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ABSTRACT 
Most statistical and machine-learning algorithms assume 
tha t  the da ta  is a random sample drawn from a station- 
ary distribution. Unfortunately, most of the large databases 
available for mining today violate this assumption. They 
were gathered over months or years, and the underlying pro- 
cesses generating them changed during this time, sometimes 
radically. Although a number of algorithms have been pro- 
posed for learning time-changing concepts, they generally 
do not scale well to very large databases. In this paper we 
propose an efficient algorithm for mining decision trees from 
continuously-changing da ta  streams, based on the ultra-fast 
VFDT decision tree learner. This algorithm, called CVFDT, 
stays current while making the most of old da ta  by growing 
an alternative subtree whenever an old one becomes ques- 
tionable, and replacing the old with the new when the new 
becomes more accurate. CVFDT learns a model which is 
similar in accuracy to the one that  would be learned by 
reapplying VFDT to a moving window of examples every 
t ime a new example arrives, but  with O(1) complexity per 
example, as opposed to O(w), where w is the size of the 
window. Experiments on a set of large time-changing da ta  
streams demonstrate  the utility of this approach. 

Categories and Subject Descriptors 
H.2.8 [ D a t a b a s e  M a n a g e m e n t ] :  Database Appl ica t ions--  
data mining; 1.2.6 [Artificial Intelligence]: Learning--  
concept learning; 1.5.2 [ P a t t e r n  Recogn i t i on ] :  Design Me- 
thodology-classifier design and evaluation 

General Terms 
Decision trees, Hoeffding bounds, incremental learning, da ta  
streams, subsampling, concept drift 
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1. INTRODUCTION 
Modern organizations produce da ta  at unprecedented 

rates; among large retailers, e-commerce sites, telecommuni- 
cations providers, and scientific projects, rates of gigabytes 
per day are common. While this da ta  can contain valuable 
knowledge, its volume increasingly outpaees practit ioners '  
ability to mine it. As a result, it  is now common practice 
either to mine a subsample of the available da ta  or to mine 
for models drastically simpler than the da ta  could support.  
In some cases, the volume and t ime span of accumulated 
da ta  is such that  just  storing it consistently and reliably 
for future use is a challenge. Further,  even when storage is 
not problematic,  it  is often difficult to gather the da ta  in 
one place, at  one time, in a format appropriate  for mining. 
For all these reasons, in many areas the notion of mining a 
fixed-sized database is giving way to the notion of mining 
an open-ended da ta  s tream as it arrives. The goal of our re- 
search is to help make this possible with a minimum of effort 
for the da ta  mining practit ioner.  In a previous paper [9] we 
presented VFDT,  a decision tree induction system capable 
of learning from high-speed da ta  streams in an incremental, 
anytime fashion, while producing models that  axe asymp- 
totically arbitrari ly close to those tha t  would be learned by 
tradi t ional  decision tree induction systems. 

Most statistical and machine-learning algorithms, includ- 
ing VFDT,  make the assumption tha t  training da ta  is a 
random sample drawn from a s tat ionary distribution. Un- 
fortunately, most of the large databases and da ta  streams 
available for mining today violate this assumption. They ex- 
ist over months or years, and the underlying processes gen- 
erating them changes during this time, sometimes radically. 
For example, a new product  or promotion, a hacker's attack, 
a holiday, changing weather conditions, changing economic 
conditions, or a poorly calibrated sensor could all lead to vio- 
lations of this assumption. For classification systems, which 
a t tempt  to learn a discrete function given examples of its in- 
puts and outputs,  this problem takes the form Of changes in 
the target  function over time, and is known as concept drift. 
Traditional systems assume tha t  all da ta  was generated by a 
single concept. In many cases, however, it  is more accurate 
to assume tha t  da ta  was generated by a series of concepts, or 
by a concept function with t ime-varying parameters.  Tradi- 
tional systems learn incorrect models when they erroneously 
assume tha t  the underlying concept is s tat ionary if in fact 
it  is drifting. 

One common approach to learning from time-changing 
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data  is to repeatedly apply a tradit ional  learner to a slid- 
ing window of ~v examples; as new examples arrive they are 
inserted into the beginning of the window, a corresponding 
number of examples is removed from the end of the win- 
dow, and the learner is reapplied [27]. As long as w is small 
relative to the rate of concept drift, this procedure assures 
availability of a model reflecting the current concept gen- 
erating the data.  If the window is too small, however, this 
may result in insufficient examples to satisfactorily learn the 
concept. Further,  the computat ional  cost of reapplying a 
learner may be prohibitively high, especially if examples ar- 
rive at  a rapid rate and the concept changes quickly. 

To meet these challenges we propose the CVFDT system, 
which is capable of learning decision trees from high-speed, 
t ime changing da ta  streams. CVFDT works by efficiently 
keeping a decision tree up-to-date  with a window of exam- 
ples. In particular,  it  is able to keep its model consistent 
with a window using only a constant amount of t ime for 
each new example (more precisely, t ime proportional to the 
number of a t t r ibutes  in the da ta  and the depth of the in- 
duced tree). CVFDT grows an al ternate subtree whenever 
an old one seems to be out-of-date, and replaces the old one 
when the new one becomes more accurate. This allows it to 
make smooth, fine-grained adjustments  when concept drift 
occurs. In effect, CVFDT is able to learn a nearly equivalent 
model to the one VFDT would learn if repeatedly reapplied 
to a window of examples, but  in O(1) t ime instead of O(w)  
t ime per new example. 

In the next section we discuss the basics of the VFDT sys- 
tem, and in the following section we introduce the CVFDT 
system. We then present a series of experiments on synthetic 
da ta  which demonstrate  how CVFDT can outperform tradi- 
tional systems on high-speed, time-changing da ta  streams. 
Next, we apply CVFDT to mining the stream of web page 
requests for the entire University of Washington campus. 
We conclude with a discussion of related and future work. 

2. THE VFDT SYSTEM 
The classification problem is generally defined as follows. 

A set of N training examples of the form (x, y) is given, 
where y is a discrete class label and x is a vector of d at-  
tr ibutes,  each of which may be symbolic or numeric. The 
goal is to produce from these examples a model y = f ( x )  
which will predict the classes y of future examples x with 
high accuracy. For example, x could be a description of a 
client's recent purchases, and y the decision to send that  cus- 
tomer a catalog or not; or x could be a record of a cellular- 
telephone call, and y the decision whether it is fraudulent 
or not. One of the most effective and widely-used classifi- 
cation methods is decision tree learning [4, 20]. Learners of 
this type  induce models in the form of decision trees, where 
each node contains a test  on an at t r ibute,  each branch from 
a node corresponds to a possible outcome of the test,  and 
each leaf contains a class prediction. The label y = DT(x )  
for an example x is obtained by passing the example down 
from the root to a leaf, testing the appropriate  a t t r ibute  at  
each node and following the branch corresponding to the 
a t t r ibute ' s  value in the example. A decision tree is learned 
by recursively replacing leaves by test  nodes, s tart ing at  the 
root. The a t t r ibute  to test  at  a node is chosen by compar- 
ing all the available a t t r ibutes  and choosing the best  one 
according to some heuristic measure. Classic decision tree 
learners like C4.5 [20], CART, SLIQ [17], and SPRINT [24] 

T a b l e  1: T h e  V F D T  A l g o r i t h m .  

Inputs: 

Output:  

S is a stream of examples, 
X is a set of symbolic a t t r ibutes ,  
G(.) is a split evaluation function, 

is one minus the desired probabil i ty of 
choosing the correct a t t r ibute  at  any 
given node, 

1- is a user-supplied tie threshold, 
nmin is the # examples between checks for 

growth. 
H T  is a decision tree. 

P r o c e d u r e  V F D T  (S, X,  G, ~, r )  
Let H T  be a tree with a single leaf ll  (the root). 
Let X l  = X U {X¢}. 
Let G1 (X¢) be the ~ obtained by predicting the most 

frequent class in S. 
For each class yk 

For each value xij  of each a t t r ibu te  Xi E X 
Let nij~(lx) -- 0. 

For each example (x, y) in S 
Sort (x, y) into a leaf I using H T .  
For each xij  in x such tha t  X~ E Xz 

Increment nij~ (1). 
Label l with the major i ty  class among the examples 

seen so far at  1. 
Let nL be the number of examples seen at  I. 
If the examples seen so far at  l are not all of the same 

class and nl mod n,~,~ is 0, then 
Compute GI(Xi)  for each a t t r ibu te  Xi E Xl - {X¢} 

using the counts n~jk(l). 
Let Xa be the a t t r ibute  with highest GI. 
Let Xb be the a t t r ibute  with second-highest GI. 
Compute  ~ using Equation 1. 
Let A-GI = "Gl(Xa) - -Gl(Xb). 
If ((AGt > e) or (AGt < - -  e < r ) )  and Xa ~ X~, then 

Replace l by an internal node tha t  splits on X , .  
For each branch of the split 

Add a new leaf l~ ,  and let Xm = X - {X,}.  
Let G,n(X¢) be the  G obtained by predicting 

the most frequent class at  lm. 
For each class yk and each value z i j  of each 

a t t r ibu te  Xi E Xm - -  {X0} 
Let nijk(l,,~) = O. 

Return H T .  
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use every available training example to select the best at-  
t r ibute  for each split. This policy is necessary when da ta  is 
scarce, but  it  has two problems when training examples are 
abundant:  it  requires all examples be available for consid- 
eration throughout their entire runs, which is problematic 
when da ta  does not fit in RAM or on disk, and it assumes 
tha t  the process generating examples remains the same dur- 
ing the entire period over which the examples are collected 
and mined. 

In previous work [9] we presented the VFDT (Very Fast  
D_ecision T.ree learner) system, which is able to learn from 
abundant  da ta  within practical t ime and memory constrai- 
nts. I t  accomplishes this by noting, with Catlet t  [5] and oth- 
ers [12, 19], that  it  may be sufficient to use a small sample 
of the available examples when choosing the split a t t r ibute  
at  any given node. Thus, only the first examples to arrive 
on the da ta  stream need to be used to choose the split at- 
t r ibute at  the root; subsequent ones are passed through the 
induced portion of the tree until they reach a leaf, are used 
to choose a split a t t r ibute  there, and so on recursively. To 
determine the number of examples needed for each decision, 
VFDT uses a statistical result known as Hoeffdin9 bounds 
or additive Chernoff bounds [13]. After n independent ob- 
servations of a real-valued random variable r with range R, 
the Hoeffding bound ensures that ,  with confidence 1 -  6, the 
true mean of r is at  least V -  e, where V is the observed mean 
of the samples and 

~ / R  2 In( l /6)  
e = 2n (1) 

This is true irrespective of the probabil i ty distribution that  
generated the observations. Let G(XI) be the heuristic mea- 
sure used to choose test a t t r ibutes  (we use information gain). 
After seeing n samples at  a leaf, let X~ be the a t t r ibute  with 
the best heuristic measure and Xb be the a t t r ibute  with the 
second best. Let AG = G(X~) - G(Xb) be a new random 
variable, the difference between the observed heuristic val- 
ues. Applying the Hoeffding bound to AG, we see that  if 
AG > ~ (as calculated by Equation 1 with a user-supplied 
6), we can confidently say that  the difference between G(X~) 
and "G(Xb) is larger than zero, and select X~ as the split at- 
tr ibute.l .2 Table 1 contains pseudo-code for VFDT's  core al- 
gorithm. The counts nijlc are the sufficient statistics needed 
to compute most heuristic measures; if other quantities are 
required, they can be similarly maintained. When the suffi- 
cient statistics fill the available memory, VFDT reduces its 
memory requirements by temporari ly deactivating learning 
in the least promising nodes; these nodes can be reactivated 
later if they begin to look more promising than currently 
active nodes. VFDT employs a tie mechanism which pre- 
cludes it from spending inordinate t ime deciding between 

1This is valid as long as G (and therefore AG)  can be viewed 
as an average over all examples seen at  the leaf, which is the 
case for most commonly-used heuristics. For example, if 
information gain is used, the quanti ty being averaged is the 
reduction in the uncertainty regarding the class membership 
of the example. 
2In this paper we assume that  the third-best  and lower at- 
t r ibutes have sufficiently smaller gains tha t  their probabili ty 
of being the true best choice is negligible. We plan to lift 
this assumption in future work. If the a t t r ibutes  at  a given 
node are (pessimistically) assumed independent,  it  simply 
involves a Bonferroni correction to 6 [18]. 

a t t r ibutes  whose practical difference is negligible. That  is, 
VFDT declares a tie and selects Xa as the split a t t r ibute  
any t ime A G  < e < r (where I" is a user-supplied tie thresh- 
old). Pre-pruning is carried out by considering at  each node 
a "null" a t t r ibute  X¢ tha t  consists of not spli t t ing the node. 
Thus a split will only be made if, with confidence 1 - 6, the 
best split found is bet ter  according to G than not splitting. 
Notice that  the tests for splits and ties are only executed 
once for every n,,,in (a user supplied value) examples tha t  
arrive at a leaf. This is justified by the observation that  
VFDT is unlikely to make a decision after any given exam- 
ple, so it is wasteful to carry out these calculations for each 
one of them. The pseudo-code shown is only for symbolic 
attr ibutes;  we are currently developing its extension to nu- 
meric ones. The sequence of examples S may be infinite, in 
which case the procedure never terminates,  and at any point 
in time a parallel procedure can use the current tree HT to 
make class predictions. 

Using off-the-shelf hardware, VFDT is able to learn as 
fast as da ta  can be read from disk. The t ime to incorporate 
an example is O(ldvc) where l is the maximum depth of 
HT, d is the number of at t r ibutes,  v is the maximum num- 
ber of values per at t r ibute,  and c is the number of classes. 
This t ime is independent of the to ta l  number of examples 
already seen (assuming the size of the tree depends only on 
the "true" concept, and not on the dataset) .  Because of the 
use of Hoeffding bounds, these speed gains do not necessar- 
ily lead to a loss of accuracy. I t  can be shown that ,  with 
high confidence, the core VFDT system (without ties or de- 
activations due to memory constraints) will asymptotically 
induce a tree arbitrari ly close to the tree induced by a tra-  
ditional batch learner. Let DToo be the tree induced by a 
version of VFDT using infinite da ta  to choose each node's 
split a t t r ibute,  HT6 be the tree learned by the core VFDT 
system given an infinite da ta  stream, and p be the proba- 
bility that  an example passed through DToo to level i will 
fall into a leaf at  that  point. Then the probabil i ty that  an 
arbi t rary example will take a different path  through DT~ 
and HT6 is bounded by 6/p [9]. A corollary of this result 
states tha t  the tree learned by the core VFDT system on 
a finite sequence of examples will correspond to a subtree 
of DT~ with the same bound of 6/p. See Domingos and 
Hulten [9] for more details on VFDT and this 6/p bound. 

3. THE CVFDT SYSTEM 
CVFDT (Concept-adapting Very Fas t  Decision Tree 

learner) is an extension to VFDT which maintains VFDT's  
speed and accuracy advantages but  adds the ability to detect 
and respond to changes in the example-generating process. 
Like other systems with this capability, CVFDT works by 
keeping its model consistent with a sliding window of ex- 
amples. However, it  does not need to learn a new model 
from scratch every t ime a new example arrives; instead, it 
updates the sufficient statistics at  its nodes by incrementing 
the counts corresponding to the new example, and decre- 
menting the counts corresponding to the oldest example in 
the window (which now needs to be forgotten). This will 
statist ically have no effect if the underlying concept is sta- 
tionary. If the concept is changing, however, some splits 
that  previously passed the Hoeffding test will no longer do 
so, because an al ternative a t t r ibu te  now has higher gain (or 
the two are too close to tell). In this case CVFDT begins to 
grow an alternative subtree with the new best  a t t r ibute  at  

99 



Table  2: T h e  C V F D T  a lgo r i t hm.  

Inputs: S 
X 
G(.) 
6 

T 

7"~rain 

f 
Output:  H T  

is a sequence of examples, 
is a set of symbolic attributes, 
is a split evaluation function, 
is one minus the desired probability of 
choosing the correct attribute at any 
given node, 
is a user-supplied tie threshold, 
is the size of the window, 
is the # examples between checks for growth, 
is the # examples between checks for drift. 
is a decision tree. 

P r o c e d u r e  C V F D T ( S ,  X, G, 6, ~', w, nm~)  
/* Initialize */ 
Let H T  be a tree with a single leaf 11 (the root). 
Let ALT(I1) be an initially empty set of alternate 

trees for 11. 
Let G1 (X¢) be the G obtained by predicting the most 

frequent class in S. 
Let Xx = X U {X~ ). 
Let W be the window of examples, initially empty. 
For each class yk 

For each value xij of each attribute Xi E X 
Let n~jk(ll) = O. 

/* Process the examples */ 
For each example (x, #) in S 

Sort (x, y) into a set of leaves L using H T  and all 
trees in A L T  of any node (x, y) passes through. 

Let I D  be the maximum id of the leaves in L. 
Add ((x, y), ID)  to the beginning of W. 
If ,wl > 

Let ((xto, yw),ID~o) be the last element of W 
ForgetExamples(HT, n, (x~, y . ) ,  ID~o) 
Let W = W with ((x~, yw),ID,v) removed 

CVFDTGrow(HT, n, G, (x, y), 6, nmin, ~') 
If there have been f examples since the last checking 

of alternate trees 
CheckSplitValidity(HT, n, 6) 

Return HT.  

Table  3: T h e  C V F D T G r o w  p r o c e d u r e .  

P r o c e d u r e  C V F D T G r o w ( H T ,  n, G, (x, y), 6, nmi~, r )  
Sort (x, y) into a leaf I using HT.  
Let P be the set of nodes traversed in the sort. 
For each node lpi in P 

For each x~j in x such that  X~ E Xt~ 
Increment nij~ (lp). 

For each tree To in ALT(ln)  
CVFDTGrow(Ta, n, G, (x, y), 6, nmi~, r)  

Label l with the majority class among the examples seen 
so far at I. 

Let nl be the number of examples seen at I. 
If the examples seen so far at l are not all of the same 

class and nz mod n,~n is 0, then 
Compute Gt(Xi) for each attribute Xi E Xt  - {Xv ) 

using the counts nijk(l). 
Let Xa be the attribute with highest Gl. 
Let Xb be the attribute with second-highest ~l.  
Compute e using Equation 1 and 6. 
Let AG'--~ = "G~(X~) - " G l ( X b )  

If ((AG~ > ~) or (AGt < =  ~ < ~')) and Xa ~ X¢, then 
Replace l by an internal node that  splits on Xo. 
For each branch of the split 

Add a new leaf Ira, and let Xm = X - {Xa}. 
Let ALT(I,~) = {}. 
Let G~(X0)  be the G obtained by predicting the 

most frequent class at l,~. 
For each class yk and each value xij of each 

attribute Xi E Xm - {X0} 
Let nijk(l,n) = O. 

its root. When this alternate subtree becomes more accurate 
on new data than the old one, the old subtree is replaced by 
the new one. 

Table 2 contains a pseudo-code outline of the CVFDT 
algorithm. CVFDT does some initializations, and then pro- 
cesses examples from the stream S indefinitely. As each 
example (x,y) arrives, it is added to the window 3, an old 
example is forgotten if needed, and (x, y) is incorporated 
into the current model. CVFDT periodically scans H T  and 
all alternate trees looking for internal nodes whose sufficient 
statistics indicate that  some new attribute would make a 
better test than the chosen split attribute. An alternate 
subtree is started at each such node. 

Table 3 contains pseudo-code for the tree-growing por- 
tion of the CVFDT system. It is similar to the Hoeffding 
Tree algorithm, but CVFDT monitors the validity of its old 
decisions by maintaining sufficient statistics at every node 
in H T  (instead of only at the leaves like VFDT). Forget- 
ting an old example is slightly complicated by the fact that  
H T  may have grown or changed since the example was ini- 
tially incorporated. Therefore, nodes are assigned a unique, 
monotonically increasing I D  as they are created. When an 
example is added to W, the maximum I D  of the leaves it 
reaches in H T  and all alternate trees is recorded with it. An 
example's effects are forgotten by decrementing the counts 
in the sufficient statistics of every node the example reaches 

3The window is stored in RAM if resources are available, 
otherwise it will be kept on disk. 
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T a b l e  4: T h e  F o r g e t E x a m p l e  p r o c e d u r e .  T a b l e  5: The CheckSplitValidity p r o c e d u r e .  

P r o c e d u r e  F o r g e t E x a m p l e ( H T ,  n, (x~,  yw), IDa) 
Sort (Xw, y~) through HT while it  traverses leaves 

with id ~ IDa,, 
Let P be the set of nodes traversed in the sort. 
For each node l in P 

For each xij  in x such tha t  X~ E Xl 
Decrement nijk(1). 

For each tree Tau in ALT(I) 
ForgetExample(Tau, n, (x~,  y~), ID~o) 

in HT whose ID is < the stored ID. See the pseudo-code in 
Table 4 for more detail  about  how CVFDT forgets examples. 

CVFDT periodically scans the internal nodes of HT look- 
ing for ones where the chosen split a t t r ibute  would no longer 
be selected; that  is, where G(Xa)  - "G(Xb) < e and e > r .  
When it finds such a node, CVFDT knows that  it  either 
initially made a mistake split t ing on Xa (which should hap- 
pen less than ~% of the time), or that  something about  the 
process generating examples has changed. In either case, 
CVFDT will need to take action to correct HT. CVFDT 
grows alternate subtrees to changed subtrees of HT, and 
only modifies HT when the al ternate is more accurate than 
the original. To see why this is needed, let IA be a node 
where change was detected. A simple solution is to replace 
IA with a leaf predicting the most common class in l / , ' s  suf- 
ficient statistics. This policy assures that  HT is always as 
current as possible with respect to the process generating 
examples. However, i t  may be too drastic, because it ini- 
t ially forces a single leaf to do the job previously done by a 
whole subtree. Even if the subtree is outdated,  it  may still 
be bet ter  than the best single leaf. This is part icularly true 
when l/, is at or near the root of HT, as it will result in 
drastic short- term reductions in HT's predictive accuracy - 
clearly not acceptable when a parallel process is using HT 
to make critical decisions. 

Each internal node in HT has a list of alternate subtrees 
being considered as replacements for the subtree rooted at 
the node. Table 5 contains pseudo-code for the CheckSplit- 
Validity procedure. CheckSplitValidity starts an al ternate 
subtree whenever it  finds a new winning a t t r ibute  at a node; 
that  is, when there is a new best a t t r ibute  and A ~  > e or if 
e < r and A ~  > r / 2 .  This is very similar to the procedure 
used to choose initial splits, except the tie criteria is tighter 
to avoid excessive al ternate tree creation. CVFDT supports 
a parameter  which limits the total  number of al ternate trees 
being grown at  any one time. Alternate trees are grown 
the same way HT is, via recursive calls to the CVFDT pro- 
cedures. Periodically, each node with a non-empty set of 
al ternate subtrees, Ire,t, enters a testing mode to determine 
if it  should be replaced by one of its al ternate subtrees. Once 
in this mode, lt~st collects the next m training examples that  
arrive at  it  and, instead of using them to grow its children 
or al ternate trees, uses them to compare the accuracy of the 
subtree i t  roots with the accuracies of all of its al ternate 
subtrees. If the most accurate al ternate subtree is more ac- 
curate than the ltest, ltest is replaced by the alternate. Dur- 
ing the test phase, CVFDT also prunes al ternate subtrees 
that  are not making progress (i.e., whose accuracy is not in- 

P r o c e d u r e  C h e c k S p l i t V a l i d i t y ( H T ,  n, ~) 
For each node l in HT tha t  is not a leaf 

For each tree T~u in ALT(I) 
CheckSplitValidity (T~u, n) 

Let Xa be the split a t t r ibute  at  I. 
Let Xn be the a t t r ibute  with the highest Gl 

other than Xa. 
Let Xb be the a t t r ibute  with the highest G~ 

other than Xn. 
Let AGI = ~l(Xn) -- -Gl(Xb) 
If AG~ _> 0 and no tree in ALT(I) already splits on 

Xn at  its root 
Compute e using Equation 1 and 6. 
If (AGt > e) or (e < 7 and AGt > r /2 ) ,  then 

Let l ~  be an internal node tha t  splits on X~. 
Let ALT(l) = ALT(I) + { l , ~ )  
For each branch of the  split 

Add a new leaf Im to lnew 
Let Xm -- X - {X,,}. 
Let ALT(I,~) = {}. 
Let G , , (X~)  be the G obtained by predicting 

the most frequent class at  l,~. 
For each class yk and each value x 0 of each 

a t t r ibute  X~ E Xm - {X$} 
Let nOk(Im ) = O. 

i creasing over time). For each al ternate subtree of ltest, lau, 
CVFDT remembers the smallest accuracy difference ever 
achieved between the two, /k,n~,,(ltest, lilt). CVFDT prunes 
any alternate whose current test  phase accuracy difference 
is at  least A,ni~(lt~st, l~lt) + 1%. 4 

One window size w will not he appropriate  for every con- 
cept and every type  of drift; it  may be beneficial to dynam- 
ically change w during a run. For example, it  may make 
sense to shrink w when many of the nodes in HT become 
questionable at  once, or in response to a rapid change in 
da ta  rate, as these events could indicate a sudden concept 
change. Similarly, some applications may benefit from an in- 
crease in w when there are few questionable nodes because 
this may indicate tha t  the concept is stable - a good time to 
learn a more detailed model. CVFDT is able to dynamically 
adjust  the size of its window in response to user-supplied 
events. Events are specified in the form of hook functions 
which monitor S and HT and can call the SetWindowSize 
function when appropriate.  CVFDT changes the window 
size by updat ing w and immediately forgetting any exam- 
ples tha t  no longer fit in W.  

We now discuss a few of the properties of the CVFDT sys- 
tem and briefly compare it with VFDT-Window,  a learner 
that  reapplies VFDT to W for every new example. CVFDT 
requires memory proport ional  to O(ndvc) where n is the 
number of nodes in CVFDT's  main tree and all al ternate 
trees, d is the number of at t r ibutes,  v is the maximum num- 
ber of values per a t t r ibute ,  and c is the number of classes. 
The window of examples can be in RAM or can be stored on 

4When RAM is short, CVFDT is more aggressive about 
pruning unpromising al ternate subtrees. 
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disk at the cost of a few disk accesses per example. There- 
fore, CVFDT's  memory requirements are dominated by the 
sufficient statistics and are independent of the total  num- 
ber of examples seen. At any point during a run, CVFDT 
will have available a model which reflects the current con- 
cept generating IV. It  is able to keep this model up-to-date  
in time proport ional  to O(ledvc) per example, where lc is 
the length of the longest path  an example will have to take 
through H T  times the number of al ternate trees. VFDT- 
Window requires O(lvdvcw) t ime to keep its model up-to- 
date for every new example, where Iv is the maximum depth 
of HT.  VFDT is a factor of wlv/lc worse than CVFDT; em- 
pirically, we observed lc to be smaller than l~ in all of our 
experiments.  Despite this large t ime difference, CVFDT's  
drift mechanisms allow it to produce a model of similar ac- 
curacy. The structure of the models induced by the two may, 
however, be significantly different, for the following reason. 
VFDT-Window uses the information from each training ex- 
ample at  one place in the tree it induces: the leaf where 
the example falls when it arrives. This means that  VFDT- 
Window uses the first examples from IV to make a decision 
at  its root, the next to make a decision at  the first level of 
the tree, and so on. After an initial building phase, CVFDT 
will have a fully induced tree available. Every new example 
is passed through this induced tree, and the information it 
contains is used to update  statistics at every node it passes 
through. This difference can be an advantage for CVFDT,  
as it  allows the induction of larger trees with bet ter  proba- 
bil i ty estimates at  the leaves. I t  can also be a disadvantage 
and VFDT-Window may be more accurate when there is a 
large concept shift part-way through IV. This is because 
VFDT-Window's  leaf probabilities will be set by examples 
near the end of IV while CVFDT's  will reflect all of W. 
Also notice that ,  even when the structure of the induced 
tree does not change, CVFDT and VFDT-Window can out- 
perform VFDT simply because their leaf probabilities (and 
therefore class predictions) are updated  faster, without the 
"dead weight" of all the examples tha t  fell into leaves before 
the current window. 

4. EMPIRICAL STUDY 
We conducted a series of experiments comparing CVFDT 

to VFDT and VFDT-Window. Our goals were to evaluate 
CVFDT's  ability to scale up, to evaluate CVFDT's  abili ty 
to deal with varying levels of drift, and to identify and char- 
acterize the situations where CVFDT outperforms the other 
systems. 

4.1 Synthetic Data 
The experiments with synthetic da ta  used a changing con- 

cept based on a rotat ing hyperplane. A hyperplane in d- 
dimensional space is the set of points x that  satisfy 

d 

w,~, = ~0 (2) 
i = l  

where x, is the i th coordinate of x. Examples for which 
~'~=1 wix~ ~ wo are labeled positive, and examples for which 

d ~ i = 1  wixi < wo are labeled negative. Hyperplanes are use- 
ful for simulating time-changing concepts because we can 
change the orientation and position of the hyperplane in a 
smooth manner by changing the relative size of the weights. 

In particular,  sorting the weights by their magnitudes pro- 
vides a good indication of which dimensions contain the 
most information; in the limit, when all but  one of the 
weights are zero, the dimension associated with the non-zero 
weight is the only one tha t  contains any information about  
the concept. This allows us to control the relative informa- 
tion content of the at t r ibutes,  and thus change the optimal 
order of tests in a decision tree representing the hyperplane, 
by simply changing the relative sizes of the weights. We 
sought a concept tha t  maintained the advantages of a hy- 
perplane, but  where the  weights could be randomly modi- 
fied without potential ly causing the decision frontier to move 
outside the range of the data.  To meet these goals we used a 
series of al ternating class bands separated by parallel hyper- 
planes. We start  with a reference hyperplane whose weights 
are initialized to .2 except for wo which is .25d. To label 
an example, we subst i tute  its coordinates into the left hand 
side of Equation 2 to obtain a sum s. If Isl _< .1 * w0 the 
example is labeled positive, otherwise if Isl _< .2 * w0 the 
example is labeled negative, and so on. Examples were gen- 
erated uniformly in a d-dimensional unit hypercube (with 
the value of each xi ranging from [0, 1]). They were then 
labeled using the concept, and their  continuous at t r ibutes  
were u~iformly discretized into five bins. Noise was added 
by randomly switching the class labels of p ~  of the exam- 
ples. Unless otherwise stated,  each experiment used the fol- 
lowing settings: five million training examples; /f = 0.0001; 
f = 20, 000; nm~ = 300; r = 0.05; w = 100, 000; CVFDT's  
window on disk; no memory limits; no pre-pruning; a test  
set of 50,000 examples; and p = 5%. CVFDT put  leaves into 
al ternate tree test mode after 9,000 examples and used test 
samples of 1,000 examples. All runs were done on a 1GHz 
Pentium III  machine with 512 MB of RAM, running Linux. 

The first series of experiments compares the ability of 
CVFDT and VFDT to deal with large concept-drifting data-  
sets. Concept drift was added to the datasets  in the follow- 
ing manner. Every 50,000 examples wl was modified by 
adding 0.01d~r to it, and the test  set was relabeled with the 
updated  concept (with p% noise as before), tr was initially 
1 and was multiplied by - 1  at  5% of the drift points and 
also just  before wl fell below 0 or rose above .25d. Figure 1 
compares the accuracy of the algorithms as a function of 
d, the dimensionality of the space. The reported values are 
obtained by testing the accuracy of the learned models ev- 
ery 10,000 examples throughout  the run and averaging these 
results. Drift level, reported on the minor axis, is the av- 
erage percentage of the  test  set tha t  changes label at  each 
point the concept changes. CVFDT is substantial ly more 
accurate than VFDT,  by approximately 10~ on average, 
and CVFDT's  performance improves slightly with increas- 
ing d. Figure 2 compares the average size of the models 
induced during the run shown in Figure 1 (the reported val- 
ues are generated by averaging after every 10,000 examples, 
as before). CVFDT's  trees are substantial ly smaller than 
VFDT's ,  and the advantage is consistent across all the val- 
ues of d we tried. This simultaneous accuracy and size ad- 
vantage derives from the fact tha t  CVFDT's  tree is built  on 
the 100,000 most relevant examples, while VFDT' s  is built  
on millions of outdated examples. 

We next carried out a more detailed evaluation of 
CVFDT's  concept drift mechanism. Figure 3 shows a de- 
tailed view of one of the runs from Figures 1 and 2, the one 
for d = 50. The minor axis shows the portion of the test 
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set that is labeled negative at each test point (computed 
before noise is added to the test set) and is included to il- 
lustrate the concept drift present in the dataset. CVFDT is 
able to quickly respond to drift, while VFDT's  error rate of- 
ten rises drastically before reacting to the change. Further, 
VFDT's  error rate seems to peak at worse values as the run 
goes on, while CVFDT's  error peaks seem to have constant 
height. We believe this happens because VFDT has more 
trouble responding to drift when it has induced a larger tree 
and must replicate corrections across more outdated struc- 
ture. CVFDT does not face this problem because it replaces 
subtrees when they become outdated. We gathered some 
detailed statistics about this run. CVFDT took 4.3 times 
longer than VFDT (5.7 times longer if including time to do 
the disk I /O needed to keep the window on disk). VFDT's  
average memory allocation over the course of the run was 23 
MB while CVFDT's  was 16.5 MB. The average number of 
nodes in VFDT's  tree was 2696 and the average number in 
CVFDT's  tree was 677, of which 132 were in alternate trees 
and the remainder were in the main tree. 

Next we examined how CVFDT responds to changing lev- 
els of concept drift on five datasets with d -- 50. Drift was 
added using a parameter D. Every 75,000 examples, D of 
the concept hyperplane's weights were selected at random 
and updated as before, wi  = w i  + 0.01d~i (although ~i now 
has a 25% chance of flipping signs, chosen to prevent too 
many weights from drifting in the same pattern). Figure 4 
shows the comparison on these datasets. CVFDT substan- 
tially outperformed VFDT at every level of drift. Notice 
that VFDT's  error rate approaches 50% for D > 2, and 
that the variance in VFDT's  data points is large. CVFDT's  
error rate seems to grow smoothly with increasing levels of 
concept change, suggesting that  its drift adaptations are ro- 
bust and effective, 

We wanted to gain some insight into the way CVFDT 
starts new alternate subtrees, prunes existing ones, and re- 
places portions of H T  with alternates. For this purpose, 
we instrumented a run of CVFDT on the D = 2 dataset 
from Figure 4 to output  a token in response to each of these 
events. We aggregated the events in chunks of 100,000 train- 
ing examples, and generated data points for all non-zero val- 
ues. Figure 5 shows the results of this experiment. There 
are a large number of events during the run. For example, 
109 alternate subtrees were swapped into H T .  Most of the 
swaps seem to occur when the examples in the test set are 
changing labels quickly. 

We also wanted to see how well CVFDT would compare 
to a system using traditional drift-tracking methods. We 
thus compared CVFDT, VFDT, and VFDT-Window. We 
simulated VFDT-Window by running VFDT on W for ev- 
ery 100,000 examples instead of for every example. The 
dataset for the experiment had d = 50 and used the same 
drift settings used to generate Figure 4 with D = 1. Fig- 
ure 6 shows the results. CVFDT's  error rate was the same 
as VFDT-Window's, except for a brief period during the 
middle of the run when class labels were changing most 
rapidly. CVFDT's  average error rate for the run was 16.3%, 
VFDT's  was 19.4%, and VFDT-Window's was 15.3%. The 
difference in runtimes was very large. VFDT took about 10 
minutes, CVFDT took about 46 minutes, and we estimate 
that  VFDT-Window would have taken 548 days to do its 
complete run if applied to every new example. Put  another 
way, VFDT-Window provides a 4% accuracy gain compared 
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to VFDT,  at  a cost of increasing the running t ime by a fac- 
tor of 17,000. CVFDT provides 75% of VFDT-Window's  
accuracy gain, and introduces a t ime penalty of less than 
0.1% of VFDT-Window's .  

CVFDT's  al ternate trees and addit ional  sufficient statis- 
tics do not use too much RAM. For example, none of 
CVFDT's  d = 50 runs ever grew to more than 70MB. We 
never observed CVFDT to use more RAM than VFDT; in 
fact it  often used as l i t t le as half the RAM of VFDT.  The 
systems'  RAM requirements are dominated by the sufficient 
statistics which are kept at  the leaves in VFDT,  and at  every 
node in CVFDT.  We observed tha t  V F D T  often had twice 
as many leaves as there were nodes in CVFDT's  tree and all 
al ternate trees combined. This is what  we expected: VFDT 
considers many more examples and is forced to grow larger 
trees to make up for the fact tha t  its early decisions be- 
come incorrect due to concept drift. CVFDT's  al ternate tree 
pruning mechanism seems to be effective at  t rading memory 
for smooth transit ions between concepts. Further,  there is 
room for more aggressive pruning if CVFDT exhausts avail- 
able RAM. Exploring this tradeoff is an area for future work. 

4.2 Web Data 
We are currently applying C V F D T  to mining the s tream 

of Web page requests emanat ing from the whole Univer- 
sity of Washington main campus. The nature of the da ta  
is described in detail  in Wolman et al. [29]. In our experi- 
ments so far we have used a one-week anonymized trace of all 
the external web accesses made from the university campus. 
There were 23,000 active clients during this one-week trace 
period, and the entire university populat ion is est imated at  
50,000 people (students, faculty and staff). The trace con- 
tains 82.8 million requests, which arrive at  a peak rate of 
17,400 per minute. The size of the compressed trace file is 
about 20 GB. 5 Each request is tagged with an anonymized 
organization ID tha t  associates the request with one of the 
170 organizations (colleges, departments ,  etc.) within the 
university. One purpose this da t a  can be used for is to im- 
prove Web caching. The key to this is predicting as accu- 
rately as possible which hosts and pages will be requested in 
the near future, given recent requests. We applied decision- 
tree learning to this problem in the following manner. We 
split the campus-wide request log into a series of equal t ime 
slices To,T1,... , Tt , . . .  ; in the experiments we report,  each 
t ime slice is an hour. For each organization O1, O2 , . . .  , O~, 
• .. , Ol~0 and each of the 244k hosts appearing in the logs 
H 1 , . . .  , H i , . . .  , H244k, we maintained a count of how many 
times the organization accessed the host in the t ime slice, 
C~#. We discretized these counts into four buckets, repre- 
senting "no requests," "1 - 12 requests," "13 - 25 requests" 
and "26 or more requests." Then for each t ime slice and 
host accessed in tha t  t ime slice (Tt, Hi) we generated an ex- 
ample with a t t r ibutes  CI,#, . . .  , Cij t , . . .  C170,jt and class 1 
if Hj  is requested in t ime slice Tt+i and 0 if i t  is not. This 
can be carried out in real t ime using modest  resources by 
keeping statistics on the last and current t ime slices Ct-z 
and Ct in memory, only keeping counts for hosts tha t  actu- 
ally appear  in a t ime slice (we never needed more than 30k 
counts), and output t ing  the examples for Ct -z  as soon as 
Ct is complete. Using this procedure we obtained a dataset  
containing 1.89 million examples, 60.9% of which were In- 

'Th i s  log is from May 1999. Traffic in May 2000 was more 
than double this size. 
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beled with the most common class (that the host did not 
appear again in the next time slice). 

Our exploration was designed to determine if CVFDT's  
concept drift features would provide any benefit to this ap- 
plication. As each example arrived, we tested the accuracy 
of the learners' models on it, and then allowed the learners 
to update their models with the example. We kept statis- 
tics about how the aggregated accuracies changed over time. 
VFDT and CVFDT were both run with 6 = 0.0001, r = 5%, 
and n,n~n = 300. CVFDT's  additional parameters were 
w = 100, 000 and f = 20,000. VFDT achieved 72.7% ac- 
curacy over the whole dataset and CVFDT achieved 72.3%. 
However, CVFDT's  aggregated accuracy was higher for the 
first 70% of the run, at times by as much as 1.0%. CVFDT's  
accuracy fell behind only near the end of the run, for (we 
believe) the following reason. Its drift tracking kept it ahead 
throughout the first part of the run, but its window was too 
small for it to learn as detailed a model of the data as VFDT 
did by the end. This experiment shows that the data does 
indeed contain concept drift, and that CVFDT's  ability to 
respond to the drift gives it an advantage over VFDT. The 
next step is to run CVFDT with different, perhaps dynamic, 
window sizes to further evaluate the nature of the drift. We 
also plan to evaluate CVFDT over traces longer than a week. 

5. RELATED WORK 
Schlimmer and Granger's [23] STAGGER system was one 

of the first to explicitly address the problem of concept 
drift. Salganicoff [21] studied drift in the context of nearest- 
neighbor learning. Widmer and Kubat 's  [27] FLORA sys- 
tem used a window of examples, but also stored old concept 
descriptions and reactivated them if they seemed to be ap- 
propriate again. All of these systems were only applied to 
small databases (by today's standards). Kelly, Hand, and 
Adams [14] addressed the issue of drifting parameters in 
probability distributions. Theoretical work on concept drift 
includes [16] and [3]. 

Ganti, Gehrke, and Ramakrishnan's [11] DEMON frame- 
work is designed to help adapt incremental learning algo- 
rithms to work effectively with time-changing data streams. 
DEMON differs from CVFDT by assuming data arrives pe- 
riodically, perhaps daily, in large blocks, while CVFDT deals 
with each example as it arrives. The framework uses off-line 
processing time to mine interesting subsets of the available 
data blocks. 

In earlier work [12] Gehrke, Ganti, and Ramakrishnan 
presented an incremental decision tree induction algorithm, 
BOAT, which works in the DEMON framework. BOAT is 
able to incrementally maintain a decision tree equivalent to 
the one that would be learned by a batch decision tree induc- 
tion system. When the underlying concept is stable, BOAT 
can perform this maintenance extremely quickly. When drift 
is present, BOAT must discard and regrow portions of its 
induced tree. This can be very expensive when the drift is 
large or affects nodes near the root of the tree. CVFDT 
avoids the problem by using alternate trees and removing 
the restriction that it learn exactly the tree that  a batch 
system would. A comparison between BOAT and CVFDT 
is an area for future work. 

There has been a great deal of work on incrementally 
maintaining association rules. Cheung, Han, Ng, and Wong 
[7] and Fazil, Tansel, and Arkun [2] propose algorithms for 
maintaining sets of association rules when new transactions 

are added to the database. Sarda and Srinivas [22] have also 
done some work in the area. DEMON's contribution [11] is 
particularly relevant, as it addresses association rule main- 
tenance specifically in the high-speed data stream domain 
where blocks of transactions are added and deleted from the 
database on a regular basis. 

Aspects of the concept drift problem are also addressed 
in the areas of activity monitoring [10], active data mining 
[1] and deviation detection [6]. The main goal here is to 
explicitly detect changes, rather than simply maintain an 
up-to-date concept, but techniques for the latter can obvi- 
ously help in the former. 

Several pieces of research on concept drift and context- 
sensitive learning are collected in a special issue of the jour- 
nal Machine Learning [28]. Other relevant research ap- 
peared in the ICML-96 Workshop on Learning in Context- 
Sensitive Domains [15], the AAAI-98 Workshop on AI Ap- 
proaches to Time-Series Problems [8], and the NIPS-2000 
Workshop on Real-Time Modeling for Complex Learning 
Tasks [26]. Turney [25] maintains an online bibliography on 
context-sensitive learning. 

6. FUTURE WORK 
We plan to apply CVFDT to more real-world problems; 

its ability to adjust to concept changes should allow it to 
perform very well on a broad range of tasks. CVFDT may 
be a useful tool for identifying anomalous situations. Cur- 
rently CVFDT discards subtrees that  axe out-of-date, but 
some concepts change periodically and these subtrees may 
become useful again - identifying these situations and taking 
advantage of them is another area for further study. Other 
areas for study include: comparisons with related systems; 
continuous attributes; weighting examples; partially forget- 
ting examples by allowing their weights to decay; simulating 
weights by subsampling; and controlling the weight decay 
function according to external information about drift. 

7. CONCLUSION 
This paper introduced CVFDT, a decision-tree induction 

system capable of learning accurate models from the most 
demanding high-speed, concept-drifting data streams. 
CVFDT is able to maintain a decision-tree up-to-date with 
a window of examples by using a small, constant amount 
of time for each new example that arrives. The resulting 
accuracy is similar to what would be obtained by reapplying 
a conventional learner to the entire window every time a new 
example arrives. Empirical studies show that CVFDT is 
effectively able to keep its model up-to-date with a massive 
data stream even in the face of large and frequent concept 
shifts. A preliminary application of CVFDT to a real world 
domain shows promising results. 
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