
Formal Semantics of Hybrid Chi

R.R.H. Schiffelers, D.A. v. Beek, K.L. Man and M.A. Reniers

December 12, 2002

Abstract

Currently, there is a gap between simulation languages and verification
formalisms. The χ language attempts to bridge this gap. The language
was designed as a hybrid modeling and simulation language. It is based
on communicating sequential processes (CSP) and differential algebraic
equations. In this paper, the semantics of hybrid χ is formally specified
using a structured operational semantics (SOS) and a number of associ-
ated functions. Unlike most other hybrid formalisms, the χ syntax and
semantics can also deal with higher index systems of equations. Essential
aspects of the semantics are illustrated using many small examples, and
a somewhat larger example dealing with dry friction.

1 Introduction

Currently, there is a gap between simulation languages and verification for-
malisms. The χ language [1] attempts to bridge this gap. The language was
designed as a hybrid modeling and simulation language. The χ language and
simulator have been successfully applied to a large number of industrial cases,
such as an integrated circuit manufacturing plant, a brewery, and process in-
dustry plants [2].

A formal semantics is a prerequisite for reasoning about models as it un-
ambiguously defines the meaning of the models and hence increases the under-
standing of these. It also helps in the development of the language itself, the
construction of tools (e.g. the simulator), and the development of verification
techniques, by clearly separating the issues of meaning, and implementation of
this meaning into tools. Using the discrete-event (DE) part of the χ language,
an initial investigation into formal verification was performed [3]. Following
that, a part of the χ language was formalized using a structured operational se-
mantics resulting in χσ ; bisimulation relations were derived and a model checker
was built [4]. In this way, verification of DE χ models was made possible [5].

This paper describes the syntax and semantics of a subset of χ that also
includes descriptions of continuous behavior: χσh

(hybrid χσ). This semantics
and the model checker for χσ are the basis of the χσh

verification tool that
will be developed. The difference between χσh

and χ is that the structured
data-types of χ—such as sets, arrays, and lists—and the high level operations

1

on these data-types—such as set quantification—are not formalized, and are
thus not present in χσh

. In all other respects, χσh
retains the high expressivity

of χ. This means that, unlike most other hybrid formalisms such as hybrid
automata [6] or Petri nets [7], differential algebraic equations (DAEs) are fully
supported, including higher index DAEs [8]. The χσh

formalism can also deal
with hybrid systems that can dynamically change from lower to higher index,
and vice versa, such as treated in [9]. Due to the algebraic relations that can
be present between variables, including between differential variables (higher
index systems), the semantics of χσh

is more complex than the semantics of, for
example, hybrid automata.

2 The χσh
Language

In this section, the syntax of the χσh
language is introduced. The existence

of the set of variables V , the set of channel labels C, the set of values Σ that
contains the reals R, the set of continuous variables Γ, the set of dependent
differential variables D, the Booleans B = {true, false} and the naturals N is
assumed. The set T is used to represent points in time; usually T = R≥0. The
basic building blocks of a χσh

process description are introduced below:

• The skip process skip that performs an internal action. Its purpose is to
enforce certain choices in an alternative composition.

• Assignment process terms of the form x0, . . . , xk := e0, . . . , ek where
x0, . . . ,xk represent variables (x0, . . . ,xk ∈V) and e0, . . . ,ek are expressions
which take values in Σ. Intuitively, the values of the expressions e0, . . . , ek

are assigned in one step to the variables x0, . . . , xk respectively. The nota-
tion x̂ := ê is used after wards as a shorthand for x0, . . . , xk := e0, . . . , ek.
It is also assumed that there is at least one element in x̂ and ê.

• Send process terms of the form m!e where m is a channel label (m ∈ C)
and e is a value ∈ Σ. The value of e is sent via channel label m.

• Receive process terms of the form m?x where m is a channel label (m ∈C)
and x a variable (x ∈ V). x receives a value via channel label m.

• Function equation process terms of the form eq, where eq denotes a func-
tion equation. Therefore, ẋ = 1 is in fact a sloppy notation for ẋ = 1(·),
where x ∈ T 7→ R, and 1(·) ∈ T 7→ R is the constant function with value 1.
The equations from eq can be solved by the variables in Γ. Function equa-
tion process terms are used to describe continuous behavior. A function
equation has either one of the following forms:

1. rfe1 ≤ rfe2 or rfe1 ≥ rfe2 where rfe1 and rfe2 represent arbitrary real-
valued function expressions in which the derivative operator may not
be used.

2

2. rdfe1 = rdfe2 , where rdfe1 and rdfe2 represent arbitrary real-valued
differential function expressions, i.e. real-valued function expressions
in which the derivative operator may be used. The functions are
piecewise differentiable functions of type T 7→ R.

• Instantaneous equation process terms of the form us : eqs, where us is a
non-empty list of variables and eqs is a non-empty list of instantaneous
equations separated by commas.

• Delay process terms of the form ∆enum, where enum represents a numerical
expression. It enables a process to delay ne time units where ne is the value
of enum.

• Nabla process terms of the form ∇bn, where bn represents a comparison of
real-valued expressions using =, ≤, or ≥. Such a comparison is referred to
as a nabla condition. The nabla process ∇bn terminates by means of an
internal action when either bn is false or when no further delay is possible
such that bn remains true.

AP refers to the set of all atomic process terms, US refers to the set of all
lists of unknowns for instantaneous equations, EQS refers to the set of all lists
of instantaneous equations, EQ refers to the set of all function equations, B
refers to the set of all boolean expressions, and BN refers to the set of all nabla
conditions. Summarizing, in a BNF-like notation, the atomic process terms are
the following:

AP ::= skip | x̂ := ê | m!e | m?x | eq
| us : eqs | ∆enum | ∇bn,

where x ∈ V , m ∈ C, e denotes an arbitrary expression, us ∈ US , eq ∈ EQ ,
eqs ∈ EQS and bn ∈ BN . Process term are built from atomic process terms and
boolean expressions (from a set B) using operators for alternative composition
([]), sequential composition (;), guarding (→), repetition (∗), parallel compo-
sition (‖), state (|[|]|), dependent differential variable (::), encapsulation
(∂A) , maximal progress (π) and abstraction (τA) as described by the following
BNF-like notation:

P ::= ap | b → P | P ; P | P [] P | P ‖ P | ∗P
| P ‖ P | |[σ, Γ | P]| | x :: P | ∂A(P) | π(P) | τA(P),

where ap∈AP represents an arbitrary atomic process, b represents a boolean ex-
pression, σ represents a state, x ∈ V represents a dependent differential variable
and A represents the set of transitions to be encapsulated or to be abstracted
from. The set of all process terms is denoted by P .

The operators have higher binding strength are listed (in descending order)
as follows:

{∗, ; , →, ::}, {[], ‖ }

where the operators inside the braces have the same binding strength. In addi-
tion, operators of equal binding strength associate to the left, and parentheses
may be used to group expressions.

3

3 Structured Operational Semantics

In this section, the structured operational semantics (SOS) [10] of the subset
of χσh

that is used in this paper is presented. The main purpose of such an
SOS is to define the behavior of χσh

processes at a certain chosen level of
abstraction. The meaning of a χσh

process depends on the values of the discrete
and continuous variables. A χσh

process 〈p, σ, Γ,D〉 is therefore a χσh
process

term p ∈ P , combined with a valuation σ ∈ V 7→ Σ, a set of continuous variables
Γ⊆ V and a set of dependent differential variables D ⊂ Γ. We chose to represent
the following in the SOS:

1. instantaneous execution of discrete transitions:

(a) −→ ⊆ (P × (V 7→ Σ) × P(V) × P(V)) × Aτ × (P × (V 7→ Σ) ×
P(V)×P(V)), where Aτ = A∪ {τ}, τ is the internal action and A =
{σa, isa(m,c), ira(m,x, c), ca(m,x, c) | σa ∈ V 7→ Σ, x ∈ V,m ∈ C, c ∈
Σ}, where σa is an action representing assignment and instantaneous

equations. The intuition of a transition 〈p, σ, Γ,D〉
a
−→ 〈p′, σ′, Γ,D〉

is that the process 〈p, σ, Γ,D〉 described by the process term p with
state σ executes the discrete action a ∈ Aτ and thereby transforms
into the process 〈p′, σ′, Γ,D〉.

(b) −→ 〈X, , 〉 ⊆ (P × (V 7→ Σ) × P(V) × P(V)) × Aτ × ((V 7→

Σ) × P(V) × P(V)). The intuition of a transition 〈p, σ, Γ, D〉
a
−→

〈X, σ′, Γ,D〉 is that the process 〈p, σ, Γ,D〉 described by the process
term p with state σ executes the discrete action a and thereby trans-
forms into the terminated process 〈X, σ′, Γ,D〉.

2. continuous behavior:
,

−→ ⊆ (P × (V 7→ Σ) × P(V) × P(V)) × (V 7→
(T 7→ Σ)) × T × (P × (V 7→ Σ) ×P(V) ×P(V)). The intuition of a tran-

sition 〈p, σ,Γ,D〉
ς,t
−→ 〈p′, σ′,Γ,D〉 is that the variables in Γ of the process

〈p, σ, Γ,D〉 behave (continuously) according to the solution functions in ς
until (and including) time t and then result in the process 〈p′, σ′, Γ,D〉.

These relations and predicates are defined through so-called deduction rules.
A deduction rule is of the form H

r
, where H is a number of hypotheses separated

by commas and r is the result of the rule. The result of a deduction rule can
be derived if all of its hypotheses are derived. In case the set of hypotheses is
empty, we speak of a deduction axiom. As a shorthand, we sometimes write H

R

where R is a number of results separated by commas. It represents a deduction
rule H

r
for each result r ∈ R.

Deduction Rules

In the deduction rules, the following functions are used: the solution function
Ω, the solution function for instantaneous equations Ωi, the function γE which
makes the state consistent with the equations in the process term, the translation
functions TU and TE, and the clean-up nabla function CN. These functions are

4

explained in more detail after the explanation of the deduction rules. In order
to simplify the deduction rules, the notation σ . . . is used as a shorthand for
σ, Γ,D.

〈skip, σ . . .〉
τ
−→ 〈X, σ . . .〉

1
∀0≤i,j≤k : xi = xj ⇒ i = j

〈x̂ := ê, σ . . .〉
σx̂,ê

−−−→ 〈X, σx̂,ê . . .〉
2

〈m!e, σ . . .〉
isa(m,σ̄(e))
−−−−−−−→ 〈X, σ . . .〉

3
〈m!e, σ . . .〉

ς,t
−→ 〈m!e, σςt . . .〉

4

〈m?x, σ . . .〉
ira(m,x,c)
−−−−−−−→ 〈X, σ[c/x] . . .〉

5
〈m?x, σ . . .〉

ς,t
−→ 〈m?x, σςt . . .〉

6

ς ∈ Ω(σ, Γ, D, eq, true, t)

〈eq, σ . . .〉
ς,t
−→ 〈eq, σςt . . .〉

7
σi ∈ Ωi(σ, TU(us), TE(eqs))

〈us : eqs, σ . . .〉
σi−→ 〈X, σi . . .〉

8

0 ≤ t < σ̄(enum)

〈∆enum, σ . . .〉
ς,t
−→ 〈∆σ̄(enum) − t, σ . . .〉

9

〈∆enum, σ . . .〉
ς,σ̄(enum)
−−−−−−→ 〈skip, σ . . .〉

10

σ |= ¬bn

〈∇bn, σ . . .〉
τ
−→ 〈X, σ . . .〉

11
ς ∈ Ω(σ, Γ, ∅, ∅, bn, t)

〈∇bn, σ . . .〉
ς,t
−→ 〈∇bn, σςt . . .〉

12

Rule 1 states that skip can perform the τ action. Rule 2 states that x̂ := ê
can perform the σa action if all elements in x̂ are distinct, where i, j, k ∈ N and
σx̂,ê is defined as follows:

σx̂,ê(y) = (σ[[σ̄(e0)/x0], . . . , [σ̄(ek)/xk]])(y) =



















σ̄(e0) if y = x0,
...

...
σ̄(ek) y = xk

σ̄(y) otherwise

.

where y ∈ V , σ̄(e0) denotes the evaluation of expression e0 in state σ,
and σ[σ̄(e0)/x0] denotes the substitution of the value σ̄(e0) for the variable x0

in state σ (likewise for all elements in x̂ and ê). Rules 3 and 5 state that m!e
and m?x can perform their corresponding actions. Note that the send process
sets associates a channel label with a value and the receive process gets the
value which is associated with the channel label. Rules 4 and 6 state that m!e
and m?x can perform any time transition ς of duration t, where σςt ∈ V 7→ Σ is
for all x ∈ V defined as ς(t)(x) if x ∈ dom(ς) and σ̄(x) otherwise. Rule 7 states
that the function equation eq can perform a time transition of duration t ≥ 0
for all solutions ς of the function equations eq . The solution ς is a function from
time (dom(ς) = [0 . . . t]) to the value for the continuous variables in Γ. Rule 8
states that the instantaneous equation process can perform a σa action in case

5

there is at least a solution for the instantaneous equations. The functions TU

and TE collect the unknowns for instantaneous equations and instantaneous
equations respectively. Rule 9 states that ∆enum enables a process to delay for
t time units if 0 ≤ t < σ̄(enum) holds. Rule 10 states that ∆enum transforms
a process into skip at the delay time units of σ̄(enum). Rule 11 states that
∇bn can terminate successfully if the condition bn is not satisfied in state σ
(σ |= ¬bn). Rule 12 states that the nabla process ∇bn can perform a time
transition in case there is at least one solution ς which satisfies bn during this
time transition.

σ |= b, 〈p, σ . . .〉
a
−→ 〈X, σ′ . . .〉

〈b → p, σ . . .〉
a
−→ 〈X, σ′ . . .〉

13
σ |= b, 〈p, σ . . .〉

a
−→ 〈p′, σ′ . . .〉

〈b → p, σ . . .〉
a
−→ 〈p′, σ′ . . .〉

14

σ |= b, Vχ(b) ∩ Γ = ∅, 〈p, σ . . .〉
ς,t
−→ 〈p′, σ′ . . .〉

〈b → p, σ . . .〉
ς,t
−→ 〈b → p′, σ′ . . .〉

15

σ |= ¬b, Vχ(b) ∩ Γ = ∅

〈b → p, σ . . .〉
ς,t
−→ 〈b → p, σςt . . .〉

16

Rules 13 and 14 state that a guarded process can perform an action transition
if the guard evaluates to true and if the process argument can perform that
transition. Rule 15 states that a guarded process can perform a time transi-
tion in case the guard evaluates to true, and there are no continuous variables
used in the guard, and its process argument can perform that time transition.
The function Vχ ∈ B → P(V) extracts the variables from an expression; e.g.
Vχ(x > 2y2) = {x, y}. Rule 16 states that a guarded process can perform a time
transition in case the guard evaluates to false and that there are no continuous
variables used in the guard.

〈p, σ . . .〉
a
−→ 〈X, σ′ . . .〉

〈p; q, σ . . .〉
a
−→ 〈q, σ′ . . .〉

17
〈p, σ . . .〉

z
−→ 〈p′, σ′ . . .〉

〈p; q, σ . . .〉
z
−→ 〈p′; q, σ′ . . .〉

18

Rules 17 and 18 state that if process p can perform a transition, then the
sequential composition p; q can perform that transition also. The transition

z
−→

is used as a shorthand for the transitions
a
−→ and

ς,t
−→ .

6

〈p, σ . . .〉
a
−→ 〈X, σ′ . . .〉

〈p [] q, σ . . .〉
a
−→ 〈X, σ′ . . .〉, 〈q [] p, σ . . .〉

a
−→ 〈X, σ′ . . .〉

19

〈p, σ . . .〉
a
−→ 〈p′, σ′ . . .〉

〈p [] q, σ . . .〉
a
−→ 〈p′, σ′ . . .〉, 〈q [] p, σ . . .〉

a
−→ 〈p′, σ′ . . .〉

20

〈p, σ . . .〉
ςp,t
−−→ 〈p′, σ′ . . .〉, 〈q, σ . . .〉

ςq,t
−−→ 〈q′, σ′ . . .〉, ∀x∈Γ : ςp(x) = ςq(x)

〈p [] q, σ . . .〉
(ςp ∪ ςq),t
−−−−−−−→ 〈CN(p′ [] q′, σ′ . . .), σ′ . . .〉

21

Rules 19 and 20 state that an alternative composition of two processes p and
q can perform an action transition in case that either p or q can perform that
action transition. Rule 21 states that if process p and q can perform a time
transition with distinct solutions (i.e ςp, t and ςq , t are different) and if the
solutions ςp and ςq result the same for all variables in Γ, then the alternative
composition p [] q can perform a time transition with the union solutions between
solutions ςp, t and ςq , t (i.e. (ςp ∪ ςq), t). After the time transition, the function
CN is applied to the process term.

Example

Consider the following example: x := 1; (∇x ≤ 5 [] ẋ = 1), for Γ = {x}. The
assignment x := 1 can be executed using Rule 2. Using Rules 21, 12, and 7,
the alternative composition ∇x ≤ 5 [] ẋ = 1 can perform a time transition for
the union solutions between the solutions satisfy the nabla statement ∇x ≤ 5
and the solutions satisfy the equation ẋ = 1. In this example, the alternative
composition ∇x ≤ 5 [] ẋ = 1 can perform time transition for different time steps
(t ∈ [0 . . .5]) as long as the nabla condition is satisfied (i.e. x ≤ 5 holds). In case
that no subsequent time step t > 0 exists for which the equation and the nabla
condition are both satisfied, the nabla process term is replaced by the skip

process term. Thus, the process term becomes skip [] ẋ = 1. Using Rules 19
and 1, the process term successfully terminates.

7

σ′ ∈ γE(p ‖ q, σ . . .),

〈p, σ′ . . .〉
isa(m,c)
−−−−−→ 〈X, σ′ . . .〉, 〈q, σ′ . . .〉

ira(m,x)
−−−−−→ 〈X, σ′ . . .〉

〈p ‖ q, σ . . .〉
ca(m,x,c)
−−−−−−→ 〈X, σ′[c/x] . . .〉,

〈q ‖ p, σ . . .〉
ca(m,x,c)
−−−−−−→ 〈X, σ′[c/x] . . .〉

22

σ′ ∈ γE(p ‖ q, σ . . .),

〈p, σ′ . . .〉
isa(m,c)
−−−−−→ 〈X, σ′ . . .〉, 〈q, σ′ . . .〉

ira(m,x)
−−−−−→ 〈q′, σ′ . . .〉

〈p ‖ q, σ . . .〉
ca(m,x,c)
−−−−−−→ 〈q′, σ′[c/x] . . .〉,

〈q ‖ p, σ . . .〉
ca(m,x,c)
−−−−−−→ 〈q′, σ′[c/x] . . .〉

23

σ′ ∈ γE(p ‖ q, σ . . .),

〈p, σ′ . . .〉
isa(m,c)
−−−−−→ 〈p′, σ′ . . .〉, 〈q, σ′ . . .〉

ira(m,x)
−−−−−→ 〈X, σ′ . . .〉

〈p ‖ q, σ . . .〉
ca(m,x,c)
−−−−−−→ 〈p′, σ′[c/x] . . .〉,

〈q ‖ p, σ . . .〉
ca(m,x,c)
−−−−−−→ 〈p′, σ′[c/x] . . .〉

24

σ′ ∈ γE(p ‖ q, σ . . .),

〈p, σ′ . . .〉
isa(m,c)
−−−−−→ 〈p′, σ′ . . .〉, 〈q, σ′ . . .〉

ira(m,x)
−−−−−→ 〈q′, σ′ . . .〉

〈p ‖ q, σ . . .〉
ca(m,x,c)
−−−−−−→ 〈p′ ‖ q′, σ′[c/x] . . .〉,

〈q ‖ p, σ . . .〉
ca(m,x,c)
−−−−−−→ 〈q′ ‖ p′, σ′[c/x] . . .〉

25

σ′ ∈ γE(p ‖ q, σ . . .), 〈p, σ′, . . .〉
a
−→ 〈X, σ′′ . . .〉

〈p ‖ q, σ . . .〉
a
−→ 〈q, σ′′ . . .〉, 〈q ‖ p, σ . . .〉

a
−→ 〈q, σ′′ . . .〉

26

σ′ ∈ γE(p ‖ q, σ . . .), 〈p, σ′ . . .〉
a
−→ 〈p′, σ′′ . . .〉

〈p ‖ q, σ . . .〉
a
−→ 〈p′ ‖ q, σ′′ . . .〉, 〈q ‖ p, σ . . .〉

a
−→ 〈q ‖ p′, σ′′ . . .〉

27

〈p, σ . . .〉
ςp,t
−−→ 〈p′, σ′ . . .〉,

〈q, σ . . .〉
ςq ,t
−−→ 〈q′, σ′ . . .〉, ∀x∈Γ : ςp(x) = ςq(x)

〈p ‖ q, σ . . .〉
(ςp ∪ ςq),t
−−−−−−−→ 〈CN(p′ ‖ q′, σ′ . . .), σ′ . . .〉

28

Rule 22 states that if process p and q can perform an action transition from a
consistent state and they can also perform matching send and receive actions,
then the parallel compositions p‖q and q ‖p can perform a communication action
and perform that action transition as well, where c ∈ Σ. Rule 23 states that
if process p can perform an action transition from a consistent state which can
terminate successfully, and process q can perform an action transition to another
process term q′ from the same consistent state, in addition, process p and q can
perform matching send and receive actions, then the parallel compositions p ‖ q
and q ‖ p can perform a communication action and both convey to process term
q′. Rule 24 is similar to Rule 23. If process p and q can perform an action

8

transition from a consistent state and they can also perform matching send and
receive actions, then the parallel compositions p ‖ q and q ‖ p can perform a
communication action as defined by Rule 25. Rules 26 and 27 state that if
process p can perform an action transition from a consistent state, then both
the parallel compositions p ‖ q and q ‖ p can perform that action transition as
well, such that the terminated process is removed. Rule 28 states that if process
p and q can perform a time transition with distinct solutions (i.e ςp, t and ςq , t
are different) and if the solutions ςp and ςq result the same for all variables in
Γ, then the parallel composition p ‖ q can perform a time transition with the
union solutions between solutions ςp, t and ςq , t (i.e. (ςp ∪ ςq), t). After the
time transition, the function CN is applied to the process term.

Example

Consider the following example: y := 0; n := 1; (n := y ‖ y = 2n), for Γ = {y}.
The assignment y := 0 can be executed using Rule 2. The same holds for the
assignment n := 1. After that, the process term equals n := y ‖ y = 2n, and
the state consists of the following valuations: {y 7→ 0, n 7→ 1}. The parallel
composition n := y ‖ y = 2n can perform an action in case that n := y can
perform that action from a consistent state using Rule 26. The consistent state
is {y 7→ 2, n 7→ 1}; after the assignment n := y, the process term equals y = 2n,
and the state is {y 7→ 2, n 7→ 2}. This process term can perform time transitions
using Rule 7.

〈p, σ . . .〉
a
−→ 〈X, σ′ . . .〉

〈∗p, σ . . .〉
a
−→ 〈∗p, σ′ . . .〉

29
〈p, σ . . .〉

z
−→ 〈p′, σ′ . . .〉

〈∗p, σ . . .〉
z
−→ 〈p′; ∗p, σ′ . . .〉

30

Rule 29 states that if process p can perform an action transition, then also the
repetition ∗p can perform that action transition. Rule 30 states that if process
p can perform a transition to another process term, then also the repetition ∗p
can perform that transition.

〈p, σ ∪ σs, Γ ∪ Γs,D〉
a
−→ 〈X, σ′, Γ ∪ Γs,D〉

〈|[σs, Γs| p]|, σ, Γ,D〉
a
−→ 〈X, σ′ � dom(σ), Γ,D〉

31

〈p, σ ∪ σs, Γ ∪ Γs,D〉
z
−→ 〈p′, σ′, Γ ∪ Γs,D〉

〈|[σs, Γs| p]|, σ, Γ,D〉
z
−→ 〈|[σ′ � dom(σs), Γs| p′]|, σ′ � dom(σ), Γ,D〉

32

Rules 31 and 32 state that the state process can perform a transition if its process
argument can perform that transition, where � denotes the restrict operator and
is formally defined as follows:

f : X −→ Y

(f � S) : X −→ Y

(f � S)(v) =

{

f(v) if v ∈ S,
⊥ otherwise

9

where f denotes a function, X , Y and S ⊆X denote arbitrary sets. Furthermore,
the syntax restrictions dom(σs) ∩ dom(σ) = ∅ and Γs ∩ Γ = ∅ are assumed.

〈p, σ, Γ,D ∪ {x}〉
a
−→ 〈X, σ′, Γ,D ∪ {x}〉

〈x :: p, σ . . .〉
a
−→ 〈X, σ′ . . .〉

33

〈p, σ, Γ,D ∪ {x}〉
z
−→ 〈p′, σ′, Γ,D ∪ {x}〉

〈x :: p, σ . . .〉
z
−→ 〈x :: p′, σ′ . . .〉

34

Rules 33 and 34 state that a process with a dependent differential variable x can
perform a transition if its process argument can perform that transition with x
added to D.

〈p, σ . . .〉
a
−→ 〈X, σ′ . . .〉, a 6∈ A

〈∂A(p), σ . . .〉
a
−→ 〈X, σ′ . . .〉

35
〈p, σ . . .〉

z
−→ 〈p′, σ′ . . .〉, z 6∈ A

〈∂A(p), σ . . .〉
z
−→ 〈∂A(p′), σ′ . . .〉

36

Rules 35 and 36 state that the encapsulation process can perform a transition
if its process argument can perform such transition and if that transition is not
in A, which denotes the set of transitions to be encapsulated.

〈p, σ . . .〉
a
−→ 〈X, σ′ . . .〉

〈π(p), σ . . .〉
a
−→ 〈X, σ′ . . .〉

37
〈p, σ . . .〉

a
−→ 〈p′, σ′ . . .〉

〈π(p), σ . . .〉
a
−→ 〈π(p′), σ′ . . .〉

38

∀a ∈ A, 〈p, σ . . .〉
a
9 , 〈p, σ . . .〉

ς,t
−→ 〈p′, σ′ . . .〉

〈π(p), σ . . .〉
ς,t
−→ 〈π(p′), σ′ . . .〉

39

Rules 37 and 38 state that if process p can perform an action transition, then
also the maximal progress π(p) can perform that action transition. A maximal
progress process only performs a time transition if its process argument p can
perform that time transition and if p cannot perform actions as defined by
Rule 39.

〈p, σ . . .〉
a
−→ 〈X, σ′ . . .〉, a ∈ A

〈τA(p), σ . . .〉
τ
−→ 〈X, σ′ . . .〉

40
〈p, σ . . .〉

z
−→ 〈p′, σ′ . . .〉, z ∈ A

〈τA(p), σ . . .〉
τ
−→ 〈τA(p′), σ′ . . .〉

41

〈p, σ . . .〉
a
−→ 〈X, σ′ . . .〉, a 6∈ A

〈τA(p), σ . . .〉
a
−→ 〈X, σ′ . . .〉

42
〈p, σ . . .〉

z
−→ 〈p′, σ′ . . .〉, z 6∈ A

〈τA(p), σ . . .〉
z
−→ 〈τA(p′), σ′ . . .〉

43

Rules 40 and 41 state that if the process argument can perform the transition
that is in A which is the set of transitions to be abstracted from, then the
abstraction process can perform the τ action. Rules 42 and 43 state that if the
process argument can perform a transition and this transition is not in A, then
the abstraction process can also perform that transition.

Extract Function

The function ξ ∈ P × (V 7→ Σ) → P(EQ) extracts the equations from a process
term in a state. It is used in the functions CN and γE.

10

ξ(p ‖ q, σ) = ξ(p, σ) ∪ ξ(q, σ)
ξ(p [] q, σ) = ξ(p, σ) ∪ ξ(q, σ)

ξ(b → p, σ) =

{

ξ(p, σ) σ |= b
∅ σ |= ¬b

ξ(p; q, σ) = ξ(p, σ)
ξ(∗p, σ) = ξ(p, σ)
ξ(eq, σ) = eq
ξ(x :: p, σ) = ξ(p, σ)
otherwise = ∅

Translation Function

The functions TU ∈ US → P(V) and TE ∈ EQS → P(EQS) extracts the
unknowns for the instantaneous equations and instantaneous equations respec-
tively, and are formally defined as follows:
TU(us0, us1) = TU(us0) ∪ TU(us1) TE(eq0, eq1) = TE(eqs0) ∪ TE(eqs1)
TU(u) = {u} TE(eqs) = {eqs}

where us0, us1 ∈ US , eqs0, eqs1, eqs ∈ EQS , u ∈ V

Clean-up Nabla Function

After a time transition of an alternative composition or a parallel composition
of processes, the function CN ∈ P × (V 7→ Σ) ×P(V) → P checks whether the
nabla process terms in a process term can still perform a time transition of
duration t > 0. If this transition is not possible for some nabla process terms,
these nabla process terms are substituted by the skip process term, otherwise
the nabla process term is returned. The function CN is formally defined as
CN(p, σ, Γ,D) = C′

N(p, σ, Γ,D, E), where E = ξ(p, σ) and the function C′
N ∈ P ×

(V 7→ Σ) ×P(V) ×P(V) ×P(EQ) → P is formally defined as
C′

N(p ‖ q, σ, Γ,D, E) = C′
N(p, σ, Γ,D, E) ‖ C′

N(q, σ, Γ,D, E)
C′

N(p [] q, σ, Γ,D, E) = C′
N(p, σ, Γ,D, E) [] C′

N(q, σ, Γ,D, E)

C′
N(b → p, σ, Γ,D, E) =

{

b → C′
N(p, σ, Γ,D, E) σ |= b

b → p σ |= ¬b
C′

N(p; q, σ, Γ,D, E) = C′
N(p, σ, Γ,D, E); q

C′
N(x :: p, σ, Γ,D, E) = x :: p

C′
N(skip, σ, Γ,D, E) = skip

C′
N(x̂ := ê, σ, Γ,D, E) = x̂ := ê

C′
N(m!e, σ, Γ,D, E) = m!e

C′
N(m!x, σ, Γ,D, E) = m!x

C′
N(eq, σ, Γ,D, E) = eq

C′
N(us : eqs, σ, Γ,D, E) = us : eqs

C′
N(∆e, σ, Γ,D, E) = ∆e

C′
N(∇bn, σ, Γ,D, E) =

{

∇bn ∃t > 0 : Ω(σ, Γ,D, E , bn, t) 6= ∅
skip otherwise

11

Consistency Function

The function γE ∈ P × (V 7→ Σ) × P(V) × P(V) → P(V 7→ Σ) returns a
set of states which are consistent with the equations E in a process term:
γE(p, σ, Γ,D) = {σς0 | ς ∈ Ω(σ, Γ,D, E , true , 0)}, where E = ξ(p, σ), and σς0 ∈
V 7→ Σ is defined for all x ∈ V as ς(0)(x) if x ∈ dom(ς), and σ(x) otherwise.

Solution Function

The function Ω ∈ (V 7→ Σ)×P(V)×P(V)×EQ×BN ×T →P(V 7→ (T 7→ Σ))
returns a set of solution functions for the continuous variables in Γ. Since
the equations in χσh

are function equations, all variables are interpreted as
functions. The discrete variables are interpreted as constant functions (∀i ∈
dom(ς ′) \Γ,0≤ t ≤ d : ς ′(i)(t) = σ(i)). The initial conditions of the independent
differential variables x (x ∈ Dχ(eq) \ D) are specified by ς ′(x)(0) = σ(x). The
solution functions satisfy the equation (ς ′ |= eq). Furthermore, the boolean
expression of a nabla process must be satisfied by the solution functions at all
times (∀0 ≤ t ≤ d : ς ′t |= bn) as well. Formally, the function Ω is defined as:
Ω(σ, Γ, D, eq, bn, d) =
{ ς
| ∃ς ′ ∈ V 7→ (T 7→ Σ) :

(dom(ς ′) = dom(σ)
, ∀i ∈ dom(ς ′) : dom(ς ′(i)) = [0..d]
, ∀i ∈ dom(ς ′) \ Γ, 0 ≤ t ≤ d : ς ′(i)(t) = σ(i)
, ∀x ∈ Dχ(eq) \ D : ς ′(x)(0) = σ(x)
, ς ′ |= eq

, ∀0 ≤ t ≤ d : ς ′t |= bn

, dom(ς) = Γ
, ∀x ∈ dom(ς) : ς(x) piecewise differentiable,

ς(x) = ς ′(x)
)

}
where Dχ ∈ P(EQ)→P(V), and Dχ(eq) extracts the set of differential variables
used in eq (e.g. Dχ(ẋ = 1, y = ż) = {x, z}), and where ς ′t : V 7→ Σ is, for all
x ∈ dom(ς ′), defined as ς ′t(x) = ς ′(x)(t).

Solution Function for instantaneous equations

The function Ωi ∈ (V 7→ Σ) × P(V) × P(EQ) → P(V 7→ Σ) returns a set of
state solutions of the instantaneous equations for the variables in U . Formally,
the function Ωi is defined as:
Ωi(σ,U , E) =

12

{ σi|σ′ ∈ V 7→ Σ :
(dom(σ′) = dom(σ)
, ∀x 6∈ U : σ′(x) = σ(x)
, ∀eq ∈ E : σ′ |= eq

, dom(σi) = U
, ∀x ∈ dom(σi) : σi(x) = σ′(x)
)

}

Example

Higher index systems of equations are equations where differential variables are
related, and cannot be initialized independently. An example is ẋ = z, ẏ =
−z, y = x, for Γ = {x, y, z}. There are two approaches of providing initial
conditions for higher index systems. First, the modeler can explicitly provide
consistent initial conditions; e.g. x := (x + y)/2;y := x; (ẋ = z, ẏ = −z, y = x). If
the initial state in this model is {x 7→ 1, y 7→ 3}, both variables will be initialized
to 2: {x 7→ 2, y 7→ 2}. Second, the modeler can specify which of the variables
can be independently initialized and which variables are dependent by using
dependent differential variable operator; e.g. x :: ẋ = z, ẏ = −z, y = x for Γ =
{x, y, z} and D = {x}. If the initial state in this model is {x 7→ 1, y 7→ 3}, the
state will be made consistent by using the initial value of y and adjusting the
corresponding value of x in such a way that the equations become consistent.
In this approach, the consistent state becomes {x 7→ 3, y 7→ 3}.

4 Dry Friction Example

A somewhat more complex example deals with modeling of dry friction as shown
in Figure 1. A driving force Fd is applied to a body on a flat surface with

Figure 1: Dry friction.

frictional force Ff . In the model below, variable s represents the mode of the
process; it can have the values ”neg”, ”stop”, and ”pos”. A corresponding hybrid
automaton specification would have corresponding locations ”neg”, ”stop”, and
”pos”. These modes/locations correspond with velocities v ≤ 0, v = 0, and
v ≥ 0, respectively of the body. In the mode ”stop”, the velocity v equals 0.
The mode ”stop”, is maintained for as long as the driving force satisfies the
conditions Fd ≤ µ0FN and Fd ≥ −µ0FN. If either of these conditions can no
longer be satisfied, the mode becomes ”pos” or ”neg”, respectively. The mode

13

”pos”, is maintained for as long as the condition v ≥ 0 (∇ v ≥ 0) is satisfied. In
this mode, frictional force Ff equals µFN. When this condition can no longer be
satisfied, the value of s becomes ”stop”. The condition v ≥ 0 can no longer be
satisfied when no time step can be taken such that v remains ≥ 0. This implies
that at the time of the switch, v equals 0. The set of continuous variables Γ
equals {x, v}; Fd represents some user defined function; FN, m, and µ0 are
constants.

ẋ = v ‖ s = ”stop” → v = 0
‖ s = ”pos” → mv̇ = Fd − µFN

‖ s = ”neg” → mv̇ = Fd + µFN

‖ ∗(s = ”stop” → ∇Fd ≤ µ0FN ; s := ”pos”
[] s = ”stop” → ∇Fd ≥ −µ0FN ; s := ”neg”
[] s = ”pos” → ∇v ≥ 0; s := ”stop”
[] s = ”neg” → ∇v ≤ 0; s := ”stop”
)

A similar but shorter specification is
ẋ = v ‖ ∗(s = ”stop” → (v = 0 [] ∇Fd ≤ µ0FN ; s := ”pos”)

[] s = ”stop” → (v = 0 [] ∇Fd ≥ −µ0FN ; s := ”neg”)
[] s = ”pos” → (mv̇ = Fd − µFN [] ∇v ≥ 0; s := ”stop”)
[] s = ”neg” → (mv̇ = Fd + µFN [] ∇v ≤ 0; s := ”stop”)
)

The only difference in the behavior of the two models is that in the last model
no equations are valid directly after a new value has been assigned to s (e.g.
s := ”pos”). The only possible subsequent transition is a time transition, that
causes a new equation (mv̇ = Fd − µFN if s := ”pos”) to be valid. The model
can be simplified further as:

ẋ = v ‖ ∗(v = 0
[] ∇Fd ≤ µ0FN; (mv̇ = Fd − µFN [] ∇v ≥ 0)
[] ∇Fd ≥ −µ0FN; (mv̇ = Fd + µFN [] ∇v ≤ 0)
)

In this model, initially the process is in the mode ”stop”. The modes are no
longer modeled explicitly.

5 Conclusions and Future Research

The semantics of the hybrid χ language has been formally specified using a
relative small set of deduction rules and associated functions. The semantics
is more complex than that of most other hybrid formalisms, because the χ
language is primarily a modeling language and not a verification formalism; the
language is highly expressive and can be used to specify a wide range of systems,
including pure discrete-event systems, and higher index differential algebraic
systems of equations. Future work entails the extension of the discrete-event
χ verification tool to enable verification of hybrid models. Furthermore, the
hybrid χ simulator will be redesigned to correspond to the new syntax and
formal semantics, which implies a considerable improvement.

14

Acknowledgments

The authors would like to thank Pieter Cuijpers and Erjen Lefeber for stimu-
lating and helpful discussions.

References

[1] D. A. van Beek and J. E. Rooda, “Languages and applications in hybrid
modelling and simulation: Positioning of Chi,” Control Engineering Prac-

tice, vol. 8, no. 1, pp. 81–91, 2000.

[2] D. A. van Beek, A. van den Ham, and J. E. Rooda, “Modelling and
control of process industry batch production systems,” in 15th Trien-

nial World Congress of the International Federation of Automatic Control,
(Barcelona), 2002. CD-ROM.

[3] J. Kleijn, M. Reniers, and J. Rooda, “A process algebra based verification of
a production system,” in Second IEEE Conference on Formal Engineering

Methods (J. Staples, M. Hinchley, and S. Liu, eds.), (Brisbane, Australia),
pp. 90–99, IEEE, Dec. 1998.

[4] V. Bos and J. Kleijn, Formal Specification and Analysis of Industrial Sys-

tems. PhD thesis, Eindhoven University of Technology, 2002.

[5] V. Bos and J. Kleijn, “Automatic verification of a manufacturing system,”
Robotics and Computer Integrated Manufacturing, vol. 17, no. 3, pp. 185–
198, 2000.

[6] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P. H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine, “The algorithmic anal-
ysis of hybrid systems,” in Theoretical Computer Science 138, pp. 3–34,
Springer, 1995.

[7] R. David and H. Alla, “On hybrid Petri nets,” Discrete Event Dynamic

Systems: Theory & Applications, vol. 11, no. 1-2, pp. 9–40, 2001.

[8] G. Fábián, D. A. van Beek, and J. E. Rooda, “Index reduction and discon-
tinuity handling using substitute equations,” Mathematical and Computer

Modelling of Dynamical Systems, vol. 7, no. 2, pp. 173–187, 2001.

[9] P. J. Mosterman and J. E. Ciolfi, “Embedded code generation for efficient
reinitialization,” in 15th Triennial World Congress of the International Fed-

eration of Automatic Control, 2002. CD-ROM.

[10] G. Plotkin, “A structural approach to operational semantics,” Tech. Rep.
DIAMI FN-19, Computer Science Department, Aarhus University, 1981.

15

