)

subject to:
M
∑

i=1

Di(ui)

r(hi)
≤ T,

ui ≥ 0, i = 1, ...M.

(7)

It can be shown that an optimal solution(u∗
1, ..., u

∗
M ) exists

for this maximization problem. If for eachi, uiDi(ui) is
strictly convex, then this optimum will be unique. Otherwise,
there may be multiple optimal solutions, in which case, con-
sider(u∗

1, ..., u
∗
M ) to be one optimal solution, picked arbitrar-

ily. From the point of view of revenue maximization, which
optimal is chosen does not matter.

Let
λ∗

i = u∗
i r(hi)

be the price per unit time the base station charges useri, and
consider the the following allocation strategy. Given the bid
vectorw = (w1, ..., wM ), set

f∗
i (w) =

wi

φiλ
, i = 1, ...,M,



where

φi =
λ∗

i

λ∗
1

, i = 1, ...,M,

andλ is such that

M
∑

i=1

wi

φiλ
=

M
∑

i=1

Di(u
∗
i )

r(hi)
.

We then have the following result.

Proposition 3: Let Assumption 1 hold. Then there exists a
unique equilibrium bidding vectorw∗ = (w∗

1 , ..., w∗
M ) for the

strategyf∗. In addition, the revenue under the equilibrium bid-
ding vector maximizes the base station’s revenue,i.e. we have

u∗
i =

w∗
i

f∗
i (w∗)r(hi)

.

Proof: Assume an equilibrium bidding vectorw∗ exists
for the allocation strategyf∗. Using the above definitions, the
price per packet paid by useri at this equilibrium is given by

w∗
i

f∗
i (w∗)r(hi)

=
λ

λ∗
1

u∗
i .

From Proposition 2, ifw∗ is an equilibrium bidding vector it
must be that fori = 1, . . . ,M ,

f∗
i (w∗) =

1

r(hi)
Di

(

λ

λ∗
1

u∗
i

)

.

Thus, from the definition of the allocation strategy,

∑

i

1

r(hi)
Di

(

λ

λ∗
1

u∗
i

)

=
∑

i

Di(u
∗
i )

r(hi)
.

Since the demand function of each useri is strictly decreas-
ing on [0, ui,max], it follows that there exists a uniqueλ that
satisfies this equation, andλ = λ∗

1. Thus if a equilibrium for
f∗ exists, it is unique and the equilibrium allocation maximizes
revenue.

To see that an equilibrium exists, letw∗
i = u∗

i Di(u
∗
i ); under

the allocation strategyf∗, this bidding vector can be shown to
satisfy Proposition 2. Thus it is an equilibrium bidding vector.

The strategyf∗ allows the base station to maximize rev-
enue. Under the revenue maximizing strategy, the users may
be charged a different price per time slot; this differs fromthe
welfare maximization case discussed above. The differencein
price depends on the parametersφi, i = 1, . . . ,M . An ex-
ample where these parameters vary across the users is given in
Sect. VIII. To calculate these parameters requires that thebase
station knows the utility function of each user. Also note that
even if all users had the same utility function they could still be
charged a different price per unit time, based on their channel
conditions. As we noted above, assuming that the base station
knows the utility functions of each user may not be practical.
In the next section, we propose a strategyf̂ which does not re-
quire the base station to know the users’ utility function, and
show that this strategy is close to optimal for the case where
many users are active.

VII. M ANY USERCASE

Suppose that the base station uses the allocation strategyf̂
given by

f̂i(w) =
wi

λ
, i = 1, ...,M,

whereλ is such that

M
∑

i=1

wi

λ
= T.

Note this allocation strategy does not depend on the users’ util-
ity functions. In the following, we analyze this allocationstrat-
egy and show that it has the following properties. In equilib-
rium, the above strategy,̂f ,

(a) maximizes the total users’ utility, and

(b) maximizes the base station’s revenue (in the limit) for the
case where many users are active and demand on trans-
mission resources increases (to infinity).

The first property follows immediately from our discussion in
Section IV; we summarize this in the following proposition.

Proposition 4: Let Assumption 1 hold. Then there exists a
unique equilibrium bidding vector̂w = (ŵ1, ..., ŵM ) for the
strategyf̂ . In addition, the rate vector(x̂1, ..., x̂M ) under the
allocation(f̂1(ŵ), ..., f̂M (ŵ)) maximizes the total user’s utility.

Next, we address the second property above. We make the fol-
lowing assumption.

Assumption 2:For all ū1, . . . , ūM , such that

ūiDi(ūi) = max
ui≥0

uiDi(ui), ∀i = 1, . . . ,M,

we have that
M
∑

i=1

Di(ūi)

r(hi)
≥ T.

This assumption implies that when(u∗
1, ..., u

∗
M ) is an optimal

solution to the revenue maximization problem given by Eq. (7),
then we have that

M
∑

i=1

Di(u
∗
i )

r(hi)
= T.

Intuitively, this states that there are enough users activeto en-
sure that the base station will fully utilize the system (allocate
the whole frame durationT ) under a strategy that maximizes
the revenue.

In the next proposition, we show that in the case where many
users are active (and demand on transmission resources in-
creases to infinity), then thêf is close to optimal.

By Assumption 1.b, there exists a positive constantsL such
that for all usersi = 1, ...,M we have

|U ′
i(x) − U ′

i(x
′)| ≤ L|x − x′|, for all x, x′ ∈ ℜ+.

For eachλ ≥ 0, define

D̄T (λ) = max
i

{r(hi)Di(λ/r(hi))}.



This can be interpreted as the maximum amount of time any
user would demand when chargedλ per unit time. From As-
sumption 1, the function̄DT (λ) is well-defined, decreasing,
and there existsλmax such thatD̄T (λ) = 0, for all λ ≥ λmax.

Proposition 5: Let Assumption 1 and 2 hold. Then we have
that

|P (f∗) − P (f̂)| ≤ LD̄T (λ̂),

whereλ̂ is the price that the base station charges each user in
equilibrium per unit time under the strategŷf .

We provide an outline for a proof of this proposition in the
appendix.

As the number of active users increases, it can be shown that
λ̂ approachesλmax. Remember that the function̄DT (λ) is de-
creasing inλ and

lim
λ→λmax

D̄T (λ) = 0.

This implies that the the difference|P (f∗) − P (f̂)| vanishes
as the number of active users increases. Thus Proposition 5
states that the strategŷf is close to optimal during periods when
the demand is high and the base station achieves the highest
revenue (under the optimal strategy).

In the following, we provide an informal derivation for
Proposition 5. Using Lagrange multipliers, we can rewrite that
revenue maximization problem given by Eq. (7) as

maximize
M
∑

i=1

uiDi(ui) − λ∗

(

M
∑

i=1

Di(ui)

r(hi)
− T

)

subject to:ui ≥ 0, i = 1, ...M.

(8)

The optimal pricesu∗
i , i = 1, ...,M , are then given by

u∗
i =

λ∗

r(hi)
−

Di(u
∗
i )

D′
i(u

∗
i )

and forλ∗
i = u∗

i r(hi) we have

λ∗
i = λ∗ −

Di(u
∗
i )

D′
i(u

∗
i )r(hi)

, i = 1, ...,M. (9)

Note from Assumption 1.b,|D′
i(u

∗
i )| ≥

1
K2

andDi(u
∗
i ) → 0

asu∗
i increases. This means that when the number of active

users increases (to infinity), then the termDi(u
∗

i
)

D′

i
(u∗

i
) will decrease

to zero. This implies that when the number of active users is
large, we have (approximately) that

λ∗
i = λ∗

j = λ, i = 1, ...,M,

and the strategŷf becomes (essentially) optimal.

A. A Heuristic Allocation Strategy

We showed in Proposition 5 that in the case where many
users are active, the revenue maximization and welfare maxi-
mization problem are equivalent (in the limit as the the number
of user increases to infinity). However, in the case where a
small number of users are active, the strategyf̂ may perform
significantly worse thanf∗.

For this case, the above informal argument can be used to
derive a heuristic. In Eq. (9), the termDi(u

∗
i )/D′

i(u
∗
i ) is the

reciprocal of the demand elasticity of useri. Eq. (9) illustrates
that under the optimal policyf∗ the base station charges users
with inelastic demand a higher price to maximize its revenue.
Assume the base station does not have the exact knowledge of
the utility function of individual users, but some estimateα̂i

about the demand elasticity of useri. The base station could
then allocate to useri the transmission timeti = fi(w) given
by

fi(w) =
wi

λ + r(hi)
α̂i

, i = 1, ...,M,

whereλ is such that

M
∑

i=1

wi

λ + r(hi)
α̂i

= T.

Notice that this strategy always fully utilizes the frame (given
that there is enough demand), whereas the optimal strategy does
not necessarily allocate the full frame duration,T .

The termDi(u
∗
i )/D′

i(u
∗
i ) is a function ofu∗

i ; therefore, the
base station should (dynamically) change the estimateαi as the
number of active users changes over time. The hope is that
when the base station can form a good estimates of the demand
elasticity of individual users, then this strategy should perform
close to optimal.

VIII. C ASE STUDY

We illustrate the above results using a case study. We assume
that the user demands are piecewise-linear functions givenby

Di(u) =

{

Ci − aiu, 0 ≤ u ≤ Ci

ai

0, otherwise.

We then have that

Di(u)/D′
i(u) =

{

Ci

ai

− u, 0 ≤ u ≤ Ci

ai

,

0, otherwise.

Lettingλ∗ be the Lagrange multiplier in (8) and setting

u∗
i =

λ∗
i

r(hi)
,

the optimal priceλ∗
i of (9), as a function ofλ∗, is given by

λ∗
i =

{

λ∗

2 + Cir(hi)
2ai

, 0 ≤ λ∗ ≤ Cir(hi)
ai

λ∗, otherwise.

In the case where the optimal strategyf∗ allocates the whole
frame durationT , the heuristic that we introduced in Section V
is optimal when the base station can exactly estimate parame-
tersCi andai for each useri. However, this means that the base
station has exact knowledge of the users’ demand functions,or
at least perfect knowledge of the ratioCi

2ai

. In practice, the base

station might not know the exact ratioCi

2ai

, i = 1, ...,M , but
only be able to obtain an estimateα̂i.
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Fig. 1. Revenue under the optimal strategyf∗ as a function of of the number
of active users of each group given byN(k) = 10(k−1)+100, k = 1, ..., 60.
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Fig. 2. Revenue differenceP (f∗)−P (f̂) underf∗ andf̂ as a function of of
the number of active users of each type given byN(k) = 10(k − 1) + 100,
k = 1, ..., 60.

We compare, via a numerical study, the performance under
the optimal strategyf∗, the strategŷf , and the heuristic strategy
f , for the above type of demand function. We set

Di(u) = 0.01(1 − u), i = 1, ...,M.

We assume that there areM = 3N active users which we can
classify into three different groups corresponding to different
channel states; each group with a total ofN users. For users of
group 1 we setr(hi) = 1, for users of group 2 we setr(hi) =
0.5, and for users of group 3 we setr(hi) = 0.3. We vary the
number of active users of each group according to

N(k) = 10(k − 1) + 100, k = 1, ..., 60.

The frame length is equal toT = 1.
Figure 1 shows the revenue under the optimal strategy as a

function of the number of active users. As expected, the revenue
increases as the number of active users of each group increases.

Figure 2 shows compares the revenue under the optimal strat-
egyf∗ and the strategŷf . The strategyf∗ always performs bet-
ter thanf̂ . The difference between the two strategies initially
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Fig. 3. Revenue differenceP (f)−P (f̂) under the heuristicf and the strategy
f̂ as a function of of the number of active users of each type givenby N(k) =

10(k − 1) + 100, k = 1, ..., 60. The estimateR̂ is equal to 1.3R (bottom
curve) and 0.8R (top curve).

increase as more users are added. However, as the number of
active users gets large, the difference decreases to zero, as pre-
dicted by Proposition 5.

Figure 3 illustrates how estimation errors of the ratioRi =
Ci

2ai

affect the performance of the heuristic strategy. In our case
study, this ratio is given by

Ri = R =
0.01

0.02
= 0.5, i = 1, ...,M.

Let R̂ be the estimate by of the ratioR. We consider two sce-
narios where we assume that the estimateR̂ is equal to 1.3R,
and 0.8R, respectively. Figure 3 that the heuristic outperforms
strategyf̂ when the number of active users is small. When
the number of active users is large, then the performances of
the two strategies are identical and equal to the optimal perfor-
mance. However for̂R = 1.3, the heuristic can be worse when
the number of active users is moderately large.

A. Conclusions

We have presented a pricing scheme for the downlink in a
wireless network where different users can receive data at dif-
ferent rates. In this scheme, users bid in each frame by sub-
mitting a price bid and the base station allocates resourcesto
maximize its revenue. We propose a revenue maximizing strat-
egyf∗ for the base station. This scheme however requires that
the base station know the utility function of each user. We also
propose a suboptimal strategŷf which does not require knowl-
edge of the user’s utility functions, and show that this scheme
is asymptotically optimal, in the limit of many users and large
demand. Moreover, such a scheme is shown to maximize social
welfare. We also consider a heuristic strategyf , which does not
require perfect knowledge of the users’ utility functions.Using
a case study, we show that the revenue underf̂ is close tof∗ for
large demand. The case study also illustrates the the heuristic
f performs better than̂f for small demand, given that the base
station can accurately estimate the elasticities of the individual
users.
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APPENDIX

Let f∗ be the allocation strategy from Section VI that max-
imizes the base station’s revenue. Letw∗ indicate the equilib-
rium bid vector forf∗ and let

λ∗
i =

{

w∗

i

f∗

i
(w∗) if f∗

i (w∗) > 0,

ui,maxr(hi) if f∗
i (w∗) = 0.

(10)

Thus for all active users,λ∗
i is the equilibrium price useri pays

per unit time underf∗, and for all inactive users,λ∗
i is the min-

imum price per unit time such that the demand of that user is
zero. Thus, using Proposition 2 and Assumption 2, it follows
that

M
∑

i=1

1

r(hi)
Di

(

λ∗
i

r(hi)

)

= T. (11)

Assume that underf∗, for userm, we have,

λ∗
m ≥ λ∗

i , for all i = 1, ...,M,

and for usern we have thatf∗
n(w∗) > 0 and

λ∗
n ≤ λ∗

i , for all i such thatf∗
i (w∗) > 0 .

Note thatλ∗
n > 0.

Under the strategŷf and any given bid vector, notice that all
users are charged the same price per unit time; letλ̂ indicate
this price for the equilibrium bid vector under̂f . Again using
Proposition 2, it follows that

M
∑

i=1

1

r(hi)
Di

(

λ̂

r(hi)

)

= T. (12)

Using (11) and (12), we then have

λ∗
m ≥ λ̂ ≥ λ∗

n.

Thus,

|P (f∗) − P (f̂)| ≤ T |λ∗
m − λ̂| ≤ T |λ∗

m − λ∗
n|. (13)

Thus ifλ∗
m = λ∗

n the proof is done. Therefore, in the following
we assume thatλ∗

n 6= λ∗
m.

By the above definitions, we have thatf∗
n(w∗) > 0 and thus

f∗
n(w∗) < T . Let ∆t be a given small constant such that

0 < ∆t < min{f∗
n(w∗), T − f∗

m(w∗)}.

Furthermore, let the constant̃wm is chosen so that

f∗
m(w∗) + ∆t =

1

r(hm)
Dm

(

w̃m

(f∗
m(w∗) + ∆t)r(hm)

)

and let the constant̃wn is chosen so that

f∗
n(w∗) − ∆t =

1

r(hn)
Dn

(

w̃n

(f∗
n(w∗) − ∆t)r(hn)

)

.

Consider a new allocation strategyf , defined as follows:

fi(w) =



















f∗
i (w∗) if i 6= n,m, andwi ≥ w∗

i ,

f∗
m(w∗) + ∆t if i = m andwm ≥ w̃m,

f∗
n(w∗) − ∆t if i = n andwn ≥ w̃n.

0 otherwise.

The strategyf can be seen to have the equilibrium bid vector
w∗(f) = (w∗

1 , ..., w̃m, .., w̃n, ..., w∗
M ), this results in the allo-

cation:

fi(w
∗(f)) =











f∗
i (w∗) if i 6= m,n,

f∗
m(w∗) + ∆t if i = m,

f∗
n(w∗) − ∆t if i = n.

Let λi, i − 1, . . . ,M be defined as in (10) for the equilibrium
underf , i.e.

λi =

{

w∗

i
(f)

fi(w∗(f)) if fi(w
∗(f)) > 0,

ui,maxr(hi) if fi(w
∗(f)) = 0.

We then have that

λi =











λ∗
i if i 6= m,n,

λ∗
m − ∆m if i = m,

λ∗
n + ∆n if i = n,



for some∆m > 0, ∆n > 0. Let P (f) indicate the revenue
under strategyf . Then we have

P (f) − P (f∗) = ∆t
(

λ∗
m − λ∗

n

)

− ∆mf∗
m(w∗)

+ ∆nf∗
n(w∗) − ∆t(∆m + ∆n).

Using Assumption 1.b, there exist a Lipschitz constantL > 0
such that

∆m ≤ Lr(hm)2∆t,

and similarly
∆n ≤ Lr(hn)2∆t.

Thus

P (f) − P (f∗) ≥ ∆t
(

λ∗
m − λ∗

n − Lr(hm)2f∗
m(w∗)

)

+ o(∆t).

¿From this it follows that strategyf would achieve a higher
revenue than strategyf∗ for some∆t when

λ∗
m − λ∗

n > Lr(hm)2f∗
m(w∗).

As f∗ is an optimal strategy, it must be that
∣

∣

∣
λ∗

m − λ∗
n

∣

∣

∣
≤ Lr(hm)2f∗

m(w∗)

= Lr(hm)Dm

(

λ∗
m

r(hm)

)

≤ LD̄T (λ∗
m)

≤ LD̄T (λ̂).

Here we have used that (see Proposition 2)

f∗
m(w∗) =

1

r(hi)
Dm

(

λ∗
m

r(hm)

)

and the definition of̄DT (λ).


