
Distributed Top-K Monitoring

Brian Babcock and Chris Olston
Stanford University

{babcock, olston}@cs.stanford.edu

ABSTRACT
The querying and analysis of data streams has been
a topic of much recent interest, motivated by applica-
tions from the fields of networking, web usage analysis,
sensor instrumentation, telecommunications, and oth-
ers. Many of these applications involve monitoring an-
swers to continuous queries over data streams produced
at physically distributed locations, and most previous
approaches require streams to be transmitted to a sin-
gle location for centralized processing. Unfortunately,
the continual transmission of a large number of rapid
data streams to a central location can be impractical
or expensive. We study a useful class of queries that
continuously report the k largest values obtained from
distributed data streams (“top-k monitoring queries”),
which are of particular interest because they can be used
to reduce the overhead incurred while running other
types of monitoring queries. We show that transmit-
ting entire data streams is unnecessary to support these
queries and present an alternative approach that re-
duces communication significantly. In our approach,
arithmetic constraints are maintained at remote stream
sources to ensure that the most recently provided top-
k answer remains valid to within a user-specified error
tolerance. Distributed communication is only necessary
on occasion, when constraints are violated, and we show
empirically through extensive simulation on real-world
data that our approach reduces overall communication
cost by an order of magnitude compared with alterna-
tives that offer the same error guarantees.

1. INTRODUCTION
Recently, much attention has been focused on online

monitoring applications, in which continuous queries
operate in near real-time over data streams such as call
records, sensor readings, web usage logs, network packet
traces, etc. [8, 10, 26, 29]. Often, data streams origi-
nate from multiple remote sources and must be trans-
mitted to a central processing system where monitoring
takes place [10]. The nature of some online monitoring
applications is such that streaming data rates may ex-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD2003, June 9-12, 2003, San Diego, CA.
Copyright 2003 ACM 1-58113-634-X/03/06 ...$5.00.

ceed the capacity of the monitoring infrastructure (data
collection points, transmission lines, processing center,
etc.) in terms of storage, communication, and process-
ing resources [3, 8]. Fortunately, many online monitor-
ing tasks only require that attention be focused on atyp-
ical behavior in the environment being monitored, while
habitual behavior is to be ignored. For such tasks, it is
only necessary to examine a small subset of the data in
detail, and most of the data can safely be disregarded.

For the purposes of many applications, the specific
behaviors of interest to monitor in detail are charac-
terized by numeric values or item frequencies that are
exceptionally large (or small) relative to the majority of
the data. For example, consider the important problem
of monitoring computer networks to detect distributed
denial-of-service (DDoS) attacks. Network hosts engag-
ing in certain malevolent behaviors such as DDoS at-
tacks may issue an unusually large number of Domain
Name Service (DNS) lookup requests to multiple dis-
tributed DNS servers from a single (possibly spoofed)
IP address [11]. On the recipient end, DDoS attacks tar-
geted at a particular host within the private network of
an Internet Service Provider (ISP) are typically charac-
terized by a large overall incoming traffic volume spread
across several of the ISP’s border routers, directed at
that single host [23].

Even under normal operation, the volume of stream-
ing data generated by a single DNS server or high-
speed network router can be very large, and to guard
against DDoS attacks it may be necessary to monitor
a large number of them, making the aggregate volume
of streaming data enormous and therefore prohibitively
expensive to capture, transmit, and process [23]. Since
it is crucial to avoid degrading normal service, it is nec-
essary to only perform detailed monitoring of traffic as-
sociated with potentially suspicious behavior such as an
unusually fast rate of DNS lookups or a large volume
of traffic directed at a single host, and the ability to
identify such behavior at low cost to the monitoring in-
frastructure is crucial.

As another example, consider wireless sensor networks,
e.g., [14], for which diverse application scenarios have
been proposed including moving object tracking. Large
vehicles can be tracked using seismic or acoustic sensors
scattered over a region of land, and tracking algorithms
based on probabilistic models need only query the sen-
sors with the highest vibration or acoustic amplitude
readings [25]. Power consumption is of significant con-
cern for miniature sensors, which have severely limited
batteries that may be impractical to replace. Since ra-
dio usage is the dominant factor determining battery

life [28, 32], it is important to identify the sensors with
high readings using as little communication as possi-
ble, and to restrict subsequent detailed monitoring and
querying to only those sensors. Other examples of ap-
plications in which behaviors of interest can often be
characterized by exceptionally large (or small) numeric
values include online monitoring of telephone call record
statistics, auction bidding patterns, cluster load charac-
teristics, and web usage statistics.

1.1 Distributed Top-K Monitoring
In the application scenarios we described, detailed

monitoring is only necessary for a subset of the data
having corresponding numeric attributes whose values
are among the k largest, where k is an application-
dependent parameter. Therefore, the transmission, stor-
age, and processing burdens on the monitoring infras-
tructure can be reduced by limiting the scope of detailed
monitoring accordingly. To realize the performance ben-
efits of reduced-scope monitoring, a low-cost mechanism
is needed for continually identifying the top k data val-
ues in a distributed data set, a task we refer to as dis-
tributed top-k monitoring.

It might appear that when data values at different
nodes change independently, effective top-k monitor-
ing requires continual transmission of all data updates
to a single location for data to be combined and com-
pared. Fortunately, a much cheaper alternative exists.
In this paper we present an algorithm for distributed
top-k monitoring that performs very little communica-
tion while continuously providing high-quality answers.
For applications requiring 100% accuracy, our algorithm
provides the exact top-k set at all times. In many online
monitoring applications approximate answers suffice [3,
8], and our algorithm is able to reduce costs further
by providing an approximation to the top-k set that is
guaranteed to be accurate within a pre-specified error
tolerance. The error tolerance can be adjusted dynam-
ically as needed, with more permissive error tolerances
incurring lower costs to the monitoring infrastructure.
Before describing our approach in Section 1.4, we first
present a detailed example scenario in Section 1.2, and
then define the problem of distributed top-k monitoring
formally in Section 1.3.

1.2 Running Example
Throughout this paper, we will refer to the following

example scenario that represents a typical application
of top-k monitoring. It will serve to motivate our ap-
proach and we will use it to validate our distributed
top-k monitoring algorithm.

The example application we consider is that of mon-
itoring HTTP requests across a distributed set of mir-
rored web servers. The organizers of the 1998 FIFA
Soccer World Cup, one of the world’s largest sporting
events, maintained a popular web site that was accessed
over 1 billion times between April 30, 1998 and July
26, 1998, which represents an average of over 11,000 ac-
cesses per minute. The web site was served to the public
by 30 servers, each with identical copies of the web con-
tent, distributed among 4 geographic locations around
the world. Cisco Distributed Director was used to route

user requests to one of the four locations based on net-
work latencies. Further details can be found in [2]. Fol-
lowing are two continuous monitoring queries that the
administrators of the World Cub web site might have
liked to have posed:

Monitoring Query 1. Which web documents are
currently the most popular, across all servers?

Monitoring Query 2. Within the local cluster of
web servers at each of the four geographic locations,
which server in the cluster has the lowest current load?

Monitoring Query 1 identifies the most popular docu-
ments by aggregating recent hit count information from
all 30 web servers. This query could be used to provide
near real-time feedback to web site designers, allowing
them to adapt site content and hyperlink structure in
response to observed usage patterns by adjusting head-
lines, reordering text, adding additional links to popular
articles, etc. Furthermore, the effects of changes made
to the web site would be observable shortly afterward,
achieving tight closed-loop interaction with immediate
feedback. Monitoring Query 2, which continuously re-
ports the currently least loaded server within a local
cluster in near real-time, could be used to distribute
load evenly across all servers within each local cluster.

For both queries, answer timeliness is clearly an im-
portant consideration. Online monitoring, assuming it
can be performed efficiently, is therefore preferable to
retrospective offline analysis in this scenario. We now
define the problem of online top-k monitoring formally.

1.3 Formal Problem Definition
We consider a distributed online monitoring environ-

ment with m + 1 nodes: a central coordinator node N0,
and m remote monitor nodes N1, N2, . . . , Nm. Collec-
tively, the monitor nodes monitor a set U of n logical
data objects U = {O1, O2, . . . , On}, which have associ-
ated numeric (real) values V1, V2, . . . , Vn. The values of
the logical data objects are not seen by any individual
node. Instead, updates to the values arrive incremen-
tally over time as a sequence S of 〈Oi, Nj , ∆〉 tuples,
which may arrive in arbitrary order. The meaning of
the tuple 〈Oi, Nj , ∆〉 is that monitor node Nj detects a
change of ∆, which may be positive or negative, in the
value of object Oi. A tuple 〈Oi, Nj , ∆〉 is seen by mon-
itor node Nj but not by any other node Nl, l 6= j. In-
sertions of new objects into U can be modeled using up-
date tuples containing object identifiers not currently in
U (the prior value of newly inserted objects is assumed
to be zero). This data stream model could be termed
the distributed cash register model, to extend the ter-
minology of [21]. For each monitor node Nj , we define
partial data values V1,j , V2,j , . . . , Vn,j representing Nj ’s
view of the data stream, where Vi,j =

∑
〈Oi,Nj ,∆〉∈S ∆.

The overall logical data value of each object Oi, which
is not materialized on any node, is defined to be Vi =∑

1≤j≤m Vi,j . Many of the symbols introduced here and

later are listed in Table 1 (below) for convenience.
We now use this notation to describe the data streams

that arise in our World Cup example scenario and are

V1,1

V2,1
...

Vn,1

δ 1,1

δ 2,1...
δ n,1

...
...

..

.

data values
partial constraints

parameterized

data values
partial constraints

parameterized

data values
partial constraints

parameterized

Monitor Node N Monitor Node NMonitor Node N

Vn,2

V2,2

V1,2 V1,m

V2,m

Vn,m

δ 1,2

δ 2,2...
δ n,2

δ 1,m

δ 2,m...
δ n,m

. . .

δ δ1,m 2,m...δ n,m

δ δ1,1 2,1 ...δ n,1

δ δ1,0 2,0 ...δ n,0

adjustment factors

top− set
τ

Coordinator Node N

m21

0

resolution
messages

detailed monitoring
based on current

top− set

. . .

based on
current
top− set

Top−K Monitoring Detailed Monitoring

k

k

k

Figure 1: Distributed top-k monitoring architecture.

relevant to our example queries. In our scenario, the
web servers also function as monitor nodes. For Moni-
toring Query 1, we have one logical data object for each
web document, and the logical data value of interest for
each document is the number of times that document
has been requested. Each page request to the jth server
for the ith object (web document) is represented as a
tuple 〈Oi, Nj , 1〉. For Monitoring Query 2, we have one
logical data object for each web server in a cluster rep-
resenting that server’s current load, so the set of logical
data objects is the same as the set of monitor nodes:
U = {N1, N2, . . . , Nm}. Minimizing total server load is
the same as maximizing (−1 ∗ load), and we could mea-
sure load as the number of hits in the last 15 minutes,
so each page request to the jth server corresponds to a
tuple 〈Nj , Nj ,−1〉 followed 15 minutes later by a cancel-
ing tuple 〈Nj , Nj , 1〉 once the page request falls outside
the sliding window of current activity.

The coordinator is responsible for tracking the top k
logical data objects within a bounded error tolerance.
More precisely, the coordinator node N0 must maintain
and continuously report a set T ⊆ U of logical data
objects of size |T | = k. T is called the approximate
top-k set, and is considered valid if and only if:

∀Ot ∈ T ,∀Os ∈ U − T : Vt + ε ≥ Vs

where ε ≥ 0 is a user-specified approximation parameter.
If ε = 0, then the coordinator must continuously report
the exact top-k set. For non-zero values of ε, a corre-

sponding degree of error is permitted in the reported
top-k set. The goal for distributed top-k monitoring is
to provide, at the coordinator, an approximate top-k
set that is valid within ε at all times, while minimizing
the overall cost to the monitoring infrastructure. For
our purposes, cost is measured as the total number of
messages exchanged among nodes.

As discussed above, we expect that in most applica-
tions the purpose of continually identifying the top k
objects at low cost is to restrict the scope of further,
more detailed monitoring such as downloading packet
traces from routers, obtaining acoustic waveforms from
sensors, etc. If the monitoring objective is to form a
ranked list of the top k objects, which may be useful in,
e.g., Monitoring Query 1, then as detailed monitoring
the coordinator can track (approximations of) the logi-
cal data values of the objects currently in the top k set
T , as in, e.g., [30], and use this information to perform
(approximate) top-k ranking at much lower cost than
by tracking all values. Our overall distributed monitor-
ing architecture is illustrated in Figure 1. Many of the
details in this figure pertain to our top-k monitoring
algorithm, described next.

1.4 Overview of Approach
Our overall approach is to compute and maintain at

the coordinator an initially valid top-k set T and have
the coordinator install arithmetic constraints at each
monitor node over the partial data values maintained

there to ensure the continuing validity of T . As updates
occur, the monitor nodes track changes to their partial
data values, ensuring that each arithmetic constraint re-
mains satisfied. As long as all the arithmetic constraints
hold across all nodes, no communication is necessary to
guarantee that the current top-k set T remains valid.
On the other hand, if one or more of the constraints be-
comes violated, a distributed process called resolution
takes place between the coordinator and some monitor
nodes to determine whether the current top-k set T is
still valid and to alter it when appropriate. Afterward, if
the top-k set has changed, the coordinator installs new
arithmetic constraints on the monitor nodes to ensure
the continuing validity of the new top-k set, and no fur-
ther action is taken until one of the new constraints is
violated. The arithmetic constraints maintained at each
monitor node Nj continually verify that all the partial
data values Vt,j of objects Ot in the current top-k set T
are larger than all the partial data values Vs,j of other
objects Os /∈ T , thereby ensuring that the local top-k
set matches the overall top-k set T . Clearly, if each lo-
cal top-k set matches T , then T must be valid for any
ε ≥ 0.

1.4.1 Adjustment Factors and Slack
In general, if the logical data values are not distributed

evenly across the partial values at monitor nodes, it is
not likely to be the case that the local top-k set of every
node matches the global top-k set. For example, con-
sider a simple scenario with two monitor nodes N1 and
N2 and two data objects O1 and O2. Suppose the cur-
rent partial data values at N1 are V1,1 = 9 and V2,1 = 1
and at N2 are V1,2 = 1 and V2,2 = 3, and let k = 1,
so the current top-k set is T = {O1}. It is plainly not
the case that V1,2 ≥ V2,2, as required by the arithmetic
constraint maintained at node N2 for T .

To bring the local top-k set at each node into align-
ment with the overall top-k set, we associate with each
partial data value Vi,j a numeric adjustment factor δi,j

that is added to Vi,j before the constraints are eval-
uated at the monitor nodes. The purpose of the ad-
justment factors is to redistribute the data values more
evenly across the monitor nodes so the k largest ad-
justed partial data values at each monitor node corre-
spond to the current top-k set T maintained by the
coordinator. To ensure correctness, we maintain the in-
variant that the adjustment factors δi,∗ for each data
object Oi sum to zero—in effect, the adjustments shift
the distribution of partial values for the purpose of local
constraint checking, but the aggregate value Vi remains
unchanged. In the above example, adjustment factors
of, say, δ1,1 = −3, δ2,1 = 0, δ1,2 = 3, and δ2,2 = 0
which are assigned by the coordinator at the end of res-
olution, could be used, although many alternatives are
possible. Adjustment factors are assigned by the coor-
dinator during resolution, and as long as the constraints
at each monitor node hold for the adjusted partial data
values, the continuing validity of the current top-k set
with zero error is guaranteed. It may be useful to think
of the constraints as being parameterized by the adjust-
ment factors, as illustrated in Figure 1.

When a constraint becomes violated, resolution is per-

formed to determine whether the current top-k set is
still valid and possibly assign new constraints as re-
quired if a new top-k set is selected. At the end of res-
olution, regardless of whether new constraints are used
or the existing ones are kept, the coordinator assigns
new adjustment factors as parameters for some of the
constraints. Adjustment factors are selected in a way
that ensures that all parameterized constraints are sat-
isfied and the adjustment factors for each object sum
to zero. As illustrated above by our simple two-object
example, there is typically some flexibility in the way
adjustment factors are assigned while still meeting these
requirements. In particular, the distribution of “slack”
in the local arithmetic constraints (the numeric gap be-
tween the two sides of the inequality) can be controlled.
Observe that in our example the total amount of slack
available to be distributed between the two local arith-
metic constraints is V1 − V2 = 6 units. To distribute
the slack evenly between the two local constraints at 3
units apiece, we could set δ1,1 = −5, δ2,1 = 0, δ1,2 = 5,
and δ2,2 = 0, for instance.

The amount of slack in each constraint is the dom-
inant factor in determining overall cost to maintain a
valid approximate top-k set at the coordinator because
it determines the frequency with which resolution must
take place. Intuitively, distributing slack evenly among
all the constraints after each round of resolution seems
like a good way to prolong the time before any con-
straint becomes violated again, making resolution in-
frequent. However, when more than two objects are
being monitored, the best way to distribute slack that
minimizes overall resolution cost is not always obvious
because multiple constraints are required at each node,
and at a given node the amount of slack in each con-
straint is not independent. Moreover, the best alloca-
tion of slack depends on characteristics of the data such
as change rates. Finally, as we will see later, in our
approach the communication cost incurred to perform
resolution is not constant, but depends on the scope
of resolution in terms of how many nodes must be ac-
cessed to determine whether the current top-k set is
valid. Therefore, the frequency of resolution is not the
only relevant factor.

In this paper we propose policies for managing slack
in arithmetic constraints via the setting of adjustment
factors, and evaluate the overall cost resulting from our
policies using extensive simulation over real-world data.
We show that, using appropriate policies, our distributed
top-k monitoring algorithm achieves a reduction in total
communication cost of over an order of magnitude com-
pared with replicating all partial data values continually
at the coordinator.

1.4.2 Approximate Answers
When exact answers are not required and a controlled

degree of error is acceptable, i.e. ε > 0, our approach
can be extended in a straightforward manner to per-
form approximate top-k monitoring at even lower cost.
The overall idea remains the same: An initial approx-
imate top-k set T valid within the user-specified ap-
proximation parameter ε is stored at the coordinator,
and arithmetic constraints are installed at the monitor

nodes that ensure that all adjusted partial data values
of objects in T remain greater than those for objects
not in T . To permit a degree of error in the top-k set
T of up to ε, we associate additional adjustment factors
δ1,0, δ2,0, . . . , δn,0 with the coordinator node N0 (retain-
ing the invariant that all the adjustment factors δi,∗ for
each object Oi sum to zero), and introduce the addi-
tional stipulation that for each pair of objects Ot ∈ T
and Os /∈ T , δt,0 + ε ≥ δs,0. Using appropriate policies
for assigning adjustment factors to control the slack in
the constraints, our approximate top-k monitoring ap-
proach achieves a significant reduction in cost compared
with an alternative approach that provides the same er-
ror guarantee ε by maintaining at the coordinator ap-
proximate replicas of all partial data values.

1.5 Outline
The remainder of this paper is structured as follows.

First, in Section 2 we situate our research in the con-
text of related work. Then, in Section 3 we provide
a detailed description of our algorithm for distributed
top-k monitoring and introduce a parameterized sub-
routine for assigning adjustment factors. In Section 4
we evaluate several alternative adjustment factor poli-
cies empirically, and perform experimental comparisons
between our algorithm and alternatives. We then sum-
marize the paper in Section 5.

2. RELATED WORK
The most similar work to our own we are aware of

covers one-time top-k queries over remote sources, e.g.,
[7, 16], in contrast to continuous, online monitoring of
top-k answers as they change over time. Recent work
by Bruno et al. [7] focuses on providing exact answers
to one-time top-k queries when access to source data
is through restrictive interfaces, while work by Fagin et
al. [16] considers both exact answers and approximate
answers with relative error guarantees. These one-time
query algorithms are not suitable for online monitoring
because they do not include mechanisms for detecting
changes to the top-k set. While monitoring could be
simulated by repeatedly executing a one-time query al-
gorithm, many queries would be executed in vain if the
answer remains unchanged. The work in both [7] and
[16] focuses on dealing with sources that have limited
query capabilities, and as a result their algorithms per-
form a large number of serial remote lookups, incurring
heavy communication costs as well as potentially high
latencies to obtain query answers in a wide-area environ-
ment. Both [7] and [16] present techniques for reducing
communication cost, but they rely on knowing upper
bounds for the remote data values, which is not real-
istic in many of the application scenarios we consider
(Section 1).

Work on combining ranked lists on the web [13, 15]
focuses on combining relative orderings from multiple
lists and does not perform numeric aggregation of values
across multiple data sources. Furthermore, [13, 15] do
not consider communication costs to retrieve data and
focus on one-time queries rather than online monitoring.

Recent work in the networking community has fo-

cused on online, distributed monitoring of network ac-
tivity. For example, algorithms proposed in [12] can de-
tect whether the sum of a set of numeric values from
distributed sources exceeds a user-supplied threshold
value. However, we are not aware of any work in that
area that focuses on top-k monitoring. Reference [30]
also studies the problem of monitoring sums over dis-
tributed values within a user-specified error tolerance,
but does not focus on top-k queries.

Top-k monitoring of a single data stream was studied
in [18], while [9] and [27] give approaches for finding fre-
quent items in data streams, a specialization of the top-
k problem. This work ([9, 18, 27]) only considers single
data streams rather than distributed data streams and
concentrates on reducing memory requirements rather
than communication costs. This focus is typical of most
theoretical research in data stream computation, which
generally concentrates on space usage rather than dis-
tributed communication. Exceptions include [19] and
[20], neither of which addresses the top-k monitoring
problem.

Top-k monitoring can be thought of as an incremental
view maintenance problem. Most work on view main-
tenance, including recent work on maintaining aggrega-
tion views [31] and work by Yi et al. on maintaining
top-k views [35], does not focus on minimizing commu-
nication cost to and from remote data sources. Also,
we are not aware of work on maintaining approximate
views. Our online monitoring techniques involve the use
of distributed constraints, and most previous work on
distributed constraint checking, e.g., [6, 22, 24] only con-
siders insertions and deletions from sets, not updates to
numeric data values. Approaches for maintaining dis-
tributed constraints in the presence of changing numeric
values were proposed in [5], [33], and recently in [34]. All
of these protocols require direct communication among
sources, which may be impractical in many applications,
and none of them focus on top-k monitoring, so they are
not designed to minimize costs incurred by resolution of
the top-k set with a central coordinator.

3. ALGORITHM FOR DISTRIBUTED
TOP-K MONITORING

We now describe our algorithm for distributed top-k
monitoring. For convenience, Table 1 summarizes the
notation introduced in Section 1.3, along with new no-
tation we will introduce in this section. Recall from Sec-
tion 1.4 that while engaged in top-k monitoring the co-
ordinator node N0 maintains an approximate top-k set
T that is valid within ε. In addition to maintaining the
top-k set, the coordinator also maintains n(m + 1) nu-
meric adjustment factors, labeled δi,j , one correspond-
ing to each pair of object Oi and node Nj , which must
at all times satisfy the following two adjustment factor
invariants:

Invariant 1: For each object Oi, the corresponding
adjustment factors sum to zero:

∑
0≤j≤m δi,j = 0.

Invariant 2: For all pairs 〈Ot ∈ T , Os ∈ U −T 〉, δt,0 +
ε ≥ δs,0.

Symbol Meaning

k number of objects to track in top-k set
ε user-specified approximation parameter

U universe of data objects
Oi data object (i = 1 . . . n)
N0 central coordinator node
Nj monitor node (j = 1 . . . m)
Vi logical value for object Oi

Vi,j partial data value of Oi at node Nj

δi,j adjustment factor for partial value Vi,j

T current (approximate) top-k set

R set of objects participating in resolution
N set of nodes participating in resolution
Bj border value from node Nj

Table 1: Meaning of selected symbols.

The adjustment factors are all initially set to zero.
At the outset, the coordinator initializes the approxi-

mate top-k set by running an efficient algorithm for one-
time top-k queries, e.g., the threshold algorithm from
[16]. Once the approximate top-k set T has been initial-
ized, the coordinator selects new values for some of the
adjustment factors (using the reallocation subroutine
described later in Section 3.2) and sends to each moni-
tor node Nj a message containing T along with all new
adjustment factors δ∗,j 6= 0 corresponding to Nj . Upon
receiving this message, Nj creates a set of constraints
from T and the adjustment factor parameters δ∗,j to de-
tect potential invalidations of T due to changes in local
data. Specifically, for each pair 〈Ot ∈ T , Os ∈ U − T 〉
of objects straddling T , node Nj creates a constraint
specifying the following arithmetic condition regarding
the adjusted partial values of the two objects at Nj :

Vt,j + δt,j ≥ Vs,j + δs,j

As long as at each monitor node every local arith-
metic constraint holds1, and adjustment factor Invari-
ant 2 above also holds, then for each pair 〈Ot ∈ T , Os ∈
U−T 〉,

∑
1≤j≤m Vt,j+

∑
0≤j≤m δt,j+ε ≥

∑
1≤j≤m Vs,j+∑

0≤j≤m δs,j . Applying Invariant 1, this expression sim-
plifies to Vt + ε ≥ Vs, so the approximate top-k set T
is guaranteed to remain valid (by definition from Sec-
tion 1.3). On the other hand, if one or more of the
local constraints is violated, T may have become in-
valid, depending on the current partial data values at
other nodes. Whenever local constraints are violated, a
distributed process called resolution is initiated to de-
termine whether the current approximate top-k set T is
still valid and rectify the situation if not. Resolution is
described next.

3.1 Resolution
Resolution is initiated whenever one or more local

constraints are violated at some monitor node Nf . Let
F be the set of objects whose partial values at Nf are in-

1Rather than checking all the constraints explicitly ev-
ery time a partial data value is updated, each node need
only track the smallest adjusted partial data value of an
object in the top-k set T (after adding its δ value) and
the largest adjusted partial data value of an object not
in T . This tracking can be performed efficiently using
two heap data structures.

volved in violated constraints. (F contains one or more
objects from T plus one or more objects not in T .) To
simplify exposition, for now we make the unrealistic as-
sumption that the resolution process is instantaneous
and further constraint violations do not occur during
resolution. In our extended paper [4] we describe how
our algorithm handles further constraint violations that
may occur while resolution is underway, and we show
that the instantaneousness assumption is not necessary
for the functioning or correctness of our algorithm.

Our resolution algorithm consists of the following three
phases (the third phase does not always occur):

Phase 1: The node at which one or more constraints
have failed, Nf , sends a message to the coordinator N0

containing a list of failed constraints, a subset of its
current partial data values, and a special “border value”
it computes from its partial data values.

Phase 2: The coordinator determines whether all in-
validations can be ruled out based on information from
nodes Nf and N0 alone. If so, the coordinator performs
reallocation to update the adjustment factors pertain-
ing to those two nodes to reestablish all arithmetic con-
straints, and notifies Nf of its new adjustment factors.
In this case, the top-k set remains unchanged and reso-
lution terminates. If, on the other hand, the coordinator
is unable to rule out all invalidations during this phase,
a third phase is required.

Phase 3: The coordinator requests relevant partial
data values and a border value from all other nodes
and then computes a new top-k set defining a new set
of constraints, performs reallocation across all nodes to
establish new adjustment factors to serve as parameters
for those constraints, and notifies all monitor nodes of a
potentially new approximate top-k set T ′ and the new
adjustment factors.

We now describe each phase in detail. In Phase 1,
Nf sends a message to the coordinator N0 containing a
list of violated local constraints along with its current
partial data values for the objects in the resolution set
R = F ∪T . In the same message, Nf also sends its bor-
der value Bf , which will serve as a reference point for
reallocating adjustment factors in subsequent phases.
The border value Bj of any node Nj is defined to be
the smaller of the minimum adjusted partial data value
of objects in the current top-k set and the maximum ad-
justed partial data value of objects not in the resolution
set:

Bj = min{ min
Ot∈T

(Vt,j + δt,j),

max
Os∈U−R

(Vs,j + δs,j) }

In Phase 2, the coordinator node N0 attempts to com-
plete resolution without involving any nodes other than
itself and Nf . To determine whether resolution can be
performed successfully between N0 and Nf only, the co-
ordinator attempts to rule out the case that T has be-
come invalid based on local state (the current top-k set
T and the adjustment factors δ∗,0) and data received

from Nf . A pair of objects 〈Ot ∈ T , Os ∈ U − T 〉
is said to invalidate the current approximate top-k set
T whenever the condition Vt + ε ≥ Vs is not met for
that pair of objects. Each violated constraint at Nf

represents a potential invalidation of the approximate
top-k set T that needs to be dealt with. The coordi-
nator considers each pair 〈Ot ∈ T , Os ∈ U − T 〉 whose
constraint has been violated and performs the following
validation test: Vt,f + δt,0 + δt,f ≥ Vs,f + δs,0 + δs,f .
If this test succeeds, both adjustment factor invariants
are met (which our algorithm will always guarantee to
be the case as discussed later), and all constraints not
reported violated during Phase 1 of resolution remain
satisfied, then it must be true that Vt + ε ≥ Vs and thus
the pair 〈Ot, Os〉 does not invalidate T .

The coordinator applies the validation test to all pairs
of objects involved in violated constraints to attempt to
rule out invalidations. If the coordinator is able to rule
out all potential invalidations in this way, then it leaves
the approximate top-k set unchanged and performs a
final procedure called reallocation to assign new adjust-
ment factors corresponding to objects in R and nodes
N0 and Nf . The adjustment factors must be selected
in a way that reestablishes all parameterized arithmetic
constraints without violating the adjustment factor in-
variants. Reallocation is described later in Section 3.2.
The coordinator then finishes resolution by sending a
message to Nf notifying it of the new adjustment fac-
tors to serve as new parameters for its arithmetic con-
straints, which remain unchanged.

If the coordinator is unable to rule out all invalida-
tions by examining the partial data values from Nf

alone during Phase 2, then a third phase of resolu-
tion is required. In Phase 3, the coordinator contacts
all monitor nodes other than Nf , and for each node
Nj , 1 ≤ j ≤ m, j 6= f , the coordinator requests the
current partial data values Vi,j of objects Oi in the res-
olution set R as well as the border value Bj (defined
above). Once the coordinator receives responses from
all nodes contacted, it computes the current logical data
values for all objects in R by summing the partial data
values from all monitor nodes (recall that those from
Nf were obtained in Phase 1). It then sorts the log-
ical values to form a new approximate top-k set T ′,
which may be the same as T or different. Clearly, this
new approximate top-k set T ′ is guaranteed to be valid,
assuming the previous top-k set was valid prior to the
constraint violations that initiated resolution and no vi-
olations have occurred since. Next, the coordinator per-
forms reallocation, described in Section 3.2, modifying
the adjustment factors of all monitor nodes such that
new arithmetic constraints defined in terms of the new
top-k set T ′ are all satisfied. Finally, the coordinator
sends messages to all monitor nodes notifying them of
the new approximate top-k set T ′ (causing them to cre-
ate new constraints) and their new adjustment factors.

We now consider the communication cost incurred
during the resolution process. Recall that for our pur-
poses cost is measured as the number of messages ex-
changed. (As we verify empirically in Section 4.2, mes-
sages do not tend to be large.) When only Phases 1 and

2 are required, just two messages are exchanged. When
all three phases are required, a total of 1+2(m−1)+m =
3m−1 messages are necessary to perform complete res-
olution. Since in our approach the only communica-
tion required is that performed as part of resolution,
the overall cost incurred for top-k monitoring during a
certain period of time can be measured by summing the
cost incurred during each round of resolution performed.

We are now ready to describe our adjustment factor
reallocation subroutine, a crucial component of our res-
olution algorithm.

3.2 Adjustment Factor Reallocation
Reallocation of the adjustment factors is performed

once when the initial top-k set is computed, and again
during each round of resolution, either in Phase 2 or
in Phase 3. We focus on the subroutine for reallocat-
ing adjustment factors during resolution; the process
for assigning the new adjustment factors at the outset
when the initial top-k set is computed is a straightfor-
ward variation thereof. First we describe the generic
properties and requirements of any reallocation subrou-
tine, and then introduce our algorithm for performing
reallocation.

Before proceeding, we introduce some notation that
will simplify presentation. When the reallocation sub-
routine is invoked during Phase 3 of resolution, a new
top-k set T ′ has been computed by the coordinator that
may or may not differ from the original set T . When
reallocation is instead invoked during Phase 2, the top-k
has not been altered. In all cases we use T ′ to refer to
the new top-k set at the end of resolution, which may be
the same as T or different. Finally, we define the set of
participating nodes N : If reallocation is performed dur-
ing Phase 2 of resolution, then N = {N0, Nf}, where
Nf is the monitor node that initiated resolution. If real-
location is performed during Phase 3 of resolution, then
N = {N0, N1, . . . , Nm}.

The input to a subroutine for adjustment factor real-
location consists of the new top-k set T ′, the resolution
set R, the border values Bj from nodes Nj ∈ N −{N0},
the partial data values Vi,j of objects Oi ∈ R from nodes
Nj ∈ N −{N0}, the adjustment factors δi,j correspond-
ing to those partial data values, and the special adjust-
ment factors δ∗,0 corresponding to the coordinator node.
The output is a new set of adjustment factors δ′i,j for
objects Oi ∈ R and nodes Nj ∈ N .

An adjustment factor reallocation subroutine is con-
sidered to be correct if and only if:

Correctness Criterion 1: The new adjustment fac-
tors δ′∗,∗ selected by the subroutine satisfy the two in-
variants stated above.

Correctness Criterion 2: Immediately after resolu-
tion and reallocation, all new constraints defined by T ′

with adjustment factor parameters δ′∗,∗ are satisfied, as-
suming that no partial values V∗,∗ are updated during
resolution.

This definition of correctness ensures the convergence
property described in [4].

3.2.1 Algorithm Description
Multiple reallocation algorithms are possible due to

the fact mentioned earlier that there is some flexibil-
ity in the way the adjustment factors are set while still
maintaining the two invariants and guaranteeing all arith-
metic constraints. In fact, the choice of adjustment fac-
tors represents a primary factor determining the overall
communication cost incurred during subsequent rounds
of resolution: poor choices of adjustment factors tend
to result in short periods between resolution rounds and
therefore incur high communication cost to maintain a
valid approximate top-k set. The flexibility in adjust-
ment factors is captured in a notion we call object lee-
way. The leeway λt of an object Ot in the top-k set is
measure of the overall amount of “slack” in the arith-
metic constraints (the numeric gap between the two
sides of the inequality) involving partial values Vt,∗ from
the participating nodes. (For this purpose, it is conve-
nient to think of adjustment factor Invariant 2 as consti-
tuting a set of additional constraints involving partial
data values at the coordinator.) For each object, the
leeway is computed in relation to the sum of the bor-
der values, which serve as a baseline for the adjustment
factor reallocation process.

Informally, our adjustment factor reallocation algo-
rithm is as follows. The first step is to assign adjustment
factors in a way that makes all constraints “tight,” so
that each constraint is exactly met based on equality be-
tween the two sides with no slack. Next, for each object
Oi in the resolution set, the total leeway λi is computed
and divided into several portions, each corresponding to
a node Nj ∈ N and proportional to a numeric allocation
parameter Fj . The portion Fjλi of Oi’s leeway corre-
sponding to node Nj is then added to the adjustment
factor δ′i,j , thereby increasing the slack in the relevant
constraints in the case that Oi is a top-k object. (Our
proof of correctness, presented later, demonstrates that
even when leeway must be applied to non-top-k objects
in the resolution set, the overall slack in each constraint
remains positive.)

The allocation of object leeway to adjustment factors
at different nodes is governed by a set of m + 1 allo-
cation parameters F0, F1, . . . , Fm that are required to
satisfy the following restrictions: 0 ≤ Fj ≤ 1 for all j;∑

0≤j≤m Fj = 1; Fj = 0 if Fj /∈ N . The allocation pa-
rameters have the effect that assigning a relatively large
allocation parameter to a particular node Nj causes a
large fraction of the available slack to be assigned to con-
straints at Nj . In Section 4 we propose several heuris-
tics for selecting allocation parameters during resolu-
tion and evaluate them empirically. The heuristics are
designed to achieve low overall cost by managing the
slack in constraints in a way that minimizes the likeli-
hood that some constraint will become violated in the
near future. Before presenting our heuristics and exper-
iments we specify our reallocation algorithm precisely
and illustrate its effect with a brief example. Detailed
proofs that our algorithm meets Correctness Criteria 1
and 2 are provided in [4].

For notational convenience we introduce the follow-
ing definitions: First, we extend our notation for partial

N1 N2 N3 N0

N1 N2 N3 N0

N1 N2 N3 N0

Figure 2: Example of reallocation.

data values and border values to the coordinator node
by defining Vi,0 = 0 for all i and B0 = max1≤i≤n,Oi∈U−R
δi,0. We also define, for each object Oi, Vi,N =

∑
0≤j≤m,

Nj∈N (Vi,j + δi,j), which we call Oi’s participating sum.
We use similar notation to refer to the sum of the bor-
der values across the set N of nodes participating in
resolution: BN =

∑
0≤j≤m,Nj∈N Bj .

Algorithm 3.1 (Reallocate).

inputs: T ′; R; {Bj}; {Vi,j}; {δi,j}; {Fj}
output: {δ′i,j}

1. For each object in the resolution set Oi ∈ R, com-
pute the leeway λi:

λi =

{
Vi,N −BN + ε if Oi ∈ T ′

Vi,N −BN otherwise

2. For each object in the resolution set Oi ∈ R and
each monitor node Nj ∈ N participating in reso-
lution, assign:

δ′i,j =

{
Bj − Vi,j + Fjλi − ε if Oi ∈ T ′, j = 0
Bj − Vi,j + Fjλi otherwise

3.2.2 Example
A simple example of reallocation is illustrated in Fig-

ure 2. The chart on the left shows the adjusted partial
data values for three objects O1, O2, and O3 (shown
as light, medium, and dark bars, respectively) at three
monitor nodes (denoted N1, N2, and N3) just before an
update to the value of O2 (the dark bar) is received by
node N2. The adjustment factor δ1,0 at the coordinator
node N0 is non-zero, while δ2,0 and δ3,0 are both zero.
Assume the the approximation parameter is ε = 0 and
size of the top-k set T is k = 1, so T = {O1}.

After the partial data value V2,2 is updated to a new
larger value, depicted by the dashed lines in the chart
on the left-hand side of Figure 2, a local constraint is
violated at monitor node N2, triggering Phases 1 and
2 of resolution between N2 and the coordinator. The
value of the adjustment factor δ1,0 is large enough that
the coordinator node is able to determine that no actual

change in the overall top-k set has occurred, i.e. that it
is still the case that V1 ≥ V2, so Phase 3 of resolution is
unnecessary. However, some of the excess slack repre-
sented by adjustment factor δ1,0 must be transferred to
δ1,2 so the parameterized constraint at monitor node N2
requiring V1,2 + δ1,2 ≥ V2,2 + δ2,2 will be satisfied once
again. The amount of slack transferred in this manner
by our reallocation algorithm depends on the settings
of allocation parameters F0 and F2. For illustration we
study two extreme cases: The chart on the top right of
Figure 2 illustrates the result when F0 = 1 and F2 = 0,
and the chart on the bottom right shows the result when
F0 = 0 and F2 = 1.

Notice that either choice of allocation parameters might
be preferable depending on the course of future events.
If the next data value change received by the monitoring
system is another small increase in V2,2, then the allo-
cation of slack shown on the bottom right of Figure 2
is superior, since it can absorb such an increase without
triggering a constraint violation. If, on the other hand,
the next value change is a small increase in V2,3, then
then the allocation of slack shown in the top right of the
figure is preferable. In this second scenario, retaining
some slack at the coordinator node through a non-zero
δ1,0 value allows the expensive Phase 3 of resolution to
be avoided during a subsequent round of resolution trig-
gered by a small increase in V2,3. The tradeoffs enabled
by different choices of the allocation parameters are ex-
plored in more detail in Section 4.3.

4. EXPERIMENTS
We constructed a simulator and performed experi-

ments to measure message size (Section 4.2), determine
good heuristics for setting the allocation parameters
(Section 4.3), and evaluate the performance of our al-
gorithm for various top-k monitoring problems (Sec-
tion 4.4). In our experiments we used two data sets
and a total of three monitoring queries, described next.

4.1 Data and Queries
The first data set we used in our experiments consists

of a portion of the HTTP server logs from the FIFA
World Cup web site described in Section 1.2 [1]. Two
of the monitoring queries we used were over this data
set: Monitoring Queries 1 and 2 from Section 1.2, which
monitor popular web documents and server load, re-
spectively. Web document popularity was measured as
the total number of page requests received for each web
document so far during the current day, and server load
was estimated by counting the number of page requests
received in the last 15 minutes by each of the 8 servers
at one geographic location. For Monitoring Query 1,
we used a 24-hour time slice of the server log data con-
sisting of 52 million page requests distributed across 27
servers that were active during that period and serving
some 20,000 distinct files. For Monitoring Query 2 we
used a 15-minute sliding window over seven million page
requests from the same time slice.

The third monitoring query we used in our experi-
ments was over a second data set consisting of a packet
trace capturing one hour’s worth of all wide-area net-

work TCP traffic between the Lawrence Berkeley Lab-
oratory and the rest of the world [17], consisting of
800,000 packets in all. The trace was actually collected
at a single node, but for our purposes we treat it as
though it were collected in a distributed fashion at four
monitor nodes.

Monitoring Query 3. Which destination host re-
ceives the most TCP packets?

We used a 15-minute sliding window over packet counts
for this query.

Our goal in selecting monitoring queries for our ex-
periments was to choose ones that are both realistic and
diverse. Our queries cover two distinct data sets with
differing data characteristics and numbers of sources.
Also, Monitoring Queries 2 and 3 each apply sliding
windows while Monitoring Query 1 does not. Finally,
Monitoring Query 2 represents an example of the follow-
ing important special case: Values are not split across
monitor nodes; instead each monitor node has exactly
one non-zero partial data value that is actually a full
data value (i.e. Vi,j = Vi for i = j and Vi,j = 0 for
i 6= j). For Monitoring Query 2 we used k = 1 (i.e. we
monitored the single least loaded server), and for the
other two queries we used k = 20.

4.2 Message Size
Our first experiment measures the size of messages

exchanged between the monitor nodes and the coordi-
nator during resolution. Message size is dominated by
the number of partial data values or adjustment factors
transmitted, so the maximum message size is governed
by the size of the resolution set. Based on our simula-
tions we found that large resolution sets appear to be
rare. To avoid the occasional occurrence of large resolu-
tion sets we modified our algorithm to use an alternative
resolution procedure, described in [4], whenever many
constraints become violated at the same time. We now
report on the message sizes measured for each query
when we use our message size reduction procedure.

First, the largest message exchanged in our experi-
ments on Monitoring Queries 1 and 2 contained only
k + 2 entries. Larger messages did occasionally occur
for Monitoring Query 3. However, the average num-
ber of entries per message remained small, ranging from
k + 1.0 to k + 1.2, depending on the choice of param-
eters used when running the algorithm. No message
contained more than k + 39 numeric entries, and fewer
than 5% of messages contained more than k +3 entries.
Therefore we conclude that overall, using our procedure
for reducing message sizes, messages tend to be small
and our cost metric that counts the number of messages
exchanged is appropriate.

4.3 Leeway Allocation Policies
Recall from Section 3.2.1 that our reallocation algo-

rithm is parameterized by m + 1 allocation parameters
F0 . . . Fm that specify the fraction of leeway allocated
to the adjustment factors at each node Nj participat-
ing in resolution. We considered several heuristics for
selecting allocation parameters, all of which use the gen-
eral policy of first setting F0, the allocation parameter

proportional, ε = 200
even, ε = 200

proportional, ε = 0
even, ε = 0

Monitoring Query 1

coordinator allocation parameter (F0)

to
ta

l
co

m
m

u
n
ic

at
io

n
co

st

10.80.60.40.20

7e+06

6e+06

5e+06

4e+06

3e+06

2e+06

1e+06

0

proportional, ε = 200
even, ε = 200

proportional, ε = 0
even, ε = 0

Monitoring Query 2

coordinator allocation parameter (F0)

to
ta

l
co

m
m

u
n
ic

at
io

n
co

st

10.80.60.40.20

400000

350000

300000

250000

200000

150000

100000

50000

0

proportional, ε = 60
even, ε = 60

proportional, ε = 0
even, ε = 0

Monitoring Query 3

coordinator allocation parameter (F0)

to
ta

l
co

m
m

u
n
ic

at
io

n
co

st

10.80.60.40.20

100000

80000

60000

40000

20000

0

Figure 3: Effect of allocation parameter policies.

pertaining to the coordinator, and then distributing the
remaining fraction 1− F0 among the allocation param-
eters F1 . . . Fm of the monitor nodes. We investigated
two aspects of this general policy:

• What value should be assigned to F0?
• How should the remaining 1−F0 be divided among

F1 . . . Fm?

As illustrated in Section 3.2.2, a large value for F0

increases the likelihood that resolution can be limited
to two phases because during Phase 2 the coordinator
attempts to avoid a third phase by applying all avail-
able leeway from its local adjustment factors to the ad-
justment factors of the monitor node whose constraint
has been violated. Since Phases 1 and 2 require few
messages compared with Phase 3, the number of mes-
sages exchanged on average during each round of res-
olution will be small. On the other hand, a large F0

value implies small F1 . . . Fm values, so the amount of
leeway allocated to the adjustment factors at the mon-
itor nodes during reallocation each time resolution is

performed will be small. Therefore, the parameterized
constraints will have little slack, and as a result the pe-
riod of time between constraint violations will tend to be
short, leading to frequent rounds of resolution. There-
fore, the choice of F0 offers a tradeoff between frequent
constraint violations with, on average, cheap resolution
(large F0) and infrequent constraint violations with, on
average, more expensive resolution (small F0).

We studied the performance of our approach under a
broad range of settings for F0, and we tried two alterna-
tive heuristics for determining how the remaining 1−F0

should be divided among F1 . . . Fm. The first heuris-
tic, called even allocation, divides the remaining leeway
evenly among monitor nodes participating in resolution
(i.e. nodes in N −{N0}). Even allocation is appropriate
if no effective method of predicting future data update
patterns is available. Our second heuristic, proportional
allocation, sets F1 . . . Fm adaptively, assigning each Fj

in proportion to data update rates observed at node
Fj (this information can be transmitted to the coor-
dinator inside resolution request messages). The idea
behind proportional allocation is to provide more lee-
way to nodes that experience a higher volume of data
updates in the hope of reducing the frequency of con-
straint violations and resolution requests.

Figure 3 shows the results of our experiments on Mon-
itoring Queries 1 through 3, with the value assigned to
F0 on the x-axis and the two allocation heuristics for
setting F1 . . . Fm plotted using different curves. Each
graph shows measurements for two different error tol-
erance values: ε = 0, and a larger ε value that permits
a moderate amount of error with respect to the data
queried. The y-axis shows total communication cost.
(We also studied cost for other ε values not plotted to
improve readability.)

In all cases, the value assigned to F0 turns out to be
the largest factor in determining cost. Our results sug-
gest that when ε is relatively small, a good balance is
achieved in the tradeoff between frequent, cheap resolu-
tion (large F0) and less frequent yet more expensive res-
olution (small F0) using a moderate value of F0 = 0.5.
On the other hand, when ε is large, the most important
factor turns out to be reducing the overall frequency of
resolution, so the best results are achieved by setting
F0 = 0. We therefore propose a simple heuristic for se-
lecting F0: set F0 = 0.5 when ε is small and F0 = 0
when ε is large. The cutoff point between “small” and
“large” values of ε comes roughly when ε is 1/1000 of the
largest value in the data set. (This conclusion is sup-
ported by additional experimental results not presented
here for brevity.) An estimate of the largest data value
to use for this purpose can be obtained easily once top-k
monitoring is underway.

When a good setting for F0 is used, the choice of
heuristic for setting the remaining allocation parame-
ters F1 . . . Fm does not appear have a significant impact
on communication cost compared with the impact of F0.
However, the proportional allocation method performed
somewhat better for small values of ε, while the even
method performed better for large values of ε. There-
fore, we employ proportional allocation for small ε and

caching
our algorithm

Monitoring Query 1

approximation parameter (ε)

to
ta

l
co

m
m

u
n
ic

at
io

n
co

st

2000200200

100000000

10000000

1000000

100000

10000

1000

caching
our algorithm

Monitoring Query 2

approximation parameter (ε)

to
ta

l
co

m
m

u
n
ic

at
io

n
co

st

20060200

100000000

10000000

1000000

100000

10000

1000

caching
our algorithm

Monitoring Query 3

approximation parameter (ε)

to
ta

l
co

m
m

u
n
ic

at
io

n
co

st

20060200

10000000

1000000

100000

10000

1000

Figure 4: Comparison against caching strategy.

even allocation for large ε, and use the same cutoff point
between “small” and “large” ε values used for setting F0.

4.4 Comparison Against Alternative
To the best of our knowledge there is no previous

work addressing distributed top-k monitoring, and pre-
vious work on one-time top-k queries is not appropriate
in our setting as discussed in Section 2. Therefore, we
compared our approach against the following obvious
approach: The coordinator maintains a cached copy of
each partial data value. Monitor nodes are required to
refresh the cache by sending a message to the coordi-
nator whenever the local (master) copy deviates from
the remotely cached copy by an amount exceeding ε

m
,

where ε is the overall error tolerance and m is the num-
ber of monitor nodes. Modulo communication delays,
the coordinator is at all times able to supply an approx-
imate top-k set that is valid within ε by maintaining a
sorted list of approximate logical data values estimated
from cached partial values. When ε = 0, this approach
amounts to transmitting the entire data update stream

from each monitor node to the coordinator node. From
this point on we refer to this approach as “caching.”

We compared our algorithm against caching using a
simulator that for both algorithms assumes that com-
munication and computation latencies are small com-
pared with the rate at which data values change. For
our algorithm, we used the heuristics developed in Sec-
tion 4.3 for setting F0 and for choosing between even
and proportional allocation for F1 . . . Fm.

Figure 4 shows the results for Monitoring Queries 1
through 3. In each graph the approximation parameter
ε is plotted on the x-axis (on a nonuniform, discretized
scale). The y-axis shows total cost, on a logarithmic
scale. In general, communication cost decreases as ε
increases, with one minor exception: For Monitoring
Query 1 the communication cost of our algorithm for
ε = 20 is unexpectedly slightly higher than the cost
for ε = 0. The reason for this anomaly is that, while
there were fewer resolution messages when ε = 20 than
when ε = 0, for this particular monitoring query and
data set it happened that the expensive third phase of
resolution was necessary a higher percentage of the time
when ε = 0 versus when ε = 20.

In all cases our algorithm achieves a significant re-
duction in cost compared with caching, often by over
an order of magnitude. The benefit of our algorithm
over caching is most pronounced for small to medium
values of the approximation parameter ε. As ε grows
large, the cost of both algorithms becomes small.

5. SUMMARY
We studied the problem of online top-k monitoring

over distributed nodes with a user-specified error tol-
erance. In particular, we focused on the case in which
the values of interest for monitoring are virtual and are
only materialized indirectly in the form of partial values
spread across multiple “monitor” nodes, where updates
take place. A naive method for continually reporting
the top k logical values is to replicate all partial values
at a central coordinator node where they can be com-
bined and then compared, and refresh the replicas as
needed to meet the error tolerance supplied by the user.
We presented an alternative approach that requires very
little communication among nodes, summarized as fol-
lows:

• The coordinator computes an initial top-k set by
querying the monitor nodes, and then installs arith-
metic constraints at the monitor nodes that ensure
the continuing accuracy of the initial top-k set to
within the user-supplied error tolerance.

•• When a constraint at a monitor node becomes vi-
olated, the node notifies the coordinator. Upon
receiving notification of a constraint violation, the
coordinator determines whether the top-k set is
still accurate, selects a new one if necessary, and
then modifies the constraints as needed at a subset
of the monitor nodes. No further action is taken
until another constraint violation occurs.

Through extensive simulation on two real-world data

sets, we demonstrated that our approach achieves about
an order of magnitude lower cost than the naive ap-
proach using the same error tolerance.

Our work is motivated by online data stream analy-
sis applications that focus on anomalous behavior and
need only perform detailed analysis over small portions
of streams, identified through exceptionally large data
values or item frequencies. Using efficient top-k mon-
itoring techniques, the scope of detailed analysis can
be limited to just the relevant data, thereby achieving
a significant reduction in the overall cost to monitor
anomalous behavior.

Acknowledgments
We thank our Ph.D. advisors, Rajeev Motwani and Jen-
nifer Widom, for their support and guidance. This work
was funded by a Rambus Corporation Stanford Grad-
uate Fellowship (Babcock) and a Chambers Stanford
Graduate Fellowship (Olston).

6. REFERENCES
[1] M. Arlitt and T. Jin. 1998 world cup web site access

logs, Aug. 1988. Available at
http://www.acm.org/sigcomm/ITA/.

[2] M. Arlitt and T. Jin. Workload characterization of the
1998 world cup web site. Technical Report
HPL-1999-35R1, Hewlett Packard, Sept. 1999.

[3] B. Babcock, S. Babu, M. Datar, R. Motwani, and
J. Widom. Models and issues in data stream systems.
In Proc. PODS, 2002.

[4] B. Babcock and C. Olston. Distributed top-k
monitoring. Technical report, Stanford University
Computer Science Department, 2002.
http://dbpubs.stanford.edu/pub/2002-61.

[5] D. Barbara and H. Garcia-Molina. The Demarcation
Protocol: A technique for maintaining linear
arithmetic constraints in distributed database systems.
In Proc. EDBT, 1992.

[6] P. A. Bernstein, B. T. Blaustein, and E. M. Clarke.
Fast maintenance of semantic integrity assertions using
redundant aggregate data. In Proc. VLDB, 1980.

[7] N. Bruno, L. Gravano, and A. Marian. Evaluating
top-k queries over web-accessible databases. In Proc.
ICDE, 2002.

[8] D. Carney, U. Cetintemel, M. Cherniack, C. Convey,
S. Lee, G. Seidman, M. Stonebraker, N. Tatbul, and
S. Zdonik. Monitoring streams - a new class of data
management applications. In Proc. VLDB, 2002.

[9] M. Charikar, K. Chen, and M. Farach-Colton. Finding
frequent items in data streams. In Proc. Twenty-Ninth
International Colloquium on Automata Languages and
Programming, 2002.

[10] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang.
NiagaraCQ: A scalable continuous query system for
internet databases. In Proc. ACM SIGMOD, 2000.

[11] Denial of service attacks using nameservers. Incident
Note IN-2000-04, CMU Software Engineering Institute
CERT Coordination Center, Apr. 2000.
http://www.cert.org/incident notes/IN-2000-04.html.

[12] M. Dilman and D. Raz. Efficient reactive monitoring.
In Proc. INFOCOM, 2001.

[13] C. Dwork, S. R. Kumar, M. Naor, and D. Sivakumar.
Rank aggregation methods for the web. In Proc.
WWW10, 2001.

[14] D. Estrin, L. Girod, G. Pottie, and M. Srivastava.
Instrumenting the world with wireless sensor networks.

In Proc. International Conference on Acoustics,
Speech, and Signal Processing, 2001.

[15] R. Fagin, S. R. Kumar, and D. Sivakumar. Comparing
top k lists. In Proc. SODA, 2003.

[16] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation
algorithms for middleware. In Proc. PODS, 2001.

[17] S. Floyd and V. Paxson. Wide-area Traffic: The
Failure of Poisson Modeling. IEEE/ACM Transactions
on Networking, 3(3), 1995.

[18] P. B. Gibbons and Y. Matias. New sampling-based
summary statistics for improving approximate query
answers. In Proc. ACM SIGMOD, 1998.

[19] P. B. Gibbons and S. Tirthapura. Estimating simple
functions on the union of data streams. In Proc.
Thirteenth ACM Symposium on Parallel Algorithms
and Architectures, 2001.

[20] P. B. Gibbons and S. Tirthapura. Distributed streams
algorithms for sliding windows. In Proc. Fourteenth
ACM Symposium on Parallel Algorithms and
Architectures, 2002.

[21] A. Gilbert, Y. Kotidis, S. Muthukrishnan, and
M. Strauss. Surfing wavelets on streams: One-pass
summaries for approximate aggregate queries. In Proc.
VLDB, 2001.

[22] A. Gupta and J. Widom. Local verification of global
integrity constraints in distributed databases. In Proc.
ACM SIGMOD, 1993.

[23] A. Householder, A. Manion, L. Pesante, and
G. Weaver. Managing the threat of denial-of-service
attacks. Technical report, CMU Software Engineering
Institute CERT Coordination Center, Oct. 2001.
http://www.cert.org/archive/pdf/Managing DoS.pdf.

[24] N. Huyn. Maintaining global integrity constraints in
distributed databases. Constraints, 2(3/4), 1997.

[25] D. Li, K. Wong, Y. H. Hu, and A. Sayeed. Detection,
classification and tracking of targets. IEEE Signal
Processing Magazine, 2002.

[26] S. Madden, M. Shah, J. M. Hellerstein, and V. Raman.
Continuously adaptive continuous queries over
streams. In Proc. ACM SIGMOD, 2002.

[27] G. S. Manku and R. Motwani. Approximate frequency
counts over data streams. In Proc. VLDB, 2002.

[28] R. Min, M. Bhardwaj, S. Cho, A. Sinha, E. Shih,
A. Wang, and A. Chandrakasan. Low-power wireless
sensor networks. In Proc. Fourteenth International
Conference on VLSI Design, 2001.

[29] R. Motwani, J. Widom, A. Arasu, B. Babcock,
S. Babu, M. Datar, G. Manku, C. Olston,
J. Rosenstein, and R. Varma. Query processing,
resource management, and approximation in a data
stream management system. In Proc. CIDR, 2003.

[30] C. Olston, J. Jiang, and J. Widom. Adaptive filters for
continuous queries over distributed data streams. In
Proc. ACM SIGMOD, 2003.

[31] T. Palpanas, R. Sidle, R. Cochrane, and H. Pirahesh.
Incremental maintenance for non-distributive
aggregate functions. In Proc. VLDB, 2002.

[32] G. Pottie and W. Kaiser. Wireless integrated network
sensors. Communications of the ACM, 43(5), 2000.

[33] N. Soparkar and A. Silberschatz. Data-value
partitioning and virtual messages. In Proc. PODS,
1990.

[34] T. Yamashita. Dynamic replica control based on fairly
assigned variation of data with weak consistency for
loosely coupled distributed systems. In Proc. ICDCS,
2002.

[35] K. Yi, H. Yu, J. Yang, G. Xia, and Y. Chen. Efficient
maintenance of materialized top-k views. In Proc.
ICDE, 2003.

	page1: 28
	page2: 29
	page3: 30
	page4: 31
	page5: 32
	page6: 33
	page7: 34
	page8: 35
	page9: 36
	page10: 37
	page11: 38
	page12: 39

