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Abstract

In this paper, a dual-hop communication system composed of asourceS and a destinationD connected through
two non-interfering half-duplex relays,R1 and R2, is considered. In the literature of Information Theory, this
configuration is known as thediamond channel. In this setup, fourtransmission modes are present, namely: 1)
S transmits, andR1 andR2 listen (broadcast mode), 2)S transmits,R1 listens, and simultaneously,R2 transmits
andD listens. 3)S transmits,R2 listens, and simultaneously,R1 transmits andD listens. 4)R1, R2 transmit, andD
listens (multiple-access mode). Assuming a constant powerconstraint for all transmitters, a parameter∆ is defined,
which captures some important features of the channel. It isproven that for∆=0 the capacity of the channel can
be attained by successive relaying,i.e, using modes 2 and 3 defined above in a successive manner. This strategy
may have an infinite gap from the capacity of the channel when∆ 6= 0. To achieve rates as close as 0.71 bits to
the capacity, it is shown that the cases of∆ > 0 and ∆ < 0 should be treated differently. Using new upper bounds
based on the dual problem of the linear program associated with the cut-set bounds, it is proven that the successive
relaying strategy needs to be enhanced by an additional broadcast mode (mode 1), or multiple access mode (mode
4), for the cases of∆<0 and∆>0, respectively. Furthermore, it is established that under average power constraints
the aforementioned strategies achieve rates as close as 3.6bits to the capacity of the channel.

Index Terms
Capacity, decode-and-forward, diamond channel, dual problem, gap analysis, half-duplex, linear program.

I. I NTRODUCTION

A. Motivation

Relay-aided wireless systems, also called multi-hop systems, are implemented to increase the coverage and the
throughput of communication systems [1]. These systems arebecoming important parts of developing wireless
communication standards, such as IEEE 802.16j (also known as WiMAX) [2]. Half-duplex relays, which transmit
and receive data in different times and/or frequencies, areproven to be more practical and cost efficient in such
standards than full-duplex relays.

From information theoretical point of view, the capacity becomes larger when more relays are added to the system.
However, designing optimum strategies, especially in half-duplex systems, is challenging because subtle scheduling,
i.e., timing among transmission modes, is required to achieve rates near the capacity of such systems. During the
last decade, the main stream of research carried out by several researchers dealt with single relay communication
systems (cf. [5] and references therein). A simple model forinvestigating the potential benefits of a system with
multiple relays is a dual-hop configuration with two parallel half-duplex relays (see Fig. 1). This configuration does
not cover all two-relay systems because there are no source-destination and relay-relay links. However, it captures
the basic difficulty in finding the best strategy in the system. As will be shown in this paper, a single strategy falls
short of achieving rates near the capacity of the system for all channel realizations.

This work is financially supported by Nortel Networks and thecorresponding matching funds by the Natural Sciences and Engineering
Research Council of Canada (NSERC), and Ontario Centers of Excellence (OCE).
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B. History

The single relay channel in which the relay facilitates a point-to-point communication was first studied in [3]. Two
important coding techniques,decode-and-forward andcompress-and-forward, were proposed in [4]. In the decode-
and-forward scheme, the relay decodes the received message. In the compress-and-forward scheme, the relay sends
the compressed (quantized) version of the received data to the destination. Following [4], generalizations to multi-
relay networks were investigated by several researchers. Acomprehensive survey of the progress in this area can
be found in [5].

A simple model for understanding some aspects of the multi-relay networks is a network with two parallel relays,
as introduced in [6], [7], and Fig. 1. It is assumed that thereare no direct links from the source to the destination
and also between the relays. This channel is studied in [8]–[16] and [21], and referred to as thediamond relay
channel in [12].

For full-duplex relays, Schein and Gallager, in [6] and [7],provided upper and lower bounds on the capacity of
the diamond channel. In particular, they considered theamplify-and-forward, and the decode-and-forward schemes,
as well as a hybrid of them based on the time-sharing principle. Kochman,et al. proposed arematch-and-forward
scheme when different fractions of bandwidth can be allotted to the first and second hops [8]. Rezaei,et al.
suggested acombined amplify-and-decode-forward strategy and proved that their scheme always performs better
than the rematch-and-forward scheme [9]. In addition, theyshowed that the time-sharing between the combined
amplify-and-decode-forward and decode-and-forward schemes provides a better achievable rate when compared
to the time-sharing between the amplify-and-forward and decode-and-forward, and also between the rematch-and-
forward and decode-and-forward, considered in [7], and [8], respectively. Kang and Ulukus employed a combination
of the decode-and-forward and compress-and-forward schemes to obtain the capacity of a special class of the
diamond channel with a noiseless relay [10]. Ghabeli and Aref in [11] proposed a new achievable rate based on
the generalized block Markov encoding [23]. They also showed that their scheme achieves the capacity of a class
of deterministic relay networks.

Half-duplex relays are studied in [12]–[18]. Xue and Sandhuin [12] proposed several schemes including the
multi-hop with spatial reuse, scale-forward, broadcast-multiaccess with common message, compress-and-forward,
and hybrid methods. These authors demonstrated that themulti-hop with spatial reuse protocol can achieve the
channel capacity if the parallel links have the same capacity. Unlike [6]–[10], [12], [21], which assumed no direct
link exists between the relays, [13]–[15] considered such link. More specifically, Chang,et al. proposed a combined
dirty paper coding and block Markov encoding scheme [14]. Using numerical examples, they showed that the gap
between their proposed strategy and the upper bound is relatively small in most cases. Rezaei,et al. considered two
scheduling algorithms, namelysuccessive andsimultaneous relaying [15]. They derived asymptotic capacity results
for the successive relaying and also proposed an achievablerate for the simultaneous relaying using a combination
of the amplify-and-forward and decode-and-forward schemes. Other related papers are [17]–[20].

Characterizing the capacity of an information theoretic channel may be difficult. A simpler, yet important approach
is to find an achievable scheme that ensures a small gap from the capacity of the channel. Recently, Etkinet al.
characterized the capacity region of the interference channel to within one bit [26]. Following this new capacity
analysis perspective, Avestimehret al. proposed a deterministic model to better analyze the general single-source
single-destination and the single-source multi-destination Gaussian networks [16], [21]. Theirquantize-and-map
achievablity scheme is guaranteed to provide a rate that is within a constant number of bits (determined by the
graph topology of the network) from the cut-set upper bound.

C. Relation to Previous Works

In this paper, the setup and assumptions used in [12], with nolink between the relays, are followed. In [12], the
multi-hop with spatial reuse scheme proved to achieve the capacity of the diamond channel if the capacities of the
parallel links in Fig. 1 are equal. This is called theMulti-hopping Decode-and-Forward (MDF) scheme. In the MDF
scheme, relays successively forward their decoded messages to the destination (see Forward Modes I and II in Fig.
2). By introducing a fundamental parameter of the channel∆ (see Fig. 1), we generalize the optimality condition
of the MDF scheme. In particular, we show that whenever∆ = 0, the cut-set upper bound can be achieved. We
also show that the MDF scheme cannot have a small gap from the cut-set upper bound for all channel realizations
because the optimum strategy is highly related to the value of ∆.

In [16], the aim has been to establish the constant gap argument for the general relay networks with a single
source and not to obtain a small gap optimized for a specific channel, such as the diamond channel. For the half-
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Fig. 1. The diamond channel with its fundamental parameter∆.

duplex diamond channel, the expression for the gap derived in [16] results in a 6-bit gap. In this paper, however,
we focus on the diamond channel and obtain a smaller gap usingour proposed achievablity scheme. In addition,
we provide closed-form expressions for the time intervals associated with the transmission modes in the proposed
scheduling. Specifically, we show that the expressions are different from those of the cut-set upper bound. This is in
contrast to [16], where the constant gap between the cut-setbound and the quantize-and-map scheme was assured
for every fixed scheduling, including the optimum scheduling associated with the cut-set upper bound.

In [16], using a different achievablity (a partial decode-and-forward) scheme than the quantize-and-map scheme,
Avestimehret al. showed that the capacity of thefull-duplex diamond channel can be characterized within 1 bit
per real dimension, regardless of the values of the channel gains. However, applying this scheme to thehalf-
duplex diamond channel does not guarantee a constant gap from the channel capacity. We take one further step
by providing an achievable scheme that ensures a small gap from the upper bounds for the half-duplex diamond
channel. In particular, we show that the gap is smaller than .71 bits, assuming all transmitters have constant power
constraints. We also prove that when transmitters have average power constraints instead, the gap is less than 3.6
bits.

The rest of this paper is organized as follows: Section II introduces the system model, the main ideas and results
of this work. Section III presents the MDF scheme, which achieves the channel capacity for∆ = 0. Sections IV and
V provide the achievable schemes, upper bounds, and gap analysis for∆ < 0 and∆ > 0 cases, respectively. Section
VI concludes the paper. In addition, Appendix A characterizes the Generalized Degrees Of Freedom (GDOF) of the
diamond channel to obtain asymptotic capacity of the channel. Finally, Appendix B addresses the diamond channel
with average power constraints.

D. Notations

Throughout the paper,̄x,1−x, andx∗ denotes the optimal solution to an optimization problem with an objective
functionF (x). The transpose of the vector or matrixA is indicated byAT . a⇒b represents the link from nodea
to nodeb. Also, x↔y means that the roles ofx andy are exchanged in a given functionF (x, y). In addition, it
is assumed that all logarithms are to base2. Finally, C(P ), 1

2 log (1 + P ).

II. PROBLEM STATEMENT AND MAIN RESULTS

In this work, a dual-hop communication system, depicted in Fig. 1, is considered. The model consists of a source
(S), two parallel half-duplex relays (R1, R2), and a destination (D), respectively, indexed by 0, 1, 2, and 3 as
shown in Fig. 1. No link is assumed between Source and Destination, as well as between the relays. The channel
gain between nodea andb is assumed to be constant, known to all nodes, and is represented byhab with magnitude√

gab.
Due to the half-duplex constraint, four transmission modesexist in the diamond channel where, in every mode,

each relay either transmits data to Destination or receivesdata from Source (see Fig. 2). In the figure,X
(i)
a and
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b) Mode 2 with duration t2:

the vectors x
(2)
0 and x

(2)
2 .

The first relay and the destination receive
y

(2)
1 and y

(2)
3 , respectively.

The source and the second relay transmit

h02

Source Destination

Relay 2

h13

Relay 1

The source and the first relay transmit
the vectors x

(3)
0 and x

(3)
1 .

The second relay and the destination receive
y

(3)
2 and y

(3)
3 , respectively.

The destination receives y
(4)
3 .

and x
(4)
2 .

The relays transmit the vectors x
(4)
1

The source transmits the vector x
(1)
0 .

and y
(1)
2 , respectively.

d) Mode 4 with duration t4:
c) Mode 3 with duration t3:

a) Mode 1 with duration t1:

The first and second relay receive y
(1)
1

Fig. 2. Transmission modes for the diamond channel.

Y
(i)
a represent the transmitting and receiving signals at nodea corresponding to modei, respectively. The total

transmission time is normalized to one and partitioned intofour time intervals (t1, t2, t3, t4) corresponding to modes
1, 2, 3, and4, with the constraint

∑4
i=1 ti =1. The discrete-time baseband representation of the received signals at

Relay 1, Relay 2, and Destination are respectively given by:

Y1= h01X0 + N1,

Y2= h02X0 + N2,

Y3= h13X1 + h23X2 + N3,

whereNa is the Gaussian noise at nodea with unit variance.
Let us assume Source, Relay 1, and Relay 2 consume, respectively, P

(i)
S , P

(i)
R1

, andP
(i)
R2

amount of power in
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modei, i.e.,

1

ti

∑

ti

|X0 |2≤ P
(i)
S ,

1

ti

∑

ti

|X1 |2≤ P
(i)
R1

,

1

ti

∑

ti

|X2 |2≤ P
(i)
R2

.

The total power constraints for Source, Relay 1, and Relay 2 are PS , PR1
, andPR2

, respectively, and are related
to the amount of power spent in each mode as follows:

4∑

i=1

tiP
(i)
S ≤ PS ,

4∑

i=1

tiP
(i)
R1

≤ PR1
,

4∑

i=1

tiP
(i)
R2

≤ PR2
.

Due to some practical considerations on the power constraints [12], we mainly considerconstant power constraints
for transmitters,i.e., for i ∈ {1, · · · , 4},

P
(i)
S = PS ,

P
(i)
R1

= PR1
, (1)

P
(i)
R2

= PR2
.

Without loss of generality, a unit power constraint is considered for all nodes,i.e., PS = PR1
= PR2

= 1. We
define the parametersC01, C02, C13, C23 asC(g01), C(g02), C(g13), C(g23), respectively. Moreover,C012 andC123

are defined as:
C012 , C(g01 + g02),

C123 , C
(
(
√

g13 +
√

g23)
2
)
.

(2)

The case in which transmitters have average power constraints instead of constant power constraints is addressed
in Appendix B.

In this work, we are interested in finding communication protocols that operate close to the channel capacity.
We introduce an important parameter of the channel∆ as:

∆ , C01C02 − C13C23. (3)

We categorize all realizations of the diamond channel into three groups based on the sign of∆ (i.e., ∆<0, ∆=0,
and ∆ > 0). As will be shown in the sequel, the sign of∆ plays an important role in designing the optimum
scheduling for the channel.

In this setup, the cut-set bounds can be stated in the form of aLinear Program (LP) due to the assumption
of constant power constraints for all transmitters. By analyzing the dual program we provide fairly tight upper
bounds expressed as single equations corresponding to different channel conditions. Using the dual problem, we
prove that when∆ = 0, the MDF scheme achieves the capacity of the diamond channel. Note that∆ = 0 (i.e.,
C01C02 = C13C23) includes the previous optimality condition presented in [12] (i.e., C01 = C23 and C02 = C13)
as a special case. To realize how close the MDF scheme performs to the capacity of the channel when∆ 6=0, we
calculate the gap from the upper bounds. We show that the MDF scheme provides the gap of less than1.21 bits
when applied in the symmetric or some classes of asymmetric diamond channels. More importantly, we explain
that the gap can be arbitrarily large for certain ranges of parameters.

By employing new scheduling algorithms we shrink the gap to.71 bits for all channel conditions. In particular,
for ∆ < 0 we add Broadcast (BC) Mode (shown in Fig. 2) to the MDF scheme to provide the relays with more
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reception time. In this three-mode scheme, referred to as Multi-hopping Decode-and-Forward with Broadcast (MDF-
BC) scheme, the relays decode what they have received from Source and forward the re-encoded information to
Destination in Forward Modes I and II. When∆ > 0, Multiple-Access (MAC) mode (shown in Fig. 2) in which
the relays transmit independent information to Destination is added to the MDF scheme. We call this protocol
Multi-hopping Decode-and-Forward with Multiple-Access (MDF-MAC) scheme.

The mentioned contributions are associated with the case wherein the transmitters are operating under constant
power constraints (1). However, for a more general setting in which the transmitters are subject to average power
constraints (41), it is shown in Appendix B that the cut-set upper bounds are increased by at most2.89 bits.
Therefore, the proposed achievable schemes guarantee the maximum gap of 3.6 bits from the cut-set upper bounds
in the general average power constraint setting.

A. Coding Scheme

The proposed achievable scheme may employ all four transmission modes as follows:
1) Broadcast Mode: In t1 fraction of the transmission time, Source broadcasts independent information to Relays

1 and 2 using the superposition coding technique.
2) Forward Mode I: In t2 fraction of the transmission time, Source transmits new information to Relay 1. At

the same time, Relay 2 sends the re-encoded version of part ofthe data received during Broadcast Mode
and/or Forward Mode II of the previous block to Destination.

3) Forward Mode II: In t3 fraction of the transmission time, Source transmits new information to Relay 2. At
the same time, Relay 1 sends the re-encoded version of part ofwhat it has received during Broadcast Mode
and/or Forward Mode I of the previous block to Destination.

4) Multiple-Access Mode: In the remainingt4 fraction of the transmission time, Relays 1 and 2 simultaneously
transmit the residual information (corresponding to the previous block) to Destination where,joint decoding
is performed to decode the received data.

In Broadcast Mode, superposition coding, which is known to be the optimal transmission scheme for the degraded
broadcast channel [28], is used to transmit independent data to the relays. The resulting data-ratesu and v,
respectively associated with Relay 1 and Relay 2 are:

u(η) =

{
C(ηg01) if g02 ≤ g01

C01 − C(ηg01) if g01 < g02,
(4)

v(η) =

{
C02 − C(ηg02) if g02 ≤ g01

C(ηg02) if g01 < g02.
(5)

The power allocation parameterη determines the amount of Source power used to transmit information to the relay
with better channel quality in Broadcast Mode.

In Multiple-Access Mode, a multiple-access channel existsin which the users (relays) have independent messages
for Destination. For this channel, joint decoding is optimum, which provides the following rate region [28]:

R1 ≤ t4C13,

R2 ≤ t4C23,

R1 + R2 ≤ t4CMAC,

(6)

whereR1, R2 are the rates that Relay 1 and Relay 2 provide to Destination in Multiple-Access Mode, respectively,
andCMAC is defined as:

CMAC , C(g13 + g23). (7)

According to the protocol, Relay 1 can receive up tot1u + t2C01 bits per channel use during Broadcast Mode
and Forward Mode I. Then the relay has the opportunity to sendits received information to Destination in Forward
Mode II and Multiple-Access Mode, with the ratet3C13 +R1. Similarly, Relay 2 can receive and forward messages
with the ratest1v + t3C02, andt2C23 + R2, respectively. Therefore, the maximum achievable rate of the scheme,
R, is:

R = max
P

4

i=1
ti=1,ti≥0

{
min{t1u + t2C01, t3C13 + R1} + min{t1v + t3C02, t2C23 + R2}

}
. (8)

Sections III-V show that employing Forward Modes I and II for∆ = 0, the first three transmission modes for
∆<0, and the last three transmission modes for∆>0 are sufficient to achieve a small gap from the derived upper
bounds.
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B. Cut-set Upper Bound and the Dual Program

For general half-duplex networks withK relays, Khojastepouret al. proposed a cut-set type upper bound by
doing the following steps:

1) Fix the input distribution and scheduling,i.e., p(X0, X1, X2), andt1, t2, t3, t4 such that
∑4

i=1 ti = 1.
2) Find the rateRi,j associated with the cutj for each transmission modei wherei, j ∈ {1, · · · , 2K}.
3) Multiply Ri,j by the corresponding time intervalti.

4) Compute
∑2K

i=1 tiRi,j and minimize it over all cuts.
5) Take the supremum over all input distributions and schedulings.

The preceding procedure can be directly applied to the diamond channel, whose transmission modes are shown in
Fig. 2. The best input distribution and scheduling lead to:

CDC ≤ t1I(X
(1)
0 ; Y

(1)
1 , Y

(1)
2 ) + t2I(X

(2)
0 ; Y

(2)
1 |X(2)

2 ) + t3I(X
(3)
0 ; Y

(3)
2 |X(3)

1 ) + t4.0,

CDC ≤ t1I(X
(1)
0 ; Y

(1)
1 ) + t2

(
I(X

(2)
0 ; Y

(2)
1 ) + I(X

(2)
2 ; Y

(2)
3 )

)
+ t3.0 + t4I(X

(4)
2 ; Y

(4)
3 |X(4)

1 ),

CDC ≤ t1I(X
(1)
0 ; Y

(1)
2 ) + t2.0 + t3

(
I(X

(3)
0 ; Y

(3)
2 ) + I(X

(3)
1 ; Y

(3)
3 )

)
+ t4I(X

(4)
1 ; Y

(4)
3 |X(4)

2 ),

CDC ≤ t1.0 + t2I(X
(2)
2 ; Y

(2)
3 ) + t3I(X

(3)
1 ; Y

(3)
3 ) + t4I(X

(4)
1 , X

(4)
2 ; Y

(4)
3 ),

where CDC denotes the capacity of the diamond channel. The above bounds do not decrease if each mutual
information term is replaced by its maximum value. This substitution simplifies the computation of the upper
bound, calledRup, by providing the following LP [12]:

maximize Rup

subject to: Rup ≤ t1C012 + t2C01 + t3C02 + t4.0
Rup ≤ t1C01 + t2(C01 + C23) + t3.0 + t4C23

Rup ≤ t1C02 + t2.0 + t3(C02 + C13) + t4C13

Rup ≤ t1.0 + t2C23 + t3C13 + t4C123∑4
i=1 ti = 1, ti ≥ 0.

(9)

To obtain appropriate single-equation upper bounds on the capacity, we rely on the fact that every feasible point in
the dual program provides an upper bound on the primal. Hence, we develop the desired upper bounds by looking
at the dual program. In the sequel, we derive the dual programfor the LP (9).

We start with writing the LP in the standard form as:

maximize cT x
subject to: Ax ≤ b

x ≥ 0,

where the unknown vectorx=[t1, t2, t3, t4, Rup]
T , the vectors of coefficientsb=c=[0, 0, 0, 0, 1]T , and the matrix

of coefficientsA is:

A=




−C012 −C01 −C02 0 1
−C01 −(C01 + C23) 0 −C23 1
−C02 0 −(C02 + C13) −C13 1

0 −C23 −C13 −C123 1
1 1 1 1 0




.

SinceA = AT , it is easy to verify that the primal and dual programs share the same form,i.e.,

minimize Rup

subject to: Rup ≥ τ1C012 + τ2C01 + τ3C02 + τ4.0
Rup ≥ τ1C01 + τ2(C01 + C23) + τ3.0 + τ4C23

Rup ≥ τ1C02 + τ2.0 + τ3(C02 + C13) + τ4C13

Rup ≥ τ1.0 + τ2C23 + τ3C13 + τ4C123∑4
i=1 τi = 1, τi ≥ 0.

(10)

In the dual program (10),τi, for i∈{1, · · · , 4} corresponds to theith rate constraint in the primal LP (9). Clearly,
the LP (9) isfeasible. Hence, the duality of linear programming ensures that there is no gap between the primal
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and the dual solutions [27]. However, the benefit of using thedual problem here is that any feasible choice of the
vectorτ provides an upper bound to the rate obtained by solving the original LP. This property is known as the
weak duality property of LP [27]. Appropriate vectors (i.e., τ ’s) in the dual program (10) are selected to obtain
fairly tight upper bounds. In fact, employing such vectors instead of solving the primal LP (9) simplifies the gap
analysis. In sections IV and V, these vectors are provided for ∆<0 and∆>0 cases, respectively. In the following
sections, we employ the proposed achievable schemes together with the derived upper bounds to characterize the
capacity of the diamond channel up to 0.71 bits.

III. MDF SCHEME AND ACHIEVING THE CAPACITY FOR ∆ = 0

In this section, the MDF scheme is described and then proved to be capacity-achieving when∆=0.

A. MDF Scheme

The MDF scheduling algorithm uses two transmission modes: Forward Modes I and II shown in Fig. 2 along
with the decode-and-forward strategy and can be described as follows:

1) In λ fraction of the transmission time, Source and Relay 2 transmit to Relay 1 and Destination, respectively.
2) In the remaininḡλ fraction of the transmission time, Source and Relay 1 transmit to Relay 2 and Destination,

respectively.

The achievable rate of the MDF scheme is the summation of the rates of the first and second parallel paths
(branches) from Source to Destination, which can be expressed as [12]:

RMDF = max
0≤λ≤1

{
min{λC01, λ̄C13} + min{λ̄C02, λC23}

}
.

The above LP can be re-written as:
maximize R1 + R2

subject to: R1 ≤ λC01

R1 ≤ λ̄C13

R2 ≤ λ̄C02

R2 ≤ λC23

0 ≤ λ ≤ 1,

whereR1 andR2 denote the rate of the upper and the lower branches, respectively. This LP has three unknowns
(R1, R2, λ) and six inequalities. The solution turns three out of six inequalities to equality. The optimum time interval
λ∗ can not be equal to 0 or 1, as both solutions give a zero rate. Hence, three out of the first four inequalities
should become equality, which leads to the following achievable rates for different channel conditions:

RMDF =






R1
MDF =

C01(C02 + C13)
C01 + C13

if ∆≤0, C02≤C01

R2
MDF =

C02(C01 + C23)
C02 + C23

if ∆≤0, C02 >C01

R3
MDF =

C13(C01 + C23)
C01 + C13

if ∆>0, C23≤C13

R4
MDF =

C23(C02 + C13)
C02 + C23

if ∆>0, C23 >C13.

(11)

In particular, the achievable rate for thesymmetric diamond channel, in whichC01 = C02 andC13 = C23, is:

R
sym
MDF = min{C01, C13}.

The optimum time intervalλ∗ is either equal toλ∗
1 or λ∗

2 defined below:

λ∗=





C13

C01+C13

, λ∗
1,

or
C02

C02+C23
, λ∗

2.

Note that if λ∗ = λ∗
1, thenλ∗

1C01 = λ̄∗
1C13. Similarly, λ∗ = λ∗

2 leads toλ̄∗
2C02 = λ∗

2C23. In other words,λ∗
i for

i ∈ {1, 2} makes the maximum amount of data that can be received by Relayi equal to the maximum amount of
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data that can be forwarded by Relayi. In this case, branchi (composed of0 ⇒ i ⇒ 3 links) is said to befully
utilized.

It is interesting to consider that the case fully utilizing branch 1 or branch 2 leads to the same data-rate. This
case occurs when one of the following happens:






∆ = 0,

C01 = C02 if ∆ < 0,

C13 = C23 if ∆ > 0.

(12)

In these situations, one can use eitherλ∗
1 or λ∗

2 fraction of the transmission time for Forward Mode I and the
remaining fraction for Forward Mode II and achieve the same data-rate. It will be shown later that the MDF
scheme achieves the capacity of the diamond channel if∆=0 and is at most 1.21 bits less than the capacity for the
other two cases. It is remarked that∆=0 makes both branches fully utilized and all four rates in Eq. (11) equal.

B. MDF is Optimal for ∆=0

Here, it is explained thatR∗
up, found by solving the dual-program (10), is the same as the MDF rate given in Eq.

(11) for ∆=0. It is easy to observe that

τ
∗ =

[
0,

C13

C01 + C13
,

C23

C02 + C23
, 0

]
(13)

makes all four rate constraints in the dual-program (10) equal to the rate obtained in Eq. (11) and satisfies
∑4

i=1 τi =
1. Therefore, the upper bound provided by vectorτ is indeed the capacity of the channel and equals to:

CDC =
C01C13

C01 + C13
+

C02C23

C02 + C23
. (14)

The result is valid for the Gaussian multiple antenna as wellas discrete memoryless channels, and therefore∆ = 0
ensures the optimality of the MDF scheme for those channels too.

C. MDF Gap Analysis

To investigate how close the MDF scheme performs to the capacity of the diamond channel when∆ 6= 0, the
appropriate upper bounds are required, which will be derived in sections IV and V. Therefore, the detailed gap
analysis for the MDF scheme is deferred to Appendix C, where it is shown that although a small gap is achievable
for some channel conditions, the gap can be large in general.In the following sections, Broadcast and Multiple-
Access Modes are added to the MDF algorithm to achieve 0.71 bits of the capacity for∆ > 0 and ∆ < 0 cases,
respectively.

IV. MDF-BC SCHEME AND ACHIEVING WITHIN 0.71 BITS OF THECAPACITY FOR ∆ < 0

In the MDF scheme, since both branches cannot be fully utilized when∆<0 simultaneously, there exists some
unused capacity in the second hop. To efficiently make use of the available resources, Broadcast Mode is added to
the MDF scheme. This mode provides the relays with an additional reception time.

A. Achievable Scheme

The modified protocol uses Broadcast Mode together with Forward Modes I and II. Therefore, by settingt4 = 0
in Eq. (8) the maximum achievable rate of the scheme as a function of the power allocation parameterη used in
superposition coding is:

RBC(η) = max
P

3

i=1
ti=1,ti≥0

{
min{t1u(η) + t2C01, t3C13} + min{t1v(η) + t3C02, t2C23}

}
.

Recall thatu, and v, defined respectively in Eqs. (4) and (5), are the rates associated with Relays 1 and 2 in
Broadcast Mode. First, the optimal schedule is obtained, assuming a fixedη, and later an appropriate value forη
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will be selected. The achievable rate can be written as the following LP:

maximize RBC

subject to:RBC ≤ t1(u + v) + t2C01 + t3C02 (15)

RBC ≤ t1u + t2(C01 + C23) + t3.0 (16)

RBC ≤ t1v + t2.0 + t3(C02 + C13) (17)

RBC ≤ t2C23 + t3C13 (18)
3∑

i=1

ti = 1 (19)

ti ≥ 0. (20)

For a feasible LP, the solution is at one of the extreme pointsof the constraint set. One of the extreme points can be
obtained by solving a set of linear equations containing Eq.(19) and inequalities (15)-(17) considered as equalities.
The solution becomes:

t1=
−∆

(C01 + C13)v + (C02 + C23)u − ∆
,

t2=
C13v + C02u

(C01 + C13)v + (C02 + C23)u − ∆
,

t3=
C01v + C23u

(C01 + C13)v + (C02 + C23)u − ∆
,

RBC(η)=
C13(C01 + C23)v(η) + C23(C02 + C13)u(η)

(C01 + C13)v(η) + (C02 + C23)u(η) − ∆
. (21)

It is easy to verify that∆ = 0 makest1 = 0, and hence leads to the MDF algorithm. Note that in addition to
inequalities (15)-(17), the above extreme point also turnsinequality (18) into equality. Now, this extreme point
is proven to be the solution to the above LP. If one of the elements of vectort is increased, at least one of the
conditions (15)-(17) provides a smaller rate, compared to the rate obtained by the extreme point. For instance, if
t1 in Eq. (21) is increased, then, because of Eq. (19), at least one of t2 and t3 should be decreased, which in turn
reduces the rate associated with the inequality (18). This confirms that the extreme point is the optimal solution to
the LP with constraints (15)-(20).

In the following, instead of searching forη∗, which maximizesRBC(η), an appropriate value forη is found that
not only provides a small gap from the upper bounds, but also simplifies the gap analysis of section IV-C. The power
allocation parameterη is selected to be eitherη1 , 1

g01+1 , or η2 , 1
g02+1 for C02 ≥ C01 andC01 ≥ C02 conditions,

respectively. As it will be shown in Appendix A, the chosenη produces the same GDOF as the corresponding
upper bound, which is a necessary condition in obtaining a small gap. The correspondingu andv for η1 are:

u(η1)= C01 − ζ1,

v(η1)= C012 − C01, (22)

and forη2 are:

u(η2)= C012 − C02,

v(η2)= C02 − ζ2. (23)

In the above,

ζ1, C(
g01

g01 + 1
) ≤ 1

2
, (24)

ζ2, C(
g02

g02 + 1
) ≤ 1

2
. (25)

The selectedη divides the source power betweenu and v (considered as the rates of two virtual users in the
broadcast channel consisting ofS⇒R1 andS⇒R2 links) in such a way that:
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1) the sum data-rate (i.e., u + v) in the broadcast channel is close to the sum-capacity of thebroadcast channel
(i.e., max{C01, C02}),

2) the weaker user’s rate is close to its capacity. For instance, if C01 ≤ C02, thenu ≈ C01.

Substitutingu andv from Eqs. (22) and (23) into (21) leads to the following achievable ratesR1
MDF-BC andR2

MDF-BC
corresponding toη1 andη2:

R1
MDF-BC=

C13(C01 + C23)C012 − C2
01C13 + C01C02C23 − ζ1C23(C02 + C13)

(C01 + C13)(C012 − C01 + C23) − ζ1(C02 + C23)
,

R2
MDF-BC=

C23(C02 + C13)C012 − C2
02C23 + C01C02C13 − ζ2C13(C01 + C23)

(C02 + C23)(C012 − C02 + C13) − ζ2(C01 + C13)
. (26)

B. Upper Bound

Following the discussion in section II-B, we select one of the extreme points of the constraint set (10) to obtain
a fairly tight upper bound. Below, some insights on how to findan appropriate extreme point are given.

First, Forward Modes I and II play an important role in data transfer from Source to Destination. These two
modes let both Source and Destination be simultaneously active, which is important for efficient communication.
This implies thatgenerally t∗2 andt∗3 are not zero in the original LP (9). In addition,∆<0 roughly means that the
second hop is better than the first hop. In this case, Broadcast Mode helps the relays to collect more data which will
be sent to Destination using Forward Modes I and II later. Therefore, Multiple-Access Mode is less important when
∆<0 and consequentlyt4 can be set to zero. Using the complementary slackness theorem of linear programming
(cf. [27]), having non-zerot1, t2, andt3 in the original LP translates into having the first three inequalities in the
dual program satisfied with equality. Now looking at the dualproblem (10) with the same structure as the original
LP, in order to achieve a smaller objective function, we setτ2 or τ3 to zero. This is in contrast to the claim for
having both oft2 andt3 non-zero in the original LP with the maximization objective. Therefore, the vectorτ with
the following properties is selected:

1) Eitherτ2 or τ3 is zero.
2) The first three inequalities are satisfied with equality.

To have a validτ , we need to make sure that all the elements of vectorτ are non-negative and thatτ satisfies the
last condition.

As mentioned earlier, eitherτ2 or τ3 can be set to zero in the dual program (10). For instance, setting τ2 =0 in
the dual-program gives the following LP:

minimize R̃

subject to: R̃ ≥ τ1C012 + τ3C02 + τ4.0

R̃ ≥ τ1C01 + τ3.0 + τ4C23

R̃ ≥ τ1C02 + τ3(C02 + C13) + τ4C13

R̃ ≥ τ1.0 + τ3C13 + τ4C123∑4
i=1,i6=2 τi = 1, τi ≥ 0.

(27)

Setting the first three inequalities to equalities gives:

τ∗
1 =

C13

C012 − C02 + C13
,

τ∗
3 =

C23(C012 − C02) − C13(C012 − C01)

(C02 + C23)(C012 − C02 + C13)
,

τ∗
4 =

C13(C012 − C01) + C02(C012 − C02)

(C02 + C23)(C012 − C02 + C13)
,

R̃∗=
(C02 + C13)C23

C02 + C23
+

C13(C01C02 − C13C23)

(C02 + C23)(C012 − C02 + C13)
. (28)

For obtaining a valid result, the following conditions haveto be ensured:

1) τ∗
3 ≥ 0.

SinceC02≤C012, the denominator ofτ∗
3 is non-negative, therefore, the non-negativity of the nominator has
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to be guaranteed. This imposes the constraintΓ≥0 on the values of channel parameters, whereΓ is defined
as:

Γ , C23[C012 − C02] − C13[C012 − C01]. (29)

2) R̃∗ ≥ τ∗
3 C13 + τ∗

4 C123.
To satisfy the following condition:

R̃∗ = τ∗
1 C02 + τ∗

3 (C02 + C13) + τ∗
4 C13≥ τ∗

3 C13 + τ∗
4 C123,

it is sufficient to show:

(τ∗
1 + τ∗

3 )C02≥ τ∗
4 (C123 − C13),

which can be equivalently represented as:

C02

C123 − C13 + C02
≥ τ∗

4 .

The following lemma proves the preceding inequality.

Lemma 1 τ∗
4 ≤ C02

C123−C13+C02

for C123 ≤ C13 + C23.

Proof: See Appendix D-A .
Lemma 1 requiresC123 ≤ C13 + C23, which is not true forg13g23 ≤ 4. To be able to use Lemma 1 for the case
of g13g23 ≤ 4, we replace eitherC13 by Ĉ13 , C13 + δ or C23 by Ĉ23 = C23 + δ with δ defined as:

δ , max{C123 − (C13 + C23), 0}. (30)

This change provides the desired inequality (i.e., C123 ≤ Ĉ13 + C23 or C123 ≤ C13 + Ĉ23) at the expense of
increasing the upper bound. However, we will show in Lemma 2 that this increase is always less thanδ. We will
prove thatδ itself is bounded in Lemma 3.

Continuing the derivation of the upper bound from the LP (27), if C123 ≥C13 + C23, thenC23 is replaced by
Ĉ23. In this case, the dual program (27) remains unchanged except for C23. Hence, the set of solutions (28) can
be used by replacingC23 with Ĉ23 and thus the upper bound becomes:

ˆ̃
R

∗

=
(C23 + δ)(C02 + C13)

C02 + C23 + δ
+

C13

(
C01C02 − C13(C23 + δ)

)

(C02 + C23 + δ)(C012 − C02 + C13)
. (31)

Note that the inequalitŷτ∗
3 ≥ 0 holds becausêΓ≥ 0 simply follows from Γ≥ 01. According to Lemma 1, since

C123 =C13+Ĉ23, the conditionˆ̃
R

∗

≥ τ̂∗
3 C13+ τ̂∗

4 C123 is satisfied. Lemma 2 shows that the enlarged upper bound
ˆ̃
R

∗

(Eq. (31)) is at mostδ bits greater than the upper bound of (28).

Lemma 2 If C123 ≥ C13 + C23, then ˆ̃
R

∗

− R̃∗ ≤ δ.

Proof: See Appendix D-B.
Therefore, the proposed upper bound for∆ ≤ 0 andΓ > 0 is:

R2
up =

C23(C02 + C13)

C02 + C23
+

C13∆

(C012 − C02 + C13)(C02 + C23)
+ δ.

1The superscript̂ is used to indicate parameters associated withĈ23. For instance,̂Γ has the same formula asΓ in Eq. (29), with C23

replaced byĈ23.
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Similarly, when∆≤0 andΓ≤0, τ3 is set to zero and again the first three inequalities are assumed to be satisfied
with equality in the dual-program (10). Following the same procedure, the subsequent results are achieved:

τ∗
1 =

C23

C012 − C01 + C23
,

τ∗
2 =

C13(C012 − C01) − C23(C012 − C02)

(C01 + C13)(C012 − C01 + C23)
,

τ∗
4 =

C23(C012 − C02) + C01(C012 − C01)

(C01 + C13)(C012 − C01 + C23)
,

R̃∗=
(C01 + C23)C13

C01 + C13
+

C23(C01C02 − C13C23)

(C01 + C13)(C012 − C01 + C23)
,

R1
up=

C13(C01 + C23)

C01 + C13
+

C23∆

(C012 − C01 + C23)(C01 + C13)
+ δ. (32)

In this case, whenC123 ≥ C13 + C23, Ĉ13 is replaced byC13 + δ, it is easy to see that the preceding results can
be obtained by exchanging the roles ofC01 ↔ C02, C13 ↔ C23, andτ2 ↔ τ3 in the results derived for the case of
∆ ≤ 0 andΓ > 0.

In order to be able to achieve a small gap from the upper bounds, δ should be bounded. Lemma 3 proves thatδ

is smaller than 0.21 bits.

Lemma 3 δ ≤ 1
2 log(4

3 ).

Proof: See Appendix D-C.

C. Gap Analysis

The MDF-BC scheme is proposed for the following regions:

1) ∆ < 0, Γ ≤ 0, C02 ≥ C01, andC01 ≥ 1
2) ∆ < 0, Γ ≥ 0, C01 ≥ C02, andC02 ≥ 1

For ∆<0, Appendix C shows that the MDF scheme provides a small gap from the upper bounds for the remaining
regions. Here, the first case is considered. The gapκ1

MDF-BC between the achievable rateR1
MDF-BC and the upper

boundR1
up is:

κ1
MDF-BC =

−ζ1

(
(C012 − C01 + C23)(C13 − C23) + C23(C02 + C23)

)
∆

(C01 + C13)(C012 − C01 + C23)

(
(C01 + C13)(C012 − C01 + C23) − ζ1(C02 + C23)

) + δ.

In the following lemma, the gapκ1
MDF-BC is proved to be smaller than12 + δ bits.

Lemma 4 κ1
MDF-BC ≤ 1

2 + δ.

Proof: See Appendix D-D.
By exchanging the roles ofg01 ↔ g02 and g13 ↔ g23, the gap for the second case can be easily derived and

shown to be less than12 + δ bits.

V. MDF-MAC SCHEME AND ACHIEVING WITHIN 0.71 BITS OF THECAPACITY FOR ∆ > 0

Similar to section IV, a third mode is added to the MDF scheme when∆ > 0 to effectively utilize the unused
capacity of the first hop.
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A. Achievable Scheme

Here, Multiple-Access Mode is added to the MDF scheme with independent messages sent from the relays to
Destination. This mode provides the relays with an increased transmission time. The modified protocol uses three
transmission modes,i.e., Multiple-Access Mode and Forward Modes I and II. Therefore, by settingt1 = 0 in Eq.
(8) the maximum achievable rate of the scheme,RMAC is:

RMAC = max
P

4

i=2
ti=1,ti≥0

{
min{t2C01, t3C13 + R1} + min{t3C02, t2C23 + R2}

}
, (33)

whereR1 andR2 are the rates that Relays 1 and 2 provide to Destination in Multiple-Access Mode, respectively.
These rates satisfy the multiple-access constraints in (6). Lemma 5 presents achievable rates, which will be shown
to be smaller than the capacity, by at most.71 bits, in section V-C.

Lemma 5 The achievable rates for ∆>0 together with their corresponding scheduling are as follows:

R1
MDF-MAC=

C01(C02 + C13)

C01 + C13
− C02∆

(C01 + C13)(CMAC − C13 + C02)
for ∆ > 0, Γ′ ≤ 0,

R2
MDF-MAC=

C02(C01 + C23)

C02 + C23
− C01∆

(C02 + C23)(CMAC − C23 + C01)
for ∆ > 0, Γ′ > 0, (34)

Γ′ ≤ 0 Γ′ > 0

t2 = C13

C01+C13

,

t3 = C01(CMAC−C13)+C13C23

(C01+C13)(CMAC−C13+C02)
,

t4 = ∆
(C01+C13)(CMAC−C13+C02)

,

t2 = C02(CMAC−C23)+C13C23

(C02+C23)(CMAC−C23+C01) ,

t3 = C23

C02+C23
,

t4 = ∆
(C02+C23)(CMAC−C23+C01) ,

where
Γ′ , C02[C123 − C23] − C01[C123 − C13]. (35)

Proof: See Appendix D-E.
It is noted that if∆ = 0, t4 becomes zero and the scheme is converted to the MDF scheme.

B. Upper Bound

Following the same procedure as section IV-B, the upper bound for the case of∆≥ 0, Γ′ ≥ 0 is attained from
(28) by exchanging the roles ofC01 ↔ C13, C02 ↔ C23, τ2 ↔ τ3, andτ1 ↔ τ4. Similarly, when∆≥0 andΓ′≤0,
swapping the positions ofC01 ↔ C23, C02 ↔ C13, andτ1 ↔ τ4 in (28) provides the upper bound. Therefore:

R3
up=

C01(C02 + C13)

C01 + C13
+

−C02∆

(C123 − C13 + C02)(C01 + C13)
+ δ for Γ′ ≤ 0,

R4
up=

C02(C01 + C23)

C02 + C23
+

−C01∆

(C123 − C23 + C01)(C02 + C23)
+ δ for Γ′ > 0. (36)

C. Gap Analysis

By comparing the achievable rates (34) and the upper bounds (36), the gapsκ1
MAC and κ2

MAC are respectively
calculated forΓ′≤0 andΓ′>0 cases as:

κ1
MAC , R3

up − R1
MDF-MAC=

C02(C123−CMAC)∆

(C01+C13)(CMAC−C13+C02)(C123−C13+C02)
+δ,

κ2
MAC , R4

up − R2
MDF-MAC=

C01(C123−CMAC)∆

(C02+C23)(CMAC−C23+C01)(C123−C23+C01)
+δ.

To show that the above gaps are small, Lemma 6 is employed.

Lemma 6 C123−CMAC≤ 1
2 .
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Proof: See Appendix D-F.
Considering Lemma 6, it is straightforward to show that the gap is at most12 +δ bits. Therefore, adding Multiple-
Access Mode, with independent messages sent from the relaysto Destination, to the MDF scheme ensures the gap
of less than .71 bits from the upper bounds for∆ > 0.

VI. CONCLUSION

In this work, we considered a dual-hop network with two parallel relays in which each transmitting node has a
constant power constraint. We categorized the network intothree classes based on the fundamental parameter of the
network∆, defined in this paper. We derived explicit upper bounds for the different classes using the cut-set bound.
Based on the upper bounds, we proved that the MDF scheme, which employs two transmission modes (Forward
Modes I and II), achieves the capacity of the channel when∆=0. Furthermore, we analyzed the gap between the
achievable rate of the MDF scheme and the upper bounds, showing that the gap can be large in some ranges of
parameters when∆ 6=0. To guarantee the gap of at most 0.71 bits from the bounds, we added an extra broadcast or
multiple-access mode to the baseline MDF scheme for the cases of ∆<0 and∆>0, respectively. In addition, we
provided the asymptotic capacity analysis in the high SNR regime. Finally, we argued that when the transmitting
nodes operate under average power constraints, the gap between the achievable scheme and the cut-set upper bound
is at most 3.6 bits.
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APPENDIX A
GENERALIZED DEGREES OFFREEDOM CHARACTERIZATION

It is interesting to consider the asymptotic capacity of thediamond channel in the high SNR regime. A useful
parameter in studying this capacity is the GDOF (cf. [16], [26]) defined as:

GDOF(α) , lim
P→∞

R

log P
,

whereR is the data-rate,P is a channel parameter (can be considered as SNR), andα = {α01, α02, α13, α23} with

αij, lim
P→∞

log(gij)

log P
for i ∈ {0, 1, 2}, andj ∈ {1, 2, 3}.

The vectorα shows how channel gains scale withP . Based on the above definition, the following approximations
are valid:

Cij=
1

2
log(1 + gij) ≈

1

2
αij log P,

C012=
1

2
log(1 + g01 + g02) ≈

1

2
max{α01, α02} log P,

C123=
1

2
log

(
1 + (

√
g13 +

√
g23)

2
)
≈ 1

2
max{α13, α23} logP,

CMAC=
1

2
log(1 + g13 + g23) ≈

1

2
max{α13, α23} log P,

Γ≈
{
α23(max{α01, α02} − α02) − α13(max{α01, α02} − α01)

}
(log P )2 + σ log(P ),

Γ′≈
{
α02(max{α13, α23} − α23) − α01(max{α13, α23} − α13)

}
(log P )2 + σ′ log(P ),

whereσ andσ′ are positive constants. In the following analysis, it is assumed that(log P )2 terms are dominant,
i.e., the coefficients of(log P )2 for Γ andΓ′ are not zero. If this assumption is not valid, MDF scheme achieves
the optimum GDOF of the channel. According to the above approximations, it is easy to infer:






Γ ≤ 0, if α01 ≤ α02;
Γ > 0, if α01 > α02;
Γ′ ≤ 0, if α13 ≤ α23;
Γ′ > 0, if α13 > α23.
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Therefore, the GDOF associated with the upper bounds is:

GDOF1
up=

α13(α01 + α23)

α01 + α13
+

α23(α01α02 − α13α23)

(α01 + α13)(α02 − α01 + α23)
,

GDOF2
up=

α23(α02 + α13)

α02 + α23
+

α13(α01α02 − α13α23)

(α02 + α23)(α01 − α02 + α13)
,

GDOF3
up=

α01(α02 + α13)

α01 + α13
+

−α02(α01α02 − α13α23)

(α01 + α13)(α23 − α13 + α02)
,

GDOF4
up=

α02(α01 + α23)

α02 + α23
+

−α01(α01α02 − α13α23)

(α02 + α23)(α13 − α23 + α01)
. (37)

The GDOF for different achievablity schemes is as follows:
MDF :

GDOF1
MDF =

α01(α02 + α13)
α01 + α13

,

GDOF2
MDF =

α02(α01 + α23)
α02 + α23

,

GDOF3
MDF =

α13(α01 + α23)
α01 + α13

,

GDOF4
MDF =

α23(α02 + α13)
α02 + α23

.

(38)

MDF-BC:

GDOF1
MDF-BC=

α02α13(α01 + α23) − α2
01α13 + α01α02α23

(α01 + α13)(α02 − α01 + α23)
,

GDOF2
MDF-BC=

α01α23(α02 + α13) − α2
02α23 + α01α02α13

(α02 + α23)(α01 − α02 + α13)
. (39)

MDF-MAC:

GDOF1
MDF-MAC=

α01(α02 + α13)

α01 + α13
− α02(α01α02 − α13α23)

(α01 + α13)(α23 − α13 + α02)
,

GDOF2
MDF-MAC=

α02(α01 + α23)

α02 + α23
− α01(α01α02 − α13α23)

(α02 + α23)(α13 − α23 + α01)
. (40)

By comparing the upper bounds on the GDOF and the achievable GDOFs, it is easy to see that MDF-BC and
MDF-MAC achieve the optimum GDOF of the channel, while the MDF cannot achieve it for all channel parameters.

APPENDIX B
DIAMOND CHANNEL WITH AVERAGE POWER CONSTRAINTS

In this appendix, it is shown that if the transmitting nodes are subject to average power constraints, each of
the cut-set bounds in Eq. (9) is increased at most by2

ln 2 bits. This analysis confirms that the achievable schemes
proposed in this paper with constant power constraints are still valid. In other words, they provide a gap of at most
.71 + 2

ln 2 ≤ 3.6 bits from the cut-set bounds.

Let P
(i)∗
S , P

(i)∗
R1

, andP
(i)∗
R2

, for i ∈ {1, · · · , 4} be the optimum power allocated to Source, Relay 1, and Relay
2 in transmission modei with the corresponding time intervalt∗i leading to the cut-set boundR0. The following
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constraints are in effect2:
4∑

i=1

t∗i P
(i)∗
S ≤ PS ,

4∑

i=1

t∗i P
(i)∗
R1

≤ PR1
, (41)

4∑

i=1

t∗i P
(i)∗
R2

≤ PR2
.

Therefore, the cut-set upper boundR0 satisfies the following constraints:

R0 ≤ t∗1C
(
(g01 + g02)P

(1)∗
S

)
+ t∗2C(g01P

(2)∗
S ) + t∗3C(g02P

(3)∗
S ),

R0 ≤ t∗1C(g01P
(1)∗
S ) + t∗2

(
C(g01P

(2)∗
S ) + C(g23P

(2)∗
R2

)
)

+ t∗4C(g23P
(4)∗
R2

),

R0 ≤ t∗1C(g02P
(1)∗
S ) + t∗3

(
C(g02P

(3)∗
S ) + C(g13P

(3)∗
R1

)
)

+ t∗4C(g13P
(4)∗
R1

),

R0 ≤ t∗2C(g23P
(2)∗
R2

) + t∗3C(g13P
(3)∗
R1

) + t∗4C
((√

g13P
(4)∗
R1

+
√

g23P
(4)∗
R2

)2
)
.

(42)

Suppose that the vectort′ is the solution to the LP (9) leading to the rateR1. If the vectort∗ is used instead of
t′ in the LP (9), the resulting rate that satisfies the conditions of the LP, calledR2, becomes smaller thanR1. It is
clear that the increase in the cut-set bound due to theaverage instead of theconstant power constraints (compare
Eq. (1) to Eq. (41)),i.e., R0 − R1 is smaller thanR0 − R2. Here, it is proved thatR0 − R2 ≤ 2

ln 2 .
Consider each component term in the form oft∗i C(.) present in the inequality set (42). For instance, consider

Rc,0 , t∗1C(g02P
(1)∗
S ). The corresponding term in constructingR2 is Rc,2 , t∗1C(g02PS). Because of the power

constraints (41),Rc,0 ≤ t∗1C(g02
PS

t∗
1

). Therefore, it is easy to show:

Rc,0 − Rc,2≤ t∗1C
(g02PS(1 − t∗1)

(1 + g02PS)t∗1

)

(a)

≤ g02PS(1 − t∗1)

2(1 + g02PS) ln 2

≤ 1

2 ln 2
,

where(a) is due to the fact thatC(x) ≤ x
2 ln 2 for anyx ≥ 0. Similar analysis applies to each component term. It is

observed that the first and fourth cut-set bounds in inequality set (42) have three component terms and the second
and third cut-set bounds have four component terms. Therefore, R0 − R2 ≤ 2

ln 2 .

APPENDIX C
MDF GAP ANALYSIS

We investigate how close the MDF scheme performs to the upperbounds when∆ 6= 0. First, the gap between
the MDF scheme and the upper bound is calculated for regions specified in Table I. Then, two special cases are
considered.

General Case. We calculate the difference, namedκ, between the upper bounds and the rate offered by the MDF
scheme from Eq. (11) for the cases shown in Table I (see Appendix E):

2For the purpose of clarity, here the average powers are not set to unity.
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κ1 =
−(C012 − C01)∆

(C01 + C13)(C012 − C01 + C23)
+ δ,

κ2 =
−(C012 − C02)∆

(C02 + C23)(C012 − C02 + C13)
+ δ,

κ3 =
(C123 − C13)∆

(C01 + C13)(C123 − C13 + C02)
+ δ,

κ4 =
(C123 − C23)∆

(C02 + C23)(C123 − C23 + C01)
+ δ,

κ5 =
−∆

C01 + C13

(C01 + C23

C02 + C23
− C23

C012 − C01 + C23

)
+ δ,

κ6 =
−∆

C02 + C23

(C02 + C13

C01 + C13
− C13

C012 − C02 + C13

)
+ δ,

κ7 =
∆

C01 + C13

(C02 + C13

C02 + C23
− C02

C123 − C13 + C02

)
,

κ8 =
∆

C02 + C23

(C01 + C23

C01 + C13
− C01

C123 − C23 + C01

)
.

Note that for the regions associated withκ7 andκ8 specified in Table I,C123 ≤ C13 + C23 and hence,δ = 0.
To prove thatκi for i ∈ {1, · · · , 4} are small, the following lemma is needed:

Lemma 7

C012 − max{C01, C02}≤
1

2
,

C123 − max{C13, C23}≤ 1.

Proof: See Appendix D-G.
For instance, followingκ1 ≤ 1

2 + δ is proved:

κ1=
(C13C23 − C01C02)(C012 − C01)

(C01 + C13)(C012 − C01 + C23)
+ δ

(a)

≤ C13C23(C012 − C01)

(C01 + C13)(C012 − C01 + C23)
+ δ

(b)

≤ 1

2

C13C23

(C01 + C13)(C012 − C01 + C23)
+ δ

=
1

2

C13

C01 + C13
× C23

C012 − C01 + C23
+ δ

≤ 1

2
+ δ,

where(a) comes from the fact that∆>0 for this case. According to the corresponding region shown in Table I,
C02≤C01 and therefore(b) is true based on Lemma 7.

Lemmas 8 and 9 prove thatκ5 ≤ 1
2 +δ andκ7≤ 1, respectively. The proof techniques can be easily adopted to

correspondingly show thatκ6≤ 1
2 +δ, andκ8≤1.

Lemma 8 κ5 ≤ 1
2 + δ.

Proof: See Appendix D-H.

Lemma 9 κ7 ≤ 1.

Proof: See Appendix D-I.

DRAFT



19

Two special cases are also considered:
Symmetric Case. When C01 = C02 and C13 = C23, Γ = Γ′ = 0 and it can be seen from Table I that the MDF

scheme offers a data-rate that is, at most,1 + δ bits less than the corresponding upper bound.
Partially Symmetric Case. When eitherC01 =C02 with ∆<0, or C13 =C23 with ∆>0 occurs, it was seen in

section III-A that fully utilizing branch 1 or branch 2 givesthe same achievable rate. Table I shows that in such
cases, the gap is less than1 + δ bits.

Discussion. Multiplexing Gain (MG) of a scheme is defined in [24], [25] as:

MG , lim
SNR→∞

R

0.5 log(SNR)
,

whereR is the achievable rate of the scheme. Using Eq. (11), it can beshown that the MDF scheme achieves the
multiplexing gain of 1. Avestimehr,et.al proposed a broadcast mutiple-access scheme for the full-duplex diamond
channel and proved that the scheme is within one bit from the cut-set bound [21]. In the half-duplex case, the
multiplexing gain of 1 is lost if this approach is followed, leading to an infinite gap between the achievable rate
and the upper bound.

It is easy to show that, for the remaining cases (shown in Table I), the gap can be large. For instance, suppose
C02 =x, C13 =C23 =αx andC01 =βx, with α>β >1. In this case∆<0, andΓ>0 and therefore, the gapκ is:

κ=
−∆

C02 + C23

(C02 + C13

C01 + C13
− C13

C012 − C02 + C13

)
+ δ

=
−∆

C02 + C23

(C02(C012 − C02) + C13(C012 − C01)

(C01 + C13)(C012 − C02 + C13)

)
+ δ

(a)

≥ −∆

C02 + C23

( C02(C012 − C02)

(C01 + C13)(C012 − C02 + C13)

)
+ δ

(b)

≥ −∆

C02 + C23

( C02(C01 − C02)

(C01 + C13)(C012 − C02 + C13)

)
+ δ

(c)

≥ −∆

C02 + C23

(C02(C01 − C02)

(C01 + C13)2

)
+ δ

(d)
=

(α2 − β)(β − 1)

(α + β)2(α + 1)
x + δ,

where in(a) the nominator is decreased byC13(C012 −C01). To obtain(b), C012 in the nominator is replaced by
the smaller quantityC01. For (c), C012 is substituted by the larger termC01 + C02 in the denominator. In(d), the
assumed values of the capacities in terms ofx are substituted. It is clear that the gap increases asx becomes large.
GDOF analysis of Appendix A also confirms that the MDF scheme can have a large gap from the upper bound.

APPENDIX D
PROOFS

In this appendix, the proofs of the lemmas used in this paper are provided.

A. Proof of Lemma 1

We start with the fact thatC01 +C02≥C012. Rearranging the terms, and multiplying both sides of the inequality
by C13 give:

C13C02 ≥ C13(C012 − C01).

By addingC02(C012 − C02) to both sides and then dividing both sides byC012− C02+C13, we obtain:

C02 ≥ C13(C012 − C01) + C02(C012 − C02)

C012 − C02 + C13
.

AssumingC123 ≤ C13 + C23, we divide the Right Hand Side (RHS) byC02 + C23 and the Left Hand Side (LHS)
by the smaller quantityC123 − C13 + C02 to achieve:

C02

C123 − C13 + C02
≥ C13(C012 − C01) + C02(C012 − C02)

(C012 − C02 + C13)(C02 + C23)
= τ∗

4 .

This completes the proof.
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B. Proof of Lemma 2

ˆ̃
R

∗

− R̃∗=
δC02

(
(C02 + C13)(C012 − C02 + C13) − C13(C01 + C13)

)

(C02 + C23)(C02 + C23 + δ)(C012 − C02 + C13)

(a)

≤ δC2
02

(C02 + C23)2

≤ δ,

where in(a), the nominator is increased by replacingC012 − C02 with C01, using the fact thatC012 −C02 ≤ C01

(see Eq. (2)). In addition, the denominator is decreased by removingδ.

C. Proof of Lemma 3

δ= C123 − (C13 + C23)

=
1

2
log

(
1 + g13 + g23 + 2

√
g13g23

1 + g13 + g23 + g13g23

)

(a)

≤ 1

2
log

(
1 +

2
√

g13g23 − g13g23

1 + 2
√

g13g23 + g13g23

)

(b)

≤ 1

2
log(

4

3
),

where in (a) the denominator is decreased by replacingg13 + g23 with the smaller term2
√

g13g23. Defining
x ,

√
g13g23, it is easy to show that the maximum oflog(1 + 2x−x2

1+2x+x2 ), for 0≤x≤2, is x∗ = 1
2 , i.e., g∗13g

∗
23 = 1

4 ,
which proves(b).

D. Proof of Lemma 4

It is known thatC01, C02 ≤ C012, which proves0 ≤ C23(C012 − C02) and 0 ≤ C01(C012 − C01). Since both
terms are positive, the sum of them is also positive,i.e., 0 ≤ C23(C012 −C02) + C01(C012 −C01). By adding and
subtracting(C012 − C01 + C23)C13 + C01C13, the inequality can be rearranged to:

0 ≤ (C012 − C01 + C23)(C01 + C13) + (C012 − C01)(C23 − C13) − C23(C02 + C13).

As mentioned earlier, Broadcast Mode is used for∆ ≤ 0, i.e., C01C02 ≤ C13C23. Therefore, both sides are
multiplied by the positive term−∆ to acquire:

0 ≤ (C13C23 − C01C02)
(
(C012 − C01 + C23)(C01 + C13) + (C012 − C01)(C23 − C13) − C23(C02 + C13)

)
.

Now, the positive term(C012 − C01 + C23)(C012 − C01)(C01 + C13)
2 can be added to the RHS of the inequality

to achieve:

0 ≤(C13C23 − C01C02)
(
(C012 − C01 + C23)(C01 + C13) + (C012 − C01)(C23 − C13) − C23(C02 + C13)

)

+(C012 − C01 + C23)(C012 − C01)(C01 + C13)
2.

The above inequality can be equivalently stated as:

(C13C23 − C01C02)
(
(C012 − C01 + C23)(C13 − C23) + C23(C02 + C23)

)
+

C01(C02 + C23)(C01 + C13)(C012 − C01 + C23)≤ (C012 − C01 + C23)
2(C01 + C13)

2.

Since1 ≤ C01, the LHS becomes smaller ifC01(C02 + C23) is replaced by(C02 + C23), leading to:

(C13C23 − C01C02)
(
(C012 − C01 + C23)(C13 − C23) + C23(C02 + C23)

)
+

(C02 + C23)(C01 + C13)(C012 − C01 + C23)≤ (C012 − C01 + C23)
2(C01 + C13)

2.
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Now asζ1 ≤ 1
2 (see Eq. (25)), the following inequality is also true:

ζ1

{
2 × (C13C23 − C01C02)

(
(C012 − C01 + C23)(C13 − C23) + C23(C02 + C23)

)
+

(C02 + C23)(C01 + C13)(C012 − C01 + C23)

}
≤ (C012 − C01 + C23)

2(C01 + C13)
2.

By rearranging the preceding inequality

ζ1(C13C23 − C01C02)
(
(C012 − C01 + C23)(C13 − C23) + C23(C02 + C23)

)

(C01 + C13)(C012 − C01 + C23)
(
(C01 + C13)(C012 − C01 + C23) − ζ1(C02 + C23)

)≤ 1

2
,

which completes the proof.

E. Proof of Lemma 5

The optimization (33) is an LP and together with the multiple-access constraints (6) can be written as follows:

maximize RMAC

subject to:RMAC ≤ t2C01 + t3C02

RMAC − R1 ≤ t3(C02 + C13)

RMAC − R2 ≤ t2(C01 + C23)

RMAC − (R1 + R2) ≤ t2C23 + t3C13

R1 ≤ t4C13

R2 ≤ t4C23

R1 + R2 ≤ t4CMAC

4∑

i=2

ti = 1, ti ≥ 0.

Using Fourier-Motzkin elimination [27], the LP can be equivalently stated as:

maximize RMAC

subject to:RMAC ≤ t2C01 + t3C02 (43)

RMAC ≤ t3(C02 + C13) + t4C13 (44)

RMAC ≤ t2(C01 + C23) + t4C23 (45)

RMAC ≤ t2C23 + t3C13 + t4CMAC (46)

RMAC ≤ t2C23 + t3C13 + t4(C13 + C23) (47)

2RMAC ≤ t2(C01 + C23) + t3(C02 + C13) + t4CMAC (48)

2RMAC ≤ t2C23 + t3(C02 + 2C13) + t4(C13 + CMAC) (49)
4∑

i=2

ti = 1, ti ≥ 0. (50)

Now, it is shown that inequalities (47)-(49) are redundant.First, sinceCMAC ≤ (C13+C23), the RHS of inequality
(47) is greater than the RHS of inequality (46). Therefore, inequality (47) is redundant. Second, inequalities (48)
and (49) are simply obtained by adding inequalities (43, 46)and (44, 46), respectively. Therefore, the following
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LP gives the maximum achievable rate of this scheme:

maximize RMAC

subject to:RMAC ≤ t2C01 + t3C02 (51)

RMAC ≤ t3(C02 + C13) + t4C13 (52)

RMAC ≤ t2(C01 + C23) + t4C23 (53)

RMAC ≤ t2C23 + t3C13 + t4CMAC (54)
4∑

i=2

ti = 1, ti ≥ 0. (55)

Instead of solving the above LP, a feasible solution that satisfies all the constraints is found. This solution is not
necessarily optimum, however it provides us with an achievable rate. ForΓ′ ≤ 0 inequalities (51), (52), and (54)
are set to equalities, leading to:

t2=
C13

C01 + C13
,

t3=
C01(CMAC − C13) + C13C23

(C01 + C13)(CMAC − C13 + C02)
,

t4=
∆

(C01 + C13)(CMAC − C13 + C02)
,

R1
MDF-MAC=

C01(C02 + C13)

C01 + C13
− C02∆

(C01 + C13)(CMAC − C13 + C02)
. (56)

To ensure that the above results are valid, the inequality (53) has to be satisfied. Considering inequalities (51)
and (53), it is sufficient to show thatt3C02 ≤ t̄3C23. Using the values obtained in Eq. (56), this is equivalent to
prove:

C02

(
C01(CMAC − C13) + C13C23

)
≤ C23

(
∆ + C13(CMAC − C13 + C02)

)
.

By re-ordering the terms and using the definition of∆, the above inequality can be alternatively written as:

CMAC∆ ≤ (C13 + C23)∆,

which is true since∆>0, andCMAC = C(g13 + g23).
For Γ′>0, inequalities (51), (53), and (54) are set to equality. In this case, the time intervals and the achievable

rate become:

t2=
C02(CMAC − C23) + C13C23

(C02 + C23)(CMAC − C23 + C01)
,

t3=
C23

C02 + C23
,

t4=
∆

(C02 + C23)(CMAC − C23 + C01)
,

R2
MDF-MAC=

C02(C01 + C23)

C02 + C23
− C01∆

(C02 + C23)(CMAC − C23 + C01)
. (57)
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F. Proof of Lemma 6

C123 − CMAC=
1

2
log

(1 + (
√

g13 +
√

g23)
2

1 + g13 + g23

)

=
1

2
log

(
1 +

2
√

g13 g23

1 + g13 + g23

)

≤ 1

2
log

(
1 +

g13 + g23

1 + g13 + g23

)

≤ 1

2
.

G. Proof of Lemma 7

C012 − max{C01, C02}=
1

2
log

(
1 + g01 + g02

1 + max{g01, g02}

)

=
1

2
log

(
1 +

min{g01, g02}
1 + max{g01, g02}

)

≤ 1

2
log

(
1 +

max{g01, g02}
1 + max{g01, g02}

)

≤ 1

2
,

C123 − max{C13, C23}=
1

2
log

(
1 + (

√
g13 +

√
g23)

2

1 + max{g13, g23}

)

=
1

2
log

(
1 +

min{g13, g23} + 2
√

g13g23

1 + max{g13, g23}

)

≤ 1

2
log

(
1 +

3
√

g13g23

1 + max{g13, g23}

)

≤ 1

2
log

(
1 +

3
√

g13g23

1 +
√

g13g23

)

≤ 1.

H. Proof of Lemma 8

In this region,C01 ≤ 1 and C01 ≤ C02, therefore,0 ≤ C13C23(C02 − C01)(1 − C01). It is easy to verify that
the following inequality is valid:

2C13C23

(
C01(C02 − C01) + 0.5(C01 + C23)

)
≤ (C01 + C13)(C02 + C23)

(
C23 + .5 + C01(C02 − C01)

)
. (58)

ReplacingC13C23 by the smaller quantity(C13C23 − C01C02) in the LHS of the above inequality results in:

2(C13C23−C01C02)
(
C01(C02−C01)+0.5(C01+C23)

)
≤ (C01+C13)(C02+C23)

(
C23+.5+C01(C02−C01)

)
. (59)

SinceC01 ≤ 1 in the RHS,C01(C02−C01) can be substituted by the larger term(C02−C01). Hence, the following
inequality is true:

− 2∆
(
C01(C02 − C01) + 0.5(C01 + C23)

)
≤ (C01 + C13)(C02 + C23)

(
C23 + .5 + (C02 − C01)

)
. (60)

Rearranging the terms leads to:

−∆

C01 + C13

(C01 + C23

C02 + C23
− C23

C02 + 0.5 − C01 + C23

)
≤ 1

2
. (61)
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The gap can be further increased by replacingC02 + 0.5 with the smaller termC012 according to Lemma 7.
Therefore: −∆

C01 + C13

(C01 + C23

C02 + C23
− C23

C012 − C01 + C23

)
≤ 1

2
, (62)

which completes the proof.

I. Proof of Lemma 9

κ7=
∆

C01 + C13

(C02 + C13

C02 + C23
− C02

C123 − C13 + C02

)

(a)

≤ ∆

C01 + C13
× C13

C02 + C23
+ δ

(b)

≤ ∆

(C01 + C13)(C02 + C23)
+ δ

(c)

≤ C01

C01 + C13
× C02

C02 + C23
+ δ

≤ 1 + δ.

As C123 ≤ C13 + C23 in this region,C123 − C13 is replaced by the larger quantityC23 to obtain(a). (b) is valid
sinceC13 ≤ 1 for this scenario. In(c), ∆ is substituted by the larger termC01C02.

APPENDIX E
GAP ANALYSIS SUMMARY

The results related to gap analysis are compactly shown in Table I. For each region specified by some conditions
on the link capacities, the corresponding symbols for the upper bound, the achievable rate, and the gap, (i.e., the
difference between the upper bound and the achievable rate)are shown3. In addition, an upper bound on the value
of the gap is given. For instance, for the region specified by∆ ≤ 0, Γ ≤ 0, andC02 ≤ C01 conditions, the upper
bound, the achievable rate, and the gap are respectively represented byR1

up, R1
MDF, andκ1. Using the achievable

scheme that leads toR1
MDF, the gap from the upper boundR1

up is less than1
2 + δ. Our results, summarized in Table

I, indicate that sendingindependent information during each mode together with the decode-and-forward scheme
are sufficient to operate close to the capacity of the channel.
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TABLE I
SUMMARY OF THE RESULTS: GAP ANALYSIS FOR DIFFERENTREGIONS

Region Achievable Rate Gap Upper Bound Upper Bound
on the Gap on the Capacity

∆ ≤ 0 Γ ≤ 0
C02 ≤ C01 R1

MDF κ1
1

2
+ δ R1

upC02 ≥ C01

C01 ≤ 1 R2

MDF κ5

C01 ≥ 1 R1

MDF-BC κ1

MDF-BC

∆ ≤ 0 Γ > 0
C01 ≤ C02 R2

MDF κ2
1

2
+ δ R2

upC01 ≥ C02

C02 ≤ 1 R1

MDF κ6

C02 ≥ 1 R2

MDF-BC κ2

MDF-BC

∆ > 0 Γ′ ≤ 0

C23 ≤ C13

R3

MDF κ3 1 + δ

R3
up

R1

MDF-MAC κ1

MDF-MAC
1

2
+ δ

C23 ≥ C13

C13 ≤ 1, C123 ≤ C13 + C23

R4

MDF κ7 1

R1

MDF-MAC κ1

MDF-MAC

1

2

C13 ≤ 1, C123 ≥ C13 + C23 1

2
+ δ

C13 ≥ 1

∆ > 0 Γ′ > 0

C13 ≤ C23

R4

MDF κ4 1 + δ

R4
up
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