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Abstract

In this paper, a dual-hop communication system composedsofieceS and a destinatio® connected through
two non-interfering half-duplex relaysR: and R, is considered. In the literature of Information Theoryisth
configuration is known as theiamond channel. In this setup, fourtransmission modes are present, namely: 1)

S transmits, andR; and R listen (broadcast mode), & transmits,R; listens, and simultaneouslfg. transmits
and?D listens. 3)S transmits,R listens, and simultaneoush® transmits and listens. 4)R+, R. transmit, andD
listens (multiple-access mode). Assuming a constant paamstraint for all transmitters, a parametgris defined,
which captures some important features of the channel. ptagen that forA =0 the capacity of the channel can
be attained by successive relaying, using modes 2 and 3 defined above in a successive manner. tTdtsgg
may have an infinite gap from the capacity of the channel whe# 0. To achieve rates as close as 0.71 bits to
the capacity, it is shown that the cases®f>0 and A <0 should be treated differently. Using new upper bounds
based on the dual problem of the linear program associatddtiaé cut-set bounds, it is proven that the successive
relaying strategy needs to be enhanced by an additionatbast mode (mode 1), or multiple access mode (mode
4), for the cases oA <0 and A >0, respectively. Furthermore, it is established that underage power constraints
the aforementioned strategies achieve rates as close &#816 the capacity of the channel.

Index Terms
Capacity, decode-and-forward, diamond channel, duallpnobgap analysis, half-duplex, linear program.

I. INTRODUCTION
A. Motivation

Relay-aided wireless systems, also called multi-hop systere implemented to increase the coverage and the
throughput of communication systems [1]. These systemsbao®ming important parts of developing wireless
communication standards, such as IEEE 802.16j (also knemwidMAX) [2]. Half-duplex relays, which transmit
and receive data in different times and/or frequenciespaogen to be more practical and cost efficient in such
standards than full-duplex relays.

From information theoretical point of view, the capacitgbmes larger when more relays are added to the system.
However, designing optimum strategies, especially in-bafflex systems, is challenging because subtle scheduling
i.e, timing among transmission modes, is required to achietesmaear the capacity of such systems. During the
last decade, the main stream of research carried out byaeesearchers dealt with single relay communication
systems (cf. [5] and references therein). A simple modelifgestigating the potential benefits of a system with
multiple relays is a dual-hop configuration with two parilialf-duplex relays (see Fig. 1). This configuration does
not cover all two-relay systems because there are no sa@st@ation and relay-relay links. However, it captures
the basic difficulty in finding the best strategy in the systé® will be shown in this paper, a single strategy falls
short of achieving rates near the capacity of the systemlfmhannel realizations.

This work is financially supported by Nortel Networks and ttmrresponding matching funds by the Natural Sciences arginEering
Research Council of Canada (NSERC), and Ontario Centersc#llEnce (OCE).
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B. History

The single relay channel in which the relay facilitates aaptd-point communication was first studied in [3]. Two
important coding techniquedecode-and-forward and compress-and-forward, were proposed in [4]. In the decode-
and-forward scheme, the relay decodes the received medaafe compress-and-forward scheme, the relay sends
the compressed (quantized) version of the received dataetddstination. Following [4], generalizations to multi-
relay networks were investigated by several researchemprehensive survey of the progress in this area can
be found in [5].

A simple model for understanding some aspects of the meliiyrnetworks is a network with two parallel relays,
as introduced in [6], [7], and Fig. 1. It is assumed that treme=no direct links from the source to the destination
and also between the relays. This channel is studied in I8}-4nd [21], and referred to as thldtamond relay
channel in [12].

For full-duplex relays, Schein and Gallager, in [6] and [Fipvided upper and lower bounds on the capacity of
the diamond channel. In particular, they consideredatinglify-and-forward, and the decode-and-forward schemes,
as well as a hybrid of them based on the time-sharing priacibchmanegt al. proposed aematch-and-forward
scheme when different fractions of bandwidth can be aliot the first and second hops [8]. Rezasti,al.
suggested @ombined amplify-and-decode-forward strategy and proved that their scheme always performsrbette
than the rematch-and-forward scheme [9]. In addition, thlegwed that the time-sharing between the combined
amplify-and-decode-forward and decode-and-forward m&seprovides a better achievable rate when compared
to the time-sharing between the amplify-and-forward ancbde-and-forward, and also between the rematch-and-
forward and decode-and-forward, considered in [7], andrEpectively. Kang and Ulukus employed a combination
of the decode-and-forward and compress-and-forward sebdm obtain the capacity of a special class of the
diamond channel with a noiseless relay [10]. Ghabeli and #&rg11] proposed a new achievable rate based on
the generalized block Markov encoding [23]. They also shbtimat their scheme achieves the capacity of a class
of deterministic relay networks.

Half-duplex relays are studied in [12]-[18]. Xue and Sandhy12] proposed several schemes including the
multi-hop with spatial reuse, scale-forward, broadcasttiamccess with common message, compress-and-forward,
and hybrid methods. These authors demonstrated thamtite-hop with spatial reuse protocol can achieve the
channel capacity if the parallel links have the same capdditlike [6]-[10], [12], [21], which assumed no direct
link exists between the relays, [13]-[15] considered stk More specifically, Changgt al. proposed a combined
dirty paper coding and block Markov encoding scheme [14]ngsiumerical examples, they showed that the gap
between their proposed strategy and the upper bound isvedyasmall in most cases. Rezaei,al. considered two
scheduling algorithms, namesyiccessive andsimultaneous relaying [15]. They derived asymptotic capacity results
for the successive relaying and also proposed an achiexatigléor the simultaneous relaying using a combination
of the amplify-and-forward and decode-and-forward scherher related papers are [17]-[20].

Characterizing the capacity of an information theoretiaraiel may be difficult. A simpler, yet important approach
is to find an achievable scheme that ensures a small gap freroapacity of the channel. Recently, Etlénal.
characterized the capacity region of the interference mélato within one bit [26]. Following this new capacity
analysis perspective, Avestime#lral. proposed a deterministic model to better analyze the gkesigle-source
single-destination and the single-source multi-destinaGaussian networks [16], [21]. Theguantize-and-map
achievablity scheme is guaranteed to provide a rate thaitiinana constant number of bits (determined by the
graph topology of the network) from the cut-set upper bound.

C. Relation to Previous Works

In this paper, the setup and assumptions used in [12], witlnkdbetween the relays, are followed. In [12], the
multi-hop with spatial reuse scheme proved to achieve tpadty of the diamond channel if the capacities of the
parallel links in Fig. 1 are equal. This is called tifellti-hopping Decode-and-Forward (MDF) scheme. In the MDF
scheme, relays successively forward their decoded messaglke destination (see Forward Modes | and Il in Fig.
2). By introducing a fundamental parameter of the chadnd€bee Fig. 1), we generalize the optimality condition
of the MDF scheme. In particular, we show that wheneet 0, the cut-set upper bound can be achieved. We
also show that the MDF scheme cannot have a small gap fromuthget upper bound for all channel realizations
because the optimum strategy is highly related to the valu&.o

In [16], the aim has been to establish the constant gap angiufoethe general relay networks with a single
source and not to obtain a small gap optimized for a specimieél, such as the diamond channel. For the half-
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A= COICO2 - 013023

Fig. 1. The diamond channel with its fundamental paramater

duplex diamond channel, the expression for the gap derivddd] results in a 6-bit gap. In this paper, however,
we focus on the diamond channel and obtain a smaller gap wsingroposed achievablity scheme. In addition,
we provide closed-form expressions for the time intervakoaiated with the transmission modes in the proposed
scheduling. Specifically, we show that the expressions iffiereht from those of the cut-set upper bound. This is in
contrast to [16], where the constant gap between the cuieetd and the quantize-and-map scheme was assured
for every fixed scheduling, including the optimum schedulassociated with the cut-set upper bound.

In [16], using a different achievablity (a partial decodedgorward) scheme than the quantize-and-map scheme,
Avestimehret al. showed that the capacity of tHall-duplex diamond channel can be characterized within 1 bit
per real dimension, regardless of the values of the chanmiesgHowever, applying this scheme to thaf-
duplex diamond channel does not guarantee a constant gap from #mnehcapacity. We take one further step
by providing an achievable scheme that ensures a small gap thie upper bounds for the half-duplex diamond
channel. In particular, we show that the gap is smaller tiarbits, assuming all transmitters have constant power
constraints. We also prove that when transmitters haveagegpower constraints instead, the gap is less than 3.6
bits.

The rest of this paper is organized as follows: Section Hodtices the system model, the main ideas and results
of this work. Section Il presents the MDF scheme, which aebs the channel capacity fdr = 0. Sections IV and
V provide the achievable schemes, upper bounds, and gaysenfr A < 0 andA > ( cases, respectively. Section
VI concludes the paper. In addition, Appenfik A charactsithe Generalized Degrees Of Freedom (GDOF) of the
diamond channel to obtain asymptotic capacity of the chlafi@ally, AppendiXB addresses the diamond channel
with average power constraints.

D. Notations

Throughout the papef, £ 1—z, andz* denotes the optimal solution to an optimization problenhwin objective
function F'(x). The transpose of the vector or matAxis indicated byA”. a = b represents the link from node
to nodeb. Also, x +—y means that the roles af andy are exchanged in a given functidi(z, y). In addition, it
is assumed that all logarithms are to baséinally, C(P)= 1 log (1 + P).

IIl. PROBLEM STATEMENT AND MAIN RESULTS

In this work, a dual-hop communication system, depictediin E, is considered. The model consists of a source
(8), two parallel half-duplex relaysR;, R2), and a destinationZf), respectively, indexed by 0, 1, 2, and 3 as
shown in Fig. 1. No link is assumed between Source and Déistmas well as between the relays. The channel
gain between node andb is assumed to be constant, known to all nodes, and is repegsleyh,;, with magnitude

YJab-

\/;Je to the half-duplex constraint, four transmission moebést in the diamond channel where, in every mode,
each relay either transmits data to Destination or recailata from Source (see Fig. 2). In the figuvéél) and
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Relay 1
hoy

Source @ Destination
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Relay 2
a) Mode 1 with duration ¢;:
(1)

The source transmits the vector x; .
The first and second relay receive y<11>

and y21) , respectively.

Broadcast Mode

Relay 1
ho

Source Destination

hoas

Relay 2
b) Mode 2 with duration ts:

The source and the second relay transmit
the vectors x(()z) and xéQ).

The first relay and the destination receive
y12 and y32 , respectively.

Forward Mode |

Relay 1

Source Destination

hoz

Relay 2
¢) Mode 3 with duration ¢3:

The source and the first relay transmit
3 3
the vectors x;’ and x;”.
The second relay and the destination receive
y§3) and y§3), respectively.

Forward Mode Il

Fig. 2. Transmission modes for the diamond channel.

Relay 1

Destination

Source @
has

Relay 2
d) Mode 4 with duration #4:

The relays transmit the vectors x
and x24 .
The destination receives y§4).

(4)
1

Multiple-Access Mode

v represent the transmitting and receiving signals at no@erresponding to modé respectively. The total
transmission time is normalized to one and partitioned fotw time intervals €, t2, t3, t4) corresponding to modes
1,2, 3, and4, with the constrainEf:1 t;=1. The discrete-time baseband representation of the reteigeals at
Relay 1, Relay 2, and Destination are respectively given by:

Yi= ho1 Xo + Ny,
Yo= ho2Xo + Na,
Y3= h13X1 + ha3Xo + N3,

where N, is the Gaussian noise at nodewith unit variance. . ‘ ‘
Let us assume Source, Relay 1, and Relay 2 consume, reﬁbﬁcf&”, P}g), and Pg) amount of power in
1 2
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modez, i.e.,

1 i

EZ'XO'QS PS,

—Z | X1]2< PY),

EZ | Xa|?< PRZQ
t;

The total power constraints for Source, Relay 1, and Relaxe®a, Pr,, and Pr,, respectively, and are related
to the amount of power spent in each mode as follows:

4
S Py < P,
i=1

4
Y tiPR< Py,

1=1

4 .
S tPY< Pr,.
1=1

Due to some practical considerations on the power consirfi2], we mainly consideconstant power constraints
for transmittersj.e,, fori € {1,--- ,4},

(l)f PS
(l) = PR1 ) (1)
P(Z) PRg

Without loss of generality, a unit power constraint is cdesed for all nodesi.e., Ps = Pg, = Pr, = 1. We
define the parameterSy;, Coz2, C13, Cos asC(go1),C(go2),C(g13),C(ga3), respectively. Moreovey2 and Cia3
are defined as:

Cor2 = C(go1 + go2), @)

Cras £ C((\/g13 + /923)%).
The case in which transmitters have average power contstriistead of constant power constraints is addressed
in Appendix[B.
In this work, we are interested in finding communication poais that operate close to the channel capacity.
We introduce an important parameter of the chankes:

A £ Cp1Coa — C13033. 3)

We categorize all realizations of the diamond channel ihte¢ groups based on the signaf(i.e., A <0, A=0,
and A > 0). As will be shown in the sequel, the sign &f plays an important role in designing the optimum
scheduling for the channel.

In this setup, the cut-set bounds can be stated in the form ldh@ar Program (LP) due to the assumption
of constant power constraints for all transmitters. By wnialg the dual program we provide fairly tight upper
bounds expressed as single equations corresponding &vediffchannel conditions. Using the dual problem, we
prove that whemA = 0, the MDF scheme achieves the capacity of the diamond chahioéé thatA =0 (i.e,
Cp1Co2 = C13C53) includes the previous optimality condition presentedig][(i.e., Co; = Co3 and Cyz = C13)
as a special case. To realize how close the MDF scheme perfiortihe capacity of the channel whén/0, we
calculate the gap from the upper bounds. We show that the MibEnse provides the gap of less thag1 bits
when applied in the symmetric or some classes of asymmeiimahd channels. More importantly, we explain
that the gap can be arbitrarily large for certain ranges oapaters.

By employing new scheduling algorithms we shrink the gapriobits for all channel conditions. In particular,
for A <0 we add Broadcast (BC) Mode (shown in Fig. 2) to the MDF schemprovide the relays with more
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reception time. In this three-mode scheme, referred to d&-Ropping Decode-and-Forward with Broadcagi{F-
BC) scheme, the relays decode what they have received front&aund forward the re-encoded information to
Destination in Forward Modes | and Il. Whek > 0, Multiple-Access (MAC) mode (shown in Fig. 2) in which
the relays transmit independent information to Destimai® added to the MDF scheme. We call this protocol
Multi-hopping Decode-and-Forward with Multiple-Accesd@F-MAC) scheme.

The mentioned contributions are associated with the caszeivhthe transmitters are operating under constant
power constraintd {1). However, for a more general setting/hich the transmitters are subject to average power
constraints[(41), it is shown in AppendiX B that the cut-spper bounds are increased by at masi9 bits.
Therefore, the proposed achievable schemes guaranteeatiimom gap of 3.6 bits from the cut-set upper bounds
in the general average power constraint setting.

A. Coding Scheme

The proposed achievable scheme may employ all four trasgmisnodes as follows:

1) Broadcast Mode: In ¢; fraction of the transmission time, Source broadcasts iedéent information to Relays
1 and 2 using the superposition coding technique.

2) Forward Mode I: In ¢- fraction of the transmission time, Source transmits newrmftion to Relay 1. At
the same time, Relay 2 sends the re-encoded version of pdineofiata received during Broadcast Mode
and/or Forward Mode Il of the previous block to Destination.

3) Forward Mode I1: In t3 fraction of the transmission time, Source transmits newrimftion to Relay 2. At
the same time, Relay 1 sends the re-encoded version of paraifit has received during Broadcast Mode
and/or Forward Mode | of the previous block to Destination.

4) Multiple-Access Maode: In the remaining, fraction of the transmission time, Relays 1 and 2 simultasgo
transmit the residual information (corresponding to thevius block) to Destination whergint decoding
is performed to decode the received data.

In Broadcast Mode, superposition coding, which is knownddhe optimal transmission scheme for the degraded

broadcast channel [28], is used to transmit independera ttathe relays. The resulting data-ratesand v,
respectively associated with Relay 1 and Relay 2 are:

C(ngo1) if  go2 < go1
= . 4
u(m) { Co1 —C(ngo1) it go1 < goz, @

| Co2—C(ngo2) i go2 < gon
o) = { C(ngo2) it go1 < goo. ®)
The power allocation parametgrdetermines the amount of Source power used to transmitnr&ion to the relay
with better channel quality in Broadcast Mode.
In Multiple-Access Mode, a multiple-access channel existshich the users (relays) have independent messages
for Destination. For this channel, joint decoding is optimuwvhich provides the following rate region [28]:

Ry <t4Chs,
Ry < t4Cha, (6)
Ry + Ry <t4Cmac,

whereRy, R, are the rates that Relay 1 and Relay 2 provide to Destinatiddultiple-Access Mode, respectively,
and Cuac is defined as:
Cwac = C(g13 + g23)- (7)

According to the protocol, Relay 1 can receive uptio + t2Cp; bits per channel use during Broadcast Mode
and Forward Mode I. Then the relay has the opportunity to $sneceived information to Destination in Forward
Mode Il and Multiple-Access Mode, with the rateC:3 + R;. Similarly, Relay 2 can receive and forward messages
with the ratestyv + t3Ch2, andtaCasz + R, respectively. Therefore, the maximum achievable ratéhefscheme,

R, is:
R = , max N {min{tlu + t2Coh1,t3C13 + Rl} + min{tlv + t3Ch2, t2Co3 + Rg}}. (8)
i—1 ti=1,t:20

SectiondTIEV show that employing Forward Modes | and Il far=0, the first three transmission modes for
A <0, and the last three transmission modesAor 0 are sufficient to achieve a small gap from the derived upper
bounds.
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B. Cut-set Upper Bound and the Dual Program

For general half-duplex networks witR™ relays, Khojastepouet al. proposed a cut-set type upper bound by
doing the following steps:

1) Fix the input distribution and schedulinige., p(Xo, X1, X5), andty, ta, t3, t4 such thatZ?:1 t; = 1.

2) Find the rateR, ; associated with the cyt for each transmission modewherei, j € {1,---,25}.

3) Multiply R; ; by the corresponding time intervg|.

4) Computer:1 t;R; ; and minimize it over all cuts.

5) Take the supremum over all input distributions and schiegs.
The preceding procedure can be directly applied to the dmhohannel, whose transmission modes are shown in
Fig. 2. The best input distribution and scheduling lead to:

Coc <t I(X5 v YY) + 1 (X v21XP) + 51 (X VP 1XP) + 140,

Coc < tI(X" Vi) + 121X V) + 10X Vi) + 0.0 + 6 (X vi X (),
Coc < 11X Va) + 2.0 + t5 (I(Xé3); v) + 1(x; y3<3>)) (X O x ).
Coc < 1.0+ t2I(XE Vi) + 11XV v ) + a1 (x (Y, X1 vy),

where Cpc denotes the capacity of the diamond channel. The above bBododhot decrease if each mutual
information term is replaced by its maximum value. This sison simplifies the computation of the upper
bound, calledR,, by providing the following LP [12]:

maximize  Ryp
subject to: Rup < t1Co12 + t2Co1 + t3CH2 + 4.0
Ryp < t1C01 + t2(Co1 + Caz) 4+ t3.0 + t4Co3 )
Rup < t1Ch2 + t2.0 + tg(COQ + 013) + t4Ch3
Ryp < t1.0 4 t2Co3 + t3C13 + t4C123
S ti=1, t; > 0.

To obtain appropriate single-equation upper bounds ondpadity, we rely on the fact that every feasible point in
the dual program provides an upper bound on the primal. Hemealevelop the desired upper bounds by looking
at the dual program. In the sequel, we derive the dual prodoarthe LP [9).

We start with writing the LP in the standard form as:

maximize c¢T'x
subjectto: Ax <b
X >0,

where the unknown vector= [t1, t2, t3, t4, Ryp|”, the vectors of coefficients=c=10,0,0,0, 1], and the matrix
of coefficientsA is:

—Co12 —Co —Co2 0 1

—Co1 —(Cor + Ca3) 0 —Ca3 1

A= | —Cp 0 —(Co2 +C13) —Ci3 1
0 —Ca3 —C13 —Ca3 1

1 1 1 1 0

SinceA = AT, it is easy to verify that the primal and dual programs shhessame formi.e,

minimize  Ryp

SUbjeCt to: Rup Z 7'10012 + 7'2001 —+ 7'3002 —+ 7’4.0
Ryp > 11Co1 + 12(Co1 + Ca23) + 73.0 + 74Co3
Ryp > 11Co2 + 12.0 + 13(Coz + C13) + 14Ch13
Ryp > 71.0 + 72C%3 + 13C13 + 74C123
Z?:l T = 1, Ti Z 0.

In the dual prograni(10);, for i€ {1,--- ,4} corresponds to théh rate constraint in the primal LP](9). Clearly,
the LP [9) isfeasible. Hence, the duality of linear programming ensures thatethemo gap between the primal

(10)
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and the dual solutions [27]. However, the benefit of usingdhal problem here is that any feasible choice of the
vector T provides an upper bound to the rate obtained by solving tiggnat LP. This property is known as the
weak duality property of LP [27]. Appropriate vectotise( 7's) in the dual program{10) are selected to obtain
fairly tight upper bounds. In fact, employing such vectarstéad of solving the primal LRJ(9) simplifies the gap
analysis. In sectiorfs 1V aridlV, these vectors are provided\ffer0 and A >0 cases, respectively. In the following
sections, we employ the proposed achievable schemes évgeith the derived upper bounds to characterize the
capacity of the diamond channel up to 0.71 bits.

I11. MDF SCHEME AND ACHIEVING THE CAPACITY FORA =0
In this section, the MDF scheme is described and then pravdst tcapacity-achieving whef =0.

A. MDF Scheme

The MDF scheduling algorithm uses two transmission modesv&rd Modes | and Il shown in Fig. 2 along
with the decode-and-forward strategy and can be describddllaws:

1) In X fraction of the transmission time, Source and Relay 2 trannRelay 1 and Destination, respectively.
2) In the remaining\ fraction of the transmission time, Source and Relay 1 trangnRelay 2 and Destination,
respectively.

The achievable rate of the MDF scheme is the summation of dtes rof the first and second parallel paths
(branches) from Source to Destination, which can be expdeas [12]:

Rmpr = 021)?\1%(1 { min{)\Cm, /_\013} + min{S\Cog, /\023}}

The above LP can be re-written as: o
maximize R; + R

subject to: R; < ACpy
Ry < X\Ch3
Ry < ACos2
Ry < ACos
0<A<1,

where R, and R, denote the rate of the upper and the lower branches, regglgctThis LP has three unknowns
(R1, R2, \) and six inequalities. The solution turns three out of segualities to equality. The optimum time interval
A* can not be equal to 0 or 1, as both solutions give a zero ratecd{ahree out of the first four inequalities
should become equality, which leads to the following achiide rates for different channel conditions:

Co1(Coa +C .
RI%ADF = 016('010—21-—01313) if A<0, Co2<Co1

Co2(Co1 + C .
o Riior = % if A<0, Coz2>Co1 an
MPF _ C13(Co1 + Ca3)

RI%ADF = Cor + C13 if A>0, Co3< (i3
Co3(Coa + C .
Rlé\l/IDF = w if A>0, Co3>C13.

In particular, the achievable rate for tegmmetric diamond channel, in whiclty; = Cye and C3 = Cas, is:
Riﬂyg;: = min{Cm, 013}.
The optimum time intervah* is either equal to\] or \3 defined below:

Ci3 L AF
Co1+Cis 1
A= or
C A yx
002422023 - /\2'
Note that if \* = A}, then \fCo1 = A\iC13. Similarly, \* = X5 leads toA\;Cpz = A\5Cas3. In other words,\; for
i € {1,2} makes the maximum amount of data that can be received by Relgyal to the maximum amount of
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data that can be forwarded by Relayln this case, branch (composed of) =i = 3 links) is said to befully
utilized.
It is interesting to consider that the case fully utilizingpbch 1 or branch 2 leads to the same data-rate. This
case occurs when one of the following happens:
A =0,

Co1 =Chy if A<O, (12)

Ciz3 =0 if A>0.
In these situations, one can use eithéror A} fraction of the transmission time for Forward Mode | and the
remaining fraction for Forward Mode Il and achieve the sam&adate. It will be shown later that the MDF
scheme achieves the capacity of the diamond chanmeHf and is at most 1.21 bits less than the capacity for the
other two cases. It is remarked that=0 makes both branches fully utilized and all four rates in Edl) (equal.

B. MDF is Optimal for A=0
Here, it is explained thak;,, found by solving the dual-prograin{10), is the same as thé=Nide given in Eq.
(I1) for A=0. It is easy to observe that

o C13 Cas 0
" Co1 + Cr13” Coz + Ca3’
makes all four rate constraints in the dual-progranh (10)pétpithe rate obtained in Eq._(11) and satisi‘Le‘é:1 =
1. Therefore, the upper bound provided by vectois indeed the capacity of the channel and equals to:
_ _CnCis Co2C23
Co1+Ci3 Coo + Coz’

The result is valid for the Gaussian multiple antenna as agliliscrete memoryless channels, and therefore 0
ensures the optimality of the MDF scheme for those chanoels t

*

T (13)

Cbe (14)

C. MDF Gap Analysis

To investigate how close the MDF scheme performs to the dgpatthe diamond channel wheA # 0, the
appropriate upper bounds are required, which will be ddrivesectiond 1V andV. Therefore, the detailed gap
analysis for the MDF scheme is deferred to Appeiidix C, whiei®shown that although a small gap is achievable
for some channel conditions, the gap can be large in gener#ihe following sections, Broadcast and Multiple-
Access Modes are added to the MDF algorithm to achieve 0.t81dfithe capacity forA >0 and A <0 cases,
respectively.

IV. MDF-BC SCHEME AND ACHIEVING WITHIN 0.71 BTS OF THECAPACITY FORA < 0

In the MDF scheme, since both branches cannot be fully edliwhenA <0 simultaneously, there exists some
unused capacity in the second hop. To efficiently make uskeohvailable resources, Broadcast Mode is added to
the MDF scheme. This mode provides the relays with an additiceception time.

A. Achievable Scheme

The modified protocol uses Broadcast Mode together with Baiviviodes | and Il. Therefore, by settiig= 0
in Eqg. (8) the maximum achievable rate of the scheme as aifumof the power allocation parametgrused in
superposition coding is:

RBc(’I]) = max {min{tlu(n) + t20017 t3013} =+ min{tlv(n) + t30027 t2023}}.

S8 ti=1t>0

Recall thatu, and v, defined respectively in Eqd](4) arld (5), are the rates @edcwith Relays 1 and 2 in
Broadcast Mode. First, the optimal schedule is obtainesliragg a fixedn, and later an appropriate value for
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will be selected. The achievable rate can be written as thewimg LP:

maximize Rgc

subject to:Rec < t1(u + v) + t2Co1 + t3C02 (15)
Rpgec < tiju+ tz(C()l + 023) +t3.0 (16)
Rpc < t1v + 2.0 + t3(Coz + C13) (17)
Rpc < t2Ch3 + t3C3 (18)

3

dti=1 (19)
i=1
t; > 0. (20)

For a feasible LP, the solution is at one of the extreme paihtie constraint set. One of the extreme points can be
obtained by solving a set of linear equations containing(E8) and inequalitied (15)-(17) considered as equalities.
The solution becomes:

—A
h= (Co1 + Ciz)v + (Coz + Coz)u — A’
ty= Cisv + Coau
(Co1 + Ciz)v + (Coz + Coz)u — A’
tam Co1v + Cazu
(Co1 + Ciz)v + (Coz + Coz)u — A’
Rec(n)= C13(Co1 + Ca3)v(n) + C23(Co2 + Cr3)u(n) 21)

(Co1 + C13)v(n) + (Coz + Caz)u(n) — A

It is easy to verify thatA =0 makest; =0, and hence leads to the MDF algorithm. Note that in additon t
inequalities [(Ib)E(A7), the above extreme point also tunegjuality [I8) into equality. Now, this extreme point
is proven to be the solution to the above LP. If one of the elegmef vectort is increased, at least one of the
conditions [(Ik){(1l7) provides a smaller rate, comparechéorate obtained by the extreme point. For instance, if
t; in Eqg. (21) is increased, then, because of Eql (19), at le@stobdt, andts should be decreased, which in turn
reduces the rate associated with the inequdlity (18). Thidiens that the extreme point is the optimal solution to
the LP with constraintd (15}-(20).

In the following, instead of searching fgi*, which maximizeskRzc(n), an appropriate value foy is found that
not only provides a small gap from the upper bounds but a'\ulﬂpl'ﬁﬁies the gap analysis of sectibn TW-C. The power
allocation parametey is selected to be eithey;, = o +1, orme = 3 7 for Co2 > Co1 andCo1 > Cop2 conditions,
respectively. As it will be shown in AppendIZIA the chosgrproduces the same GDOF as the corresponding
upper bound, which is a necessary condition in obtaining allsgap. The corresponding andv for »; are:

w(m )= Co1 — (1,
v(m)= Co12 — Co1, (22)

and forn, are:

u(n2)= Coiz2 — Coz,

v(n2)= Co2 — (a. (23)
In the above,
1
L0990 <z 24
Cl (901 =+ 1) = 23 ( )
1
2o 22 )< 25
Q) <5 (25)

The selected; divides the source power betweenand v (considered as the rates of two virtual users in the
broadcast channel consisting 8& R, andS =R links) in such a way that:
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1) the sum data-raté.€é, u + v) in the broadcast channel is close to the sum-capacity obtbadcast channel
(i.e., max{Cm, CQQ}),
2) the weaker user’s rate is close to its capacity. For ingtaif Cy; < Cpz, thenu ~ Cy;.
Substitutingu andv from Egs. [2R) and(23) intd(21) leads to the following avhlgle rates?ypr gc and Rpe.ac
corresponding ta); and.:

C13(Co1 + C23)Coi2 — 031013 + Cp1Cp2C23 — (1C23(Co2 + Ch3)

Rypr.ac= ,
MDF-8C (Cor + C13)(Cor2 — Cor + C23) — (1(Coz + Ca3)

2 _ Ca3(Co2 + C13)Co12 — C2,C3 + Co1Co2Chs — (2C13(Cor + Ca3) (26)
MDF-8C (Coz2 + Ca3)(Co12 — Coz2 + Ci3) — (2(Co1 + Ch3) '

B. Upper Bound

Following the discussion in sectién 1B, we select one @& #xtreme points of the constraint defl(10) to obtain
a fairly tight upper bound. Below, some insights on how to famdappropriate extreme point are given.

First, Forward Modes | and Il play an important role in datansfer from Source to Destination. These two
modes let both Source and Destination be simultaneousilyeaethich is important for efficient communication.
This implies thatgenerally ¢5 and¢3 are not zero in the original LE](9). In additiod <0 roughly means that the
second hop is better than the first hop. In this case, Broatitade helps the relays to collect more data which will
be sent to Destination using Forward Modes | and 1l later.réfoee, Multiple-Access Mode is less important when
A <0 and consequently, can be set to zero. Using the complementary slackness theafrénear programming
(cf. [27]), having non-zerd, t2, andts in the original LP translates into having the first three unagies in the
dual program satisfied with equality. Now looking at the dpdblem [Z0) with the same structure as the original
LP, in order to achieve a smaller objective function, we sebr 73 to zero. This is in contrast to the claim for
having both ofto and¢s non-zero in the original LP with the maximization objectiVénerefore, the vector with
the following properties is selected:

1) Eitherr, or 73 is zero.

2) The first three inequalities are satisfied with equality.
To have a validr, we need to make sure that all the elements of vettare non-negative and that satisfies the
last condition.

As mentioned earlier, either, or 73 can be set to zero in the dual progrdml(10). For instancengett=0 in
the dual-program gives the following LP:

minimize R
subject to: E > 11Co12 + 13C02 + 74.0
R > 11Co1 + 73.0 + 74Ca3

~ 27
ij7’1002+7'3(002+013)+7'4013 @7)
R > 7.0+ 713013 + 14C123
Z?:l,i;éQ Ty = 1, Ti Z 0.
Setting the first three inequalities to equalities gives:
r Ci3
' Coi12 — Co2 + C13”
e C23(Co12 — Coz2) — C13(Coi2 — Cor)
s (Co2 + C23)(Cor2 — Coa + Ch3)
e C13(Co12 — Co1) + Co2(Co12 — Co2)
4 (Co2 + C23)(Co12 — Coa + Ch3)
e (Coz + C13)Ca3 C13(Co1Co2 — C13C23) (28)

Co2 + Cag (Coz2 + C23)(Cor2 — Coz + C13)
For obtaining a valid result, the following conditions haweebe ensured:
1) 74 > 0.
Since Cy2 < Cpi12, the denominator of; is non-negative, therefore, the non-negativity of the nator has
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to be guaranteed. This imposes the constrBirtd on the values of channel parameters, wheris defined
as:
I’ £ Ca3[Co12 — Co2] — C13[Cor2 — Con . (29)

2) R* > 15013 + 74 Chas.
To satisfy the following condition:

R* = 71 Coz + 75 (Coz + Ci3) + 74 C13> 75 C13 + 75 Ci23,
it is sufficient to show:
(1 + 73)Co2> 75 (Cra3 — C13),
which can be equivalently represented as:

*

Co2 <
= Ty
Ci23 — Ci3 + Co2

The following lemma proves the preceding inequality.

* Co2
Lemma 1 75 < roT e mew g for Ciao3 < Ci3 + Cos.

Proof: See AppendikD-A . [
Lemmall require€' 3 < C3 + Cag, wrlich is not true forg3¢923 <4.To be able to use Lemnia 1 for the case
of g13g23 < 4, we replace eithe€5 by C3 £ Ci3 + § or Cas by Coz = Chs + § with § defined as:

52 InaX{Clgg — (013 + 023), O} (30)

This change provides the desired inequalite.( Ci23 < 613 + Chz or Chag < Ch3 + (3“23) at the expense of
increasing the upper bound. However, we will show in Lenith&a this increase is always less thariwe will
prove thats itself is bounded in Lemmil 3.

Continuing the derivation of the upper bound from the (37123 > C13 + Ca3, thenCos is replaced by
Cys. In this case, the dual prografi{27) remains unchanged exuep,s. Hence, the set of solution§ (28) can
be used by replacingss with Cs3 and thus the upper bound becomes:

2% (Caz +6)(Co2 + C13) C13(C01Co2 — C13(Cas + )

R = + . 31
Coz + Cag + 6 (Coz + Ca3 + 9)(Cor2 — Coz2 + Ci3) 1)

Note that the inequalitys > 0 holds becausé& > 0 simply follows fromI" > . According to Lemmad]1, since

C1a3 :013—1—@23, the conditionR >75C13+7; Cha3 is satisfied. LemmB]2 shows that the enlarged upper bound
R (Eq. [31)) is at mosb bits greater than the upper bound BFl(28).

Lemma 2 If Cio3 > Ci3 + Cog, then f% — R*<6.

Proof: See AppendikXD-B. [
Therefore, the proposed upper bound for< 0 andT” > 0 is:
Ca3(Co2 + C13) Ci3A

+ 0.
Co2 + Cag (Co12 — Coz2 + C13)(Coz + Cas)

2 _
Rip =

1The superscriptis used to indicate parameters associated \With. For instance' has the same formula &8 in Eq. [23), with Cas
replaced byCss.
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Similarly, whenA <0 andI' <0, 73 is set to zero and again the first three inequalities are as$uonbe satisfied
with equality in the dual-prograni_(1L0). Following the santeqedure, the subsequent results are achieved:
Cas3
Coi2 — Cor + Cas’
. C13(Co1a — Co1) — C23(Co12 — Co2)
? (Co1 + C13)(Cor12 — Co1 + Ca3)
« C23(Coi2 — Coz) + Co1(Cor2 — Cor)

*__
=

R

e (Co1 + C13)(Cor2 — Co1 + Ca3)
o (Co1 + Ca3)Ch3 n C23(Co1Co2 — C13C723)
Co1 + Ci3 (Co1 + C13)(Cor2 — Co1 + Ca3)’
Rl.ljp: C13(Co1 + Ca3) Cas A w5 32)

Co1 + Ci3 (Co12 — Co1 + Ca3)(Co1 + Ch3)

In this case, wheiC o3 > Cis 4+ Cas, Cis is replaced byCis + 4, it is easy to see that the preceding results can
be obtained by exchanging the roles@f; < Cyo, C13 < Ca3, andm, < 73 in the results derived for the case of
A <0andI’ > 0.

In order to be able to achieve a small gap from the upper bounsisould be bounded. Lemria 3 proves that
is smaller than 0.21 bits.

Lemma 3 § < £ log(3).

Proof: See AppendiXD-T. [ |

C. Gap Analysis

The MDF-BC scheme is proposed for the following regions:

1) A <0, T <0, Co2 > Cor, ande >1

2) A<0,T>0, Co1 > Coo, andC’02 >1
For A <0, AppendiXC shows that the MDF scheme provides a small gap the upper bounds for the remaining
regions. Here, the first case is considered. The gfap- sc between the achievable rafe), -z and the upper
bound R}, is:

-1 ((0012 — Co1 + Ca3)(C13 — Cag) + Ca3(Coz + 023)) A

KMDF-BC = + 0.
(Co1 + C13)(Cor2 — Co1 + Ca3) <(001 + C13)(Cor2 — Co1 + Caz) — (1(Coz + 023)>
In the following lemma, the gapypr.gc iS proved to be smaller thah + 4 bits.
Lemma 4 rlpepc < & + 0.
Proof: See AppendixD-D. [ |

By exchanging the roles aofy; < go2 and g13 < go3, the gap for the second case can be easily derived and
shown to be less thah + § bits.

V. MDF-MAC SCHEME AND ACHIEVING WITHIN 0.71 B TS OF THECAPACITY FORA > 0

Similar to sectioi 1V, a third mode is added to the MDF schentemA > 0 to effectively utilize the unused
capacity of the first hop.
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A. Achievable Scheme

Here, Multiple-Access Mode is added to the MDF scheme wittependent messages sent from the relays to
Destination. This mode provides the relays with an incrédsnsmission time. The modified protocol uses three
transmission modes.e., Multiple-Access Mode and Forward Modes | and Il. Therefdne settingt; = 0 in Eq.

(8) the maximum achievable rate of the schegac is:

RMAC = max { Inin{tQC()l, t3013 + Rl} + min{thOQ, t2023 + RQ}}, (33)

4 ti=1,6,>0

=2 "7
where R, and Ry are the rates that Relays 1 and 2 provide to Destination irtipdledAccess Mode, respectively.

These rates satisfy the multiple-access constrain{s inLé8hmalb presents achievable rates, which will be shown
to be smaller than the capacity, by at mdat bits, in sectiod_ V-C.

Lemma 5 The achievable rates for A >0 together with their corresponding scheduling are as follows:

Co1(Co2 + C13) CozA
RYoemac= — for A>0, I'"<0,
MDF-MAC Co1 + Cis (Cor + C13)(Cmac — Cr13 + Co2)
Co2(Co1 + C23) Co1A
J 27 — - for A>0,T">0, 34
MDF-MAC Coz + Cas (Coz + C33)(Cmac — Ca3 + Co1) (34)
I"<0 I">0
ty = Ci3 ¢ _ Co2(Cuac—C23)+C13C23
Co1+C13’ 2 7 (Co2+C23)(Cuac—C23+Co1)
¢ __ Co1(Cwac—C13)+C13C23 t _ Cos
3 = (Co1+C13)(Cwac—C13+Co2)’ 3 T Cuat+Caz?
_ A _ A
ta = (Co1+C13)(Cvac—C13+Co2) ? ta = (Co2+C23)(Cvac—C23+Co1)?
where
I'" £ Cp2[C123 — Caz) — Co1[Cr2s — Chs). (35)
Proof: See AppendiX D-E. [ |

It is noted that ifA = 0, t4, becomes zero and the scheme is converted to the MDF scheme.

B. Upper Bound

Following the same procedure as secfion IV-B, the upper 8danthe case ofA >0, IV >0 is attained from
(28) by exchanging the roles @ty; < Ci3, Coo < Cas, T2 < 73, andry « 74. Similarly, whenA >0 andI” <0,
swapping the positions afy; < Cy3, Coz < C13, andr; « 74 in (28) provides the upper bound. Therefore:

Co1(Co2 + C13) —CpaA
RS = + 6 for IV <0,
P Co1 + Ci3 (Ci23 — C13 4+ Co2)(Cor + Ch3) -
i Co2(CoL + Cg) —Conld 4 5for T > 0. (36)

W G + Cag (Ch23 — Caz + Cp1)(Coz + Cas)

C. Gap Analysis

By comparing the achievable ratés](34) and the upper boB&)s the gaps:jac and ke are respectively
calculated fol” <0 andI” >0 cases as:

Co2(Cr23—Cnac)A

1 A

Kiac = R3S — RypeEmac= +9,
MAC up MDFEMAC™ (Co1+C13)(Cwmac — C13+Co2) (Craz — Ciz+Cog2)
Co1(Cr23—Cnac)A
2 LR _R2 s — ot —+4.
fiwac up MDFEMAC™ (Coa +C23)(Cwac — C23+Co1) (Craz — Caz+Cor)

To show that the above gaps are small, Leniina 6 is employed.

Lemma 6 Ci23—Cmac< 3.
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Proof: See AppendiX DiF. [ |
Considering Lemmal6, it is straightforward to show that tap @5 at most%+6 bits. Therefore, adding Multiple-
Access Mode, with independent messages sent from the reldysstination, to the MDF scheme ensures the gap
of less than .71 bits from the upper bounds for> 0.

VI. CONCLUSION

In this work, we considered a dual-hop network with two plataklays in which each transmitting node has a
constant power constraint. We categorized the networkthrge classes based on the fundamental parameter of the
networkA, defined in this paper. We derived explicit upper boundstierdifferent classes using the cut-set bound.
Based on the upper bounds, we proved that the MDF schemehweniploys two transmission modes (Forward
Modes | and 1), achieves the capacity of the channel when(. Furthermore, we analyzed the gap between the
achievable rate of the MDF scheme and the upper bounds, sgdwat the gap can be large in some ranges of
parameters wheA 0. To guarantee the gap of at most 0.71 bits from the boundsddedaan extra broadcast or
multiple-access mode to the baseline MDF scheme for thesazfs&é <0 and A >0, respectively. In addition, we
provided the asymptotic capacity analysis in the high SNgtnme. Finally, we argued that when the transmitting
nodes operate under average power constraints, the gapdrethe achievable scheme and the cut-set upper bound
is at most 3.6 bits.
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APPENDIXA
GENERALIZED DEGREES OFFREEDOM CHARACTERIZATION

It is interesting to consider the asymptotic capacity of dimond channel in the high SNR regime. A useful
parameter in studying this capacity is the GDOF (cf. [16B]J2lefined as:

N
GDOKa) = th g P’
whereR is the data-rateP is a channel parameter (can be considered as SNR)qaad ao1, o2, @13, aas } with
. log(gi;) . .
A J
;= th Tog for i € {0,1,2},andj € {1,2,3}.

The vectora shows how channel gains scale with Based on the above definition, the following approximagion
are valid:

1 1
Cij: 5 lOg(l + gij) ~ Eaij 10gP’

1
Co12= = log(1 + go1 + go2) ~ 3 max{ao1, a2} log P,

— | =

1
Cras= = log (1 + (V13 + v/923)°) = 3 max{ais, g3} log P,

— DN

1
Cuac= =log(1 + g13 + go3) =~ 3 max{ai3, ao3} log P,
I'~ 23 (max{am, 0402} — O[OQ) — (13 (max{a01, OLQQ} — am)}(log P)2 + UlOg(P),

I~

N

Q02 (max{alg, agg} — agg) — Q1 (max{a13, 0423} — alg)} (log P)2 + O’I lOg(P),

whereos and o’ are positive constants. In the following analysis, it isuased that(log P)? terms are dominant,
i.e,, the coefficients oflog P)? for I' andI” are not zero. If this assumption is not valid, MDF scheme e@s
the optimum GDOF of the channel. According to the above apprations, it is easy to infer:

<0, if agr < agy;
I'>0, if agr > apz;
I'"<0, if arg < ags;
I’ > 0, if 13 > (¥23.

DRAFT



16

Therefore, the GDOF associated with the upper bounds is:

GDOFﬁp: a13(o1 + a23) a3 (1 — a3aes) 7
ap1 + a3 (a1 + a13) (o2 — o1 + 23)
GDOR a3 (a2 + a13) a13(c01002 — 13023) 7
Qo2 + Qg (o2 + a23) (o1 — o2 + 3)
GDOF — ao1 (o2 + a13) —apz(o1002 — a13023) 7
Qo1 + Q13 (o1 + a13) (a3 — cuig + ap2)
GDOFﬁp: apa (o1 + a23) —ao1 (1002 — 13Q23) . 37)
Qo2 + Qo3 (o2 + a23)(a13 — qog + ao1)
The GDOF for different achievablity schemes is as follows:
MDF:
1 _ api(age + aa3)
CDOFwor = —ag Fam
2 _ ap2(ao1 + a3)
GDORypr = Qo2 + Qo3 (38)
3 _ aus(aor + as)
GDORypr = —an Fas
_ oos(aoe + aa3)
GDORuor = 65 am
MDF-BC:
2
GDOFI{/IDF—BC: 2013 (o1 + 23) — o g + Qo1 02023 7
(a1 + a13) (o2 — o1 + a23)
9
GDOF%/IDF—BC: ap1 s (o2 + i) — bz + o123 . (39)
(a2 + a23) (o1 — o2 + @13)
MDF-MAC:
GDOR, o iae— ao1(@o2 +a13)  ao2(ao1co2 — arzans) 7
Qo1 + Q13 (a1 + ai13) (@23 — cus + ao2)
a2 (o1 + a23) ao1 (o102 — ar3aa3)
GDOFR5rmac = - . 40
MDF-MAC ap2 + Qi3 (o2 + a23) (13 — o3 + 1) (40)

By comparing the upper bounds on the GDOF and the achievabl@Fs, it is easy to see that MDF-BC and
MDF-MAC achieve the optimum GDOF of the channel, while the M&annot achieve it for all channel parameters.

APPENDIXB
DIAMOND CHANNEL WITH AVERAGE POWER CONSTRAINTS

In this appendix, it is shown that if the transmitting nodes aubject to average power constraints, each of
the cut-set bounds in Ed.](9) is increased at mos;;’gybits. This analysis confirms that the achievable schemes
proposed in this paper with constant power constraintstdfeaid. In other words, they provide a gap of at most
71+ % < 3.6 bits from the cut-set bounds.

Let PSi)*, Pfgz* andPgi*, fori e {1,---,4} be the optimum power allocated to Source, Relay 1, and Relay

2 in transmission modeé with the corresponding time intervaf leading to the cut-set boung. The following
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constraints are in eﬁeﬁ:t

4
> tiPS < Ps,

i=1

Zt P < Pr,, (41)

thpfgg*g Pr,.

=1
Therefore, the cut-set upper bouly satisfies the following constraints:

Ry < HC((g01 + 902) Ps'") + t26(901P(2)*) +5C(g02PS),

Ro < t:C(gnPS)") +t5(Cloon P™) + ClgasPR)")) + tiClg2s PR ),
Ry < 1iC(go2Ps") + t5(Clg0a S )+C(913P7(z:?*) +tZC(913P7(é)*)7
Ro < 15C(g2P 2)*>+t§C(913P7§’3*)+t4C( (Vous PR +/gas PR)") )

Suppose that the vecttfis the solution to the LH{9) leading to the rakg. If the vectort* is used instead of
t’ in the LP [9), the resulting rate that satisfies the conditiohthe LP, calledR,, becomes smaller thaR;. It is
clear that the increase in the cut-set bound due tcatleeage instead of theconstant power constraints (compare
Eq. (@) to Eq.[(4N))i.e, Ry — Ry is smaller thank, — R,. Here, it is proved thaRy — Ry < 2.

ConS|der each component term in the form¢pE(.) present in the |nequaI|ty s€t (42). For instance, consider
Reo = L C(gOQPs ). The correspondlng term in constructid, is R, = £ 1%C(go2Ps). Because of the power
constramtlell)Rc,O <ty C(gog 7 S). Therefore, it is easy to show:

go2Ps(1 —17)
(14 go2Ps)t]
(2 go2Ps(1 —7)
- 2(1 + gOQPS) In2
1
< —1
~ 2In2
where(a) is due to the fact that(z) < 55 for anyz > 0. Similar analysis applies to each component term. It is

observed that the first and fourth cut-set bounds in inetyusdit [42) have three component terms and the second

and third cut-set bounds have four component terms. Therefy — Ry < 2.

(42)

RC,O - RC,QS tTC(

APPENDIXC
MDF GAP ANALYSIS

We investigate how close the MDF scheme performs to the uppends whemA # 0. First, the gap between
the MDF scheme and the upper bound is calculated for regipasifeed in Table I. Then, two special cases are
considered.

General Case. We calculate the difference, namedbetween the upper bounds and the rate offered by the MDF
scheme from Eq[{11) for the cases shown in Table | (see App&)d

2For the purpose of clarity, here the average powers are hab seity.
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_(0012 - C'Ol)A

K1 = +4,
! (Co1 + C13)(Coi2 — Co1 + Ca3)
—(Co12 — Co2)A
Ko = +4,
° (Co2 + Ca3)(Coi2 — Co2 + C13)
(Craz — C13)A
K3 = + 4,
’ (Co1 + C13)(Chaz — Ci3 + Cp2)
(Ci23 — Ca3)A
kg = + 4,
* (Coz + Ca3)(Chaz — Caz + Co1)
—-A Co1 + Cas Coas
Ry = + 67
Co1 + Ci3 (Coz + O3 Coia — Cor + 023)
—-A Coz + Ci3 C13
Ke = — + 0,
© Cog + Cag (001 +Ci3 Coia — Co2 + Ci3 )
o — A (002 +C13 Co2 )
Co1 4 C13 \Coz + Ca3  Chaz — Ci3 + Cog
— A (001 + Cos Co1 )
® Co2 + Co3 \Cp1 + C13 Crag — Coz + Co1/”
Note that for the regions associated with and g specified in Table |53 < C13 + Ca3 and henced = 0.
To prove thats, for i € {1,---,4} are small, the following lemma is needed:
Lemma 7
1
Coi2 — max{Co1, Cp2}< 3
C123 — max{Ci3, Cos}< 1.

Proof: See Appendix D-G. [ |
For instance, following:; < % + ¢ is proved:

(C13023 — Co1C02)(Co12 — Co1)
(Co1 + C13)(Cor2 — Co1 + Ca3)
(2) C13C23(Co12 — Co1)
= (Co1 + C13)(Co12 — Co1 + Ca3)
®1 C13C33
~ 2(Co1 + C13)(Corz2 — Cor + Ca3)
1 Ci3 Coas
2Co + Chs 0012 — Co1 + Cas
< E +9
S5 to
where (a) comes from the fact thah >0 for this case. According to the corresponding region shawfable I,
Co2 <Cp; and therefordbd) is true based on Lemnia 7.
Lemmad B and]9 prove that < %4—6 and k7 <1, respectively. The proof techniques can be easily adojted t
correspondingly show thais < %+5, andrg <1.

+90

KR1=

+0

+0

+0

Lemma 8 k5 < 3 +4.

Proof: See Appendix D-H. [

Lemma 9 x; < 1.

Proof: See AppendixD}. [ |
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Two special cases are also considered:

Symmetric Case. When Cy; = Cye and Cy3 = Cas, I'=T1"=0 and it can be seen from Table | that the MDF
scheme offers a data-rate that is, at mast, § bits less than the corresponding upper bound.

Partially Symmetric Case. When eitherCy; = Cys with A <0, or C13 =Cs3 with A >0 occurs, it was seen in
section[III=A that fully utilizing branch 1 or branch 2 givélse same achievable rate. Table | shows that in such
cases, the gap is less than- ¢ bits.

Discussion. Multiplexing Gain (MG) of a scheme is defined in [24], [25] as:

R
MG = JJim 55 1og(SNR)’
where R is the achievable rate of the scheme. Using Edl (11), it cashibevn that the MDF scheme achieves the
multiplexing gain of 1. Avestimehgt.al proposed a broadcast mutiple-access scheme for the fpléxidiamond
channel and proved that the scheme is within one bit from titeset bound [21]. In the half-duplex case, the
multiplexing gain of 1 is lost if this approach is followedading to an infinite gap between the achievable rate
and the upper bound.

It is easy to show that, for the remaining cases (shown ineTgblthe gap can be large. For instance, suppose

Co2 =z, C13=Co3=ax and Cy; =[x, with a> 3> 1. In this caseA <0, andI' >0 and therefore, the gap is:

__ A (Co2 +Cis Cis ) n
Coz2 + 023 Co1 +C13 Coi2 — Co2 + C13
(002 (Cor2 — Co2) + C13(Co12 — 001)) 5
C'02 + 023 (Co1 + C13)(Cor2 — Coz + C13)

( 002 Coi2 — 002) ) y
- Co2 023 (Co1 + C13)(Coi2 — Co2 + C13)
Co2(Co1 — Co2)
+ 6
C'02 Ca3 ( (Co1 + C13)(Corz2 — Coa2 + 013))
© Co2(Co1 — Co2)
> 1)
- 002+023( (Co1 + C3)? )+

) (@ = p)(B-1)
(a+0)? (v +1)
where in(a) the nominator is decreased B3 (Co12 — Co1). To obtain(b), Cp12 in the nominator is replaced by
the smaller quantity’y;. For (¢), Co12 is substituted by the larger terfty); + Cy2 in the denominator. Irid), the
assumed values of the capacities in terms @fre substituted. It is clear that the gap increases lascomes large.
GDOF analysis of AppendixJA also confirms that the MDF scheme ltave a large gap from the upper bound.

8

( x4+ 9,

APPENDIXD
PROOFS

In this appendix, the proofs of the lemmas used in this papepeovided.

A. Proof of Lemmal[ll
We start with the fact that’y; + Co2 > Cp12. Rearranging the terms, and multiplying both sides of tlegirality
by Ci3 give:
C13Co2 > C13(Coi2 — Cor).
By addingCo2(Co12 — Co2) to both sides and then dividing both sides Gy;2 — Co2+C13, we obtain:
C113(6'012 - C()l) + C'02(6’012 - C102)
Corz2 — Co2 + C13
AssumingCia3 < Ci3 + Ca3, we divide the Right Hand Side (RHS) liyy, + C3 and the Left Hand Side (LHS)
by the smaller quantity23 — C13 + Co2 to achieve:
C102 > C’13 (0012 - C’01) + C102 (0012 - C102) _ 7_*

Ciag — Ciz3+ Coa—  (Corz2 — Coz2 + Ci3)(Co2 + Ca3) .

This completes the proof.

002 >

DRAFT



20

B. Proof of Lemma[2

x 5002((002 + C13)(Co12 — Coz2 + C13) — C13(Co1 + 013))
R - k=

(Coz + Ca3)(Co2 + Cas + 6)(Corz — Coz + Ch3)
(2 5C3,
= (Co2 + Ca3)?
<4,

where in(a), the nominator is increased by replaciag,> — Coo with Coy, using the fact tha€yi2 — Coe < Coy
(see Eq.[(R)). In addition, the denominator is decreasecetmovingd.

C. Proof of Lemma[3

0= Ch23 — (Ci3 + Ca3)
1 0 (1 + g13 + gos + 2«913923)

2 1+ 913 + go3 —+ J13923
(a) 1 2 o
< —log (1 + 913923 — 913923 )
2 1+ 2,/913923 + 913923
(®) 1 4
< Zlog(=
< 5 log(3),

where in (a) the denominator is decreased by replacing + g23 with the smaller term2,/g13g23. Defining

x 2 /G393, it is easy to show that the maximum k(1 + —22=2" ) for 0<z <2, is z* = 1., gisgs = 1,

. + 1+2z+x2
which proves(b).

D. Proof of Lemma[d

It is known thatCyp1, Co2 < Cpi12, which provesd < Ca3(Coia — Co2) and0 < Cp1(Copi2 — Co1). Since both
terms are positive, the sum of them is also positive, 0 < Ca35(Co12 — Coz2) + Co1(Co12 — Co1). By adding and
subtracting(Cop12 — Co1 + C23)C13 + Co1Ch3, the inequality can be rearranged to:

0 < (Cor2 — Co1 + C23)(Co1 + Ci3) + (Cor2 — Cop1)(Cas — Ciz) — Caz(Coz + Ci3).

As mentioned earlier, Broadcast Mode is used for< 0, i.e, Cy1Co2 < C13C53. Therefore, both sides are
multiplied by the positive term-A to acquire:

0 < (C13C093 — 001002)((0012 — Co1 + C23)(Co1 + C13) + (Cor2 — Co1)(C23 — C13) — C23(Coz + 013))-

Now, the positive term{Coi2 — Co1 + C23)(Co12 — Co1)(Co1 + C13)? can be added to the RHS of the inequality
to achieve:

0 <(C13C33 — 001002)((0012 — Co1 + C23)(Co1 + C13) + (Cor2 — Co1)(C23 — C13) — C23(Coz + 013))
+(Co12 — Co1 + C23)(Cor12 — Co1)(Co1 + 013)2-

The above inequality can be equivalently stated as:
(C13C23 — Cp1Co2) ((0012 — Co1 + C33)(C13 — Ca3) + Ca3(Coz + Cz3))+

Co1(Co2 + C23)(Co1 + C13)(Cor2 — Co1 + Ca3)< (Corz — Cor + 023)2(001 + 013)2-
Sincel < Cyy, the LHS becomes smaller @1 (Co2 + Cas) is replaced by(Cys + Ca3), leading to:
(C13C23 — Cp1Cp2) ((0012 — Co1 + C23)(C13 — C23) + Ca3(Coz + Cz3))+

(Coz + C23)(Co1 + C13)(Cor2 — Co1 + Ca3)< (Corz — Cor + Ca3)?(Cor + Cis)*.
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Now as(; < % (see Eq.[(25)), the following inequality is also true:

C1{2 X (C13Ca3 — 001002)((0012 — Co1 + Ca3)(Cr3 — Cas) + Casz(Coz + 023))-1-

(Co2 + C23)(Co1 + C13)(Cor12 — Cor + 023)} < (Cp12 — Co1 + 023)2(001 + 013)2-

By rearranging the preceding inequality
(1(C13C23 — C01Co2) ((0012 — Co1 + C23)(C13 — Ca3) + C23(Co2 + 023))
(Co1 + C13)(Coi2 — Cor + Ca3) ((001 + C13)(Cor2 — Co1 + Ca3) — (1 (Coz2 + 023))

which completes the proof.

1
<_7
-2

E. Proof of Lemma§
The optimization[(3B) is an LP and together with the multipteess constraintgl(6) can be written as follows:

maximize Rmac

subject to:Ruyac < t2Co1 + t3Co2
Rmac — Ry < t3(Coz + C13)
Ryac — Rz < t2(Co1 + Co3)
Rymac — (R1 + Ra) <2023 +t3C13
Ry <t4C13
Ry < 14053
Ry + Ry <t4Cmac

4
dti=1,t>0.
=2

Using Fourier-Motzkin elimination [27], the LP can be eqlently stated as:

maximize Rmac

subject to:Ruac < t2Co1 + t3Ch2 (43)
Rmac < t3(Co2 4 C13) + t4Ci3 (44)
Ruac < t2(Cor + Caz) + t4Ca3 (45)
Rumac < t2C23 +t3C13 + t4Cviac (46)
Rmac < t2C23 +t3C13 + 14(C13 + Ca3) (47)
2Ruac < t2(Cor + Ca3) + t3(Coz + Ci3) + taCmac (48)
2Ruac < t2Co3 + t3(Coz + 2C13) + t4(C13 + Cvac) (49)

4

D ti=1,1>0. (50)
i—2

Now, it is shown that inequalitieB (#7)=(49) are redund&irst, sinceCyac < (C13+Ca3), the RHS of inequality
(@7) is greater than the RHS of inequalify {46). Therefoneguality [4Y) is redundant. Second, inequalities (48)
and [49) are simply obtained by adding inequalitles (43, a&) [44[46), respectively. Therefore, the following
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LP gives the maximum achievable rate of this scheme:

maximize Ruac

subject to:Ryac < t2Cp1 + t3Ch2 (51)
Rmac < t3(Coz + Ci3) + t4C13 (52)
Rmac < t2(Cor + Caz) + t4Co3 (53)
Ruac < taChs + t3C13 + t4Cuac (54)
4
> ti=1,t;>0. (55)
i—2

Instead of solving the above LP, a feasible solution thasfeas all the constraints is found. This solution is not
necessarily optimum, however it provides us with an aclikevaate. ForT” < 0 inequalities [(511),[(52), and (b4)
are set to equalities, leading to:

ty= C13
Co1 + C13’
tam Co1(Cwac — C13) + C13Ca3
(Co1 + C13)(Cmac — C13 4+ Coz)’
ta= A
(Co1 + C13)(Cmac — C13 4+ Coz)’
[ Co1(Coz2 + Ci3) Co2AA (56)

Co1 + Ci3 (Co1 + C13)(Cmac — Ciz + Co2)

To ensure that the above results are valid, the inequalBy li&s to be satisfied. Considering inequalitled (51)
and [B3), it is sufficient to show thatCh < £3C53. Using the values obtained in Ed._[56), this is equivalent to
prove:

Co2 (001(CMAC —Ci3) + 013023) < Ca3 (A + C13(Cwac — C13 + 002))-

By re-ordering the terms and using the definition/ofthe above inequality can be alternatively written as:
CvacA < (Crz + Ca3)A,

which is true sinceA >0, andCyac = C(g13 + g23)-

ForT” >0, inequalities[(511),[(33), an@(b4) are set to equality. lis ttase, the time intervals and the achievable
rate become:

Co2(COmac — Ca3) + C13093
(Coz + Ca3)(Cmac — Ca23 4 Cor)’

o=

pam 23
Coz + Cas’
. A
* (Coz + C23)(Cmac — Caz + Co1)’
Co2(Co1 + Ca3) Corl A
RI%/IDF—MAC: 02(Co1 23) 01 (57)

Coz + Cag (Co2 + Ca3)(Cmac — Caz + Co1)
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F. Proof of Lemmalg

Ci23 — Cvac=

1Og(1+ (\/gﬁ+\/gﬁ)2)
1+ g13 + g23

n 2\/q13 923 )
1+ g13 + go3
913—"7923)
1+ 913 + g23

N N~ N~ N

IN

G. Proof of Lemmal7]

1
Co12 — max{Cop1, Coz}= 7 log ( + o1 + go2 )

1+ max{go1, goz }
min{go1, goz2 } )
1 4+ max{go1, go2}

max{gm, 902} )
1+ max{go1, go2}

N N~ N~ N

<)
o
7N\
[u—
+

<

<}
o
RS
—
+

<

Ci23 — max{Ci3,Ca3}= ~ log

1+(\/gﬁ+\/gﬁ)2)

1 + max{g13, g23}
) min{gi3, ge3} + 2\/M>
1 + max{g13, 923}
3v/913923 )
1 + max{g13, g23}
31/913923 )
1+ /913923

log

1

s
1

s
%bg(l
1

s
1.

+

IN
+

log [ 1+

IN

H. Proof of Lemmal[8

In this region,Cy; < 1 and Cyp; < Cle, therefore0 < C13C23(Co2 — Co1)(1 — Cop1). It is easy to verify that
the following inequality is valid:

2C13C23(Co1(Coz — Co1) + 0.5(Cor + Ca3)) < (Cor + C13)(Coz + Ca3) (Cas + .5 + Co1(Coz — Co1)).  (58)
ReplacingC;3Cs3 by the smaller quantityC3C23 — Cp1Co2) in the LHS of the above inequality results in:
2(C13C23—Co1Co2) (Co1(Coz—Co1)+0.5(Co1+Ca3)) < (Co1+C13)(Coz+Ca3) (Caz+.5+Co1 (Coz—Co1)). (59)

SinceCy; < 1in the RHS,Cy;1(Co2 — Cp1) can be substituted by the larger tefh,, — Co1). Hence, the following
inequality is true:

— 2A(Co1(Co2 — Co1) + 0.5(Co1 + Ca3)) < (Co1 + C13)(Coz + Ca3)(Caz + .5+ (Coz — Cor)). (60)
Rearranging the terms leads to:
—A (001 + Chs Coas ) <1 (61)
Co1 +C13\Coz + Caz  Co2+0.5—Co1 +Ca3/ ~— 2
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The gap can be further increased by replacifig + 0.5 with the smaller termCy;> according to Lemmal?7.
Therefore:

-A (001 + a3 Cas ) < %’ (62)

Co1 + C13 \Cp2 + Ca3 B Co12 — Co1 + Ca3
which completes the proof.

I. Proof of Lemmal[9

KT

_ A (002 +Cis Co2 )

Co1 + Ci3 \Cp2 + Ca3  Chaz — C13+ Cp2
@ A Cis
< x

Co1 +Ci3 Co2 + Ca3
(2) A
= (Co1 + C13)(Coz + Ca3)
©  Cn Co2

X +

Co1+Ciz Coo + Cas

+0

+0

]

As C1a3 < C13 + Cag in this region,Ci23 — Cy3 is replaced by the larger quantity,s to obtain(a). (b) is valid
sinceCy3 < 1 for this scenario. Ir(c), A is substituted by the larger terfly; Cos.

APPENDIXE
GAP ANALYSIS SUMMARY

The results related to gap analysis are compactly shownbte TaFor each region specified by some conditions
on the link capacities, the corresponding symbols for thegeafpound, the achievable rate, and the gap, the
difference between the upper bound and the achievableas&eShoer. In addition, an upper bound on the value
of the gap is given. For instance, for the region specifiedMoy 0,I" < 0, andCy2 < Cp; conditions, the upper
bound, the achievable rate, and the gap are respectivelgsamued byR},p, Ripr, and k1. Using the achievable
scheme that leads tB},pr, the gap from the upper boun‘?ﬂJp is less than% + . Our results, summarized in Table
[, indicate that sendingndependent information during each mode together with the decodefangard scheme
are sufficient to operate close to the capacity of the channel
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