
Mining Time-Changing Data Streams

Geoff Hulten
Dept. of Computer Science

and Engineering
University of Washington

Box 352350
Seattle, WA 98195, U.S.A.

ghulten@cs.washington.edu

Laurie Spencer
Innovation Next

1107 NE 45th St. #427
Seattle, WA 98105, U.S.A
lau ries @ innovation-

next.corn

Pedro Domingos
Dept. of Computer Science

and Engineering
University of Washington

Box 352350
Seattle, WA 98195, U.S.A.

pedrod @ cs.washington.edu

ABSTRACT
Most statistical and machine-learning algorithms assume
tha t the da ta is a random sample drawn from a station-
ary distribution. Unfortunately, most of the large databases
available for mining today violate this assumption. They
were gathered over months or years, and the underlying pro-
cesses generating them changed during this time, sometimes
radically. Although a number of algorithms have been pro-
posed for learning time-changing concepts, they generally
do not scale well to very large databases. In this paper we
propose an efficient algorithm for mining decision trees from
continuously-changing da ta streams, based on the ultra-fast
VFDT decision tree learner. This algorithm, called CVFDT,
stays current while making the most of old da ta by growing
an alternative subtree whenever an old one becomes ques-
tionable, and replacing the old with the new when the new
becomes more accurate. CVFDT learns a model which is
similar in accuracy to the one that would be learned by
reapplying VFDT to a moving window of examples every
t ime a new example arrives, but with O(1) complexity per
example, as opposed to O(w), where w is the size of the
window. Experiments on a set of large time-changing da ta
streams demonstrate the utility of this approach.

Categories and Subject Descriptors
H.2.8 [D a t a b a s e M a n a g e m e n t] : Database Appl ica t ions--
data mining; 1.2.6 [Artificial Intelligence]: Learning--
concept learning; 1.5.2 [P a t t e r n Recogn i t i on] : Design Me-
thodology-classifier design and evaluation

General Terms
Decision trees, Hoeffding bounds, incremental learning, da ta
streams, subsampling, concept drift

Permission to make digital or hard copies of all or part of this work for
personal o1' classroom use is ~'anted without fee provided that copies
are not made o1' distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the frst page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
KDD 01 San Francisco CA USA
Copyright ACM 2001 1-58113-391 -x /01/08...$5.00

1. INTRODUCTION
Modern organizations produce da ta at unprecedented

rates; among large retailers, e-commerce sites, telecommuni-
cations providers, and scientific projects, rates of gigabytes
per day are common. While this da ta can contain valuable
knowledge, its volume increasingly outpaees practit ioners '
ability to mine it. As a result, it is now common practice
either to mine a subsample of the available da ta or to mine
for models drastically simpler than the da ta could support.
In some cases, the volume and t ime span of accumulated
da ta is such that just storing it consistently and reliably
for future use is a challenge. Further, even when storage is
not problematic, it is often difficult to gather the da ta in
one place, at one time, in a format appropriate for mining.
For all these reasons, in many areas the notion of mining a
fixed-sized database is giving way to the notion of mining
an open-ended da ta s tream as it arrives. The goal of our re-
search is to help make this possible with a minimum of effort
for the da ta mining practit ioner. In a previous paper [9] we
presented VFDT, a decision tree induction system capable
of learning from high-speed da ta streams in an incremental,
anytime fashion, while producing models that axe asymp-
totically arbitrari ly close to those tha t would be learned by
tradi t ional decision tree induction systems.

Most statistical and machine-learning algorithms, includ-
ing VFDT, make the assumption tha t training da ta is a
random sample drawn from a s tat ionary distribution. Un-
fortunately, most of the large databases and da ta streams
available for mining today violate this assumption. They ex-
ist over months or years, and the underlying processes gen-
erating them changes during this time, sometimes radically.
For example, a new product or promotion, a hacker's attack,
a holiday, changing weather conditions, changing economic
conditions, or a poorly calibrated sensor could all lead to vio-
lations of this assumption. For classification systems, which
a t tempt to learn a discrete function given examples of its in-
puts and outputs, this problem takes the form Of changes in
the target function over time, and is known as concept drift.
Traditional systems assume tha t all da ta was generated by a
single concept. In many cases, however, it is more accurate
to assume tha t da ta was generated by a series of concepts, or
by a concept function with t ime-varying parameters. Tradi-
tional systems learn incorrect models when they erroneously
assume tha t the underlying concept is s tat ionary if in fact
it is drifting.

One common approach to learning from time-changing

97

data is to repeatedly apply a tradit ional learner to a slid-
ing window of ~v examples; as new examples arrive they are
inserted into the beginning of the window, a corresponding
number of examples is removed from the end of the win-
dow, and the learner is reapplied [27]. As long as w is small
relative to the rate of concept drift, this procedure assures
availability of a model reflecting the current concept gen-
erating the data. If the window is too small, however, this
may result in insufficient examples to satisfactorily learn the
concept. Further, the computat ional cost of reapplying a
learner may be prohibitively high, especially if examples ar-
rive at a rapid rate and the concept changes quickly.

To meet these challenges we propose the CVFDT system,
which is capable of learning decision trees from high-speed,
t ime changing da ta streams. CVFDT works by efficiently
keeping a decision tree up-to-date with a window of exam-
ples. In particular, it is able to keep its model consistent
with a window using only a constant amount of t ime for
each new example (more precisely, t ime proportional to the
number of a t t r ibutes in the da ta and the depth of the in-
duced tree). CVFDT grows an al ternate subtree whenever
an old one seems to be out-of-date, and replaces the old one
when the new one becomes more accurate. This allows it to
make smooth, fine-grained adjustments when concept drift
occurs. In effect, CVFDT is able to learn a nearly equivalent
model to the one VFDT would learn if repeatedly reapplied
to a window of examples, but in O(1) t ime instead of O(w)
t ime per new example.

In the next section we discuss the basics of the VFDT sys-
tem, and in the following section we introduce the CVFDT
system. We then present a series of experiments on synthetic
da ta which demonstrate how CVFDT can outperform tradi-
tional systems on high-speed, time-changing da ta streams.
Next, we apply CVFDT to mining the stream of web page
requests for the entire University of Washington campus.
We conclude with a discussion of related and future work.

2. THE VFDT SYSTEM
The classification problem is generally defined as follows.

A set of N training examples of the form (x, y) is given,
where y is a discrete class label and x is a vector of d at-
tr ibutes, each of which may be symbolic or numeric. The
goal is to produce from these examples a model y = f (x)
which will predict the classes y of future examples x with
high accuracy. For example, x could be a description of a
client's recent purchases, and y the decision to send that cus-
tomer a catalog or not; or x could be a record of a cellular-
telephone call, and y the decision whether it is fraudulent
or not. One of the most effective and widely-used classifi-
cation methods is decision tree learning [4, 20]. Learners of
this type induce models in the form of decision trees, where
each node contains a test on an at t r ibute, each branch from
a node corresponds to a possible outcome of the test, and
each leaf contains a class prediction. The label y = DT(x)
for an example x is obtained by passing the example down
from the root to a leaf, testing the appropriate a t t r ibute at
each node and following the branch corresponding to the
a t t r ibute ' s value in the example. A decision tree is learned
by recursively replacing leaves by test nodes, s tart ing at the
root. The a t t r ibute to test at a node is chosen by compar-
ing all the available a t t r ibutes and choosing the best one
according to some heuristic measure. Classic decision tree
learners like C4.5 [20], CART, SLIQ [17], and SPRINT [24]

T a b l e 1: T h e V F D T A l g o r i t h m .

Inputs:

Output:

S is a stream of examples,
X is a set of symbolic a t t r ibutes ,
G(.) is a split evaluation function,

is one minus the desired probabil i ty of
choosing the correct a t t r ibute at any
given node,

1- is a user-supplied tie threshold,
nmin is the # examples between checks for

growth.
H T is a decision tree.

P r o c e d u r e V F D T (S, X, G, ~, r)
Let H T be a tree with a single leaf ll (the root).
Let X l = X U {X¢}.
Let G1 (X¢) be the ~ obtained by predicting the most

frequent class in S.
For each class yk

For each value xij of each a t t r ibu te Xi E X
Let nij~(lx) -- 0.

For each example (x, y) in S
Sort (x, y) into a leaf I using H T .
For each xij in x such tha t X~ E Xz

Increment nij~ (1).
Label l with the major i ty class among the examples

seen so far at 1.
Let nL be the number of examples seen at I.
If the examples seen so far at l are not all of the same

class and nl mod n,~,~ is 0, then
Compute GI(Xi) for each a t t r ibu te Xi E Xl - {X¢}

using the counts n~jk(l).
Let Xa be the a t t r ibute with highest GI.
Let Xb be the a t t r ibute with second-highest GI.
Compute ~ using Equation 1.
Let A-GI = "Gl(Xa) - -Gl(Xb).
If ((AGt > e) or (AGt < - - e < r)) and Xa ~ X~, then

Replace l by an internal node tha t splits on X , .
For each branch of the split

Add a new leaf l~ , and let Xm = X - {X,}.
Let G,n(X¢) be the G obtained by predicting

the most frequent class at lm.
For each class yk and each value z i j of each

a t t r ibu te Xi E Xm - - {X0}
Let nijk(l,,~) = O.

Return H T .

98

use every available training example to select the best at-
t r ibute for each split. This policy is necessary when da ta is
scarce, but it has two problems when training examples are
abundant: it requires all examples be available for consid-
eration throughout their entire runs, which is problematic
when da ta does not fit in RAM or on disk, and it assumes
tha t the process generating examples remains the same dur-
ing the entire period over which the examples are collected
and mined.

In previous work [9] we presented the VFDT (Very Fast
D_ecision T.ree learner) system, which is able to learn from
abundant da ta within practical t ime and memory constrai-
nts. I t accomplishes this by noting, with Catlet t [5] and oth-
ers [12, 19], that it may be sufficient to use a small sample
of the available examples when choosing the split a t t r ibute
at any given node. Thus, only the first examples to arrive
on the da ta stream need to be used to choose the split at-
t r ibute at the root; subsequent ones are passed through the
induced portion of the tree until they reach a leaf, are used
to choose a split a t t r ibute there, and so on recursively. To
determine the number of examples needed for each decision,
VFDT uses a statistical result known as Hoeffdin9 bounds
or additive Chernoff bounds [13]. After n independent ob-
servations of a real-valued random variable r with range R,
the Hoeffding bound ensures that , with confidence 1 - 6, the
true mean of r is at least V - e, where V is the observed mean
of the samples and

~ / R 2 In(l /6)
e = 2n (1)

This is true irrespective of the probabil i ty distribution that
generated the observations. Let G(XI) be the heuristic mea-
sure used to choose test a t t r ibutes (we use information gain).
After seeing n samples at a leaf, let X~ be the a t t r ibute with
the best heuristic measure and Xb be the a t t r ibute with the
second best. Let AG = G(X~) - G(Xb) be a new random
variable, the difference between the observed heuristic val-
ues. Applying the Hoeffding bound to AG, we see that if
AG > ~ (as calculated by Equation 1 with a user-supplied
6), we can confidently say that the difference between G(X~)
and "G(Xb) is larger than zero, and select X~ as the split at-
tr ibute.l .2 Table 1 contains pseudo-code for VFDT's core al-
gorithm. The counts nijlc are the sufficient statistics needed
to compute most heuristic measures; if other quantities are
required, they can be similarly maintained. When the suffi-
cient statistics fill the available memory, VFDT reduces its
memory requirements by temporari ly deactivating learning
in the least promising nodes; these nodes can be reactivated
later if they begin to look more promising than currently
active nodes. VFDT employs a tie mechanism which pre-
cludes it from spending inordinate t ime deciding between

1This is valid as long as G (and therefore AG) can be viewed
as an average over all examples seen at the leaf, which is the
case for most commonly-used heuristics. For example, if
information gain is used, the quanti ty being averaged is the
reduction in the uncertainty regarding the class membership
of the example.
2In this paper we assume that the third-best and lower at-
t r ibutes have sufficiently smaller gains tha t their probabili ty
of being the true best choice is negligible. We plan to lift
this assumption in future work. If the a t t r ibutes at a given
node are (pessimistically) assumed independent, it simply
involves a Bonferroni correction to 6 [18].

a t t r ibutes whose practical difference is negligible. That is,
VFDT declares a tie and selects Xa as the split a t t r ibute
any t ime A G < e < r (where I" is a user-supplied tie thresh-
old). Pre-pruning is carried out by considering at each node
a "null" a t t r ibute X¢ tha t consists of not spli t t ing the node.
Thus a split will only be made if, with confidence 1 - 6, the
best split found is bet ter according to G than not splitting.
Notice that the tests for splits and ties are only executed
once for every n,,,in (a user supplied value) examples tha t
arrive at a leaf. This is justified by the observation that
VFDT is unlikely to make a decision after any given exam-
ple, so it is wasteful to carry out these calculations for each
one of them. The pseudo-code shown is only for symbolic
attr ibutes; we are currently developing its extension to nu-
meric ones. The sequence of examples S may be infinite, in
which case the procedure never terminates, and at any point
in time a parallel procedure can use the current tree HT to
make class predictions.

Using off-the-shelf hardware, VFDT is able to learn as
fast as da ta can be read from disk. The t ime to incorporate
an example is O(ldvc) where l is the maximum depth of
HT, d is the number of at t r ibutes, v is the maximum num-
ber of values per at t r ibute, and c is the number of classes.
This t ime is independent of the to ta l number of examples
already seen (assuming the size of the tree depends only on
the "true" concept, and not on the dataset) . Because of the
use of Hoeffding bounds, these speed gains do not necessar-
ily lead to a loss of accuracy. I t can be shown that , with
high confidence, the core VFDT system (without ties or de-
activations due to memory constraints) will asymptotically
induce a tree arbitrari ly close to the tree induced by a tra-
ditional batch learner. Let DToo be the tree induced by a
version of VFDT using infinite da ta to choose each node's
split a t t r ibute, HT6 be the tree learned by the core VFDT
system given an infinite da ta stream, and p be the proba-
bility that an example passed through DToo to level i will
fall into a leaf at that point. Then the probabil i ty that an
arbi t rary example will take a different path through DT~
and HT6 is bounded by 6/p [9]. A corollary of this result
states tha t the tree learned by the core VFDT system on
a finite sequence of examples will correspond to a subtree
of DT~ with the same bound of 6/p. See Domingos and
Hulten [9] for more details on VFDT and this 6/p bound.

3. THE CVFDT SYSTEM
CVFDT (Concept-adapting Very Fas t Decision Tree

learner) is an extension to VFDT which maintains VFDT's
speed and accuracy advantages but adds the ability to detect
and respond to changes in the example-generating process.
Like other systems with this capability, CVFDT works by
keeping its model consistent with a sliding window of ex-
amples. However, it does not need to learn a new model
from scratch every t ime a new example arrives; instead, it
updates the sufficient statistics at its nodes by incrementing
the counts corresponding to the new example, and decre-
menting the counts corresponding to the oldest example in
the window (which now needs to be forgotten). This will
statist ically have no effect if the underlying concept is sta-
tionary. If the concept is changing, however, some splits
that previously passed the Hoeffding test will no longer do
so, because an al ternative a t t r ibu te now has higher gain (or
the two are too close to tell). In this case CVFDT begins to
grow an alternative subtree with the new best a t t r ibute at

99

Table 2: T h e C V F D T a lgo r i t hm.

Inputs: S
X
G(.)
6

T

7"~rain

f
Output: H T

is a sequence of examples,
is a set of symbolic attributes,
is a split evaluation function,
is one minus the desired probability of
choosing the correct attribute at any
given node,
is a user-supplied tie threshold,
is the size of the window,
is the # examples between checks for growth,
is the # examples between checks for drift.
is a decision tree.

P r o c e d u r e C V F D T (S , X, G, 6, ~', w, nm~)
/* Initialize */
Let H T be a tree with a single leaf 11 (the root).
Let ALT(I1) be an initially empty set of alternate

trees for 11.
Let G1 (X¢) be the G obtained by predicting the most

frequent class in S.
Let Xx = X U {X~).
Let W be the window of examples, initially empty.
For each class yk

For each value xij of each attribute Xi E X
Let n~jk(ll) = O.

/* Process the examples */
For each example (x, #) in S

Sort (x, y) into a set of leaves L using H T and all
trees in A L T of any node (x, y) passes through.

Let I D be the maximum id of the leaves in L.
Add ((x, y), ID) to the beginning of W.
If ,wl >

Let ((xto, yw),ID~o) be the last element of W
ForgetExamples(HT, n, (x~, y .) , ID~o)
Let W = W with ((x~, yw),ID,v) removed

CVFDTGrow(HT, n, G, (x, y), 6, nmin, ~')
If there have been f examples since the last checking

of alternate trees
CheckSplitValidity(HT, n, 6)

Return HT.

Table 3: T h e C V F D T G r o w p r o c e d u r e .

P r o c e d u r e C V F D T G r o w (H T , n, G, (x, y), 6, nmi~, r)
Sort (x, y) into a leaf I using HT.
Let P be the set of nodes traversed in the sort.
For each node lpi in P

For each x~j in x such that X~ E Xt~
Increment nij~ (lp).

For each tree To in ALT(ln)
CVFDTGrow(Ta, n, G, (x, y), 6, nmi~, r)

Label l with the majority class among the examples seen
so far at I.

Let nl be the number of examples seen at I.
If the examples seen so far at l are not all of the same

class and nz mod n,~n is 0, then
Compute Gt(Xi) for each attribute Xi E Xt - {Xv)

using the counts nijk(l).
Let Xa be the attribute with highest Gl.
Let Xb be the attribute with second-highest ~l.
Compute e using Equation 1 and 6.
Let AG'--~ = "G~(X~) - " G l (X b)

If ((AG~ > ~) or (AGt < = ~ < ~')) and Xa ~ X¢, then
Replace l by an internal node that splits on Xo.
For each branch of the split

Add a new leaf Ira, and let Xm = X - {Xa}.
Let ALT(I,~) = {}.
Let G~(X0) be the G obtained by predicting the

most frequent class at l,~.
For each class yk and each value xij of each

attribute Xi E Xm - {X0}
Let nijk(l,n) = O.

its root. When this alternate subtree becomes more accurate
on new data than the old one, the old subtree is replaced by
the new one.

Table 2 contains a pseudo-code outline of the CVFDT
algorithm. CVFDT does some initializations, and then pro-
cesses examples from the stream S indefinitely. As each
example (x,y) arrives, it is added to the window 3, an old
example is forgotten if needed, and (x, y) is incorporated
into the current model. CVFDT periodically scans H T and
all alternate trees looking for internal nodes whose sufficient
statistics indicate that some new attribute would make a
better test than the chosen split attribute. An alternate
subtree is started at each such node.

Table 3 contains pseudo-code for the tree-growing por-
tion of the CVFDT system. It is similar to the Hoeffding
Tree algorithm, but CVFDT monitors the validity of its old
decisions by maintaining sufficient statistics at every node
in H T (instead of only at the leaves like VFDT). Forget-
ting an old example is slightly complicated by the fact that
H T may have grown or changed since the example was ini-
tially incorporated. Therefore, nodes are assigned a unique,
monotonically increasing I D as they are created. When an
example is added to W, the maximum I D of the leaves it
reaches in H T and all alternate trees is recorded with it. An
example's effects are forgotten by decrementing the counts
in the sufficient statistics of every node the example reaches

3The window is stored in RAM if resources are available,
otherwise it will be kept on disk.

100

T a b l e 4: T h e F o r g e t E x a m p l e p r o c e d u r e . T a b l e 5: The CheckSplitValidity p r o c e d u r e .

P r o c e d u r e F o r g e t E x a m p l e (H T , n, (x~, yw), IDa)
Sort (Xw, y~) through HT while it traverses leaves

with id ~ IDa,,
Let P be the set of nodes traversed in the sort.
For each node l in P

For each xij in x such tha t X~ E Xl
Decrement nijk(1).

For each tree Tau in ALT(I)
ForgetExample(Tau, n, (x~, y~), ID~o)

in HT whose ID is < the stored ID. See the pseudo-code in
Table 4 for more detail about how CVFDT forgets examples.

CVFDT periodically scans the internal nodes of HT look-
ing for ones where the chosen split a t t r ibute would no longer
be selected; that is, where G(Xa) - "G(Xb) < e and e > r .
When it finds such a node, CVFDT knows that it either
initially made a mistake split t ing on Xa (which should hap-
pen less than ~% of the time), or that something about the
process generating examples has changed. In either case,
CVFDT will need to take action to correct HT. CVFDT
grows alternate subtrees to changed subtrees of HT, and
only modifies HT when the al ternate is more accurate than
the original. To see why this is needed, let IA be a node
where change was detected. A simple solution is to replace
IA with a leaf predicting the most common class in l / , ' s suf-
ficient statistics. This policy assures that HT is always as
current as possible with respect to the process generating
examples. However, i t may be too drastic, because it ini-
t ially forces a single leaf to do the job previously done by a
whole subtree. Even if the subtree is outdated, it may still
be bet ter than the best single leaf. This is part icularly true
when l/, is at or near the root of HT, as it will result in
drastic short- term reductions in HT's predictive accuracy -
clearly not acceptable when a parallel process is using HT
to make critical decisions.

Each internal node in HT has a list of alternate subtrees
being considered as replacements for the subtree rooted at
the node. Table 5 contains pseudo-code for the CheckSplit-
Validity procedure. CheckSplitValidity starts an al ternate
subtree whenever it finds a new winning a t t r ibute at a node;
that is, when there is a new best a t t r ibute and A ~ > e or if
e < r and A ~ > r / 2 . This is very similar to the procedure
used to choose initial splits, except the tie criteria is tighter
to avoid excessive al ternate tree creation. CVFDT supports
a parameter which limits the total number of al ternate trees
being grown at any one time. Alternate trees are grown
the same way HT is, via recursive calls to the CVFDT pro-
cedures. Periodically, each node with a non-empty set of
al ternate subtrees, Ire,t, enters a testing mode to determine
if it should be replaced by one of its al ternate subtrees. Once
in this mode, lt~st collects the next m training examples that
arrive at it and, instead of using them to grow its children
or al ternate trees, uses them to compare the accuracy of the
subtree i t roots with the accuracies of all of its al ternate
subtrees. If the most accurate al ternate subtree is more ac-
curate than the ltest, ltest is replaced by the alternate. Dur-
ing the test phase, CVFDT also prunes al ternate subtrees
that are not making progress (i.e., whose accuracy is not in-

P r o c e d u r e C h e c k S p l i t V a l i d i t y (H T , n, ~)
For each node l in HT tha t is not a leaf

For each tree T~u in ALT(I)
CheckSplitValidity (T~u, n)

Let Xa be the split a t t r ibute at I.
Let Xn be the a t t r ibute with the highest Gl

other than Xa.
Let Xb be the a t t r ibute with the highest G~

other than Xn.
Let AGI = ~l(Xn) -- -Gl(Xb)
If AG~ _> 0 and no tree in ALT(I) already splits on

Xn at its root
Compute e using Equation 1 and 6.
If (AGt > e) or (e < 7 and AGt > r /2) , then

Let l ~ be an internal node tha t splits on X~.
Let ALT(l) = ALT(I) + { l , ~)
For each branch of the split

Add a new leaf Im to lnew
Let Xm -- X - {X,,}.
Let ALT(I,~) = {}.
Let G , , (X~) be the G obtained by predicting

the most frequent class at l,~.
For each class yk and each value x 0 of each

a t t r ibute X~ E Xm - {X$}
Let nOk(Im) = O.

i creasing over time). For each al ternate subtree of ltest, lau,
CVFDT remembers the smallest accuracy difference ever
achieved between the two, /k,n~,,(ltest, lilt). CVFDT prunes
any alternate whose current test phase accuracy difference
is at least A,ni~(lt~st, l~lt) + 1%. 4

One window size w will not he appropriate for every con-
cept and every type of drift; it may be beneficial to dynam-
ically change w during a run. For example, it may make
sense to shrink w when many of the nodes in HT become
questionable at once, or in response to a rapid change in
da ta rate, as these events could indicate a sudden concept
change. Similarly, some applications may benefit from an in-
crease in w when there are few questionable nodes because
this may indicate tha t the concept is stable - a good time to
learn a more detailed model. CVFDT is able to dynamically
adjust the size of its window in response to user-supplied
events. Events are specified in the form of hook functions
which monitor S and HT and can call the SetWindowSize
function when appropriate. CVFDT changes the window
size by updat ing w and immediately forgetting any exam-
ples tha t no longer fit in W.

We now discuss a few of the properties of the CVFDT sys-
tem and briefly compare it with VFDT-Window, a learner
that reapplies VFDT to W for every new example. CVFDT
requires memory proport ional to O(ndvc) where n is the
number of nodes in CVFDT's main tree and all al ternate
trees, d is the number of at t r ibutes, v is the maximum num-
ber of values per a t t r ibute , and c is the number of classes.
The window of examples can be in RAM or can be stored on

4When RAM is short, CVFDT is more aggressive about
pruning unpromising al ternate subtrees.

101

disk at the cost of a few disk accesses per example. There-
fore, CVFDT's memory requirements are dominated by the
sufficient statistics and are independent of the total num-
ber of examples seen. At any point during a run, CVFDT
will have available a model which reflects the current con-
cept generating IV. It is able to keep this model up-to-date
in time proport ional to O(ledvc) per example, where lc is
the length of the longest path an example will have to take
through H T times the number of al ternate trees. VFDT-
Window requires O(lvdvcw) t ime to keep its model up-to-
date for every new example, where Iv is the maximum depth
of HT. VFDT is a factor of wlv/lc worse than CVFDT; em-
pirically, we observed lc to be smaller than l~ in all of our
experiments. Despite this large t ime difference, CVFDT's
drift mechanisms allow it to produce a model of similar ac-
curacy. The structure of the models induced by the two may,
however, be significantly different, for the following reason.
VFDT-Window uses the information from each training ex-
ample at one place in the tree it induces: the leaf where
the example falls when it arrives. This means that VFDT-
Window uses the first examples from IV to make a decision
at its root, the next to make a decision at the first level of
the tree, and so on. After an initial building phase, CVFDT
will have a fully induced tree available. Every new example
is passed through this induced tree, and the information it
contains is used to update statistics at every node it passes
through. This difference can be an advantage for CVFDT,
as it allows the induction of larger trees with bet ter proba-
bil i ty estimates at the leaves. I t can also be a disadvantage
and VFDT-Window may be more accurate when there is a
large concept shift part-way through IV. This is because
VFDT-Window's leaf probabilities will be set by examples
near the end of IV while CVFDT's will reflect all of W.
Also notice that , even when the structure of the induced
tree does not change, CVFDT and VFDT-Window can out-
perform VFDT simply because their leaf probabilities (and
therefore class predictions) are updated faster, without the
"dead weight" of all the examples tha t fell into leaves before
the current window.

4. EMPIRICAL STUDY
We conducted a series of experiments comparing CVFDT

to VFDT and VFDT-Window. Our goals were to evaluate
CVFDT's ability to scale up, to evaluate CVFDT's abili ty
to deal with varying levels of drift, and to identify and char-
acterize the situations where CVFDT outperforms the other
systems.

4.1 Synthetic Data
The experiments with synthetic da ta used a changing con-

cept based on a rotat ing hyperplane. A hyperplane in d-
dimensional space is the set of points x that satisfy

d

w,~, = ~0 (2)
i = l

where x, is the i th coordinate of x. Examples for which
~'~=1 wix~ ~ wo are labeled positive, and examples for which

d ~ i = 1 wixi < wo are labeled negative. Hyperplanes are use-
ful for simulating time-changing concepts because we can
change the orientation and position of the hyperplane in a
smooth manner by changing the relative size of the weights.

In particular, sorting the weights by their magnitudes pro-
vides a good indication of which dimensions contain the
most information; in the limit, when all but one of the
weights are zero, the dimension associated with the non-zero
weight is the only one tha t contains any information about
the concept. This allows us to control the relative informa-
tion content of the at t r ibutes, and thus change the optimal
order of tests in a decision tree representing the hyperplane,
by simply changing the relative sizes of the weights. We
sought a concept tha t maintained the advantages of a hy-
perplane, but where the weights could be randomly modi-
fied without potential ly causing the decision frontier to move
outside the range of the data. To meet these goals we used a
series of al ternating class bands separated by parallel hyper-
planes. We start with a reference hyperplane whose weights
are initialized to .2 except for wo which is .25d. To label
an example, we subst i tute its coordinates into the left hand
side of Equation 2 to obtain a sum s. If Isl _< .1 * w0 the
example is labeled positive, otherwise if Isl _< .2 * w0 the
example is labeled negative, and so on. Examples were gen-
erated uniformly in a d-dimensional unit hypercube (with
the value of each xi ranging from [0, 1]). They were then
labeled using the concept, and their continuous at t r ibutes
were u~iformly discretized into five bins. Noise was added
by randomly switching the class labels of p ~ of the exam-
ples. Unless otherwise stated, each experiment used the fol-
lowing settings: five million training examples; /f = 0.0001;
f = 20, 000; nm~ = 300; r = 0.05; w = 100, 000; CVFDT's
window on disk; no memory limits; no pre-pruning; a test
set of 50,000 examples; and p = 5%. CVFDT put leaves into
al ternate tree test mode after 9,000 examples and used test
samples of 1,000 examples. All runs were done on a 1GHz
Pentium III machine with 512 MB of RAM, running Linux.

The first series of experiments compares the ability of
CVFDT and VFDT to deal with large concept-drifting data-
sets. Concept drift was added to the datasets in the follow-
ing manner. Every 50,000 examples wl was modified by
adding 0.01d~r to it, and the test set was relabeled with the
updated concept (with p% noise as before), tr was initially
1 and was multiplied by - 1 at 5% of the drift points and
also just before wl fell below 0 or rose above .25d. Figure 1
compares the accuracy of the algorithms as a function of
d, the dimensionality of the space. The reported values are
obtained by testing the accuracy of the learned models ev-
ery 10,000 examples throughout the run and averaging these
results. Drift level, reported on the minor axis, is the av-
erage percentage of the test set tha t changes label at each
point the concept changes. CVFDT is substantial ly more
accurate than VFDT, by approximately 10~ on average,
and CVFDT's performance improves slightly with increas-
ing d. Figure 2 compares the average size of the models
induced during the run shown in Figure 1 (the reported val-
ues are generated by averaging after every 10,000 examples,
as before). CVFDT's trees are substantial ly smaller than
VFDT's , and the advantage is consistent across all the val-
ues of d we tried. This simultaneous accuracy and size ad-
vantage derives from the fact tha t CVFDT's tree is built on
the 100,000 most relevant examples, while VFDT' s is built
on millions of outdated examples.

We next carried out a more detailed evaluation of
CVFDT's concept drift mechanism. Figure 3 shows a de-
tailed view of one of the runs from Figures 1 and 2, the one
for d = 50. The minor axis shows the portion of the test

102

~ , 9.5

8.5

8
~15 7.5 Jil, 6.5

6

5.5
0 - !iilii 5

,o

l l c v F E nn Leve I

F i g u r e 1: E r r o r r a t e s as a f u n c t i o n of t he n u m b e r of
a t t r i b u t e s .

3000 9.5

 ooo 'iii!i! !iiil

1500 I 7

1000 I 6.56

500]
5.5

O : ' ' , 5

30 6 0 100 150
N u m b e r IW 'At t f lbu te |

[m CVFDT Size ~ VFOT Size ~ Drift Level J t I

F i g u r e 2: Tree s i zes as a f u n c t i o n o f t h e n u m b e r o f
a t t r i b u t e s .

t
- . :.. ; - , =

5O 9O

* ,,:'f, *i
d \ ...: . e 0

1 . | : ." : g 7
~: ~..~. • - :: : . 3 0

10 ~ l O t ", • 20

O 9
16001100 ~r~cd]O00 ~ 37~0000 4 , ~

I~Jmber of Enmpll|
CVF D'F ~ r VFDT Erro¢ • Exlm~loe libeled - [

F i g u r e 3: E r r o r r a t e s of l e a r n e r s as a f u n c t i o n of t h e
n u m b e r of e x a m p l e s s e e n .

set that is labeled negative at each test point (computed
before noise is added to the test set) and is included to il-
lustrate the concept drift present in the dataset. CVFDT is
able to quickly respond to drift, while VFDT's error rate of-
ten rises drastically before reacting to the change. Further,
VFDT's error rate seems to peak at worse values as the run
goes on, while CVFDT's error peaks seem to have constant
height. We believe this happens because VFDT has more
trouble responding to drift when it has induced a larger tree
and must replicate corrections across more outdated struc-
ture. CVFDT does not face this problem because it replaces
subtrees when they become outdated. We gathered some
detailed statistics about this run. CVFDT took 4.3 times
longer than VFDT (5.7 times longer if including time to do
the disk I /O needed to keep the window on disk). VFDT's
average memory allocation over the course of the run was 23
MB while CVFDT's was 16.5 MB. The average number of
nodes in VFDT's tree was 2696 and the average number in
CVFDT's tree was 677, of which 132 were in alternate trees
and the remainder were in the main tree.

Next we examined how CVFDT responds to changing lev-
els of concept drift on five datasets with d -- 50. Drift was
added using a parameter D. Every 75,000 examples, D of
the concept hyperplane's weights were selected at random
and updated as before, wi = w i + 0.01d~i (although ~i now
has a 25% chance of flipping signs, chosen to prevent too
many weights from drifting in the same pattern). Figure 4
shows the comparison on these datasets. CVFDT substan-
tially outperformed VFDT at every level of drift. Notice
that VFDT's error rate approaches 50% for D > 2, and
that the variance in VFDT's data points is large. CVFDT's
error rate seems to grow smoothly with increasing levels of
concept change, suggesting that its drift adaptations are ro-
bust and effective,

We wanted to gain some insight into the way CVFDT
starts new alternate subtrees, prunes existing ones, and re-
places portions of H T with alternates. For this purpose,
we instrumented a run of CVFDT on the D = 2 dataset
from Figure 4 to output a token in response to each of these
events. We aggregated the events in chunks of 100,000 train-
ing examples, and generated data points for all non-zero val-
ues. Figure 5 shows the results of this experiment. There
are a large number of events during the run. For example,
109 alternate subtrees were swapped into H T . Most of the
swaps seem to occur when the examples in the test set are
changing labels quickly.

We also wanted to see how well CVFDT would compare
to a system using traditional drift-tracking methods. We
thus compared CVFDT, VFDT, and VFDT-Window. We
simulated VFDT-Window by running VFDT on W for ev-
ery 100,000 examples instead of for every example. The
dataset for the experiment had d = 50 and used the same
drift settings used to generate Figure 4 with D = 1. Fig-
ure 6 shows the results. CVFDT's error rate was the same
as VFDT-Window's, except for a brief period during the
middle of the run when class labels were changing most
rapidly. CVFDT's average error rate for the run was 16.3%,
VFDT's was 19.4%, and VFDT-Window's was 15.3%. The
difference in runtimes was very large. VFDT took about 10
minutes, CVFDT took about 46 minutes, and we estimate
that VFDT-Window would have taken 548 days to do its
complete run if applied to every new example. Put another
way, VFDT-Window provides a 4% accuracy gain compared

103

5O

45

40

35

~ 30 +:: ::...

25 i:i~:i

,~ 20 :!i!:::

~5 i iill
~o i:iiii

20

18

16

14

12

10

8

6

4

2

0

2Numbsr olr A i n u A i t r lbu~ . :

[- - ~ ,~
I CVFDT ~ VFDT ~ Dnlt Leve

F i g u r e 4: E r r o r r a t e s a s a f u n c t i o n o f t h e a m o u n t o f
c o n c e p t d r i f t .

° 0 0 0

":~ + 90.00

"" ~'"':: 80.00
10 + : : +

.~. '..:.'+ =. +
• ': + • + x+x " 70.00 'X

+o : + + + x + o - ; " y ' : . 8oo0

+x +x ~,~,. ++ \:+ ~.oo

:I +x sx ~ +
2 .+~ 20.00

~ . . , TlOOO
0 " ; ' ; ; ' : c ' , . 0.00
100000 1600000 3100000 4600000

Number Of' Ex lm l : l l e

J 4. Num. S~chedAN Num PmnedNt J
+ Num. New Ait|male$ Exempl#| tzbelld -

CVFDT Enm"

F i g u r e 5: C V F D T ' s d r i f t c h a r a c t e r i s t i c s .

8Q 1.2

50 --. 1

.... " ' " ' , i ' ~ % 88 ,,8 "".. ~ , , . ~ ,

, o _ _ j ',,
o o
100000 |800000 3100000 4r~00000

Number of GxlmlMl |
I - -.o - • C'vFDT Eem - - e - -VFOT Enor ,& WD'r-W Error [1~ Le~ I

F i g u r e 6: E r r o r r a t e s o v e r t i m e o f C V F D T , V F D T ,
a n d V F D T - W i n d o w .

to VFDT, at a cost of increasing the running t ime by a fac-
tor of 17,000. CVFDT provides 75% of VFDT-Window's
accuracy gain, and introduces a t ime penalty of less than
0.1% of VFDT-Window's .

CVFDT's al ternate trees and addit ional sufficient statis-
tics do not use too much RAM. For example, none of
CVFDT's d = 50 runs ever grew to more than 70MB. We
never observed CVFDT to use more RAM than VFDT; in
fact it often used as l i t t le as half the RAM of VFDT. The
systems' RAM requirements are dominated by the sufficient
statistics which are kept at the leaves in VFDT, and at every
node in CVFDT. We observed tha t V F D T often had twice
as many leaves as there were nodes in CVFDT's tree and all
al ternate trees combined. This is what we expected: VFDT
considers many more examples and is forced to grow larger
trees to make up for the fact tha t its early decisions be-
come incorrect due to concept drift. CVFDT's al ternate tree
pruning mechanism seems to be effective at t rading memory
for smooth transit ions between concepts. Further, there is
room for more aggressive pruning if CVFDT exhausts avail-
able RAM. Exploring this tradeoff is an area for future work.

4.2 Web Data
We are currently applying C V F D T to mining the s tream

of Web page requests emanat ing from the whole Univer-
sity of Washington main campus. The nature of the da ta
is described in detail in Wolman et al. [29]. In our experi-
ments so far we have used a one-week anonymized trace of all
the external web accesses made from the university campus.
There were 23,000 active clients during this one-week trace
period, and the entire university populat ion is est imated at
50,000 people (students, faculty and staff). The trace con-
tains 82.8 million requests, which arrive at a peak rate of
17,400 per minute. The size of the compressed trace file is
about 20 GB. 5 Each request is tagged with an anonymized
organization ID tha t associates the request with one of the
170 organizations (colleges, departments , etc.) within the
university. One purpose this da t a can be used for is to im-
prove Web caching. The key to this is predicting as accu-
rately as possible which hosts and pages will be requested in
the near future, given recent requests. We applied decision-
tree learning to this problem in the following manner. We
split the campus-wide request log into a series of equal t ime
slices To,T1,... , Tt , . . . ; in the experiments we report, each
t ime slice is an hour. For each organization O1, O2 , . . . , O~,
• .. , Ol~0 and each of the 244k hosts appearing in the logs
H 1 , . . . , H i , . . . , H244k, we maintained a count of how many
times the organization accessed the host in the t ime slice,
C~#. We discretized these counts into four buckets, repre-
senting "no requests," "1 - 12 requests," "13 - 25 requests"
and "26 or more requests." Then for each t ime slice and
host accessed in tha t t ime slice (Tt, Hi) we generated an ex-
ample with a t t r ibutes CI,#, . . . , Cij t , . . . C170,jt and class 1
if Hj is requested in t ime slice Tt+i and 0 if i t is not. This
can be carried out in real t ime using modest resources by
keeping statistics on the last and current t ime slices Ct-z
and Ct in memory, only keeping counts for hosts tha t actu-
ally appear in a t ime slice (we never needed more than 30k
counts), and output t ing the examples for Ct -z as soon as
Ct is complete. Using this procedure we obtained a dataset
containing 1.89 million examples, 60.9% of which were In-

'Th i s log is from May 1999. Traffic in May 2000 was more
than double this size.

104

beled with the most common class (that the host did not
appear again in the next time slice).

Our exploration was designed to determine if CVFDT's
concept drift features would provide any benefit to this ap-
plication. As each example arrived, we tested the accuracy
of the learners' models on it, and then allowed the learners
to update their models with the example. We kept statis-
tics about how the aggregated accuracies changed over time.
VFDT and CVFDT were both run with 6 = 0.0001, r = 5%,
and n,n~n = 300. CVFDT's additional parameters were
w = 100, 000 and f = 20,000. VFDT achieved 72.7% ac-
curacy over the whole dataset and CVFDT achieved 72.3%.
However, CVFDT's aggregated accuracy was higher for the
first 70% of the run, at times by as much as 1.0%. CVFDT's
accuracy fell behind only near the end of the run, for (we
believe) the following reason. Its drift tracking kept it ahead
throughout the first part of the run, but its window was too
small for it to learn as detailed a model of the data as VFDT
did by the end. This experiment shows that the data does
indeed contain concept drift, and that CVFDT's ability to
respond to the drift gives it an advantage over VFDT. The
next step is to run CVFDT with different, perhaps dynamic,
window sizes to further evaluate the nature of the drift. We
also plan to evaluate CVFDT over traces longer than a week.

5. RELATED WORK
Schlimmer and Granger's [23] STAGGER system was one

of the first to explicitly address the problem of concept
drift. Salganicoff [21] studied drift in the context of nearest-
neighbor learning. Widmer and Kubat 's [27] FLORA sys-
tem used a window of examples, but also stored old concept
descriptions and reactivated them if they seemed to be ap-
propriate again. All of these systems were only applied to
small databases (by today's standards). Kelly, Hand, and
Adams [14] addressed the issue of drifting parameters in
probability distributions. Theoretical work on concept drift
includes [16] and [3].

Ganti, Gehrke, and Ramakrishnan's [11] DEMON frame-
work is designed to help adapt incremental learning algo-
rithms to work effectively with time-changing data streams.
DEMON differs from CVFDT by assuming data arrives pe-
riodically, perhaps daily, in large blocks, while CVFDT deals
with each example as it arrives. The framework uses off-line
processing time to mine interesting subsets of the available
data blocks.

In earlier work [12] Gehrke, Ganti, and Ramakrishnan
presented an incremental decision tree induction algorithm,
BOAT, which works in the DEMON framework. BOAT is
able to incrementally maintain a decision tree equivalent to
the one that would be learned by a batch decision tree induc-
tion system. When the underlying concept is stable, BOAT
can perform this maintenance extremely quickly. When drift
is present, BOAT must discard and regrow portions of its
induced tree. This can be very expensive when the drift is
large or affects nodes near the root of the tree. CVFDT
avoids the problem by using alternate trees and removing
the restriction that it learn exactly the tree that a batch
system would. A comparison between BOAT and CVFDT
is an area for future work.

There has been a great deal of work on incrementally
maintaining association rules. Cheung, Han, Ng, and Wong
[7] and Fazil, Tansel, and Arkun [2] propose algorithms for
maintaining sets of association rules when new transactions

are added to the database. Sarda and Srinivas [22] have also
done some work in the area. DEMON's contribution [11] is
particularly relevant, as it addresses association rule main-
tenance specifically in the high-speed data stream domain
where blocks of transactions are added and deleted from the
database on a regular basis.

Aspects of the concept drift problem are also addressed
in the areas of activity monitoring [10], active data mining
[1] and deviation detection [6]. The main goal here is to
explicitly detect changes, rather than simply maintain an
up-to-date concept, but techniques for the latter can obvi-
ously help in the former.

Several pieces of research on concept drift and context-
sensitive learning are collected in a special issue of the jour-
nal Machine Learning [28]. Other relevant research ap-
peared in the ICML-96 Workshop on Learning in Context-
Sensitive Domains [15], the AAAI-98 Workshop on AI Ap-
proaches to Time-Series Problems [8], and the NIPS-2000
Workshop on Real-Time Modeling for Complex Learning
Tasks [26]. Turney [25] maintains an online bibliography on
context-sensitive learning.

6. FUTURE WORK
We plan to apply CVFDT to more real-world problems;

its ability to adjust to concept changes should allow it to
perform very well on a broad range of tasks. CVFDT may
be a useful tool for identifying anomalous situations. Cur-
rently CVFDT discards subtrees that axe out-of-date, but
some concepts change periodically and these subtrees may
become useful again - identifying these situations and taking
advantage of them is another area for further study. Other
areas for study include: comparisons with related systems;
continuous attributes; weighting examples; partially forget-
ting examples by allowing their weights to decay; simulating
weights by subsampling; and controlling the weight decay
function according to external information about drift.

7. CONCLUSION
This paper introduced CVFDT, a decision-tree induction

system capable of learning accurate models from the most
demanding high-speed, concept-drifting data streams.
CVFDT is able to maintain a decision-tree up-to-date with
a window of examples by using a small, constant amount
of time for each new example that arrives. The resulting
accuracy is similar to what would be obtained by reapplying
a conventional learner to the entire window every time a new
example arrives. Empirical studies show that CVFDT is
effectively able to keep its model up-to-date with a massive
data stream even in the face of large and frequent concept
shifts. A preliminary application of CVFDT to a real world
domain shows promising results.

8. ACKNOWLEDGMENTS
This research was partly supported by a gift from the Ford

Motor Company, and by NSF CAREER and IBM Faculty
awards to the third author.

9. REFERENCES
[1] R. Agrawal and G. Psaila. Active data mining. In

Proceedings of the First International Conference on
Knowledge Discovery and Data Mining, pages 3-8,
Montreal, Canada, 1995. AAAI Press.

105

[2] N. F. Ayan, A. U. Tansel, and M. E. Arkun. An
efficient algorithm to update large itemsets with early
pruning. In Proceedings of the Fifth A CM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, pages 287-291, San Diego, CA, 1999.
ACM Press.

[3] P. L. Bartlett, S. Ben-David, and S. R. Kull~rni.
Learning changing concepts by exploiting the
structure of change. Machine Learning, 41:153-174,
2000.

[4] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J.
Stone. Classification and Regression Trees.
Wadsworth, Belmont, CA, 1984.

[5] J. Catlett. Megainduction: Machine Learning on Very
Large Databases. PhD thesis, Basser Department of
Computer Science, University of Sydney, Sydney,
Australia, 1991.

[6] S. Chakrabaxti, S. Sarawagi, and B. Dora. Mining
surprising patterns using temporal description length.
In Proceedings of the Twenty-Fourth International
Conference on Very Large Data Bases, pages 606--617,
New York, NY, 1998. Morgan Kanfmann.

[7] D. W.-L. Cheung, J. Han, V. Ng, and C. Y. Wong.
Maintenance of discovered association rules in large
databases: An incremental updating technique. In
Proceedings of the Twelfth International Conference
on Data Engineering, pages 106-114, New Orleans,
Louisiana, 1996. IEEE Computer Society Press.

[8] A. Danyluk, T. Fawcett, and F. Provost, editors.
Proceedings of the AAAI-98 Workshop onPredicting
the Future: AI Approaches to Time-Series Analysis.
AAAI Press, Madison, WI, 1998.

[9] P. Domingos and G. Hulten. Mining high-speed data
streams. In Proceedings of the Sizth A CM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, pages 71-80, Boston, MA, 2000. ACM
Press.

[10] T. Fawcett and F. Provost. Activity monitoring:
Noticing interesting changes in behavior. In
Proceedings of the Fifth A CM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pages 53-62, San Diego, CA, 1999. ACM Press.

[11] V. Ganti, J. Gehrke, and R. Ramakrishnan. DEMON:
Mining and monitoring evolving data. In Proceedings
of the Sixteenth International Conference on Data
Engineering, pages 439-448, San Diego, CA, 2000.

[12] J. Gehrke, V. Ganti, R. Ramakrishnan, and W.-L.
Loh. BOAT: optimistic decision tree construction. In
Proceedings of the 1999 ACM SIGMOD International
Conference on Management of Data, pages 169-180,
Philadelphia, PA, 1999. ACM Press.

[13] W. Hoeffding. Probability inequalities for sums of
bounded random variables. Journal of the American
Statistical Association, 58:13-30, 1963.

[14] M. G. Kelly, D. J. Hand, and N. M. Adams. The
impact of changing populations on classifier
performance. In Proceedings of the Fifth ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 367-371, San
Diego, CA, 1999. ACM Press.

[15] M. Kubat and G. Widmer, editors. Proceedings of the
ICML-96 Workshop on Learning in Context-Sensitive
Domains. Bari, Italy, 1996.

[16] P. M. Long. The complexity of learning according to
two models of a drifting environment. Machine
Learning, 37:337-354, 1999.

[17] M. Mehta, A. Agrawal, and J. Rissanen. SLIQ: A fast
scalable classifier for data mining. In Proceedings of
the Fifth International Conference on Extending
Database Technology, pages 18-32, Avignon, France,
1996. Springer.

[18] R. G. Miller, Jr. Simultaneous Statistical Inference.
Springer, New York, NY, 2nd edition, 1981.

[19] R. Musick, J. Catlett, and S. Russell. Decision
theoretic subsampling for induction on large
databases. In Proceedings of the Tenth International
Conference on Machine Learning, pages 212-219,
Amherst, MA, 1993. Morgan Kaufmann.

[20] J. R. Quinlan. C~.5: Programs for Machine Learning.
Morgan Kanfmann, San Mateo, CA, 1993.

[21] M. Salganicoff. Density-adaptive learning and
forgetting. In Proceedings of the Tenth International
Conference on Machine Learning, pages 276-283,
Amherst, MA, 1993. Morgan Kaufmann.

[22] N. L. Sarda and N. V. Srinivas. An adaptive algorithm
for incremental mining of association rules. In
Proceedings of the Ninth International Workshop on
Database and Expert Systems Applications, pages
240-245, Vienna, Austria, 1998. IEEE.

[23] J. C. Schlimmer and R. H. Granger, Jr. Beyond
incremental processing: Tracking concept drift. In
Proceedings of the Fifth National Conference on
Artificial Intelligence, pages 502-507, Philadelphia,
PA, 1986. Morgan Kaufmann.

[24] J. C. Sharer, R. Agrawal, and M. Mehta. SPRINT: A
scalable parallel classifier for data mining. In
Proceedings of the Twenty-Second International
Conference on Very Large Databases, pages 544-555,
Bombay, India, 1996. Morgan Kaufmann.

[25] P. Turney. Context-sensitive learning bibliography.
Online bibliography, Institute for Information
Technology of the National Research Council of
Canada, Ottawa, Canada, 1998. http://ai.iit.nrc.ca/-
bibliographies/eontext-sensitive.html.

[26] S. Vijayakumar and S. Schaal, editors. Proceedings of
the NIPS-~O00 Workshop on Real-Time Modeling for
Complex Learning Tasks. NIPS Foundation,
Breckenridge, Colorado, 2000.

[27] G. Widmer and M. Kubat. Learning in the presence of
concept drift and hidden contexts. Machine Learning,
23:69-101, 1996.

[28] G. Widmer and M. Kubat. Special issue on context
sensitivity and concept drift: Machine Learning, 32(2),
1998.

[29] A. Wolman, G. Voelker, N. Sharma, N. Cardweli,
M. Brown, T. Landray, D. Pinnel, A. Karlin, and
H. Levy. Organization-based analysis of Web-object
sharing and caching. In Proceedings of the Second
USENIX Conference on Internet Technologies and
Systems, pages 25-36, Boulder, CO, 1999.

106

