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Abstract

We study the dynamic assignment of cross-trained servers to stations in understaffed lines

with finite buffers. Our objective is to maximize the production rate. We identify optimal

server assignment policies for systems with three stations, two servers, different flexibility

structures, and either deterministic service times and arbitrary buffers or exponential service

times and small buffers. We use these policies to develop server assignment heuristics for

Markovian systems with larger buffer sizes that appear to yield near-optimal throughput. In

the deterministic setting, we prove that the best possible production rate with full server

flexibility and infinite buffers can be attained with partial flexibility and zero buffers, and we

identify the critical skills required to achieve this goal. We then present numerical results

showing that these critical skills, employed with an effective server assignment policy, also

yield near-optimal throughput in the Markovian setting, even for small buffer sizes. Thus

our results suggest that partial flexibility is sufficient for near-optimal performance, and that

flexibility structures that are effective for deterministic and infinite-buffered systems are also

likely to perform well for finite-buffered stochastic systems.

Keywords: Throughput maximization, finite buffers, partial and full server flexibility, tandem

production systems, line balancing.

1 Introduction

We consider a production line with N > 2 stations and M ≥ 2 flexible servers. We assume that

the line is understaffed (so that N > M). We further assume that there is an infinite supply
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of jobs in front of the first station, infinite room for completed jobs after the last station, and

a storage space of size 0 ≤ Bj < ∞ between stations j − 1 and j, where j ∈ {2, . . . , N}. Our

objective is to maximize the long-run average production rate (throughput) in this system.

Understaffed tandem lines with finite buffer spaces and multiple servers are quite typical

in the garment manufacturing industry, assembly plants, and warehouses (see, e.g., Bartholdi

and Eisenstein, 1996a,b, and Lim and Yang, 2009). In these settings, labor costs constitute a

big proportion of the operating costs (see, e.g., Bartholdi and Hackman, 2008), and hence it is

important to use the workforce effectively. A possible strategy for understaffed lines is “task

partitioning,” which involves grouping the tasks and assigning each server to one group of tasks

taking into account each server’s capabilities (see, e.g., von Hippel, 1990, for a discussion on the

benefits of task partitioning). Server flexibility yields improved performance compared to task-

portioning because task-partitioning is a special case of flexible server assignment. Rather than

strictly partitioning tasks and assigning servers to them, in this paper we consider cross-training

structures ranging from full flexibility to zone-training (where servers are trained in consecutive

tasks), and using combinations of dedicated and flexible servers. Partial cross-training strategies

are especially important in industries where it is costly or impossible to have fully flexible servers,

such as when each task requires extensive training or when the number of tasks is large compared

to the number of available servers. We focus on tandem lines with two flexible servers and three

stations because understaffed lines with more stations are difficult to analyze. However, we also

provide some numerical results about effective cross-training strategies in longer lines.

Queues with cross-trained servers have been the subject of a substantial amount of research.

Other researchers have addressed the dynamic server assignment problem when N ≥ M = 1

(Duenyas et al., 1998, Iravani et al., 1997). However, unlike the earlier work, we analyze under-

staffed lines in the presence of both finite buffers and multiple servers. We now summarize the

literature on the dynamic server assignment problem. Hopp and Van Oyen (2004) provide a more

detailed review of research on cross-trained workforce.

The majority of the previous work focuses on determining the dynamic assignment policies

for flexible servers that minimize holding costs. Most of the papers that will be cited here study

parallel or tandem queues with two stations. In particular, Ahn et al. (2002), Ahn et al. (1999),

Duenyas et al. (1998), Farrar (1993), Iravani et al. (1997), Kaufman et al. (2005), Rosberg et al.

(1982), Wu et al. (2008), and Wu et al. (2006) all study tandem queues with flexible servers,

and show that most of the time the optimal server assignment policy has either a switching or

an exhaustive structure. Ahn et al. (2004), Bell and Williams (2001, 2005), Harrison and López
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(1999), Mandelbaum and Stolyar (2004), and Williams (2000) are among the papers that study

flexible servers in parallel queues (they either consider a clearing system Ahn et al. (2004), or

assume infinite buffer capacity and analyze the system in heavy traffic (Bell and Williams, 2001,

2005; Harrison and López, 1999; Mandelbaum and Stolyar, 2004; Williams, 2000).

Some papers study throughput maximization in tandem lines with finite buffers and flexible

servers. Andradóttir et al. (2001) characterize the optimal server assignment policy for Markovian

systems with M = N = 2 and provide near-optimal heuristic server assignment policies for

larger systems. In a more recent work, Arumugan et al. (2008) study the optimal dynamic

assignment of servers in a Markovian tandem system with M = N = 2 and a finite supply of jobs.

Andradóttir and Ayhan (2005) characterize the optimal server assignment policy for Markovian

systems with M > N = 2, and Andradóttir et al. (2008) consider the effects of server failures in

the same settings. Kırkızlar et al. (2008) show that policies found to be optimal or near-optimal

for Markovian systems in Andradóttir et al. (2001) and Andradóttir and Ayhan (2005) are also

effective in non-Markovian systems. Andradóttir et al. (2003, 2007a) study a general queueing

network with infinite buffers, without or with server and station failures, respectively. Other

work on flexible servers in more general queueing systems includes Hajek (1984) and Tassiulas

and Bhattacharya (2000).

Some papers focus on line balancing via server flexibility. Bartholdi and Eisenstein (1996a)

show that in a line with servers ordered from slowest to fastest, infinitely divisible jobs, and deter-

ministic service times, the “bucket brigade” policy results in the maximum achievable through-

put, as well as a stable partition of work. Bartholdi et al. (1999) study the long-run behaviour of

bucket brigades, concentrating on two- and three-worker lines. Bartholdi et al. (2001) study the

performance of the bucket brigade policy when work consists of discrete tasks with exponentially

distributed service requirements. Lim and Yang (2009) consider bucket brigade policies in un-

derstaffed lines with discrete work stations under the assumptions that the intermediate buffers

have zero capacity, service times are deterministic, and servers cannot collaborate on the same

task. Ahn and Righter (2006), Gel et al. (2002), McClain et al. (1992), Ostolaza et al. (1990),

and Zavadlav et al. (1996) also consider the line-balancing problem in various tandem systems.

Finally, we review papers that compare the benefits of partial flexibility with full flexibility.

Most of the work on partial flexibility consider parallel systems. Jordan and Graves (1995) study

a setting with multiple products and plants, and show that most of the demand can be satisfied

even with partially flexible plants (as opposed to plants that can produce all the products), as

long as the assignment of products to plants is done well. Graves and Tomlin (2003) study a
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similar problem in multi-stage supply chains, and show that certain partial flexibility structures

(chains, to be more specific) in each stage are sufficient, and that there is no need to coordinate the

flexibility structures in different stages. Sheikhzadeh et al. (1998) study the assignment of products

to machines in a plant and consider operational issues such as finite storage spaces, setup times,

work-in-process (WIP), inventory levels, and manufacturing lead-times. Their work also supports

the conclusion that most of the benefits of full flexibility can be obtained by partial flexibility

(using chaining structures). Gurumurthi and Benjaafar (2004) study a parallel service system

with flexible servers. They show that asymmetric server allocations are generally better than

chaining structures if the servers are heterogeneous and different customer types have different

demand rates. Wallace and Whitt (2005) study routing and server assignment in a call center,

and show that most of the benefits of full flexibility can be reached even with one additional skill

per agent. For a queueing network with outside arrivals and infinite buffers, Andradóttir et al.

(2003) show that partial flexibility is sufficient for achieving the maximal capacity of the system.

There are also some papers that study the benefits of partial flexibility in tandem systems.

Andradóttir et al. (2007b) provide numerical results showing that for systems with two stations,

generalist servers, and exponentially distributed service times, most of the benefits of full flexibility

can be attained with only one flexible server when the buffer size is sufficiently large. Hopp et al.

(2004) study the capacity balancing problem for a line with equal number of workers and stations

under a CONWIP (constant work-in-process) policy, and show that a skill-chaining strategy with

two skills per worker outperforms a “cherry picking” strategy in which some workers are cross-

trained at bottleneck stations, especially in systems with high variability and low WIP. However,

Andradóttir et al. (2007b) and Hopp et al. (2004) only consider lines with equal number of servers

and stations, or more servers than stations. By contrast, in this work we consider understaffed

tandem lines and study all possible flexibility structures. We also consider a longer line and

more general service rates compared to Andradóttir et al. (2007b). Moreover, we have a different

objective, release policy, and collaboration structure than Hopp et al. (2004).

The remainder of the paper is organized as follows. In Section 2, we formulate the problem

and provide preliminary results. In Section 3, we consider systems with deterministic service

requirements, three stations, two flexible servers, and different flexibility structures, and identify

both the optimal assignment policy and also the critical skills sufficient to attain the benefits of full

flexibility. In Section 4, we analyze the corresponding Markovian system with small buffer sizes

and identify the optimal server assignment policy for different flexibility structures. In Section 5,

we propose heuristic server assignment policies based on the insights obtained from the optimal
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policies found in Sections 3 and 4, show these simple server assignment rules can achieve near-

optimal throughput in Markovian systems with larger buffer sizes, and indicate how the optimal

(partial) flexibility structure for deterministic, infinite-buffered systems can be used to select an

effective (partial) flexibility structure for stochastic systems with finite buffers. In Section 6, we

make some concluding remarks.

2 Problem Formulation

We consider tandem lines with N stations, M flexible servers, and finite intermediate buffers. We

let 0 ≤ µij <∞ denote the deterministic rate with which server i ∈ {1, . . . ,M} works at station

j ∈ {1, . . . , N}. Without loss of generality, we assume that
∑N

j=1 µij > 0 for i ∈ {1, . . . ,M},

because otherwise some servers are not trained at any task, and this is equivalent to the case with

fewer servers. Furthermore, we assume that
∑M

i=1 µij > 0 for j ∈ {1, . . . , N}, because otherwise

there is a station where nobody is trained at, and hence any policy will result in zero production

rate. Several servers can collaborate on the same job, and their service rates are additive in this

case. Service times at each station j ∈ {1, . . . , N} are independent and identically distributed with

mean m(j), and service times at different stations are independent. Without loss of generality,

we assume that m(j) = 1 for all j ∈ {1, . . . , N}. Travel times of the servers and setup times at

the stations are negligible.

Let the state space S of the system be chosen to keep track of the number of jobs at each

station and the status (operating, starved, or blocked) of each station. We say that a station

is “operating” if that station is neither starved nor blocked. Let Π be the set of Markovian

stationary deterministic policies corresponding to S. For all π ∈ Π and t ≥ 0, let Dπ(t) be the

number of departures under policy π by time t, and let

T π = lim sup
t→∞

IE[Dπ(t)]
t

be the long-run average throughput corresponding to the server assignment policy π. We are

interested in solving the optimization problem

max
π∈Π

T π. (1)

For any s ∈ S, let As denote the set of allowable actions in state s. Possible actions are idling a

server or assigning the server to station 1, 2, or 3. The term “idling” refers to voluntary idling of

a server (as opposed to assigning a server to a station where (s)he is unable to work).
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Specifically, for systems with three stations, for all π ∈ Π, we use the stochastic process

{Xπ(t) = (Xπ
1 (t), Xπ

2 (t)) : t ≥ 0}, where Xπ
1 (t) (Xπ

2 (t)) is the number of jobs that have already

been processed at station 1 (2) and are either waiting for service or being processed at station 2

(3) at time t ≥ 0. More specifically, for all t ≥ 0, Xπ
1 (t) = 0 (Xπ

2 (t) = 0) if station 2 (3) is starved;

Xπ(t) = (B2 + 1, B3 + 2) or Xπ
1 (t) = B2 + 2 if station 1 is blocked; Xπ

2 (t) = B3 + 2 if station 2 is

blocked; Xπ(t) = (s1, s2) for s1 ∈ {1, . . . , B2 + 1}, s2 ∈ {1, . . . , B3 + 1} if there are jobs that are

being processed at both stations, s1 − 1 jobs waiting in the buffer between stations 1 and 2, and

s2 − 1 jobs waiting in the buffer between stations 2 and 3. Consequently,

S = {(s1, s2) : s1 ∈ {0, 1, . . . , B2 + 2}, s2 ∈ {0, 1, . . . , B3 + 2}, s1 + s2 ≤ B2 +B3 + 3}

is the state space.

The following lemma is a generalization of Corollaries 2.1 and 2.2 of Kırkızlar et al. (2008) to

the system with two servers and more than two stations, and its proof follows directly from the

proof of Lemma 2.1 of Kırkızlar et al. (2008).

Lemma 2.1 For a tandem line with N > 2 and M = 2, there exists an optimal policy that is

non-idling.

3 Deterministic Systems

In this section we determine optimal server assignment policies for systems with deterministic ser-

vice times. We also show that partial server flexibility can attain the throughput of full flexibility,

and provide the critical skills needed to achieve this goal. Consider the following “allocation”

linear program (LP) with decision variables λ and {δij}:

max λ

s.t. δ1jµ1j + δ2jµ2j ≥ λ, for j ∈ {1, 2, 3};

δi1 + δi2 + δi3 ≤ 1, for i ∈ {1, 2};

δij ≥ 0, for all i ∈ {1, 2} and j ∈ {1, 2, 3}.


(2)

Let λ∗ denote the optimal value of λ for this LP. Andradóttir et al. (2003) show that λ∗ is the

maximal capacity of an infinite-buffered tandem line with three stations, two flexible servers, and

outside arrivals. Lemma 2.3 of Kırkızlar et al. (2008) shows that λ∗ is an upper bound on the

throughput of our finite-buffered tandem line as well. Moreover, if {δ∗ij} are optimal values of

{δij}, then δ∗ij , where i ∈ {1, 2} and j ∈ {1, 2, 3}, can be interpreted as the long-run proportion

of time server i should be assigned to station j in order to achieve the maximal capacity λ∗.
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The LP described in the previous paragraph has five constraints (in addition to the nonnega-

tivity constraints) and seven variables. Since λ is always positive, we can conclude that at least

two elements of the set {δij} are zero (this also follows directly from Proposition 2 of Andradóttir

et al., 2003). This proves that four skills are sufficient to achieve the maximal capacity in systems

with infinite buffers, and hence it is of interest to determine to what extent this is also true for

systems with finite buffers. Consequently, we first analyze the system under the assumption that

the two servers have a total of four skills, and then show the implications of this result for systems

with fully cross-trained servers.

Without loss of generality, we assume that the system initially starts in a state s0 = (s0
1, s

0
2)

where all the stations are operating. We let S0 ⊂ S be the set of such states. If the system

does not start in a state in S0, initially any policy that takes the process to such a state may

be employed. For example, we can successively assign all servers to the station j ∈ {2, . . . , N}

that is closest to the end of the line among the stations that are operating. When there are no

such stations left, we can assign all servers to the station j ∈ {1, . . . , N − 1} that is closest to the

beginning of the line among the stations that are preceding a station that is starved. When this

is no longer possible (because there are no such stations left), the system is in a state s0 ∈ S0

with remaining service time equal to one at all stations. This is achievable in finite time and will

not affect the long-run average throughput.

Let s0 ∈ S0 and let L1(L2) be an ordered list of preferred stations for server 1 (2). We define

the server assignment policy πs0,L1,L2
as follows:

Every time the system reaches state s0, assign server 1 (2) to the stations on the list

L1 (L2) in order until one job is completed at each station in the system.

In other words, each server is originally assigned to the first station on its list. When a server

completes work at a station on its list, the server checks if the system has returned to state s0.

If the answer is yes, the server starts work at the first station on its list; if the answer is no, the

server will either idle or move to the next station on its list depending on whether the server has

or has not reached the end of its list.

We consider systems with one dedicated and one fully flexible server in Section 3.1. Then,

we study systems with two partially flexible servers in Section 3.2. Finally, in Section 3.3, we

determine the critical skills needed to achieve the optimal performance of systems with fully

flexible servers.
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3.1 Systems with One Dedicated and One Fully Flexible Server

In this section, we provide a theorem identifying the optimal server assignment policies for systems

with one dedicated and one fully flexible server. Without loss of generality, we assume that the

first server is the dedicated server, since the other case is equivalent to this one by relabeling the

servers. The proof of Theorem 3.1 is provided in Appendix A.

Theorem 3.1 Consider a deterministic system with three stations and two servers. Assume that

server 1 is dedicated to station D ∈ {1, 2, 3}, server 2 is fully flexible, and the system is initially in

a state s0 ∈ S0. Let k1 (k2) denote the station that is the closest (second closest) station to station

D (with ties broken arbitrarily), L1 = {D}, and L2 = {k1, k2, D}. Then πs0,L1,L2
is optimal and

attains the maximal system capacity λ∗, regardless of the intermediate buffer sizes.

Note that the policy of Theorem 3.1 is optimal among all possible policies (not only over Π)

because it attains the maximal capacity of the system. Furthermore, it is possible to attain the

maximal capacity of the four-skilled system above even with three skills (i.e., with µ2D = 0) when

µ1D ≥ µ2k1µ2k2/(µ2k1 + µ2k2).

We now discuss the three special cases covered by Theorem 3.1 in more detail, namely when

server 1 is dedicated to station 1, 2, or 3, respectively. When D = 1 (i.e., µ12 = µ13 = 0),

the flexible server starts working at station 2, moves to station 3 upon completion of the task

at station 2, and finally moves to station 1. Moreover, the dedicated server idles only if his/her

service rate is high enough that utilizing him/her more would cause blocking at the first station,

rather than increasing the throughput. The flexible server helps the dedicated server at station

1 if (s)he is fast enough to complete jobs at stations 2 and 3 before the first server completes one

job at station 1. When D = 3, the optimal policy is “symmetrical” with respect to the case where

D = 1. Now, the flexible server starts working at station 2, moves to station 1 upon completion

of the task at station 2, and finally moves to station 3. Idling of the dedicated server also occurs

only if his/her service rate is high enough that utilizing him/her more would cause starvation at

the third station, and not increase the throughput. Finally, when D = 2, similar to the previous

cases, we see that the dedicated server is idle only if his/her service rate is high enough that

(s)he would not increase the throughput by being utilized more. Moreover, by idling this server

at certain times, we are able to keep both stations operating rather than causing starvation or

blocking at the second station.

We observe that when there is a dedicated and a fully flexible server, the optimal assignment

for the flexible server focuses on keeping the dedicated server’s station operating at all times.

8



By giving the priority to the stations that provide jobs for or process jobs from the dedicated

server’s station, we ensure that the dedicated server is not idling. When the dedicated server is at

station 2, the policies that have the flexible server giving preference to prevent either blocking or

starvation of station 2 are both optimal. Moreover, when the dedicated server is at station 1 (3),

one can use similar arguments as in the proof of Theorem 3.1 to show that the policy that assigns

the flexible server to station 3 (1) before station 2 in every regenerative cycle is also optimal.

Hence, without any efficiency loss, the flexible server can process the jobs in arbitrary order at

the stations where there is no dedicated server when the service times are deterministic.

3.2 Systems with Two Partially Flexible Servers

In this section, we consider systems where each server is partially cross-trained; i.e., each server

is capable of processing jobs at two stations. The proof of the following theorem is similar to that

of Theorem 3.1, and hence is omitted here (however, it is provided in Kırkızlar, 2008).

Theorem 3.2 Consider a deterministic system with three stations and two servers. Assume that

both servers are partially flexible and that the system is initially in a state s0 ∈ S0. Let F denote

the station where both servers are cross-trained, F1 (F2) be the station where only server 1 (2) is

cross-trained, L1 = {F1, F}, and L2 = {F2, F}. Then πs0,L1,L2
is optimal and attains the maximal

system capacity λ∗, regardless of the intermediate buffer sizes.

Note that the policy of Theorem 3.2 is optimal among all possible policies (not only over

Π) because it attains the maximal capacity of the system. Further, the maximal capacity of the

four-skilled system can be reached even with three skills when either µ1F1 ≤ µ2Fµ2F2/(µ2F +µ2F2)

or µ2F2 ≤ µ1Fµ1F1/(µ1F + µ1F1). In the former case, the optimal throughput can be achieved

with µ1F = 0; in the latter case, the optimal throughput can be achieved with µ2F = 0.

The description of the optimal policy in Theorem 3.2 shows that each server starts working at

the station where (s)he is the only server trained to work. Then, after completing the job at the

station they are primarily assigned to, the servers move to the other station where they are both

trained to work. Thus, this assignment policy gives priority to the tasks that can be done by only

one server and ensures that servers are neither starved nor blocked. Furthermore, idling occurs

only when one server is so fast that (s)he can complete one job at two stations before the other

server completes a job at one station. In this case, we idle the fast server in order to balance the

line and keep all the stations operating, because utilizing the fast server more causes starvation or

blocking in the system but does not increase the throughput. Perfect coordination of the servers
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in order to prevent any productivity loss is achievable because the service times are deterministic.

3.3 Identifying the Best Flexibility Structure

Theorems 3.1 and 3.2 show that when the servers have four skills and the service times are

deterministic, it is possible to reach the maximal capacity of the corresponding four-skilled infinite-

buffered systems in the finite-buffered settings. In this section, given the potential skill of each

server at each task (if the server were trained to perform the task), we determine the four critical

skills that are sufficient to attain the maximal capacity of the fully flexible system. We need the

following conditions:

{1} µ11µ22 ≥ µ12µ21; {2} µ11µ22 < µ12µ21; {3} µ11µ23 ≥ µ13µ21; {4} µ11µ23 < µ13µ21;

{5} µ12µ23 ≥ µ13µ22; {6} µ12µ23 < µ13µ22; {7} µ11 ≤
µ22µ23

µ22 + µ23
; {8} µ11 >

µ22µ23

µ22 + µ23
;

{9} µ12 ≤
µ21µ23

µ21 + µ23
; {10} µ12 >

µ21µ23

µ21 + µ23
; {11} µ13 ≤

µ21µ22

µ21 + µ22
; {12} µ13 >

µ21µ22

µ21 + µ22
;

{13} µ21 ≤
µ12µ13

µ12 + µ13
; {14} µ21 >

µ12µ13

µ12 + µ13
; {15} µ22 ≤

µ11µ13

µ11 + µ13
; {16} µ22 >

µ11µ13

µ11 + µ13
;

{17} µ23 ≤
µ11µ12

µ11 + µ12
; {18} µ23 >

µ11µ12

µ11 + µ12
.

Conditions {1} through {6} compare the relative speeds of servers at different stations. For

example, condition {1} implies that server 1 is relatively faster at station 1 than server 2 (at the

same time server 2 is relatively faster at station 2 than server 1). Conditions {7} through {18}

compare the service completion rate of servers in different zones. For example, condition {7}

implies that the service completion rate of server 2 in the zone consisting of stations 2 and 3 is

higher than the service completion rate of server 1 at station 1.

The following theorem, whose proof is provided in Appendix B, specifies the best flexibility

structure for a system with three stations and two servers.

Theorem 3.3 For a tandem line with three stations, two flexible servers, arbitrary buffer sizes

between the stations, and deterministic service times, the assignment (and hence cross-training)

policy specified in Table 1 is optimal.

Note that Theorem 3.3 employs the optimal solution of the allocation LP, and hence it also

provides the optimal assignment policy for the corresponding infinite-buffered system. Next, we

show that any set of service rates µij , where i ∈ {1, 2} and j ∈ {1, 2, 3}, has to satisfy exactly one

of the cases mentioned in Theorem 3.3. The proof of this result is provided in Appendix C.
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Table 1: Critical Skills and Optimal Server Assignment Policy for Small Deterministic Systems

Case Conditions Satisfied Optimal Server Assignment Policy

a {1}, {3}, {7} Let D = 1 and use Theorem 3.1

b {2}, {4}, {13} Relabel servers, let D = 1, and use Theorem 3.1

c {2}, {5}, {9} Let D = 2 and use Theorem 3.1

d {1}, {6}, {15} Relabel servers, let D = 2, and use Theorem 3.1

e {4}, {6}, {11} Let D = 3 and use Theorem 3.1

f {3}, {5}, {17} Relabel servers, let D = 3, and use Theorem 3.1

g {2}, {3}, {10}, {18} Let F = 1 and use Theorem 3.2

h {1}, {4}, {12}, {16} Relabel servers, let F = 1, and use Theorem 3.2

i {1}, {5}, {8}, {18} Let F = 2 and use Theorem 3.2

j {2}, {6}, {12}, {14} Relabel servers, let F = 2, and use Theorem 3.2

k {3}, {6}, {8}, {16} Let F = 3 and use Theorem 3.2

l {4}, {5}, {10}, {14} Relabel servers, let F = 3, and use Theorem 3.2

Proposition 3.1 The twelve cases {a, . . . , l} in Theorem 3.3 are mutually exclusive and collec-

tively exhaustive.

The criteria provided in Table 1 for deciding the best flexibility structure can be summarized

as follows. If one server is relatively fast at one station with respect to the other stations (for

example, conditions {1} and {3} imply that server 1 is relatively fast at station 1 in case a) and

(s)he cannot finish one job at that station before the other server finishes service at both of the

other stations (condition {7} in case a), then this server should be dedicated to the station where

(s)he is relatively fast. On the other hand, if the two servers are relatively fast at different stations

with respect to the same station (for example, in case g, conditions {2} and {3} imply that server

1 is relatively better at station 2 compared to station 1 and server 2 is relatively better at station

3 compared to station 1) and they can finish a job at the station they are relatively fast at before

the other server can finish service at both of the other stations (conditions {10} and {18} in case

g), then they should work at the station where they are relatively fast at, and also at the common

station where they are both relatively slow. The other cases (b through f and h through l) can

be described similarly by simply changing the labeling of the servers and the stations they are

relatively faster or slower at.
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In summary, we have proved that the optimal cross-training strategy in a finite-buffered system

with deterministic service times is the same as the one of the corresponding infinite-buffered

system. Moreover, the maximal possible throughput (corresponding to full cross-training and

infinite buffers) can be obtained with partial cross-training and finite buffers for deterministic

systems, regardless of the size of the buffers.

4 Markovian Systems

In this section, we consider systems with three stations, two servers, and exponentially distributed

service requirements at each station. Theorems 8.1.2 and 9.1.8 of Puterman (1994) show the

existence of an optimal Markovian stationary deterministic policy because the state space S and

action space As, where s ∈ S, are finite. Hence, our assumption that Π consists of Markovian

stationary deterministic policies is not restrictive.

For i = {1, 2}, let Li = {Li(s) : s ∈ S} be a set of ordered lists of preferred stations for server

i. Let πe = (deL1,L2
)∞, where for all s ∈ S, the action deL1,L2

(s) is defined as follows:

When the system is in the state s, assign server 1 (2) to the first station that is

operating (neither starved nor blocked) in L1(s) (L2(s)).

In Section 4.1, we present our observations about the form of the optimal server assignment

policy based on numerical experiments. In Section 4.2, we show that four-skilled systems attain

near-optimal throughput as compared to fully cross-trained systems. Finally, we identify optimal

server assignment policies for systems with one dedicated and one fully flexible server in Section

4.3, and for systems with two partially flexible servers in Section 4.4.

4.1 Fully Cross-Trained Servers

When both servers are cross-trained at all the stations (i.e., µij > 0 for all i ∈ {1, 2} and

j ∈ {1, 2, 3}), the optimal server assignment policy is difficult to characterize. Even for systems

with fewer skills and small buffer sizes, we observe in Theorems 4.1 and 4.2 below that the

optimal policy can be somewhat complex. The optimal assignment policy for fully flexible systems

appears to be more complicated than these, and is also difficult to implement in real life. Hence,

we performed simulation experiments to determine the optimal assignment of fully cross-trained

servers. We randomly generated 10,000 systems where the service rates were drawn independently

from a uniform distribution with range [0.5,2.5]. Then, assuming that B2 = B3 = B, we used
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the policy iteration algorithm for communicating Markov chains to identify the optimal server

assignment policy for each system and each B ∈ {0, 1, 2, 3, 4}. Here are our observations:

• At least one of the servers (sometimes both of them) appears to have a primary assignment.

In other words, at least one server is assigned to a specific station as long as that station is

neither starved nor blocked.

• Primary assignment can change with the buffer size. In other words, sometimes a server

that has a primary assignment for one buffer size either does not have a primary assignment

or has a different primary assignment for another buffer size.

• Primary assignment is not always where the server is fastest or according to a simple mul-

tiplicative rule (which is the case when there are two stations in tandem and two flexible

servers, as shown in Andradóttir et al., 2001).

• If both servers have primary assignments, their primary assignment is not at the same

station.

We observe in Sections 4.3 and 4.4 that some of the conclusions above also hold for the optimal

assignment policy for partially flexible servers. More specifically, we will see that at least one

server in lines with limited flexibility and small buffers has a primary assignment, and we will

identify the primary assignment of such servers.

4.2 Partially Cross-Trained Servers

When the service requirements at each station are deterministic, it is shown in Section 3.3 that the

maximum throughput (corresponding to fully trained servers) can be achieved when the servers

are cross-trained to have four skills in total. In Markovian systems, it is not possible to reach

such a conclusion because of the stochastic nature of the problem. Nevertheless, there is strong

evidence that near-optimal throughput can be obtained with four skills only. We performed 50,000

experiments for the systems with the same parameters as in Section 4.1. We found the maximum

throughput of all three-skilled (i.e., systems that have only one server trained at each station) and

four-skilled systems and compared it to the maximum throughput of the system with six skills

(i.e., both servers are fully cross-trained). The average performance of the best three-skilled and

four-skilled systems, given as a percentage of the optimal performance of the six-skilled system,

is listed in Table 2 for B2 = B3 ∈ {0, 1, . . . , 4}.

We conclude that even for small buffer sizes, it is possible to achieve near-optimal throughput

(compared to that of the fully flexible system) with only four skills. Moreover, the benefit of adding

one more skill to the system is obvious when we compare the three-skilled and four-skilled systems
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Table 2: Comparison of Best Three-Skilled and Four-Skilled Systems with Six-Skilled Systems

Buffer Sizes Best 3-skilled Best 4-skilled

B2 = B3 = 0 74.65% 91.94%

B2 = B3 = 1 79.08% 96.67%

B2 = B3 = 2 81.00% 98.27%

B2 = B3 = 3 81.83% 99.01%

B2 = B3 = 4 82.59% 99.37%

(more specifically, by adding one more skill to the system, the optimality gap closes by at least

68% and sometimes by more than 96%). Hence, it is important to identify the optimal assignment

policy for systems with four skills. We start by determining the optimal server assignment policy

for systems with one dedicated and one fully flexible server in Section 4.3. Then, we consider

systems with two partially flexible servers in Section 4.4. We limit ourselves to small buffer sizes

because the expressions become highly complex for larger buffer sizes.

4.3 Systems with One Dedicated and One Fully Flexible Server

In this section, we identify the optimal server assignment policy when one server is dedicated at

stations 1, 2, or 3, respectively, and the other server is cross-trained at all stations. Without loss

of generality, we assume that the first server is the dedicated server because otherwise we can

relabel the servers. The proof of Theorem 4.1 is provided in Appendix D.

Theorem 4.1 Consider a Markovian system with three stations and two servers. Assume that

server 1 is dedicated to station D, server 2 is fully flexible, and B2, B3 ≤ 1. Let k1 (k2) denote

the station that is closest (second closest) to station D (with ties broken arbitrarily), and define

S′ = {s ∈ S : s = (s1, B3 + 1) for s1 > 1, or s = (s1, B3 + 2) for s1 > 0}.

Let L1(s) = {D} for all s ∈ S, and let L2(s) be defined as follows:

• If D ∈ {1, 3}, then L2(s) = {k1, k2, D} for all s ∈ S.

• If D = 2, then L2(s) = {3} for all s ∈ S′ and L2(s) = {1, 3, 2} for all s ∈ S\S′.

Then πe = (deL1,L2
)∞ is optimal in Π.
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We observe that if there is one dedicated and one flexible server, the flexible server does not

work at the station where the dedicated server is working, as long as there is another operating

station, to avoid idling the dedicated server. The assignment of the flexible server when both of

the other stations are operating has the goal of keeping the dedicated server’s station operating.

When D ∈ {1, 3}, the optimal server assignment policy is similar to that of the system with

deterministic service times. When the dedicated server is at station 1 (3), the main goal is to

prevent blocking (starvation) at station 1 (3), and hence the flexible server gives priority to station

2, then to station 3 (1), and finally moves to the station where the dedicated server is working.

This prioritization is the same as in the corresponding deterministic systems.

When the dedicated server is at station 2, two goals (to prevent starvation and blocking)

conflict with each other. This explains the more complex structure of the optimal assignment of

the flexible server when D = 2 in Theorem 4.1. In order to keep station 2 operating, the optimal

policy gives priority to station 1 unless s ∈ S′, where station 2 is either blocked (but not starved)

or about to be blocked (but not starved); in such states the optimal policy gives priority to station

3. After station 1, the flexible server gives the second highest priority to station 3, and station

2 is the least preferred station. The optimal policy for the corresponding deterministic system

(given in Theorem 3.1) also has a similar structure in that either of stations 1 or 3 can be given

priority, but station 2 is the least preferred station. Note that the local heuristic in Andradóttir

et al. (2001) gives preference to removing blocking rather than starving in longer lines. We see

that the optimal policy in our system puts higher priority on removing starving than blocking,

but it also considers the immediate blocking possibility in station 2 and tries to prevent blocking

before it even happens.

We conclude this section by pointing out that the optimal policy provided in Theorem 4.1 is

not necessarily unique. For example, the proof of Theorem 4.1 in Appendix D for systems with

D = 1 and B2 = B3 = 0 suggests that the actions a12 and a13 are both optimal whenever these

actions are both in As. However, when B2 = B3 = 1, there are some states s with a12, a13 ∈ As

where a12 is strictly better than a13. Hence, the policy descriptions in the theorem were chosen

so that the same policy would be optimal for systems with different buffer sizes.

4.4 Systems with Two Partially Flexible Servers

In this section, we consider four-skilled systems where each server is cross-trained to work at two

stations. The following theorem provides the optimal server assignment policy under different

cross-training strategies. We limit ourselves to the systems with zero buffer sizes, because for
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larger buffer sizes the expressions become highly complex and the optimal policy is difficult to

characterize. The proof of the following theorem is similar to that of Theorem 4.1, and hence is

omitted here (however, it is provided in Kırkızlar, 2008).

Theorem 4.2 Consider a Markovian system with three stations and two servers. Assume that

both servers are partially flexible and B2 = B3 = 0. Let F denote the station where both servers

are cross-trained, F1 (F2) be the station where only server 1 (2) is cross-trained, and assume that

the servers are labeled so that F1 < F2. Define

S′′ = {s ∈ S : s = (0, s2) for s2 < B3 + 2}.

For all s ∈ S, let L1(s) and L2(s) be defined as follows:

• If F = 2 and µ2
11µ

2
12 > µ22µ23(µ11µ12 + µ11µ23 + µ12µ23 + µ2

23), then L1(s) = {F, F1};

otherwise L1(s) = {F1, F}.

• If F = 1, µ11µ12 < µ21µ23, and s ∈ S′′, then L2(s) = {F}; otherwise L2(s) = {F2, F}.

Then πe = (deL1,L2
)∞ is optimal in Π.

When both servers are cross-trained at station 1, server 1 (who is cross-trained at stations 1

and 2) has a primary assignment at station 2. When µ11µ12 ≥ µ21µ23 (which can be interpreted

as server 1 having better overall performance), server 2 has a primary assignment at station 3.

This is reasonable because server 1 is already performing well at stations 1 and 2, and the capacity

of server 2 can be primarily given to station 3. When µ11µ12 < µ21µ23, server 2 does not have a

primary assignment at any station, but gives priority to station 3 except when station 2 is starved

but not blocked (so that s ∈ S′′). In this case, since server 2 performs well at station 3, (s)he can

shift some capacity to station 1 without causing poor performance at station 3. This also allows

the slower server (server 1 in this case) to spend more time on the task where the faster server

cannot work. Hence, we conclude that the focus of server 2 depends on how the performance

of server 1 compares to his/her own, with the measure of performance of each server being the

product of the servers’ rates at the tasks they are trained for (µ11µ12 and µ21µ23).

By symmetry, when both servers are cross-trained at station 3, we would expect server 1 to

give priority to station 1 and move to station 3 when station 2 is blocked but not starved, for

some service rates. However, Theorem 4.2 shows that when F = 3, both servers have primary

assignments at the stations where only one server is cross-trained to work. Nevertheless, closer

examination suggests that the policies are more symmetrical than it first appears because when

16



B2 = B3 = 0, (1, 2) is the only state where station 2 is blocked but not starved. In fact, station

1 is also blocked in this state, and server 1 moves to station 3 under the policy of Theorem 4.2.

The symmetry between the cases where both servers are trained at station 1 or 3, respectively,

can be observed in systems with (B2, B3) 6= (0, 0). For example consider the case where µ11 = 2,

µ12 = 0, µ13 = 3, µ21 = 0, µ22 = 1, and µ23 = 1 (so that µ11µ13 ≥ µ22µ23). When B2 = 1 and

B3 = 0, the optimal policy assigns server 2 to station 2 if station 2 is operating, and to station 3

otherwise; and assigns server 1 to station 1 if station 1 is operating and station 2 is not blocked

or both blocked and starved, and to station 3 otherwise. In other words, server 2 has a primary

assignment at station 2, and the optimal assignment of server 1 is of threshold type. The optimal

policy results in a throughput of 0.8472, but the policy of Theorem 4.2 for the case where F = 3

yields a throughput of 0.8100. Similarly, the optimal policy appears to be of threshold type when

µ11µ12 ≥ µ21µ23 and (B2, B3) 6= (0, 0) in cases where both servers are trained at station 1.

When both servers are cross-trained at station 2, they both have primary assignments. Server

2 (who is cross-trained at stations 2 and 3) has a primary assignment at station 3 regardless of the

service rates. However, server 1 can have a primary assignment at station 1 or 2. This shows a

preference for clearing blocking in the system relative to starvation. If µ2
11µ

2
12 > µ22µ23(µ11µ12 +

µ11µ23 + µ12µ23 + µ2
23) holds, then server 1 has a primary assignment at station 2, and otherwise

server 1 has a primary assignment at station 1. Unlike the corresponding condition in Theorem

4.2 for the case where F = 1, each side of this inequality does not consist of simple multiplication

of the rates of each server at the different stations. The inequality seems to suggest which server

has better overall performance, but in a way that skews the selection of the better overall server

towards server 2 because the right-hand side is always bigger than µ22µ23µ11µ12. In other words,

it is less likely that server 1 is primarily assigned to station 2 (rather than station 1) with this

inequality than under the condition µ11µ12 > µ22µ23 (which is the criterion in Theorem 4.2 for

the case where F = 1 adapted to the current case).

Overall, we observe that in the four-skilled systems with two partially flexible servers, there is

always one server with a primary assignment, and this result is consistent with what we observed

for the fully-flexible system. For the small systems we considered, the primary assignment of one

server does not depend on the service rates or buffer sizes. However, whether or not the other

server has a primary assignment, and where (s)he is primarily assigned, may depend on the service

rates and the buffer sizes. Moreover, the policies in Theorem 4.2 for the cases where F = 1 and

F = 3 are symmetrical versions of each other (even though the special structure of the system

with B2 = B3 = 0 makes them seem different), while the policy in Theorem 4.2 for the case where
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F = 2 is different from the others (as expected). When both servers are cross-trained at station

2, the optimal policy is more complex than in the other cases, which may result from the fact

that station 2 can be starved or blocked, and the assignment policy has to prevent both of these

events to the extent possible.

Theorem 4.2 also shows that the optimal policy in the Markovian setting is slightly different

from the optimal policy of the corresponding deterministic system. In the deterministic system,

it is possible to coordinate the service completions so that no blocking or starvation occurs. Since

this is not the case in the Markovian system, the optimal policy is of a “threshold” type that

also aims to keep the stations operating. Furthermore, the form of the policy may be quite

complicated, and the results for B2 = B3 = 0 do not generalize to systems with bigger buffer

sizes (see also the numerical experiments in Section 5.1). Note also that the policy specified in

Theorem 4.2 need not be unique (the proof of Theorem 4.2 in Kırkızlar, 2008, suggests that there

may be multiple actions that are optimal in some states).

The optimal throughput can be calculated for the cross-training strategies presented in The-

orems 4.1 and 4.2, but the task of finding the best partially flexible system for a given set of

(potential) service rates (see Theorem 3.3) is not a simple task. When the expressions for the

optimal throughputs are compared with each other, we obtain complex expressions that do not

provide intuitive criteria to compare the flexibility structures. However, in the next section, we

use the best flexibility structure for the corresponding deterministic system (see Theorem 3.3) and

test the performance of the corresponding optimal policy (see Theorems 4.1 and 4.2) for small

systems in larger Markovian systems. More specifically, we use the conditions in Table 1 to select

a flexibility structure, and then use Theorem 4.k instead of Theorem 3.k, for k ∈ {1, 2}, to specify

a server assignment policy.

5 Numerical Results

In this section, we provide both near-optimal heuristic server assignment policies and also guide-

lines for selecting good flexibility structures for understaffed Markovian lines. More specifically, in

Section 5.1 we present and test server assignment heuristics for tandem lines with three stations,

two servers, and four skills that were developed using the insights obtained from the optimal

policies for deterministic and small Markovian systems provided in Sections 3 and 4, respectively.

Then, in Section 5.2, we compare the performance of lines with limited and full flexibility, and

show that the optimal flexibility structures for deterministic systems with three stations, two
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servers, and infinite buffers (obtained from the allocation LP, see Theorem 3.3) are also effective

for the corresponding Markovian systems with finite buffers. Finally, in Section 5.3 we provide

numerical results that suggest that the solution of the allocation LP also provides an effective

flexibility structure for Markovian lines with more than three stations.

5.1 Heuristic Server Assignment Policies

In this section, we present and compare the following three heuristic server assignment policies

for systems with three stations and two servers with a total of four skills between them.

Policy 1: Use policy πe = (deL1,L2
)∞, where L1(s) = L1 and L2(s) = L2 for all s ∈ S and L1

(L2) is the best priority policy on average for server 1 (2).

Policy 2: The optimal assignment policy for Markovian systems with small buffer sizes (see

Sections 4.3 and 4.4) is employed for systems with any buffer sizes.

Policy 3: A modification of Policy 2 that treats stations 1 and 3 symmetrically whenever this

appears to yield improved performance.

Note that for some flexibility structures (i.e., when D ∈ {1, 3} or F = 3), some of the three

policies above are identical.

Policy 1 is motivated by the policies found to be optimal for deterministic systems with

three stations, two servers, and four skills, see Theorems 3.1 and 3.2. In order to determine

the priorities used in Policy 1, 50,000 systems were generated with service rates independently

drawn from a uniform distribution with range [0.5,2.5] and the buffer sizes independently drawn

from the discrete uniform distribution with range {0, 1, 2, 3, 4, 5}. Then, all possible assignments

were compared and the one with the highest average throughput (computed using the stationary

distribution of the corresponding Markov chain) in 50,000 experiments was selected. For all six

flexibility structures under consideration, the best observed priority structure is optimal for the

corresponding deterministic system (the only difference is that when D = 2, Policy 1 uses one of

the two priority structures found to be optimal for deterministic systems).

We now compare Policy 1 with Policy 2. When D ∈ {1, 3}, the two policies coincide (see the

corresponding cases in Theorem 4.1). When D = 2, we found that L2 = {1, 3, 2} was the best

priority policy (this agrees with Policy 2 except when s ∈ S′, see Theorem 4.1). When the servers

have two skills, each server gives priority to the station where no other server is cross-trained,

so that L1 = {F1, F} and L2 = {F2, F}. Thus, Policy 1 is the same as Policy 2 when F = 3
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(see Theorem 4.2), and is consistent with Policy 2 when F ∈ {1, 2}. We conclude that Policy

1 is either an equivalent or a simpler version of Policy 2, and that its simplicity makes Policy 1

appealing.

Next, we describe how we modified Policy 2 in order to treat stations 1 and 3 more symmet-

rically in Policy 3. For systems with one dedicated server and one fully flexible server, Policy 3

agrees with Policy 2 since no improvement over the optimal policy for small systems was found.

Define

S′′′ = {s ∈ S : s = (1, s2) for s2 < B3 + 1},

S′′′′ = {s ∈ S : s = (0, s2) for s2 < B3 + 2, or s = (1, s2) for s2 < B3 + 1}.

For systems with two partially flexible servers, Policy 3 is specified below:

• When F = 1, Policy 3 differs from Policy 2 only for s ∈ S′′′ when µ11µ12 < µ21µ23. In this

case, Policy 3 assigns server 2 to station 1, but Policy 2 assigns server 2 to station 3.

• When F = 3, Policy 3 differs from Policy 2 only for s ∈ S′ when µ22µ23 < µ11µ13. In this

case, Policy 3 assigns server 1 to station 3, but Policy 2 assigns server 1 to station 1.

• When F = 2, Policy 3 differs from Policy 2 in the following cases. When µ2
11µ

2
12 >

µ22µ23(µ11µ12 + µ11µ23 + µ12µ23 + µ2
23) and for s ∈ S′, Policy 3 assigns server 1 to sta-

tion 1, but Policy 2 assigns server 1 to station 2. When µ2
22µ

2
23 > µ11µ12(µ22µ23 + µ11µ23 +

µ11µ22 + µ2
11) and for s ∈ S\S′′′′, Policy 3 assigns server 2 to station 2, but Policy 2 assigns

server 2 to station 3.

We noted in Section 4.4 that the optimal policies for F ∈ {1, 3} are in fact more symmetrical than

it appears in Theorem 4.2 for the special case of B2 = B3 = 0. Moreover, the optimal policies

for deterministic systems also treat stations 1 and 3 symmetrically (see Theorems 3.1 and 3.2).

Hence, unlike Policy 2, Policy 3 for F = 1 and F = 3 are symmetric versions of each other, and

Policy 3 for F = 2 treats stations 1 and 3 symmetrically.

To evaluate the performance of Policies 1, 2, and 3 for each of the twelve possible flexibility

structures with four skills, we randomly generated 50,000 Markovian systems with service rates

µij , where i ∈ {1, 2} and j ∈ {1, 2, 3}, independently drawn from a uniform distribution with range

[0.5,2.5] and the buffer sizes B2, B3 independently drawn from the discrete uniform distribution

with range {0, . . . , 10}. For each system and flexibility structure, we use the policy iteration

algorithm to find the optimal throughput of the system. Table 3 shows the 95% confidence interval

for the throughput of Policies 1, 2, and 3 (determined by solving the balance equations for the

Markov chain in each experiment) and the throughput of the optimal policy. The first column
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shows the flexibility structure under consideration. More specifically, the first set of numbers

shows the stations where server 1 is cross-trained at, and the second set of numbers (after the “-”

sign) shows the stations where server 2 is cross-trained at. Note that the throughputs of Policies

1, 2, and 3 are the same for the four flexibility structures with one dedicated and one fully flexible

server where these policies are identical.

Table 3: Performance of Heuristics for Partially Flexible Understaffed Systems

Flexibility Structure Policy 1 Policy 2 Policy 3 Optimal Policy

1-123 0.6798 ± 0.0018 0.6798 ± 0.0018 0.6798 ± 0.0018 0.6798 ± 0.0018

123-1 0.6802 ± 0.0018 0.6802 ± 0.0018 0.6802 ± 0.0018 0.6802 ± 0.0018

2-123 0.6698 ± 0.0018 0.6772 ± 0.0018 0.6772 ± 0.0018 0.6780 ± 0.0018

123-2 0.6685 ± 0.0018 0.6760 ± 0.0018 0.6760 ± 0.0018 0.6769 ± 0.0018

3-123 0.6797 ± 0.0018 0.6797 ± 0.0018 0.6797 ± 0.0018 0.6797 ± 0.0018

123-3 0.6813 ± 0.0018 0.6813 ± 0.0018 0.6813 ± 0.0018 0.6813 ± 0.0018

12-13 0.8690 ± 0.0021 0.8721 ± 0.0021 0.8734 ± 0.0021 0.8752 ± 0.0021

13-12 0.8647 ± 0.0021 0.8689 ± 0.0021 0.8701 ± 0.0021 0.8719 ± 0.0021

12-23 0.8716 ± 0.0021 0.8755 ± 0.0021 0.8769 ± 0.0021 0.8801 ± 0.0021

23-12 0.8703 ± 0.0021 0.8742 ± 0.0021 0.8757 ± 0.0021 0.8789 ± 0.0021

13-23 0.8660 ± 0.0021 0.8702 ± 0.0021 0.8726 ± 0.0021 0.8741 ± 0.0021

23-13 0.8671 ± 0.0021 0.8714 ± 0.0021 0.8732 ± 0.0021 0.8755 ± 0.0021

From Table 3, we see that Policy 2 attained more that 99% of the optimal throughput in all

the flexibility structures we considered. Moreover, when D ∈ {1, 3}, Policy 2 attained the optimal

throughput in all the experiments we performed. When D = 2, Policy 2 reached 99.95% of the

optimal throughput. The reason why the flexibility structures with a dedicated server at either

end station perform better compared to the one with a dedicated server at station 2 may be that

when the dedicated server is at one of the end stations, the flexible server can focus on making

sure the dedicated server is not blocked (if D = 1) or not starved (if D = 3). By contrast, if

the dedicated server is at station 2, the flexible server has to attempt to make sure the dedicated

server is neither blocked nor starved.
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When both servers have two skills, we observe that Policy 1 performs well and Policy 2

performs even better (it reaches more than 99% of the optimal throughput in all cases). Finally,

Policy 3 seems to close the optimality gap for Policy 2 by about 50% when there are two partially

flexible servers. Moreover, the flexibility structure with F = 2 seems to perform better compared

to the ones with F ∈ {1, 3}. This is reasonable because training both servers at the middle

station allows each server to simultaneously be able to concentrate on one end of the line while

being able to help with the operation of the middle station. We also observe that when Policy

1 is employed for systems with two partially flexible servers, the flexibility structure with F = 3

performs statistically better than the flexibility structure with F = 1. This is consistent with our

results about the optimal policy for such systems in Section 4.4, where the optimal policy for the

case with F = 3 and B2 = B3 = 0 was shown to be a strict priority policy (as in Policy 1) and

the optimal policy for the case with F = 1 and B2 = B3 = 0 was shown to be a threshold policy

for some service rates.

We conclude that server assignment policies that are of priority or threshold type are also

effective in systems with larger buffers sizes. The optimal policies described in Theorem 4.1 for

the cases where D ∈ {1, 3} appear to be optimal for systems with larger buffer sizes as well. For

the other cases, the form of the optimal server assignment policy seems complicated (as in Section

4.1), but it is still possible to attain near-optimal throughput with the simple heuristics described

in this section.

5.2 Comparison with Full Flexibility and Selection of an Effective Flexibility

Structure

In this section, we compare the performance of partially flexible lines with four skills with the

optimal performance of the corresponding fully flexible system. We perform 50,000 experiments,

as described in Section 5.1. In each experiment, we first use the criteria in Theorem 3.3 to select

a flexibility structure (that is known to be optimal for deterministic systems with finite buffers)

and use either a heuristic (Policy 3 of Section 5.1) or the optimal server assignment policy to

determine the throughput for this flexibility structure. The resulting 95% confidence intervals for

the long-run average throughput are shown in the second column of Table 4. Then we determine

the throughput of the best heuristic (Policy 3) and optimal policy for each of the twelve flexibility

structures with four skills (that are shown in the first column of Table 3), and the structure with

the highest throughput is selected. The resulting 95% confidence intervals on the throughput

are provided in the third column of Table 4. Finally, the last column of Table 4 provides a 95%
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confidence interval on the optimal long-run average throughput of the fully flexible system (we

have not considered any heuristic server assignment policy for the fully flexible system).

Table 4: Comparison of the Throughput of Four-Skilled Systems with Six-Skilled Systems

Policy Theorem 3.3 Best 4-skilled 6-skilled

Best Heuristic 1.0651 ± 0.0018 1.0694 ± 0.0018 —

Optimal 1.0712 ± 0.0018 1.0763 ± 0.0018 1.0865 ± 0.0018

We see from Table 4 that 98.42% of the benefits of full flexibility can be attained with only

four skills and our heuristic Policy 3, even with small buffer sizes. When the optimal assignment

policy is used with the best four-skilled flexibility structure, we see that the average throughput is

99.06% of that of the fully flexible system. Observe that the optimality gap is caused by the lack

of two skills is larger than the optimality gap caused by the use of a heuristic server assignment

policy. Moreover, the criteria used for selecting the best flexibility structure when the service

times are deterministic also work well for the Markovian system (attaining 98.03% and 98.59%

of the throughput of the fully flexible system when Policy 3 and the optimal server assignment

policy are employed, respectively).

Table 5 gives the frequency with which each flexibility structure is chosen in the 50,000 sets

of service rates using the different criteria. The first column shows the flexibility structure. The

second column shows the frequency of selecting each flexibility structure according to the selection

rule of Theorem 3.3. The third and fourth columns give the frequency for each flexibility structure

when the flexibility structure with the highest throughput is selected and the best heuristic and

optimal assignment policies are employed, respectively.

Table 5 shows that the flexibility structures with two partially flexible servers are most of

the time superior to the flexibility structures with one dedicated and one fully flexible server.

Moreover, there is no big difference in the performance of the systems with a dedicated server at

stations 1, 2, or 3, respectively. Similarly, when each server has two skills, the systems that have

both servers trained at stations 1, 2, or 3 perform in a similar manner. (For the two approaches

that take into account the stochastic nature of the problem, D = 2 is worse than D ∈ {1, 3} and

F = 2 is better that F ∈ {1, 3}.)

We conclude that the solution of the allocation LP provides a good heuristic for finding an

effective flexibility structure for a tandem line with three stations and two servers. Even though

this selection rule does not always identify the best flexibility structure, the average performance of
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Table 5: Frequency of Each Flexibility Structure Being the Best in Understaffed Systems

Flexibility Structure Theorem 3.3 Best Heuristic Optimal

1-123 or 123-1 2.90% 2.99% 3.06%

2-123 or 123-2 3.00% 2.71% 2.60%

3-123 or 123-3 2.93% 3.01% 2.80%

12-13 or 13-12 30.70% 30.64% 29.62%

12-23 or 23-13 30.26% 31.53% 32.01%

13-23 or 23-13 30.21% 29.12% 29.90%

the flexibility structure it recommends is near-optimal. Furthermore, heuristic server assignment

policies for systems with four-skills perform almost as well as optimal server assignment policies,

and the frequency with which each flexibility structure is the best is very similar when the heuristic

or optimal server assignment policies are employed. In the next section, we will study whether

the optimal solution of the allocation LP provides guidance about effective flexibility structures

in longer Markovian lines.

5.3 Longer Markovian Lines

In Sections 4.2 and 5.2 we observed that in Markovian systems with three stations and two

servers, (i) systems with the same number of skills as the optimal solution of the allocation LP

attain near-optimal throughput, and (ii) the optimal flexibility structure of the corresponding

deterministic system (found by solving the allocation LP) performs almost as well as the best

flexibility structure. In this section, we test these conjectures for longer lines. More specifically,

we consider tandem lines with two servers and N ∈ {4, 5} stations. Then Proposition 2 of

Andradóttir et al. (2003) shows that the optimal solution of the allocation LP involves N + 1

skills. We randomly generate the service rates of each server at each station with the same

parameters as in Section 4.1. For each set of service rates, we consider three different policies,

namely the best policy with N skills (and hence no flexibility), the best policy with the flexibility

structure found by solving the allocation LP, and the best policy with N + 1 skills. In all cases,

we find the optimal throughput for each flexibility structure under consideration, and in the case

of the best policies with N or N + 1 skills, we identify the flexibility structure with the stated

number of skills yielding the highest optimal throughput. The performance of the three policies
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is compared with that of the optimal policy for the fully flexible system. We assume Bj = B for

all j ∈ {2, . . . , N}, where B ∈ {0, 1, 2, 3}, and we repeat the experiment for each different value

of B.

For systems with two servers and four stations, there are eight possible skills and the optimal

solution of the allocation LP involves 5 skills. There are
(

8
5

)
= 56 different choices for these five

skills, but under our assumptions (i.e., that the service rate of both servers cannot be zero at

the same station), it is sufficient to consider 32 different flexibility structures. Similarly, there

are 24 = 16 different choices of flexibility structures with four skills, but it suffices to consider

14 choices under our assumptions (since each server has at least one positive service rate). We

performed 50,000 experiments for each buffer size, and found the optimal server assignment policy

for each of the 14 (32) flexibility structures with 4 (5) skills. Then, we compare the throughputs

of the three policies under consideration to the optimal throughput of the corresponding fully

flexible system, and the average performance of the three policies (as a percentage of the optimal

throughput of the fully flexible system) is shown in columns 2 through 4 of Table 6. Similarly, for

the system with two flexible servers and five stations, there are ten possible skills and we know

that there exists a six-skilled system that reaches the maximal capacity when the allocation LP is

solved. Under our assumptions on the service rates, there are 80 different flexibility structures to

consider with six skills, and 30 possibilities with five skills. Because of the prohibitive amount of

computational time, the number of experiments are 50,000, 10,000, 5,000, and 1,000, for B = 0, 1, 2

and 3, respectively. The results are given in columns 5 through 7 of Table 6.

Table 6: Comparison of Dedicated and Partially Flexible Systems with Fully Flexible Systems

N = 4 N = 5

Buffer Best Allocation Best Best Allocation Best

Sizes 4-skilled LP 5-skilled 5-skilled LP 6-skilled

B2 = B3 = 0 81.27% 92.17% 93.14% 83.15% 91.22% 92.11%

B2 = B3 = 1 85.59% 96.21% 96.80% 86.44% 94.20% 94.92%

B2 = B3 = 2 87.02% 97.73% 98.17% 87.63% 95.07% 95.98%

B2 = B3 = 3 87.64% 98.25% 98.89% 88.04% 95.81% 96.76%

For both systems we consider, even for buffer sizes as small as zero, the throughput of the best

partially flexible system (with N + 1 skills) is near-optimal compared to the fully flexible system,
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attaining more than 92% of the optimal throughput in all cases. When B = 3, the discrepancy

between the performance of partial and fully flexible systems is 1.11% when N = 4 and 2.24%

when N = 5. Hence, we conclude that the allocation LP provides a good guideline for selecting

the number of skills in a flexibility structure even for longer Markovian lines with finite buffers.

We also observe that the flexibility structure obtained by solving the allocation LP performs very

similarly to the best flexibility structure with the same number of skills. Moreover, we see that

that adding one more skill to the system with no flexibility closes the optimality gap by at least

63% and sometimes by more than 91% in the systems that we consider. However, the marginal

benefit in systems with four and five stations is lower compared to systems with three stations

(see Table 2). This is in part because the performance of the systems with no flexibility improves

as the number of stations increases (see Tables 2 and 6).

6 Conclusions and Managerial Insights

In this paper, we study understaffed tandem lines with finite buffers. More specifically, we deter-

mine throughput-optimal server assignment policies for systems with three stations, two servers

possessing four skills in total, and either deterministic service times and arbitrary buffer sizes,

or exponential service times and small buffer sizes. Our results for deterministic systems show

that it is possible to attain the benefits of full flexibility and infinite buffers with only partial

flexibility and zero buffers, and we identify the optimal cross-training strategy for such systems.

For Markovian systems, we observe that the optimal assignment policy is of either priority or

threshold type. We use the optimal policies for deterministic and small Markovian systems to de-

velop heuristic server assignment policies for Markovian systems with larger buffers, and present

empirical results that show that these heuristics perform well. Our numerical experiments also

show that the partial flexibility structure that is optimal for a deterministic, infinite-buffered

system, together with an effective server assignment policy, achieves near-optimal throughput for

the corresponding Markovian system, even for small buffer sizes and longer understaffed lines.

Our research provides the following managerial insights:

• It is possible to attain most of the benefits of full flexibility with partial flexibility.

• An effective flexibility structure that is robust to service time distributions and buffer sizes

can be identified by solving a linear program.

• The efficiency loss due to the finite buffer size can be alleviated (and even eliminated in

deterministic systems) through the right choice of critical skills.
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• Making all servers partially flexible is usually better than making some of them dedicated

and some of them fully flexible.

• When there is a dedicated server, the priority of the flexible server should be to prevent the

starving or blocking of the dedicated server.

• The priorities of the servers may depend on the buffer sizes (i.e., the best policy for one set

of buffer sizes is not necessarily best for another set).
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Appendices

A Proof of Theorem 3.1

We only provide the proof for the case where D = 1 (i.e., µ12 = µ13 = 0). When D ∈ {2, 3},

similar calculations provided in Kırkızlar (2008) show that the policy of the theorem is optimal.

When D = 1, the allocation LP takes the simpler form:

max λ

s.t. µ11 + δ21µ21 ≥ λ, (3)

δ22µ22 ≥ λ, (4)

δ23µ23 ≥ λ, (5)

δ21 + δ22 + δ23 ≤ 1,

δ2j ≥ 0, for all j ∈ {1, 2, 3}.

Note that our assumptions on the service rates imply that µ11, µ22, µ23 > 0, and our assumption

that server 2 is fully flexible implies that µ21 > 0. If µ11 >
µ22µ23

µ22+µ23
, we see that the left-hand side

of the constraint (3) is always bigger than the left-hand sides of the constraints (4) and (5), and

hence we have δ∗21 = 0 in the optimal solution. Then, we find δ∗22 = µ23

µ22+µ23
and δ∗23 = µ22

µ22+µ23
,

by solving the equations δ∗22µ22 = δ∗23µ23 and δ∗22 + δ∗23 = 1. On the other hand, if µ11 ≤ µ22µ23

µ22+µ23
,

then we see that in the optimal solution all the constraints (3), (4), and (5) will be tight. Then,

we find δ∗22 = µ23(µ11+µ21)
µ21µ22+µ21µ23+µ22µ23

, δ∗23 = µ22(µ11+µ21)
µ21µ22+µ21µ23+µ22µ23

, and δ∗21 = 1− δ∗22 − δ∗23, by solving

the equations µ11 + δ∗21µ21 = δ∗22µ22 = δ∗23µ23 and δ∗21 + δ∗22 + δ∗23 = 1. Consequently, the value of

λ∗ in the optimal solution is as follows:

λ∗ =


µ22µ23

µ22+µ23
if µ11 >

µ22µ23

µ22+µ23
,

µ22µ23(µ11+µ21)
µ21µ22+µ21µ23+µ22µ23

if µ11 ≤ µ22µ23

µ22+µ23
.

(6)

Now, consider the policy described in the theorem and assume that the system returns to state

s0 = (s0
1, s

0
2) at time T > 0. Note that the remaining service times at all three stations equal one

at time T . When µ11 >
µ22µ23

µ22+µ23
(i.e., 1

µ11
< 1

µ22
+ 1

µ23
), server 1 can complete the job at station 1

before server 2 finishes processing a job at stations 2 and 3; hence server 2 does not help server 1.

The states of the system and the remaining service requirements for the jobs at each station will

be as in Table 7. When µ11 ≤ µ22µ23

µ22+µ23
(i.e., 1

µ11
≥ 1

µ22
+ 1

µ23
), server 2 finishes processing a job

at stations 2 and 3, and helps server 1 afterwards. The states of the system and the remaining

service requirements for the jobs at each station will be as in Table 8. (In the last column of
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Tables 7 and 8, we use the convention that the service requirement for a station is equal to one

if this station is starved.) We see that the system regenerates each time it hits the state s0, that

there is one departure from the system during each regenerative cycle, and that the length of the

cycle is equal to the reciprocal of equation (6). Hence, we conclude that the policy given in the

theorem is optimal. 2

Table 7: Sample Path for the Understaffed System with µ12 = µ13 = 0, and µ11 ≥ µ22µ23

µ22+µ23
.

Case Time State Remaining Service

Requirement

1
µ11

< 1
µ22

T (s01, s
0
2) (1, 1, 1)

T + 1
µ11

(s01 + 1, s02) (1, 1− 1
µ11

µ22, 1)

T + 1
µ22

(s01, s
0
2 + 1) (1, 1, 1)

T + 1
µ22

+ 1
µ23

(s01, s
0
2) (1, 1, 1)

1
µ11

> 1
µ22

T (s01, s
0
2) (1, 1, 1)

T + 1
µ22

(s01 − 1, s02 + 1) (1− 1
µ22

µ11, 1, 1)

T + 1
µ11

(s01, s
0
2 + 1) (1, 1, 1−

(
1
µ11

− 1
µ22

)
µ23)

T + 1
µ22

+ 1
µ23

(s01, s
0
2) (1, 1, 1)

1
µ11

= 1
µ22

T (s01, s
0
2) (1, 1, 1)

T + 1
µ22

(s01, s
0
2 + 1) (1, 1, 1)

T + 1
µ22

+ 1
µ23

(s01, s
0
2) (1, 1, 1)

Table 8: Sample Path for the Understaffed System with µ12 = µ13 = 0, and µ11 <
µ22µ23

µ22+µ23
.

Time State Remaining Service

Requirement

T (s01, s
0
2) (1, 1, 1)

T + 1
µ22

(s01 − 1, s02 + 1) (1− 1
µ22

µ11, 1, 1)

T + 1
µ22

+ 1
µ23

(s01 − 1, s02) (1−
(

1
µ22

+ 1
µ23

)
µ11, 1, 1)

T + 1
µ22

+ 1
µ23

(s01, s
0
2) (1, 1, 1)

+

(
1

µ11+µ21

)(
1− µ11

(
1
µ22

+ 1
µ23

))
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B Proof of Theorem 3.3

In the interest of space, we only provide the proof of case {a} (the proofs of the other cases are are

provided in Kırkızlar, 2008). It suffices to show that the optimal value of λ in the allocation LP

(2) in the presence of fully flexible servers is equal to the throughput of the system with partially

flexible servers. First, we transform this LP to the standard form as follows:

min −λ

s.t. λ− δ1jµ1j − δ2jµ2j + vj = 0, for j ∈ {1, 2, 3};

δi1 + δi2 + δi3 = 1, for i ∈ {1, 2}; (7)

δij ≥ 0, for all i ∈ {1, 2}, j ∈ {1, 2, 3}, v1, v2, v3 ≥ 0.

Note that no slack variables are needed in equation (7), because these constraints can be satisfied

as equalities without worsening the objective function value. Every feasible basis will have five

elements because the LP has five constraints (not including the nonnegativity constraints).

Let D be a basis for the above LP, cB be the vector of coefficients of the elements of D in the

objective function, B be the coefficients of the elements of D in the constraint matrix, and b be the

right-hand side of the constraints. Also, let V be the coefficients of the non-basic variables in the

constraint matrix, and cNB be the vector of coefficients of the non-basic variables in the objective

function. We let cB and cNB be row vectors, and b be a column vector. The following conditions

guarantee that the basis D is optimal (see, e.g., Theorem 3.1 of Bertsimas and Tsitsiklis, 1997):

B−1b ≥ 0, (8)

cNB − cBB−1V ≥ 0. (9)

Consider the basis D = {λ, δ11, δ21, δ22, δ23}. With some algebra, we have

B−1b =



µ22µ23(µ11+µ21)
µ21µ22+µ21µ23+µ22µ23

µ22µ23−µ11(µ22+µ23)
µ21µ22+µ21µ23+µ22µ23

µ23(µ11+µ21)
µ21µ22+µ21µ23+µ22µ23

µ22(µ11+µ21)
µ21µ22+µ21µ23+µ22µ23

1


,
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cNB − cBB−1V =



µ23(µ11µ22−µ12µ21)
µ21µ22+µ21µ23+µ22µ23

µ22(µ11µ23−µ13µ21)
µ21µ22+µ21µ23+µ22µ23

µ22µ23

µ21µ22+µ21µ23+µ22µ23

µ21µ23

µ21µ22+µ21µ23+µ22µ23

µ21µ22

µ21µ22+µ21µ23+µ22µ23


.

Hence we can conclude that D = {λ, δ11, δ21, δ22, δ23} is an optimal basis if conditions {1}, {3},

and {7} hold. The first element in the matrix B−1b is the value of λ in the optimal basis, hence

λ∗ = µ22µ23(µ11+µ21)
µ21µ22+µ21µ23+µ22µ23

in this case. This result also implies that cross-training server 2 at all

stations and server 1 at only station 1 corresponds to the best flexibility structure when case a

holds. Furthermore, the policy of Theorem 3.1 attains the maximal capacity in this case, hence

it is the optimal server assignment policy. 2

C Proof of Proposition 3.1

Consider a set of service rates R = {µij | i = 1, 2 and j = 1, 2, 3}. The elements of R have to

satisfy one of conditions {1} and {2}, one of conditions {3} and {4}, and one of conditions {5}

and {6}. First assume that the elements of R satisfy the conditions {1}, {3}, and {5}. Then, only

cases a, f , and i can hold. Note that {7} (which is equivalent to 1
µ11
≥ 1

µ22
+ 1
µ23

) and {17} (which

is equivalent to 1
µ23
≥ 1

µ11
+ 1

µ12
) are mutually exclusive, since we assumed that all the service

rates are finite. If in addition to {1}, {3}, and {5}, condition {7} is satisfied, then conditions

{8} and {17} are not satisfied, and hence only case a holds. If in addition to {1}, {3}, and {5},

condition {17} is satisfied, then conditions {7} and {18} are not satisfied, and hence only case f

holds. Finally, if conditions {1}, {3}, and {5} are satisfied and both of the conditions {7} and

{17} are not satisfied, then conditions {8} and {18} are satisfied, and hence only case i holds.

Similar arguments show that if conditions {1}, {3}, and {6} are satisfied, then exactly one of

cases a, d, and k holds. If conditions {1}, {4}, and {6} are satisfied, then exactly one of cases d,

e, and h holds. If conditions {2}, {3}, and {5} are satisfied, then exactly one of cases c, f , and g

holds. If conditions {2}, {4}, and {5} are satisfied, then exactly one of cases b, c, and l holds. If

conditions {2}, {4}, and {6} are satisfied, then exactly one of cases b, e, and j holds.

Finally, note that conditions {1}, {4}, and {5} cannot hold at the same time because conditions

{1} and {4} together imply that condition {6} is true. Similarly, the conditions {2}, {3}, and {6}

cannot hold at the same time because conditions {2} and {3} together imply that condition {5}

is true. This concludes the proof. 2
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D Proof of Theorem 4.1

We only provide the proof for the case where D = 1 (i.e., µ12 = µ13 = 0). When D ∈ {2, 3},

similar calculations provided in Kırkızlar (2008) show that the policy of the theorem is optimal.

When the service times are exponentially distributed, {Xπ(t)} is a continuous-time Markov

chain with state space S for all π ∈ Π, see Section 2. Lemma 2.1 shows that it suffices to consider

the policies that are non-idling, and Lemma 2.1 of Kırkızlar et al. (2008) shows that the actions

a21 and a31 are never optimal. Then, the set of allowable actions in state s ∈ S is

As =



{a11} for s = (0, 0),

{a12} for s = (B2 + 2, 0),

{a13} for s = (B2 + 1, B3 + 2),

{a11, a12, a22} for s = (i, 0), where i ∈ {1, . . . , B2 + 1},

{a11, a13, a33} for s = (0, j) or s = (i, B3 + 2), where

i ∈ {1, . . . , B2} and j ∈ {1, . . . , B3 + 2},

{a12, a13} for s = (B2 + 2, j), where j ∈ {1, . . . , B3 + 1},

{a11, a12, a13, a22, a33} for s = (i, j), where i ∈ {1, . . . , B2 + 1}

and j ∈ {1, . . . , B3 + 1}.

Note that we used the fact that assigning a server to a station that is blocked or starved is equiv-

alent to idling this server. Furthermore, in the states where more than one station is operating,

it is necessary to consider the actions where both servers are assigned to the same station (even

if one server is not cross-trained at that station) because Lemma 2.1 distinguishes idling actions

from actions that assign a server to a station where (s)he is unable to work. Under our assump-

tions on the service rates (
∑M

i=1 µij > 0 for j ∈ {1, . . . , N},
∑N

j=1 µij > 0 for i ∈ {1, . . . ,M},

and µ12 = µ13 = 0), it is clear that µ11 > 0, µ22 > 0, and µ23 > 0. Furthermore, for all π ∈ Π,

{Xπ(t)} is uniformizable with the uniformization constant q = µ11+µ21+µ22+µ23 (see, Lippman,

1975); let {Y π(t)} be the corresponding discrete time Markov chain. Moreover, Andradóttir et al.

(2001) shows that our optimization problem (1) is equivalent to the Markov decision problem

of maximizing the steady-state departure rate from the third station for {Y π(t)}. The policy

described in the theorem corresponds to an irreducible Markov chain, and consequently we have

a communicating Markov decision process. Thus, we can use the policy iteration algorithm for

communicating models as described in Section 9.5.1 of Puterman (1994).

Note that π = (d)∞ for every policy π in Π, where d is the corresponding decision rule with

d(s) ∈ As for all s ∈ S. Similarly, let Pd be the probability transition matrix corresponding to
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the policy π, and rd(s) denote the reward in state s when policy π is employed.

We start the policy iteration algorithm by considering the policy π0 = (d0)∞, where

d0(s) =



a11 for s = (0, 0),

a12 for s = (i, j), where i ∈ {1, . . . , B2 + 2} and j ∈ {0, . . . , B3 + 1},

a13 for s = (0, j) or s = (i, B3 + 2), where i ∈ {1, . . . , B2 + 1}

and j ∈ {1, . . . , B3 + 2}.

Then we obtain

rd0(s) =



0 for s = (0, 0) or s = (i, j), where i ∈ {1, . . . , B2 + 2}

and j ∈ {0, . . . , B3 + 1},

µ23 for s = (0, j) or s = (i, B3 + 2), where i ∈ {1, . . . , B2 + 1}

and j ∈ {1, . . . , B3 + 2},

and

Pd0(s, s′) =



µ11+µ21

q for s = (0, 0) and s′ = (1, 0);
µ22+µ23

q for s = s′ = (0, 0);
µ11

q for s = (i, j), s′ = (i+ 1, j), where i ∈ {1, . . . , B2 + 1}

and j ∈ {0, . . . , B3 + 1};
µ22

q for s = (i, j), s′ = (i− 1, j + 1), where i ∈ {1, . . . , B2 + 2}

and j ∈ {0, . . . , B3 + 1};
µ21+µ23

q for s = s′ = (i, j), where i ∈ {1, . . . , B2 + 1}

and j ∈ {0, . . . , B3 + 1};
µ11+µ21+µ23

q for s = s′ = (i, j), where i = B2 + 2

and j ∈ {0, . . . , B2 + 1};
µ11

q for either s = (0, j) and s′ = (1, j) or s = (i, B3 + 2) and s′ = (i+ 1, B3 + 2),

where i ∈ {1, . . . , B2} and j ∈ {1, . . . , B3 + 2};
µ23

q for either s = (0, j) and s′ = (0, j − 1) or s = (i, B3 + 2) and s′ = (i, B3 + 1),

where i ∈ {1, . . . , B2 + 1} and j ∈ {1, . . . , B3 + 2};
µ21+µ22

q for s = s′ = (0, j) or s = s′ = (i, B3 + 2), where i ∈ {1, . . . , B2}

and j ∈ {1, . . . , B3 + 2};
µ11+µ21+µ22

q for s = s′ = (B2 + 1, B2 + 2).

For all s, s′ ∈ S and a ∈ As, we use r(s, a) to denote the immediate reward in state s when

action a is taken and p(s′|s, a) to denote the one-step probability of going from state s to state s′
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when action a is chosen in state s. Since {Y π0(t)} is an irreducible Markov chain, we can solve

the following set of equations to find a scalar g0 and a vector h0, letting h0(0, 0) = 0,

rd0 − g0e+ (Pd0 − I)h0 = 0,

where e is the column vector of ones and I is the identity matrix. Then, we compute d(s), where

d(s) ∈ arg max
a∈As

{
r(s, a) +

∑
s′∈S

p(s′|s, a)h0(s′)
}
, ∀s ∈ S,

and set d(s) = d0(s) whenever possible. If one can show d(s) = d0(s) for all s ∈ S, then the

policy π0 = (d0)∞ is optimal according to Theorem 9.5.1 of Puterman (1994). Consequently, for

all s ∈ As and a ∈ As, we want to show that the following inequality holds:

∆(s, a) =
(
r(s, d0(s)) +

∑
s′∈S

p(s′|s, d0(s))h0(s′)
)
− r(s, a)−

∑
s′∈S

p(s′|s, a)h0(s′) ≥ 0.

In the calculations below, ξk(s,B2, B3) for k ∈ {1, . . . , 11} are nonnegative constants (that

depend on the service rates, the state s ∈ S, and the buffer sizes), and ξ(B2, B3) is a nonnegative

constant (that depends on the service rates and the buffer sizes); they are provided in Kırkızlar

(2008). We assume that B2, B3 ≤ 1 in the following calculations. For s ∈ {(0, 0), (B2 +2, 0), (B2 +

1, B3 + 2)}, the action d0(s) is optimal because there is only one action in As.

First, consider the state s = (i, 0), where i ∈ {1, . . . , B2 + 1}, and recall that d0(s) = a12.

With some algebra we have

∆(s, a11) =
ξ1(s,B2, B3)
ξ(B2, B3)

≥ 0, ∆(s, a22) =
ξ2(s,B2, B3)
ξ(B2, B3)

≥ 0.

Now let s = (0, j), where j ∈ {1, . . . , B3 + 2}, and recall that d0(s) = a13. Then, we have

∆(s, a11) =
ξ3(s,B2, B3)
ξ(B2, B3)

≥ 0, ∆(s, a33) =
ξ4(s,B2, B3)
ξ(B2, B3)

≥ 0.

Similarly, let s = (i, B3 + 2), where i ∈ {1, . . . , B2}, and recall that d0(s) = a13. We have

∆(s, a11) =
ξ5(s,B2, B3)
ξ(B2, B3)

≥ 0, ∆(s, a33) =
ξ6(s,B2, B3)
ξ(B2, B3)

≥ 0.

For s = (i, j), where i ∈ {1, . . . , B2 + 1} and j ∈ {1, . . . , B3 + 1}, recall that d0(s) = a12. Some

algebra shows that

∆(s, a11) =
ξ7(s,B2, B3)
ξ(B2, B3)

≥ 0, ∆(s, a13) =
ξ10(s,B2, B3)
ξ(B2, B3)

≥ 0,

∆(s, a22) =
ξ8(s,B2, B3)
ξ(B2, B3)

≥ 0, ∆(s, a33) =
ξ9(s,B2, B3)
ξ(B2, B3)

≥ 0.

Finally, consider s = (B2 + 2, j), where j ∈ {1, . . . , B3 + 1}, and recall that d0(s) = a12. Some

algebra shows that

∆(s, a13) =
ξ11(s,B2, B3)
ξ(B2, B3)

≥ 0. 2
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