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Abstract

In this paper we generate gaits for two types of underactuated me-
chanical systems: principally kinematic and purely mechanical sys-
tems. Our goal is to specify inputs in the form of gaits, that is, a
sequence of controlled shape changes of a multi-bodied mechanical
system that when executed would produce a desired change in the
unactuated position or orientation variables of the entire mechanical
system. In other words, we want to indirectly control the unactuated
degrees of freedom of the mechanical system utilizing a controlled
“internal” shape change. More precisely, in this paper we develop a
gait evaluation tool which easily measures the change of position,
computed in a body-attached coordinate frame, due to any closed
curve in the shape space. This evaluation tool is simple enough that
we can use it to generate gaits or to design curves that move the
mechanical system along a desired direction. Finally, we verify that
this gait analysis technique applies to two seemingly different classes
of mechanical systems, purely mechanical and principally kinematic
systems, and unify the gait generation problem for both classes.

KEY WORDS—gait generation, motion control, underactu-
ated robots, non-holonomic motion planning, generalized mo-
mentum, purely mechanical systems, principally kinematic
systems, Stokes’ theorem

1. Introduction

In this paper we develop a general and intuitive formulation
of the gait analysis and generation problem that applies to two
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classes of mechanical systems. We actually classify mechani-
cal systems into three categories: purely mechanical systems,
that is, systems whose motion is governed solely by the con-
servation of momentum; principally kinematic systems, that is,
systems whose motion is governed solely by the existence of
a set of independent non-holonomic velocity constraints that
fully specify the systems’ motion; and dynamic systems with
non-holonomic constraints, that is, systems whose motion is
governed by a non-holonomic set of constraints and general-
ized momentum being constrained by a set of differential equa-
tions.

In this paper we develop motion analysis and planning tech-
niques for the first two types of mechanical system, the purely
mechanical and principally kinematic systems. We demon-
strate our techniques using two example systems: the pivoting
dynamic robot, shown in Figure 1, which is a purely mechani-
cal system; and the kinematic snake robot, shown in Figure 2,
which is a principally kinematic system. We extend the results
presented in this paper to generate gaits for the third type of
mechanical systems, the more general family of dynamic sys-
tems with non-holonomic constraints, in a companion paper
(Shammas et al. 2007).

Recall that the configuration space of mechanical systems
can be naturally divided into two subspaces: the fiber space,
which represents the position of the system with respect to a
fixed inertial frame; and the base space, which represents the
internal degrees of freedom of the robot, that is, the robot’s
shape. As we assume control solely over the base variables,
the mechanical systems we consider are necessarily underac-
tuated. We generate gaits for both the pivoting dynamic model
and the kinematic snake robot to move them along a specified
fiber direction solely by coordinating their two inter-link an-
gles, that is, their base variables.

What is interesting about purely mechanical and principally
kinematic systems is that, even though the motions of these
two systems are derived from two different governing laws,
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Fig. 1. A schematic of the pivoting dynamic model denoting its
five configuration variables, (a, £, v, 01, 02). After verifying
that the system’s motion is solely governed by the law of mo-
mentum conservation and proving that it is a purely mechani-
cal system, we generate gaits by specifying how to actuate the
angles of the left and right arms, represented by the base vari-
ables (01, 07), so that the system will change its orientation,
represented by the fiber variables (a, £, 7).

the fiber motion of both systems can be “directly” related to
their base motions with a structurally identical relation. We
show later in the paper how to derive this relationship for both
classes of systems. The similarity of this relation allows us to
design gaits for both systems using the same technique.

We have chosen the pivoting dynamic model and the kine-
matic snake robot to demonstrate our gait analysis techniques
because these systems strike a balance between being similar
enough to previous work to allow a comparison of our method
with prior techniques and being complex enough that one can-
not simply make any intuitive guesses about generating gaits.
Moreover, analyzing these relatively general examples allows
us to verify the utility and applicability of our gait analysis
techniques.

2. Prior Work

Gait generation, the problem of designing curves in the base
space that induce a desired position change, has been exten-
sively studied in the literature. We build upon and seek to unify
and generalize the prior work results in gait analysis and gen-
eration.
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Fig. 2. A schematic of the kinematic snake robot denoting its
five configuration variables, (x, y, 8,01, 0,). After verifying
that the system’s motion is solely governed by a set of non-
holonomic velocity constraints and proving that it is a princi-
pally kinematic system, we generate gaits by specifying how
to actuate the inter-link angles, represented by the base vari-
ables (01, 03), so that the system will change its position and
orientation, represented by the fiber variables (x, y, 6).

2.1. Bio-mimetic Approach

Hirose (1993) took a bio-mimetic approach to develop loco-
moting robotic snakes. By performing extensive experiments
on biological snakes to study how they locomote, he con-
structed robotic snakes that moved by mimicking their biolog-
ical counterparts. He was able to define a geometric curve, the
serpenoid curve, which approximates the shape of a real snake
during undulation. Moreover, Hirose designed and built sev-
eral robotic snakes which were composed of numerous rigid
links that were connected by revolute joints. By attaching pas-
sive wheels on the bottom of the links and forcing the robot’s
shape to move along the serpenoid curve, Hirose demonstrated
robotic snake locomotion, similar to biological snake locomo-
tion, on planar serially linked robots.

In fact, the second example system we are analyzing in this
paper, the kinematic snake, is a simplified version of the snake
robots constructed and analyzed by Hirose. We shall see how
our simplified system with only a two-dimensional base space
has enough actuation to fully span the fiber space, that is, trans-
late and orient the snake-like robot in the plane.

2.2. Sinusoidal Inputs Approach

Originally, sinusoidal inputs were motivated by Brockett and
Dai’s work on the controllability of mechanical systems
(Brockett 1981; Brockett and Dai 1993). They derived opti-
mal sinusoidal inputs for a set of canonical systems for which
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the tangent space is spanned by the input vector fields as well
as the first-order Lie brackets of the input vector fields. Mur-
ray and Sastry (1993) derived suboptimal inputs for mechan-
ical systems where the tangent space is spanned by the input
vector fields and more than first-order Lie brackets.

In addition, several researchers have assumed that the base
inputs of the mechanical systems are sinusoidal, hence, simpli-
fying the controllability analysis as well as the gait generation
problem. For example, Murray and Sastry (1993) and Walsh
and Sastry (1991, 1995) studied the dynamics of a planar three-
link robot floating in space. By writing the Lagrangian of the
system in a special form, they were able to generate gaits for
the planar three-link snake robot. They have proposed sinu-
soidal gaits and then computed the geometric phase shift pro-
duced by these gaits. It is worth noting that the pivoting dy-
namic model that we are analyzing in this paper is a spatial
version of the system considered by Walsh and Sastry (1991,
1995).

Ostrowski and Burdick (1998) and Ostrowski et al. (2000),
on the other hand, took a more fundamental approach and gen-
eralized Walsh’s approach by taking advantage of the idea of
translational symmetry from physics. This allowed them to
project the entire dynamics of the system onto the base space.
Moreover, by representing the system dynamics with respect
to a body-fixed coordinate frame, a relation between fiber ve-
locity, on the one hand, and base and momentum variables,
on the other, was devised. This decoupling relation is referred
to as the reconstruction equation which allowed the system’s
dynamics to be represented as an affine non-linear control sys-
tem. Then, by taking recourse to geometric control theory, the
degree of Lie brackets of the control vector fields required to
span the fiber velocities was related to the frequencies of the
sinusoidal inputs of the base variables (Ostrowski and Burdick
1998; Ostrowski et al. 2000). Using this approach, they intu-
itively developed and then analyzed gaits for principally kine-
matic and dynamic systems with non-holonomic constraints.
This approach was applicable to sinusoidal inputs where only
the gait frequencies were determined, however, the magnitudes
were empirically derived to produce the desired motion. For
further involved reading on the topics of non-holonomic me-
chanics and symmetry, the reader is referred to Bloch et al.
(2003, Chapters 1-5) and Marsden and Ratiu (1994, Chap-
ters 4, 7 and 9), respectively.

Again, one of the systems that was analyzed by Ostrowski
and Burdick (1998) is almost identical to the kinematic snake
example we are analyzing in this paper. The main difference
is that our version has a two-dimensional base space whereas
Ostrowski’s version had a five-dimensional base space.

Finally, we would like to mention the work of Chitta et al.
(2004, 2005) who developed several unconventional locomot-
ing robots, such as the rollerblader and the robo-Trikke. They
have used Ostrowski’s techniques to generate sinusoidal gaits
for these novel locomoting robots.
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Table 1. Dimensions of various vectors and matrices.

Matrix Dimension Description

g, ¢ I x1 Fiber variables, body velocity

r m x 1 Base variables

q nxl1 Configuration variables

M nxn Mass matrix

A I xm Local connection form

1 I x1 Locked inertia tensor

p 1 x (I —k) Generalized non-holonomic
momentum

10} kxn Pfaffian constraint matrix

A kx1 Constraint forces

2.3. Integration Approach

The main idea of this approach is to relate position changes to
volume integrals under well-defined functions. Using this ap-
proach, Nakamura and Mukherjee (1989, 1991) and Mukher-
jee and Anderson (1993) generated gaits for the rolling disk
which is a principally kinematic system. In fact, they gen-
erated gaits that produced a desired motion with a specified
magnitude for only the particular example of the rolling disk.
This task was done by limiting the gaits to closed rectangular
curves, thus solving the volume integrals analytically. This is
not the case in general, and for more general systems position
change in a body-attached coordinate frame is not directly re-
lated to the global position change of the mechanical system.

Finally, it is worth mentioning that there has been other
prior work that directly relates to the integration approach. Ya-
mada (1993) was concerned with purely mechanical systems
and he generated gaits only for space robots. We developed
a similar but more general approach and generated gaits for
two types of mechanical systems: purely mechanical systems
in Shammas et al. (2005b) and principally kinematic systems
in Shammas et al. (2005a).

3. Background Material

In this section we very briefly review some basic ideas and
concepts from Lagrangian mechanics and mechanics of loco-
motion. An extended and detailed version of this section can
be found in Appendix A.

The configuration space of mechanical systems is usually
denoted by Q and it has a trivial fiber bundle structure. That
is, 0 = G x M, where G is the fiber space with a Lie group
structure that represents the position of the robot with respect
to an inertial coordinate frame and M is the base space which
represents the internal degrees of freedom of the system. Thus,
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a configuration variable can be written as ¢ = (g,r) € Q
where g is the fiber variable and r is the base variable. A
configuration velocity is denoted as ¢ = (g,7) € T, 0, the
tangent space of the manifold Q at the configuration ¢.

For a mechanical system we can define the Lagrangian,
L(g,q), which is a map from the tangent space of the
configuration manifold to the reals. For mechanical systems,
the Lagrangian is usually defined as the kinetic energy of the
system minus its potential energy, however, in this paper, we
neglect any potential energy and equate the Lagrangian to the
system’s kinetic energy, that is,

L(q.9) = 14"M(q)q4, (1

where M (q) is the mass matrix. Moreover, in this paper we
deal with non-holonomic constraints, which are velocity con-
straints that are by definition not integrable. We assume that
we can always write the set of kX non-holonomic constraints in
the following Pfaffian form

wl(q) -4 =0, @

where w(q) is a k x n matrix describing the constraints. For
this paper, we utilize the triviality of the configuration space to
partition the matrix w(g) and rewrite (2) as

wg(q) - & +wr(q) -7 =0, 3

where w, () and o, (g) are sub-matrices of w(q).

Hence, for a mechanical system with a set of non-
holonomic constraints, we can write the system’s equations of
motion, or the Euler-Lagrange equations, as

d <6L(61,4)> _0L(g,9) + i) =1 )
I - "t

dt 6q, 86],
for alli = 1,...,n, where n is the dimension of Q, j =
1,..., k, where k is the number of non-holonomic constraints

acting on the mechanical system, 4 are the Lagrange multipli-
ers and 7; are the generalized forces.

Moreover, we can exploit the symmetries in the laws of
physics to reduce the order of the above dynamic equations of
motion. This reduction process is possible when one can prove
the independence of the system dynamics with respect to the
fiber configuration variables as well as by means of a rewriting
the equations of motion in terms of a generalized momentum
variable.

Before we can rewrite the equations of motion in a reduced
form, we need to define actions and lifted actions that arise
from the Lie group structure of the fiber space. The group ac-
tion denoted by ¥, is used to map a configuration ¢ = (g, r)
to another configuration ®,q = (Lg,r), where L is the
left translation of the Lie group. Similarly we can define the
lifted left action on the group which is a linear map that maps
configuration velocities or elements of the tangent space. The

lifted action is usually denoted by 7, ® ¢ which maps a veloc-
ity ¢ = (g, r) to another velocity (T, L;g, 7). Then using these
actions we map the system dynamics to the Lie group identity,
g = e, and define the reduced Lagrangian which will have the
following structure

L] e (€
Ig,r,iy=-E MH'M 5
2 F
where
. 1(r) 1(r)A(r)
M= . (6)
ATHIT(r)  m(r)

Here M is the reduced mass matrix, A(r) is the local form of
the mechanical connection, 7 (r) is the local form of the locked
inertia tensor, m (r) is an m x m matrix that depends only on the
base variables and ¢ is a body representation of a fiber velocity
g, that is,
E=T,L;'s. ()

Note that A(r) and I(r), the respective local forms of the
mechanical connection, A(q), and the locked inertia tensor,
I(g), arise due to the triviality of the fiber bundle as shown in
Appendix A.

Similarly, we can rewrite the non-holonomic constraints in
a body-attached coordinate frame to obtain

g ()¢ + @, (r)r =0, ®)

where @¢(r) and @, (r) are computed from (3) by setting g = e
and substituting for ¢ using (7) as we prove in Lemma B.1 in
Appendix B.

Now, before we rewrite the dynamic equations of motion in
their reduced form, we take recourse to the mechanics of loco-
motion to define the generalized momentum, p = %, more-
over, utilizing the triviality of the configuration space of me-
chanical systems, we can relate the group velocity expressed
in a body-attached coordinate frame by the following equation

E=T,L,18=—A(r)i+ I~'(r)pT, )

where A(r) is the local form of the mechanical connection and
1 (r) is the local form of the locked inertia tensor. Equation (9)
is referred to as the reconstruction equation, because it can
be utilized to reconstruct the group variables, g, for a given
momentum and base configuration and velocity variables, p
and (r, ), respectively. We derive this equation in Appendix A.

Now we are ready to write the dynamic equations of motion
in their reduced form so that we can compute the momentum
and base variables. Thus, the dynamic equations of motion (4)
for unconstrained mechanical systems become

pi—adip; = (10)

d (ol ol
—(=)-= = 11
dt <ar'1) orl fi 1D
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where for i = 1,...,1[, 77 are the forcing functions in the
group directions pulled back to the group identity (for the re-
duced form of the Lagrangian) and, for j = 1,...,m, r; are
the base forcing functions. The first equation represents the
momentum evolution equation with the momentum, p, and the
second equation constitutes the dynamic equations for the base
space.

Finally, note that we used invariance to represent the n
second-order dynamic equations of the mechanical system
shown in (4) to a reduced first-order set of 2/ equations and
a smaller set of m second-order equations shown in (9)—(11).
Refer to the Appendix A for more details.

4. Examples

Throughout this paper, we use two example systems to demon-
strate our ideas and eventually generate gaits for these two sys-
tems. We start by introducing these two example systems, then
we define their configuration spaces, compute their reduced
Lagrangians and write their set of non-holonomic constraints
in body coordinates.

Example 1: Pivoting Dynamic Model

The pivoting dynamic model was first introduced by Balasub-
ramanian and Rizzi (2004) and Balasubramanian et al. (2003)
as a novel locomoting system. The pivoting dynamic model
shown in Figure 1 is composed of three rigid links. The outer
two links are connected to the middle link by means of two
revolute joints whose axes are coincident with the middle link.
Thus, the outer two links will always lie in two parallel planes
that are perpendicular to the middle link. The outer two links
have mass concentrated at their distal ends, while the middle
link has three concentrated masses at each of its distal ends and
one in the middle. The middle link is connected to the ground
by manes of a spherical joint at the link center.

We attach a body coordinate frame to the middle of the cen-
ter link as shown in Figure 1. The orientation of this body
frame is represented by the three fiber variables, (a, S, y),
which denote three rotations along the three frame axes. The
two internal degrees of freedom are represented by the relative
angle between the links (¢, 07). Note that the axis of rotation
of the two distal links are aligned along the middle link.

Hence, the pivoting dynamic model has a five-dimensional,
(n = 5), configuration space Q = G x M, where the associ-
ated Lie group fiber space G = SO(3), the three-dimensional
special orthogonal group, denotes the robot’s orientation. The
base space denoting the internal degrees of freedom is M =
S x S. The Lagrangian of the pivoting dynamic model in the
absence of gravity is

1 5
Lg,4) =5 > (mii %), (12)
i=1
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where m; represents the mass of each of the concentrated
masses and each x; represents the inertial position of these
masses. Let the length of the middle link be 2H while the
length of the outer links be R. To simplify some expressions
we will assume that all the mass are identical, that is, m; = m.

We define the rotation matrices about the three axes in the
usual way, that is,

10 0
Ri(@) = |0 cos(a) —sin(a) |,

0 sin(a) cos(a)

cos(B) 0 sin(p)
R,(B) = 0 1o |,

—sin(f) 0 cos(p)

and

cos(y) —sin(y) 0
R:(y) = [ sin(y) cos(y) O

0 0 1

Given that the fiber space has an SO(3) group structure,
we define the group action as L, = R.(y )R, (#)R.(a). Since
L, € SO(3), we can compute the lifted action as defined in
Murray et al. (1994, Chapter 2), where

d
TyL,-1 = (Lg)TZ(Lg).

Then we can compute the lifted action in matrix form

T,L

w g ! g
Wq 1 0 —sin(p) a
wp | =10 cos(a) cos(f)sin(a) B (13)
w, 0 —sin(a) cos(a)cos(f) y

The above equation allows us to verify the Lagrangian
invariance by computing and comparing the quantities,
L((g,r), (&, 7)) and L((Ly-18,7), (TgL,18,7)). After veri-
fying the invariance of the Lagrangian we can compute the
reduced Lagrangian and the reduced mass matrix. The compo-
nents of the reduced mass matrix, as given in (6), are computed
for the pivoting dynamic model where
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Table 2. The local form of the locked inertia tensor for the reduced mass matrix.

H? +2R?

2
1(r) = |HR(—cos(a1) +cos(o2)) (5H* + R*) — %(cos(2al) + cos(205))

2
HR(—sin(o 1) + sin(c2))

HR(—cos(c1) + cos(c2))

_%(sm(zgl) + sin(20,))

HR(—sin(o1) + sin(c3,))

R2
- (sin(20 1) + sin(202))

2
(4H>+ R*) + %(cos(Zal) + cos(20,))

2R? 2R?
I(r)A(r) = | —2HRcos(s1) 2HRcos(oy) |, (14)
—2HRsin(o,) 2HRsin(o3)
2R? 0
m(r) = s (15)
0 2R?

where I (r) is given in Table 2. Note that as expected the re-
duced mass matrix depends solely on the base variables ¢ ; and
o).

Example 2: Kinematic Snake Robot

The second example system is the kinematic snake robot
which is composed of three rigid links that are connected by
two revolute joints and three passive wheel sets connected
to each link (Figure 2). This robot is similar to the kine-
matic snake studied by Ostrowski (1995). For our system, the
wheel axes are rigidly held perpendicular to the links while
Ostrowski actually controlled the angles between the wheel
axes and the links, hence increasing the dimension of the base
space. Even though we fix the angles of the wheel axes with
respect to the links, we are still able to generate gaits to move
the kinematic snake in the plane.

We attach a body coordinate frame to the middle of the
center link as shown in Figure 2. The position and orienta-
tion of this body frame is represented by the three fiber vari-
ables, (x, y, 8), which denote position of the origin of the body
frame and its orientation in the plane. The two internal degrees
of freedom are represented by the relative angle between the
links (0(1, 0(2).

Similarly, the kinematic snake has a five-dimensional, (n =
5), configuration space Q = G x M, where the associated Lie
group fiber space denoting the robot’s orientation in the plane
is G = SE(2), the special Euclidean group. The base space
denoting the internal degrees of freedom is M = S x S. Note
that we do not care about the mass and inertia of this system
because, as we show later, it is principally kinematic and all
of the momentum variable are annihilated. In other words, if
we lock the base variables of the kinematic snake, away from
singular base configurations, the kinematic snake cannot move

in any direction because the non-holonomic constraints fully
span the fiber space. Thus, there are no allowable directions of
motion along which we can define any momentum variables.
There are three non-holonomic constraints acting on the
kinematic snake. Each of them has the following form

cos(;)
i i) =0,
sin(4;)

where (x;, y;) is the global' position of the intersection point
of the wheel axes and the snake links, and @; is the global ori-
entation of the wheel axes.

Given that the fiber space has an SE(2) group structure, we
can compute the group action and lifted action. In particular,
the matrix form of the lifted action is given by

¢ TyL,-1 :
¢ cos(@) —sin@) O X
E | =] sin@) cos@) O y (16)
&3 0 0 1/ \é

Using the above equation we can compute the non-
holonomic constraints, w(g)g = 0, in body coordinates. This
is simply done by inverting (16) to obtain § = (TyL,-1)"'¢
and substituting the fiber velocity, g, by its body representa-
tion, &, in (3). Then we verify that the constraints are indepen-
dent of any fiber variables as shown in the following equation

—sin(oy) cos(cy) —R — Hcos(o;) &
0 1 0 és
sin(c;) cos(o;) R+ Hcos(o;) &,
R O
o1
+ 0 0 = 0. a7
02
0 R

1. Global means that the position is represented in a fixed inertial frame.
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5. Mechanical Systems Classification

In this section we build upon the background material pre-
sented in Section 10 and tailor the results into new forms that
serve our gait generation techniques. Even though some of the
results seen in this section could be found in prior work, we
alternatively attain the same results in what we believe to be a
rather more compact and direct method. First, we classify me-
chanical systems into three major classes, where the second
class has two subclasses.

5.1. Purely Mechanical Systems

Purely mechanical systems are systems whose Lagrangian
is comprised solely of the kinetic energy such that the La-
grangian is also invariant with respect to the group actions.
This allows us to solve for the reduced Lagrangian which is
itself independent of the group variables. Moreover, the sys-
tem is not subjected to any external forces, that is, ¢ = 0
from (10). Finally, the system starts from rest, that is, its initial
momentum is zero. For such systems, the reconstruction and
momentum evolution equations reduce to

ét = —A(r)r,

(18)

p = (19)

where A(r) is the local form of the mechanical connection as
defined above.

p=0,

5.2. Kinematic Systems

According to Choset et al. (2005), a mechanical system is kine-
matic when the first derivative of its state vector is linearly de-
pendent on the control inputs, that is, § = A(g)u where ¢ is
a state vector, A(g) is a matrix and u is the input vector. We
distinguish between two types of kinematic systems:

1. Purely kinematic systems. These are defined as systems
that have as many independent non-holonomic con-
straints as the dimension of the system’s fiber space.
The motion of such systems with a configuration g =
(g,r) € QO can be described by the reconstruction equa-
tion, & = A(g, r) - r, where ¢ is the body representation
of an /-dimensional fiber velocity, A(g,r) is anl x m
matrix that depends on the configuration ¢ and we treat
7 as an m-dimensional input vector.

2. Principally kinematic systems. Moreover, if the non-
holonomic constraints of the purely kinematic system
are invariant with respect to group action, the mechan-
ical system becomes principally kinematic. We show
later how the motion of principally kinematic systems
is governed solely by base motions and the prescribed
non-holonomic constraints.

In this paper, we are interested in the second type of kine-
matic systems and we give its technical definition as follows.

1049

Definition 1. [Principally kinematic system] Given a me-
chanical system that has an n-dimensional conf iguration space
with trivial principal fiber structure, Q = G x M, where /
and m denote the dimensions of G and M, respectively, with
n = [ + m, and the mechanical system is subjected to k non-
holonomic constraints, w(q) - ¢ = 0, where the dimension of
the matrix @ is k x n, such a system is said to be principally
kinematic? if:

e 0 < k < I (the number of constraints is less than dimen-

sion of fiber space);

e rank(w(g)) = k (the constraints are linearly indepen-
dent);

o w(q) g =w(P,(q)) T,P,(q) = 0 (the constraints are
invariant with respect to the Lie group actions);

where ®,9 = (Lyg,r) and T,®,q = (T,L;g,r) are the ac-
tion and lifted action induced by the Lie group structure of the
fiber space.

In the case of principally kinematic systems, the reconstruc-
tion and momentum evolution equations reduce to

¢ = —A@)r, (20)

p is not defined. 21

where A(r) is the local form of the kinematic connection. Note
that in this case there are no momentum variables because they
are totally annihilated by the constraints as shown in (21).

5.3. Mixed Non-holonomic Systems

Finally, for the sake of completeness, we very briefly men-
tion a third class of mechanical systems, mixed non-holonomic
systems. Mixed systems are interesting because they have non-
holonomic constraints which exclude them from being purely
mechanical; in addition, such systems do not have enough
non-holonomic constraints to be classified as principally kine-
matic. One can think of mixed system as a generalization of
both purely mechanical and principally kinematic systems. In
fact, we study this third type of system in the companion paper
(Shammas et al. 2007).

Before we demonstrate how to compute the connections for
these types of mechanical systems, we verify to what classes
our two example systems belong.

Example 1: Pivoting Dynamic Model

We have already verified the invariance of the Lagrangian and
there are no external forces acting on the pivoting dynamic
model. Thus, if the system starts at rest, then all angular mo-
mentum variables will remain constant and equal to zero for all
time. We conclude that the pivoting dynamic model is a purely
mechanical system.

2. Sometimes, these systems are referred to as Chaplygin.
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Example 2: Kinematic Snake Robot

We have already verified that the set of non-holonomic con-
straints are invariant with respect to the Lie group action.
Moreover, we know that away from singular configurations,
the non-holonomic constraints are linearly independent. Fi-
nally, we have three non-holonomic constraints, which is
equal to the dimension of the fiber space, SE(2). Hence,
the kinematic snake robot is a principally kinematic sys-
tem.

6. Computing the Reconstruction Equations

In this section we compute the connections for both the purely
mechanical and principally kinematic systems. We verify that
both systems have structurally similar reconstruction equa-
tions. Recall that for a mechanical system whose Lagrangian
and non-holonomic constraints are invariant with respect to
its fiber space group action and lifted action, the reduced La-
grangian (5) and reduced non-holonomic constraints (8) can
respectively be rewritten as

s 7)

_(Z)r}}’

I 1A

&, rF) , (22)

IAnT m 2
ol = (23)
where [ is the local form of the locked inertia tensor, A is the
local form of the mechanical connection, @; and @, are sub-
matrices of the constraint matrix @ as shown in Lemma B.1
in Appendix B. All of the above matrices are independent of
the fiber variable, g, and depend only on the shape variables,
r. Define the generalized non-holonomic momentum along the
allowable fiber directions by

al -
p=—=Q"
o¢
where Q7 is a basis of A/(®), the null space of @. Then using
(22) we have

ol

p= %QT =TT+ T AHAOT. (24)
Rewriting (23) and (24) we obtain

ol = —oF, (25)

Qr¢ = pt—QIAr. (26)

Using the above two equations, we can solve for the con-
nection for both the purely mechanical and principally kine-
matic systems:

e Purely mechanical systems. These are systems that are
not subject to any velocity constraints, that is, @: = 0'*/
and Q = I’ | where 0/ and I'* are [ x I zero and
identity matrices, respectively. Moreover, because mo-
mentum is zero for all times, p = 0'*/. Then (26) be-
comes

¢=—A(rr, (27)

where A(r) is the local form of the mechanical connec-
tion seen in (18).

e Principally kinematic systems. These are systems that
have [ linearly independent velocity constraints, that is,
k = . In this case, @ is full rank and ) = 0. Then (26)
is trivially satisfied and we can solve for ¢ from (25)

¢ =—a7'or =—Ar)F, (28)

where A(r) is the local form of the principally kinematic
connection seen in (20).

Thus, we have verified that the mechanical connection and
the principally kinematic connection can be easily obtained
from the reduced mass matrix of a purely mechanical system
and the reduced non-holonomic constraints of a principally
kinematic system, respectively. We now revisit the example
systems and compute their respective connections.

Example 1: Pivoting Dynamic Model

Using (6), the local from of the mechanical connection, A(r),
can be computed directly by inverting I (r) from Table 2 and
post-multiplying it by I(r)A(r) from (14). Then A(r) will
have the following form

fll(UI,UZ) le(Ul,Uz)
filor,00) fi(o1,02) |,
fii,02) f(o1,02)

where f j’ are the ith row and jth column of the mechanical
connection which are analytic functions of the base variables
(01, 02). We do not present the expression of the f ]’ functions
in the paper; however, these expressions can be computed in

A(r) =

the Mathematica~ code included in Extension 1.

Example 2: Kinematic Snake Robot

Similarly, for the kinematic snake robot we can compute the
local form of the kinematic connection, which will have the
following form:

R+ Hcos(o;) R+ Hcos(o))
R
A(r)y=—
=3 0 0

—sin(o») —sin(o)
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where D = Rsin(o 1)+ Lsin(o; —0,) — Rsin(o;) and again
the components of the connection’s local form are analytic
functions of the base variables (o1, 07).

Having computed the connections, we present our gait gen-
eration analysis next and then generate gaits for the above two
examples.

7. Gait Evaluation and Synthesis

We define a gait as a closed curve, y, in the base space, M,
of the robot. We require that our gaits be cyclic, that is, the
system will retain its original shape after each period of time;
moreover, we require y to be continuous. Previously we have
proved that the reconstruction equations for both the purely
mechanical and principally kinematic systems are identical in
structure. Both have the following form

¢ =—-A()r, (29)

where A(r) can denote either the purely mechanical connec-
tion A(r) or the principally kinematic connection A(r). Next,
we integrate (29) with respect to time. For each row, the left-
hand side yields a position change in body coordinates while
the integrand of the right-hand side becomes a one-form.

7.1. Gait Evaluation

First define the variable ¢ as the integral of &, that is, ¢ = ¢,
then integrating a row of (29) with respect to time we obtain

o, o
/('dt:/ Ehdr
10 fo

n . .
- / > AL dt

0 j
—74 > Al(rydr.

y(r) j

Thus, we relate a position change along a fiber direction,
A', to a line integral along the base space curve, y (). This
will help us to formalize the gait synthesis problem.

AL

(30)

7.2. Gaits Synthesis

In this section we formulate a variational problem that max-
imizes the fiber motion magnitude for all gaits with a given
length.

Even though the variational problem for generating opti-
mal gaits is well defined in higher dimensions, we formalize
the problem in two dimensions for the sake of clarity and sim-
plicity. Each row of A(r)dr is a two-dimensional one-form,

1051

that is, (A(r)dr) = fi(r',r)dr' + fi(r',r?)dr* where
r = (r', r?) is comprised of the base variables. Then, the func-
tional which we are optimizing is a one-form

GRS NN VAR N IGNC VY
Y

For this problem it is convenient to parameterize the gait by
its arc length, s. This will yield a well-defined functional to be
maximized

max J' (y (s))
S1 ) Pl 1 ) o 2
_ max/so (fl’(rl,rz)é —{—fz’(rl,rz)é) ds. (32)

Next we enforce an essential fixed gait length requirement.
This constraint on the length of the curves is represented by
the following integral

S1 1\2 2\ 2
e[ (F))e @
50 os os

If such a bound is not enforced we can obtain an unbounded
integral, J, for a gait with unbounded length. The above two
integrals in (32) and (33) define a constrained calculus of vari-
ations problem. Nonetheless, the integrands of the above equa-
tions are usually complicated functions, hence the differential
equations that the Euler—Lagrange solution equations yield are
very complicated to solve. Thus, to solve the variational prob-
lem, we are forced to use numerical techniques.

It is worth noting that we do not utilize the synthesis we
presented in the section to generate gaits. The formulation of
the variational problem presented in this section is similar to
that presented by Ostrowski et al. (2000) for designing opti-
mal gaits; however, Ostrowski et al. limited themselves to si-
nusoidal gaits and they numerically solved for optimal gaits
by minimizing an energy functional fol 17 dt with appropri-
ate boundary conditions that specify the change in position.

8. Analysis of Geometric Gaits

One could design gaits by proposing (that is, guessing) a gait
and then numerically evaluating the motion due to each pro-
posed gait. Not only is this approach tedious, it is also incom-
plete. In addition, one can limit the search space of gaits to a
certain type, such as sinusoidal gaits, as was the case in most
of the prior work; however, such a restriction might exclude
other families of gaits which might be optimal with respect to
some metrics.

At this point we set ourselves apart from the prior work and
rather than numerically solving the above constrained varia-
tional problem or limiting ourselves to a certain type of gaits,
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we use Stokes’ theorem to transform the line integral in (30)
to a volume integral. This will provide us with a simple gait
evaluation technique that measures the motion contribution re-
sulting from any closed curve in the base space. Actually, this
evaluation tool is simple enough that we can utilize it to actu-
ally synthesize gaits.

Note that the integrand in (30), Y-, A’ (r)dr/, is a one-
form, hence we can use Stokes’ theorem to transform the in-
tegral to an integral of a two-form which is the exterior deriv-
ative of the original one-form. Thus, we rewrite the change in
position expressed in body coordinates as

//r zm: (AL (r)dr®dr/

o,j=lo0<j

= Z /A F(’U(r) dr®dr/,

o,j=1,0<j

AL

(34)

where I is the region enclosed by the gait y . Note that, A¢" is
equated to the double integral of the integrands, F ; (r), which
are the components of the two-form. Hence, we have equated
the position change for any closed curve in the base space,
y, to the volume that this curve envelops under several well-
defined functions. Note that these height functions are simply
composed of partial derivatives of the components of the con-
nection matrix with respect to the base variables. By studying
the properties of these height functions we are actually able to
design curves that produce a desired A¢".

Thus, we synthesize gaits by only analyzing the compo-
nents of the two-form Af,j (r). We refer to these gaits as geo-
metric since the resulting motion is strictly due to the geo-
metric phase shift of the designed gait. For simplicity, let us
assume that we have two base variables, then by using Green’s
theorem, the two-dimensional version of Stokes’ theorem, the
position change given in (34) becomes

Fi(r)

i_ ofs(r) _ ofi(r) |0
AL —//y< P o2 >dr dr-. (35)

By studying the integrands in (35) and by designing and
placing curves in the base space, we are able to generate gaits
that move the mechanical system along a desired direction.

We remind the reader that A¢" is an integral of a body rep-
resentation of a fiber velocity ¢ ! Hence, it does not necessarily
relate trivially to inertial position change, Ag’. This is the case
only when the fiber has a commutative group structure, that is,
the lifted action map is the identity map.

8.1. Properties of Height Functions

By studying the structure of the integrand functions of (35) we
are able to evaluate the motion of the system due to closed

curves in the base space. We refer to the integrand functions as
height functions® in the rest of the paper. We study the follow-
ing properties of the height functions.

8.1.1. Symmetry

We study periodicity which allows us to investigate smaller
portions of the base space. Moreover, we find the set of points
or lines about which the height function is even or odd. For
example, a gait that is symmetric about an odd point of the
height function yields zero fiber motion.

8.1.2. Signed Regions

Since we are integrating a height function over a closed region,
it is important to know where the height function is positive,
negative or zero. Not only does this allow us to control the di-
rection of motion along the fiber variables but also to optimize
gaits by restricting them to lie in a strictly positive or negative
region.

8.1.3. Unboundedness

While designing gaits, one should stay away from regions
where the height functions tend to infinity. A gait that passes
through such regions may yield infinite volume, that is,
inf inite position change for finite shape changes. Usually this
is an indication that a non-holonomic constraint is being vio-
lated or that the system has passed through a problematic sin-
gularity.

By inspecting the above properties of the height functions
we are able to evaluate the position change of the robot due to
following any closed curve in the base space.

8.2. Gait Generation with Height Functions

Thus far, we have related motion along the fiber to an oriented
volume integral in the base space. Hence, we can compute how
the robot’s position changes as it changes its shape along any
closed curve in the base space. Since our gait evaluation tech-
nique is direct and simple we can devise a set of simple rules
that can be used to generate gaits.

8.2.1. Non-self-intersecting Curves
Any closed non-self-intersecting curve that lies entirely in a

positive or negative region is guaranteed to produce a non-zero
fiber motion.

3. Note that we have / height functions where / is the dimension of the fiber
space G.
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Fig. 3. The height functions corresponding to the three fiber directions expressed in body representation, (w,, wg, w, ), for the
pivoting dynamic model. Darker colors of the height functions denote the negative regions while lighter colors denote the positive
regions. The solid curves indicate the zero lines that separate the positive from the negative regions. Note that these curve are not
all straight lines.

8.2.2. Self-intersecting Curves

Any closed self-intersecting curve is guaranteed to produce a
non-zero fiber motion provided that the curve spans two re-
gions of opposite signs, the self-intersection occurs along the
zero line separating the two regions and the curve changes ori-
entation as it passes from one region to the other.

8.2.3. Symmetric Non-intersecting Curves Around “Odd”
Points

Let K44 be the set of all points about which the height function
is odd. Then any curve symmetric with respect to points in
Koqq Will enclose equal areas in two or more adjacent regions
that have opposite signs. Integrating the volume under such
curves will yield zero, that is, the fiber motion for such gaits is
identically zero.

8.2.4. Symmetric Intersecting Curves Around “Even” Points

Let K.yen be the set of all points about which the height func-
tion is even along a fixed direction. For any self-intersecting
curve symmetric with respect to points in K.y, along the
specified direction, the intersection will occur in the set Keyep.
For curves that change orientation at the intersection point,
they will enclose equal areas but of opposite orientation signs;
hence, such curves will yield zero volume, that is, the fiber
motion for such gaits is identically zero.

These rules do not impose any additional constraints on the
shape of the input curves. For instance, as long as the curve

stays entirely in one region and does not intersect itself, it is
guaranteed to generate a non-zero fiber motion. The larger the
area enclosed by the curve within a positive or negative region,
the larger the generated geometric phase shift.

Moreover, this approach eliminates the restriction of sinu-
soidal inputs that was required in prior work. Finally, the first
two rules are “active” rules which help in designing gaits that
produce motion, while the last two rules are “passive” rules
that ensure null motion of the system. All rules are equally as
important as we use the first two rules to produce motion along
a specified height function while the last two rules are used to
ensure zero motion along the rest of the fiber variables.

Example 1: Pivoting Dynamics Model

We now revisit the pivoting dynamic model and generate gaits
for it using our gait analysis as presented above. In particular,
we set the robots’ point masses to m = 1, and the parameters
H =1 and R = 1. Then we can compute the height functions
by utilizing Green’s theorem. The three height functions cor-
responding to the three fiber directions are shown in Figure 3.

All three height functions have distinctive signed regions.
The darker colors denote the negative regions while the lighter
colors denote the positive regions. Note that none of the height
functions has unbounded regions. In fact, this is a property
of all purely mechanical systems. The intuition behind why
the height functions for purely mechanical systems are always
bounded is that for whatever base motion the robot is forced to
do, the system always has bounded motion, that is, a bounded
volume under the height functions. In other words, there are
no singularities of motion.
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Without loss of generality, we assume that we want to de-
sign a gait that rotates the robot only around the x-axis. This
means that we want to design a gait that envelops a non-zero
volume only under the first height function in Figure 3. To
design such a curve, we should look carefully at the height
functions’ properties. Note that the first height function in Fig-
ure 3 is odd about the line 6, = o; and even about the line
0, = —o . The second height function is even about the line
0, = 01 and odd about the line 6, = —a . Finally, the third
height function is even about both lines. Thus, we can see that
a figure-eight type of curve with the following properties will
envelop volume only under the first height function:

(1) The curve is centered at the origin of the base space.

(i) Each of the curve loops are on either side of the line
0O) =0].

(iii) The curve is symmetric with respect to the two lines
O0) =01 al’ld0'2=—0'].

(iv) The curve is bounded by the two lines 6, = 61 — 7 and
or=01+T.

The curve GYPM in (36) satisfies all of the above conditions:
T . .
o1 = E(Sln(t) + sin(2t)),
Gt™M . - (36)
0y = ) (—sin(¢) + sin(2¢)).

We have used second rule for the first height function and the
fourth rule for the second and third height function. Note that
we bounded the curve between the two lines 6, = 01 — 7 and
0, = o1 + 7 so that each loop of the figure-eight curve stays
within the same-signed region.

The GPM gait is shown in the first column of Figure 4. We
have numerically simulated this gait and indeed as expected
the robot rotated only around the x-axis after one complete
cycle. The rotations along all three axes are shown in the last
row of the first column of Figure 4. Note that there are no net
rotations about other two axes, y and z, at the end of the gait
cycle.

Similarly, we can design two other gaits, G'°™ and G{PM,
given in (37) and (38), respectively, that will independently
rotate the robot only around either the y- and z-axis:

o1 = T (@sin(t) + sin(21)),

G5PM 4 (37)
oy = %(z sin(t) — sin(21)),
o1 = 1(2 sin(t) + cos(t)),

GPM : (38)
0y = Z(Z sin(t) — cos(?)).

We have constructed such gaits and they are shown in the
second and third columns of Figure 4. We have plotted the
initial and final configuration of the pivoting dynamic model
for each the three gaits as shown in Figure 5 where the three
independent rotations, Aa, AfS and Ay, are depicted. To un-
derstand the motion of the pivoting dynamic model throughout
a gait, we divided the entire motion of the system while per-
forming the gait GYPM into smaller intervals and depicted both
the body motion and total motion as shown in Figure 6.

Hence, using our gait generation analysis we were able to
easily design three gaits each of which moves the robot inde-
pendently along one fiber direction.

Example 2: Kinematic Snake Robot

As for the kinematic snake robot, its height functions are given
by

FS = {ZHR + (H? 4+ R?) cos(o)

+ cos(o1)(H?>+ R*+2HR cos(az))}
4 _
X — — | Hcos g1 0%2
R 2
2 27 -1
+ Rcos(al—gaz)) sin<61252>]

ES =0

{Rsin(al—i_az)}
2
o1 —0)
2| H
X {( cos( 5 >
24 -1
+ Rcos(Ll—i_az))sin(L1 Uz)} .
2 2

In particular, we choose the robot parameters to be H = 1
and R = 1. A plot of the three height functions for such a
kinematic snake are shown in Figure 7. The first two height
functions correspond to ¢ ! and &2 fiber translations while the
third height function corresponds to & fiber rotation. Note that
the second height function is always zero. This is because we
aligned the second axis of the body frame along the wheel axis
of the middle link as shown in Figure 2. This means that for
an observer sitting on the robot, there will never be any mo-
tion along the wheel axis due to the no-sideways-motion non-
holonomic constraint.

Moreover, note that the first and third height functions
have unbounded regions. To be able to plot these unbounded
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Fig. 4. Three sample gaits, (GEPM, GEPM, GEPM) | that were designed to rotate the pivoting dynamic model independently along
each of the three rotation axes. The first column depicts a gait that rotates the robot around the x-axis, while the second and third
rows depict gaits that rotate the robot around the y- and z-axes, respectively. Note that the solid dots on the gait curves in the first
three rows indicate the initial shape of the pivoting dynamic model for each of the gaits. The last row of each column depicts a
time simulation of each gait where the rotations around each axis are plotted versus time.
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@ (b)

PDM ~PDM
G\7Y, G,

Fig. 5. Snapshots of the pivoting dynamic model at the beginning and the end of each period of the simulated gaits,
and GgDM. Note the independent rotations, Aa, Af and Ay around the x-, y- and z-axes, respectively. In the first plot, the robot
retains its original shape (shown in gray), but it has rotated as a whole around the x-axis to its final position (shown in black).
The motion of the middle mass is depicted by the circle. The same is true for the second two plots where the robot rotates as a

whole around the y- and z-axes, respectively, as depicted by the circles.

height regions, we used the arc-tangent function to map the
range of the height functions to the interval [—x /2, 7 /2].
These regions are depicted by the dashed lines shown in
Figure 7. These unbounded regions correspond to a singular
configuration of the robot, where one or more of the non-
holonomic constraints becomes a linear combination of the
others. For example, consider the line 6, = —o in Fig-
ure 7. At this line both the first and third height functions have
infinite values which we plot at £z /2. This line corresponds
to snake configurations where all three wheel axes meet at a
single point. It is intuitively clear that if the robot starts at
such a configuration it cannot change its conf iguration without
breaking one of the non-holonomic constraints, that is without
one of the wheels sliding sideways.

On the other hand, consider a gait that contains a portion of
the line ¢, = —o ;. The volume under the height function for
such a gait will be unbounded, that is, for a finite base variable
change, the snake will have infinite motion. Such a gait is not
feasible. Hence, not only do these height functions help us in
designing gaits, they also depict singularity regions in the base
space.

Again, without loss of generality, assume that we want to
design a gait that will rotate the kinematic snake, that is, move
the system along the @ fiber direction. In other words, we want
to design a curve that will envelop non-zero volume only under
the third height function. Note that the first height function for

the kinematic snake is even about both lines 6, = o and
0, = —o 1, while the third height function is even about the
line 6, = —o; and odd about the line 6, = . So to move

the robot in the 6 direction we need a figure-eight type of curve
with the following properties:

e The curve is centered at the line 0, = 0.

e Both of the curve loops are on either side of the line
0O) =0].

e The curve is symmetric with respect to a line parallel
0O) = —0].

The curve GX5 in (41) satisfies all of the above conditions.
Again, we used the second rule on the third height function
and the fourth rule on the first two height functions. This curve
can be seen in the third row of Figure 8. We can easily see that
such a curve will envelop non-zero volume only under the third
height function. We numerically simulated such a gait and in-
deed we obtain a motion of the kinematic snake which after
one complete cycle only rotates the robot. All fiber motions
are plotted in the last row of the third column of Figure 8.

Similarly we can design two other gaits, GX5 and GXS,
shown in (39) and (40), respectively, that result in moving the
robot only in the x and y directions as shown in the first and
second rows of Figure 8:

o] =

% — 0.63778 cos(r) — 0.832148 sin(r),
GX8 (39)

0y = % — 1.01344 cos(t) + 0.268663 sin(t),
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Initial configuration Body motion Total motion Final configuration
I

|
t=m/3

e e A e e e

Fig. 6. This figure depicts the detailed motion of the pivoting dynamic model while performing the gait, G'°M. The first column
shows the robots initial configuration (shown in gray). The second column shows the body motion, that is, the internal shape
motion. The starting shape is shown in gray while the final shapes are shown in black. The bottom of the plot depicts the actual
motion in the base space along the gait, G'PM. The third column depicts the actual motion of the robot that is due to the body
motions. Finally, the last column depicts the final configuration of the robot after completing the interval of the gait. Note the net
rotation, Aa, about the x-axis between the top left and bottom right frames.
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Fig. 7. The height functions corresponding to the three fiber directions expresses in body representation, (¢, ¢, &), for the
kinematic snake robot. Darker colors of the height functions denote the negative regions while lighter colors denote the positive
regions. We have used the arc-tangent function to bring the unbounded regions of the height function to £z /2. The dashed lines
denote such unbounded regions where the robot has a singular configuration, while the solid lines indicate the zero lines. Note
that the second height function is zero for all values of the base variables.

o= %+mewmm—om%mmmx
Gy - (40)
2= 5 +0271378cos(r) ~ 1.01271 sin(r),
o1 = %@+m@m@w%+m)
4+ 4sin(2.0797 + ))I[18v2]7H),
G (1)

%Q+m@m@w%+m
—  45in(2.0797 4 1)1[18v/2]71).

Note that both gaits GX5 and GX° have an identical base
space curve, but different initial shapes. The initial shape is
denoted by the solid dot in Figure 8. Moreover, in Figure 9,
we plotted both the initial and final configurations of the kine-
matic snake for the three gaits we presented above. Finally,
to understand the motion of the kinematic snake throughout a
gait, we divided the entire motion of G3KS into smaller intervals
and depicted both the body motion and total motion as shown
in Figure 10.

9. Body versus Global Coordinates

Recall that we are computing all of the position change of the
robot in a body-attached coordinate frame. In general, a change
in position in a body-attached frame does not necessarily cor-
respond to a direct global motion. In fact, the only case when a

motion in body coordinates corresponds to identical motion in
global coordinates is when the lifted group action is trivial, that
is, in matrix form the map 7, L -1 is the identity matrix. This
was the case for the rolling disk example studied by Mukherjee
and Anderson (1993).

This is not the case for either of the example systems we
are analyzing in this paper. This can be clearly seen in the
non-trivial lifted action maps depicted in (13) and (16), respec-
tively. Hence, one should not expect that a non-zero motion
along either w, or &; will directly correspond to a non-zero
rotation about the x-axis for the pivoting dynamic model of a
translation along the x-axis for the kinematic snake.

In fact, for the kinematic snake, after the elliptical gait to
move the snake along the x and y, we ran a numerical simula-
tion where we varied the initial shape of the snake. The gaits
we simulated are given by

n? sin(t +i)  cos(t +1i)
o1 = =+ -,
22 7 4 2
72 sin(t +i)  cos(t +1i) 1
o) = Zﬁ (- 7 + 4 > + 5

By varying the variable i, we change the initial shape of
the kinematic snake. Then we numerically simulate the gaits
and compute the global position and orientation change. The
results are depicted in Figure 11. Then we picked the two
gaits for which the global motion was purely along either
the x or y directions. The gaits we presented earlier were for
i = 2.81 and 0.72 rad. Another interesting observation is the
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Fig. 8. Three sample gaits, (GX5, GX5, GXS), that were designed to move the kinematic snake independently along each of the
three fiber directions. The first two columns depict two gaits that move the robot along the x and y axes, respectively, while the
third column depicts a gait that rotates the robot in the @ direction. Note that the solid dots on the gait curves in the first three
rows indicate the initial shape of the kinematic snake for each of the gaits. The last row of each column depicts a time simulation
of each gait where the fiber motions are plotted versus time.
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(a)

(b)

(c)

Fig. 9. Snapshots of the kinematic snake at the beginning (gray) and the end (black) of each period of the simulated gait, GXS,
GXS and GXS. Note the independent fiber motions, Ax, Ay and Ad, respectively. The light dashed lines denote the trace of the

center of the middle link throughout the gait.

fact that the following function of the global position changes,
v/ (Ax)? + (Ay)?, is always constant and it is independent of
the initial shape of the kinematic snake. This fact is shown in
Figure 11.

10. Demonstrations

To demonstrate our gait generation techniques, we built two
simple robots using Lego® blocks and hobby servos. Rather
than building an actual pivoting dynamic model, we opted for
a simpler planar version shown in Figure 12(a) as it was much
easier to construct and still demonstrated our techniques. For
this particular robot, the planar pivoting dynamic model, the
configuration spaceis ¢ = (6,01,07) € Q =SO(2) x S x S.
This planar model has four concentrated masses. Then we
computed the reduced mass matrix from which we can com-
pute the mechanical connection.

Specifically for this robot, because the fiber space SO(2) is
commutative, we can directly compute the change in the iner-
tial angle, . Then integrating the connection we obtain

HR?
2

Al

/ [R(sin(o 1) + sin(o))
Hsin(o| — 02)[(2H? + R* + HR(cos(o 1)
cos(02)))*1do do,

A plot of the above height function, the integrand, is shown
in Figure 12(b). Now consider the following base space curve:

o] =

(1 + cos(t)%) s

PPDM .
GPPPM

0y =

oY o

(1 + sin(t)%> .

This particular curve, GEPPM encloses a large volume and
remains in the same positive region as shown in Figure 12(b).
We have simulated this specific gait and plotted the change
in the fiber angle, 8, versus time as shown in Figure 12(c).
Finally, we plotted several snapshots of the planar pivoting
model at the beginning and end of specific intervals of the
square gait as shown in Figure 13. We have implemented this
gait on our actual planar pivoting robot and indeed, as ex-
pected, the robot started to rotate after each cycle as shown
in Figure 14. Nonetheless, the magnitudes of rotation of the
actual robot did not match that of our model. The reasons for
this mismatch we believe are due to the friction in the bearings
around which the robot pivots and the slight errors in comput-
ing the mass and inertia of the actual links. We encourage the
readers to check the videos in Extension 1 to better understand
Figure 14.

As for the kinematic snake example, we constructed a sim-
ilar robot to that we studied in this paper. In this case we
applied two sinusoidal gaits. The first gait we applied was
similar in structure to GXS, that is, the gait was an elliptical
non-intersecting gait that is symmetric with respect to the line
01 = 0,. As expected, implementing this gait moved the kine-
matic snake along the same direction after each complete cy-
cle. Snapshots of the actual robot are shown in Figure 15.

We would like to note that we observed some sideways slip-
ping of the wheels and the magnitude of the slipping was more
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Fig. 10. Detailed motion of the kinematic snake while performing the gait, G?S. The first column shows the robots initial
configuration. The second column shows the body motion, that is, the internal shape motion. The gray dots depict the starting
shape while the black dots depict the final shape. The third column depicts a trace of the actual motion of the robot that is due
to the body motions. Finally, the last column depicts the final configuration of the robot after completing an interval of the gait.
Note the net rotation, Ad, of the kinematic snake between the top left and bottom right frames.
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Az Ay A8

(Az)* + (Ay)?

Fig. 11. The change in correspondence between body and
global coordinate as a function of initial shape.

significant as our gaits approached the line 6, = —o,. This
observation does match our intuition, because we know from
our height function analysis that the line 6, = —o, repre-
sents the singular configurations of the robot. Hence, accord-
ing to our analysis, as the gaits approach the line ¢, = —0»
they should envelop larger volumes, that is, the magnitudes of
motion should increase. Moreover, we know that as the gaits
approach the singular line | = —o, the constraint forces in-
crease in magnitude. Nonetheless, because the wheels on our
kinematic snake robots are not ideal, as the constraint forces
became larger and overcame the sideways frictional forces, the
wheels started slipping. So, for gaits that approached the sin-
gular line 0| = —o,, rather than attaining larger magnitudes
of motion, we observed some wheel slipping.

In fact, we pushed this idea to an extreme where we im-
plemented a circular gait that was centered at the origin of
the base space, that is, the gait actually crosses the singular
line 0; = —o, twice per cycle. Even though we observed
considerable slipping of the wheels each time the gait passed
through the singular line, the actual magnitude of motion along
the x direction was relatively large when compared with the
gaits we implemented earlier as shown in Figure 16. This is
not an indication of a failure of our gait generation analy-
sis which predicts infinite motion for such a gait, rather the
actual model violated the non-holonomic constraints at these
singular configuration and, due to slipping and modeling er-
rors, produced a large finite motion. Finally, we implemented
a figure-eight type curve which, as expected, rotated the kine-
matic snake in place as shown in Figure 17.

We encourage the readers to check the videos in Exten-
sion 1 to better understand Figures 15-17.

11. Higher-dimensional Base Spaces

The gait generation approach we have presented so far was
intuitive and graphically elegant since the base space has been
two-dimensional. Nonetheless, this approach is still valid in
higher dimensional base spaces, but generating gaits is more
tedious.

For example, consider the planer pivoting dynamic model
shown in Figure 12(a) which is a purely mechanical system.
Adding one more actuated link to one of the distal arms makes
the base space three-dimensional, m = 3. For this specific
system, the change in orientation, A, given in (34) will be
equal to the sum of three volume integrals under three height
functions, such that

A0 = //f1(”)drldl’2+/ f2(r)dradrs

+ / f3(r)drydrs.

Thus, to generate gaits one should simultaneously analyze
the three height functions for each fiber direction. Moreover,
note that the height functions are three-dimensional, thus, the
zero level sets that separate the signed regions are two-surfaces
rather than one-dimensional curves as shown in Figures 3
and 7. In fact, we have solved for the integrand functions and
we solved for the volumes in the base space where all three in-
tegrand functions are either positive or negative. These same-
signed regions are depicted in Figure 18.

Note that Stokes’ theorem is still valid, where we are trans-
forming the integral of a one-form along a one-dimensional
curve to an integral of a two-form over a two-surface which is
implicitly defined. In fact, we have generated a gait that stayed
within the positive region of all of the integrand functions. This
gait is depicted in Figure 19(a). We verified that all of the inte-
grand functions are indeed positive as shown in Figure 19(b).
Finally, we simulated this proposed gait and, as expected, the
four-link pivoting dynamic model does change its global ori-
entation after the completion of the gaits, as shown in Fig-
ure 19(c).

As for the principally kinematic system we consider in
this paper, the kinematic snake, adding an additional link will
change the type of the system. An extra link will make the
base space three-dimensional, but the extra set of wheels will
add one more non-holonomic constraint. Thus, the system is
not principally kinematic because we have one more non-
holonomic constraint than the dimension of the fiber space,
SE(2), which is three-dimensional. We argue that this addi-
tional link is unnecessary because using only three links and a
two-dimensional base space is enough to fully span the fiber
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Fig. 12. (a) A schematic of the planar pivoting dynamic model denoting its configuration variables: (8) is the fiber variable
denoting the global orientation of the robot while (o, o,) are the base variables denoting the rotations of the robot’s arms.
(b) The height function of the planar pivoting dynamic model with a simulated square gait. (c) The time simulation of the fiber
angle, 4, for the simulated square gait.
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Fig. 13. Several snapshots of the robot throughout the gait. The big solid arrows indicate the base motion while the smaller
dashed arrows indicate the expected fiber motion. The initial configuration of the robot is shown in gray, while the robot’s final
configuration is shown in black. The final plot depicts both the initial and final configuration of the planar pivoting dynamic
model after completing the entire gait.
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Fig. 14. Several snapshots of the actual planer pivoting dynamic model while performing the square gait, G¥"PM. The frames are
chosen to depict one complete gait where 7 is the gait’s period. Note the slight overall clockwise rotation of the model. Refer to
Extension 2 to watch the original video of this demonstration.

Fig. 15. Several snapshots of the actual kinematic snake while performing a figure-eight type curve. The frames are chosen
to depict one complete gait where 7 is the gait’s period. Note the small translation of the robot in the x direction. Refer to
Extension 2 to watch the original video of this demonstration.
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Fig. 16. Several snapshots of the actual kinematic snake while performing a singular figure-eight type curve. The frames are
chosen to depict one complete gait where 7 is the gait’s period. Note the relatively large translation of the robot in the x direction.
Refer to Extension 2 to watch the original video of this demonstration.

Fig. 17. Several snapshots of the actual kinematic snake while performing a singular figure-eight type curve. The frames are
chosen to depict one complete gait where 7 is the gait’s period. Note the relatively large rotation of the kinematic snake. Refer to
Extension 2 to watch the original video of this demonstration.
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+m

Fig. 18. For a planar four-link pivoting dynamic model, we depict the same-signed volumes where all three integrand function

are either negative (black) or positive (gray).

space, that is, to locomote the kinematic snake in any direc-
tion. However, if an n-link kinematic snake is to be built, only
three non-holonomic constraints should be linearly indepen-
dent at any instant of time. This will keep the system purely
kinematic and will provide enough equations to solve for the
additional base variables to ensure the linear dependence of the
additional non-holonomic constraints.

12. Conclusion and Future Work

In this paper, we have classified mechanical systems into three
types and unified the gait generation analysis for two of them,
the purely mechanical and principally kinematic systems. We
related position change along the fiber direction to a volume
integral. This simplified the gait evaluation problem which we
then utilized to synthesize gaits by intuitively designing curves
in the base space that produce the desired motions along a

specified fiber variable represented in body coordinates. In
addition, our technique adds no restriction on the shape of the
gaits while also allowing us to depict all of the shape parame-
ters of the suggested curves, which reduces the need for deeper
intuition to manually or empirically setting these parameters.

Moreover, we identified two types of mechanical systems,
purely mechanical and principally kinematic, whose recon-
struction equations are structurally identical. This allowed us
to use the same gait evaluation technique to generate geomet-
ric gaits for both systems. It is notable that we could use the
same gait generation technique on two seemingly different sys-
tems whose motions are exclusively governed by two differ-
ent types of constraints, momentum conservation laws or non-
holonomic velocity constraints.

This paper constitutes our first step in solving the generic
gait generation problem. Thus far we have analyzed mechan-
ical systems whose reconstruction equation comprises solely
a geometric term. Nonetheless, as we alluded to earlier in the
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Iz f3

Fig. 19. (a) A proposed gait for the planar four-link pivoting dynamic model. (b) The values of the integrand function along the
proposed gait. Note that all of the integrand functions are positive. (c) A time simulation of the proposed gait. Note the non-zero
change in the global orientation of the planar four-link pivoting dynamic model.

paper, there exists a more general type of mechanical systems,
namely mixed mechanical systems, where the reconstruction
equation comprises two terms, the geometric term we analyzed
in the paper and another dynamic term. This second dynamic
term is dependent on the evolution of a generalized momentum
of the mechanical system as well as the base space inputs.

In the companion paper (Shammas et al. 2007) we gener-
alize the results presented in this paper to include mixed sys-
tems and we present how to generate gaits for such systems. In
fact, we build upon our geometric gait analysis tools presented
here and generate three types of gaits that locomote a mixed-
type mechanical system using the geometric phase shift, the
dynamic phase shift or both.

Finally, we would like to note that the analysis in this pa-
per was performed in a body-attached coordinate frame. This
representation has simplified our analysis at the cost of not di-
rectly controlling the global position change of the mechanical
system. We acknowledge this fact of our gait analysis and we
shall address this issue in our future work. Moreover, we want
to emphasize that our gait analysis techniques presented in this
paper do not provide optimal gaits as some of the prior work
did; however, we believe that our analysis provides a space in
which one can intuitively classify families of base space curves
for gait generation.
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Appendix A: Background Material

Here we remind the reader of some of the basic concepts in La-
grangian mechanics and mechanics of locomotion. The readers
are strongly encouraged to refer to Bloch et al. (2003, Chapters
1-5), Choset et al. (2000, Chapter 2), Cortés (2002, Chapters
2 and 3) and Marsden and Ratiu (1994, Chapters 4, 7 and 9)
for an extensive study of simple mechanical systems and the
structure of their configuration spaces. Most of the material in
this section can be found in more detail in the above texts.

A.l. Lagrangian Mechanics
A.1.1. Configuration Manifolds

A configuration uniquely specifies the location in two or three
dimensions of each physical point of the mechanism or robot.
For a robot comprising many rigid bodies, both position or
fiber variables, which describe the robot’s position with re-
spect to an inertial frame, and shape or base variables, which
describe the robot’s internal degrees of freedom, are needed to
specify the robot’s configuration.

A general configuration manifold for mechanical systems
is usually denoted by Q = (G, M), where G is the Lie group
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specifying the position of the robot and M is the base space
specifying the shape of the robot. For mechanical systems, the
configuration manifold has a fiber bundle structure.

Definition 2. (Fiber bundle). A manifold Q with a base sub-
space M and a projection map 7 : Q — M is a fiber bundle
if for every r € M there exists a neighborhood U C M and
r € U such that z ~'(U) is homeomorphic to G x U, where
G = n~!(r), that is, locally, Q = G x M. Here G is a fiber
which is defined as the pre-image of r € M under the map z.

If the fiber G has a group structure then Q is a principal
fiber bundle, moreover, if 0 = G x M globally, then Q is a
trivial fiber bundle. As we are dealing with simple mechani-
cal systems, we can decompose their conf iguration space into
QO = G x M whose structure is a trivial fiber bundle. Typ-
ically, the configuration space G is n-dimensional where the
fiber space G is [-dimensional and the base space M is m-
dimensional.

A.1.2. Non-holonomic Constraints

Non-holonomic constraints are constraints that typically act on
configuration velocities and are, by definition, not integrable.
Such constraints are typically seen in mechanical systems with
wheels or rolling elements. The assumption that wheels cannot
slide sideways or slip while rolling gives rise to a set of non-
holonomic constraints. Usually, for mechanical systems the
non-holonomic set of k constraints can be written in a Pfaffian
form

w(g)-q =0, (42)
where w(g) is a k x n matrix describing the constraints
and g represents an element in the tangent space of the n-
dimensional configuration manifold Q.

A.1.3. Equations of Motion

For mechanical systems there exits a Lagrangian function,
L(g,q), that maps elements in the tangent space of the
configuration manifold to the reals. Usually, the Lagrangian
for mechanical systems are defined as the kinetic energy of the
system minus its potential energy. For the purpose of this Ap-
pendix we assume that the mechanical systems do not have any
potential energy. In the absence of constraints the equations of
motion derived from the Euler-Lagrange equations are given

by
d (0L(q,q o0L(q, q
d (q 9\ _0oLg.9) _ . 43)
dt 0gi 04gi

foralli = 1,...,n and 7; are the generalized forces. For

mechanical systems that are subject to non-holonomic con-
straints, the constraints forces are added as unknown Lagrange
multipliers along the constraint directions. Then (43) becomes

THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / October 2007

a _ 2wl (q) =15, 44
dt ( aql aql + ]wl (q) T ( )
forall j =1, ..., k, where k is the number of non-holonomic

constraints acting on the mechanical system.

A.2. Actions and Connections

Now we introduce several maps that allow us to map the sys-
tem dynamics to a body-attached coordinate frame.

A.2.1. Actions and Lifted Action

Given the principal fiber bundle structure of the configuration
manifold of mechanical systems and the Lie group structure of
the fiber space we can define an action on the configuration
manifold using the left and right translations of the Lie group.

Definition 3. (Left translation (Bloch et al. 2003)). Let G
be a Lie group. A left translation* isamap L, : G — G given
by L,(h) = gh where g, h € G.

The left translation represents the translation of a robot lo-
cated at 4 by the action g. For the complete configuration
Q = G x M, we define’ the left action and its lifted action.

Definition 4. (Left action and lifted action (Bloch et al.
2003)) A left action of a Lie group G on a manifold Q is
amap® : G x Q = QO such that:

e O(e,q) =gq,forall g € Q, e is the identity element of
0;
e O&(h,P(g,q)) =P(hg,q),forallg,h € Gandg € Q.

The lifted action is the linear map 7,®, : 7,0 = T,0,
acting on velocity vectors®. Note that for any matrix Lie group
G, the tangent space at the Lie group identity 7,G is a Lie
algebra.

A.2.2. Connections
Based on the notions above, the connection’, which is a key

concept in the theory of principal fiber bundles can be intro-
duced after defining the vertical space.

4. This is a representation of how matrix group elements act on each other. As
matrix multiplication is not commutative, we have a distinction between left
and right translations.

5. Using group actions from above, we can define higher-order actions that act
on the entire bundle space or its tangent space.

6. The right action can be defined analogously.

7. Not only do connections provide a relation between base and shape motions,
they also provide a decoupled local form at the fiber identity which allows the
dynamics of locomotion to be split.
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Definition 5. (Vertical space). Let 0 = G x M be a
configuration space and # : Q — M be a projection. The
vertical space is V, Q = Ker(T'«), where Tz is the lifted ac-
tion of 7.

Definition 6. (Connection). A connection is a map that is
used to assign a horizontal subspace, H,Q C T,Q, for each
point ¢ € Q such that H, Q depends smoothly on g and:

e I,0=V,0® H,0;
i Tq(I)g(Hq Q)= Hyg, 0;
where V, Q is the vertical space.

Note that the horizontal subspace is everywhere isomorphic
to the tangent space of the base manifold M. The horizontal lift
is the isomorphism which maps vectors in the tangent space of
the base space to the corresponding lifted vectors in H, Q. It
determines the relationship between motion in the base and
motion in the total space. Owing to this, the connection states
how net robot motion is created by performing shape changes.
The connection can also be represented as a mapping A(q) :
T,0 — g with the Lie algebra g of G. Here, A(g) is a Lie-
algebra valued one-form. Before stating the properties of this
connection form, the concept of the exponential map and the
infinitesimal generator are introduced.

Definition 7. (Exponential Map). Let G be a matrix
Lie group with corresponding Lie algebra g. The function
exp(t&) € G is called the matrix exponential map with & € g
and ¢ € R. In other words, the exponential map returns a new
group element which belongs to the flow that is tangent to ¢
after time 7.

Definition 8. (Infinitesimal Generator). Suppose that  :
Gx(Q — Qisanaction. For¢ € g, ®¢ :RxQ — Qdefined
by ®¢(t, x) = ® (exp(t&), x) is an R-action on Q. The vector
field on Q defined by

d
fQ(x) =7

T _0¢>(6Xp(t5), x)

t=
is called the infinitesimal generator of the action correspond-
ing to £. In other words, the infinitesimal generator generates
a left-invariant vector field over the entire manifold using the
Lie algebra element ¢.

Now having defined the infinitesimal generator, we can
state the properties of a connection form A(q) : T,0 — ¢
(Bloch et al. 2003):

o A(g)ép=¢ for Ceg;
L -A(q)gQ)Tq(I)gq = AdgA(g)q;

where Ady = T, R,-1T. L.
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A.2.3. Mechanical Connection

For mechanical systems, there is a natural definition of the
connection. It involves the so-called momentum map J and the
locked inertia tensor 1.

Definition 9. (Momentum Map). The momentum map is
themap J : TQ — g* with (J(vy); ) = ((vy, <)) for all
¢ € gandv, € T,0. Here J(v,) is the momentum of the
system measured in spatial coordinates, (v; &) is the natural
pairing between vector and co-vectors, ((v,, v4)) = v;M Vg is
the kinetic energy metric and M is the mass matrix.

Both terms, (J(v,); ) and ((v,, ), are energy terms but
are computed either using the momentum map or the kinetic
energy metric, respectively.

Definition 10. [Locked inertia tensor] The locked inertia
tensor is the map I(g) : g — g* which satisfies (I(¢)<¢; ) =
((g>mg)) forall &, n € g, where g* is the dual space to the
Lie algebra g. Note that, I(g) is the inertia of the system with
all base variables held fixed.

Considering the above definitions, the mechanical connec-
tion is given by

A(q) =T""(g)J. (45)

As we are dealing with mechanical systems whose
configuration space has a trivial fiber bundle structure, the con-
nection can be written in a local trivialization.

Proposition 1. Let A be a connection form over a trivial
fiber bundle®. Then A can be written as

Al@)g = Adg(TyLy-18+ A(r)i),

forall ¢ = (g,r) € Q. (46)

In this equation, A(r) is called the local form of the con-
nection. Note that the local form only depends on the base
variables r. Rewriting the above equation in body coordinates

simplifies it even further.

Definition 11. (Body representation velocity). Let ¢ €
T, O be a configuration velocity at the point ¢ = (g, r) and
let the body frame be attached to g. The body representation
of ¢ is & = TyL,-1£. In this paper, we use the body repre-
sentation and, hence, & refers to &2, As for the base velocity
component, r, it remains unchanged. The body velocity is the
velocity of the origin of the body frame computed in the in-
ertial frame but represented in the body frame (Murray et al.
1994).

8. This proposition can be seen in Bloch et al. (2003); however, it is proven for
principal connections, but nonetheless still applies for mechanical connections
on trivial principal fiber bundles.
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Using body representation we can define A”(q)g = 1~'J
where A”(q) = Ad,-1.A(g). Then rewriting (46) in body co-
ordinates we obtain

A(q)g =T7"0% = &+ A(r)r,

or

E=—A@)r +171J°. 47)

This last equation is very important as it decouples the fiber
velocities, ¢, and the base velocities, 7.

A.3. Invariance and Reduction

In this section we define invariance which allows us to com-
pute the reduced Lagrangian and the reduced non-holonomic
constraints.

A.3.1. Invariance

Invariance is a very powerful tool that is used in physics to
exploit the symmetries in the formulation of a physical prob-
lem and, hence, remove “unnecessary variables”. For example,
the laws of physics are invariant with respect to translations, in
other words, the placement of an inertial frame in which you
do all your measurements is unimportant. Hence, we use in-
variance to reduce the order of the equations of motion of the
mechanical systems we are studying. To remove the transla-
tional symmetries that arise from doing measurements in an
inertial frame we map everything to a body attached reference
frame. This allows us to rewrite the equations of motion in a
reduced form.

A.3.2. Reduced Mass Matrix

To rewrite the dynamics in the body attached coordinate frame,
we use the lifted actions defined earlier to define the body rep-
resentation of a configuration velocity.

Moreover, the independence of the location of the inertial
frame leads to the invariance’. of the Lagrangian, that is,

L((g™'g: 1), (TyLy18,7) = L(q, ). (48)

This allows us to compute the reduced Lagrangian,
[(&, r, 7), which according to Ostrowski (1995) will have the
following form

1 -
1E,r ) =3 M (49)

’j.

9. Invariance allows us to compute the Lagrangian anywhere along the fiber
space, the group identity was chosen in particular.

or

. 1(r) 1(r)A(r)
M= (50)
AT m(r)

and where M is the reduced mass matrix, A(r) is the local
form of the mechanical connection, I (r) is the local form of
the locked inertia tensor, that is, I (r) = I(e, r) (e is the Lie
group identity element) and m(r) is a matrix depending only
on base variables. The reduced mass matrix is important, be-
cause we can solve for the mechanical connection, A(r), sim-
ply by manipulating sub-matrices of the reduced mass matrix.

A.3.3. Reduced Non-holonomic Constraints

Given the triviality of the configuration space structure and the
invariance of the constraints with respect to left group actions,
we have
o(g,r) - (2,7 =w(@ g, r) - (TeLy1g, )" (51)
We know that{ = T, L,-18 and e = g~ 'g, the group iden-
tity. Then @ must be only a function of the base variables. We
label the sub-matrices of @(r) such as w(r) = (w(r), o, (r)),
then the set of non-holonomic constraints can be written in the
following reduced from
we(r)é + @, (r)F =0. (52)
The above equation is derived in Lemma B.1 in Appen-
dix B.

A.4. Reduced Equations of Motion

Having verified that the Lagrangian and the non-holonomic
constraints are invariant with respect to the Lie group actions
we can go ahead and compute the reduced equations of motion.

A.4.1. Unconstrained Mechanical Systems

The equations of motion can be derived from the reduced
Lagrangian. First we write out the original Euler—Lagrange
equations using the reduced Lagrangian at the group identity,
g = e. Then (43) becomes

. d [ ol ol
T: = — " - "
! dr \ 0§ og'
d oI\  T,L,1g ol
- 4 (Tng_l—.> _ e l8 a3y
i o g of
d[al\ ol
‘i dr (aw) or o9
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where we used & = Ty L ,-18.
Defining the generalized momentum as p = %, the above
equations of motion and local trivialization of the mechanical

connection in (47) become

pi —adip; = 1} (35)
d (ol ol

R 56
di (ar't) o T o
¢ =TLemg = —A@PF+17'0)p",  (57)

where 7¢ is the forcing function in the group directions pulled
back to the group identity (for the reduced form of the La-
grangian). The first equation represents the momentum equa-
tion with the momentum p and the second equation constitutes
the dynamic equations for the base space. Having solved for
the base and momentum variables, the group motion is com-
puted by (57), which is often referred to as the reconstruction
equation (Kelly 1998; Ostrowski 1995).

Hence, using invariance we were able to rewrite the n (=
[ + m) second-order differential equations of motion in (43) as
a set of 2/ first-order differential equation in (55) and (57) and
m second-order differential equations in (56).

A.5. Exterior Algebra

Finally, we conclude with a result from exterior algebra theory.
We review Stokes’ theorem in its most general form.

Theorem 1. (Stokes’ Theorem) Given a one-form w and its
exterior derivative dw, we have

?{ w:/da),
oN
N

where ON is the boundary of the manifold N .

(58)

The exterior derivative of a one-form, = Y /", fi(o1,
02, ,0p)do;, yields a two-form and is given by

do = Z <5_f1_6_ﬁ) (do; ANdoj),

00 ; 00 ;
ij=1,i<j ! J

where A represents the wedge product (Darling 1994; Lugo
1998).
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Appendix B

Here we state and prove Lemma B.1.

Lemma 1. Suppose that we are given a mechanical system
whose configuration space is a trivial principal bundle Q" =
G' x M™, thatis,q = (g,r) € Qand ¢ = (g,7) € T,0.
Moreover, let the system be subject to k linearly independent
non-holonomic constraints w(q) - ¢ = 0 that are invariant with
respect to left group actions. Then we have

TL, 1§ = =A@,

where Ty L,-1¢ is the body representation of a fiber velocity
g, A(r) is al x m matrix that is referred to as the local form
of the principally kinematic connection and r is a shape space
velocity.

Proof. Given the triviality of the configuration space and the
invariance of the constraints with respect to left group actions,
we have
w(q) - g = o(®sq) - T,Pq,
or
C()(g, r) : (g’r)T = Q)(th, r) : (Tthgs i-)T,

where ®,g and T, ® ¢ are the left and lifted left actions on the
manifold Q (Bloch et al. 2003; Ostrowski and Burdick 1998).

Note that these actions act only on the fiber part of ¢g. Let h =
¢~ ! and using (42) we have

Ozw(gar)(g:r)T = w(Lg_lgar)'(Tng_lg.ai')T

= (g 'g,r) (TyLy18.7)"
= @(r) - (TyLy1g,7)".

Let{ = TyL,-1§ and o(r) = (@;(r), @2(r)), then writing the
above equation in matrix form we obtain

(&)l(r) @z(r))~ 5 —0.

7

Solving for & we get

—A(r)
— N —
E=TyLg1g = (@1(r))" - @a(r) +.

The fact that the non-holonomic constraints are linearly inde-
pendent implies that ;(r) is invertible. Also note that A(r)
depends only on the base variables. B
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Appendix C: Index to Multimedia Extensions

Table of Multimedia Extensions.

Extension Description

Type
1 Code

Mathematica® code where most
of the figures of this paper were
generated. This code will allow
the user to rework the exam-
ples we introduced in this pa-
per and analyze other mechanical
systems. The readers can install
Mathematica® Player to read the
code if they do not have access to
Mathematica® .

2 Video Demonstration videos from which

Figures 14-17 are extracted from.

The multimedia extension page is found at http://www.ijrr.org
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