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2Université de Toulouse; UPS, INSA, INP, ISAE; LAAS; F-31077 Toulouse, France

Email: {pcasashe,jmazel,owe}@laas.fr

Abstract. Current network monitoring systems rely strongly on signa-
ture-based and supervised-learning-based detection methods to hunt out
network attacks and anomalies. Despite being opposite in nature, both
approaches share a common downside: they require the knowledge pro-
vided by an expert system, either in terms of anomaly signatures, or
as normal-operation profiles. In a diametrically opposite perspective we
introduce UNADA, an Unsupervised Network Anomaly Detection Algo-
rithm for knowledge-independent detection of anomalous traffic. UNADA
uses a novel clustering technique based on Sub-Space-Density cluster-
ing to identify clusters and outliers in multiple low-dimensional spaces.
The evidence of traffic structure provided by these multiple clusterings
is then combined to produce an abnormality ranking of traffic flows,
using a correlation-distance-based approach. We evaluate the ability of
UNADA to discover network attacks in real traffic without relying on
signatures, learning, or labeled traffic. Additionally, we compare its per-
formance against previous unsupervised detection methods using traffic
from two different networks.

Key words: Unsupervised Anomaly Detection, Sub-Space-Density Clus-
tering, Evidence Accumulation, Outliers Detection, Abnormality Rank-
ing.

1 Introduction

Network traffic anomaly detection has become a vital network building-block
for any ISP in today’s Internet. Ranging from non-malicious unexpected events
such as flash-crowds and failures, to network attacks such as Denials-of-Service
(DoS/DDoS), network scans, and spreading worms, network traffic anomalies
can have serious detrimental effects on the performance and integrity of the
network. The principal challenge in automatically detecting and analyzing traffic
anomalies is that these are a moving target. It is virtually impossible to precisely
define the set of anomalies that may arise, especially in the case of network
attacks, because new attacks as well a new variants of already known attacks
are continuously emerging. A general anomaly detection system should therefore
be able to detect a wide range of anomalies with diverse structure, using the least
amount of previous information, ideally no information at all.
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Fig. 1. High-level description of UNADA.

Two different approaches are by far dominant in current research literature
and commercial detection systems: signature-based detection and anomaly de-
tection. Signature-based detection is the de-facto approach used in standard
security devices such as IDSs, IPSs, and firewalls. When an attack is discovered,
generally after its occurrence during a diagnosis phase, the associated anomalous
traffic pattern is coded as a signature by human experts, which is then used to
detect a new occurrence of the same attack. Signature-based detection methods
are highly effective to detect those attacks which they are programmed to alert
on. However, they cannot defend the network against new attacks, simply be-
cause they cannot recognize what they do not know. In addition, building new
signatures is a resources-consuming task, as it involves manual traffic inspection
by human experts.

On the other hand, anomaly detection uses labeled data to build normal-
operation-traffic profiles, detecting anomalies as activities that deviate from this
baseline. Such methods can detect new kinds of network attacks not seen before.
Nevertheless, anomaly detection requires training for profiling, which is time-
consuming and depends on the availability of purely anomaly-free traffic data-
sets. Labeling traffic as anomaly-free is not only time consuming and expensive,
but also prone to errors in the practice, since it is difficult to guarantee that no
anomalies are buried inside the collected data. In addition, it is not easy to keep
an accurate and up-to-date normal-operation profile.

Our thesis is that these two knowledge-based approaches are not sufficient
to tackle the anomaly detection problem, and that a holistic solution should
also include knowledge-independent analysis techniques. To this aim we propose
UNADA, an Unsupervised Network Anomaly Detection Algorithm that detects
network traffic anomalies without relying on signatures, training, or labeled traf-
fic of any kind. Based on the observation that network traffic anomalies are, by
definition, sparse events that deviate markedly from the majority of the traffic,
UNADA relies on robust clustering algorithms to detect outlying traffic flows.
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UNADA runs in three consecutive steps, analyzing packets captured in con-
tiguous time slots of fixed length. Figure 1 depicts a modular, high-level descrip-
tion of UNADA. The first step consists in detecting an anomalous time slot in
which the clustering analysis will be performed. For doing so, captured packets
are first aggregated into multi-resolution traffic flows. Different time-series are
then built on top of these flows, and any generic change-detection algorithm
based on time-series analysis is finally used to flag an anomalous change. The
second step takes as input all the flows in the time slot flagged as anomalous. In
this step, outlying flows are identified using a robust multi-clustering algorithm,
based on a combination of Sub-Space Clustering (SSC) [11], Density-based Clus-
tering [17], and Evidence Accumulation Clustering (EAC) [15] techniques. The
evidence of traffic structure provided by this clustering algorithm is used to rank
the degree of abnormality of all the identified outlying flows, building an outliers

ranking. In the third and final step, the top-ranked outlying flows are flagged
as anomalies, using a simple thresholding detection approach. As we will show
through out the paper, the main contribution provided by UNADA relies on its
ability to work in a completely unsupervised fashion, outperforming previous
proposals for unsupervised anomaly detection.

The remainder of the paper is organized as follows. Section 2 presents a
short state of the art in the unsupervised anomaly detection field, additionally
describing our main contributions. Section 3 describes the multi-resolution traffic
aggregation and change-detection procedures used in the first step of UNADA.
In section 4 we introduce the core of the proposal, presenting an in depth de-
scription of the different clustering techniques used by UNADA to construct the
outliers ranking. Section 5 evaluates the ability of UNADA to discover single-
source, single-destination, and distributed network anomalies in real network
traffic from two different datasets: the public MAWI traffic repository of the
WIDE project [21], and the METROSEC project dataset [22]. In this section
we also compare the performance of UNADA against previous proposals for
unsupervised anomaly detection. Finally, section 6 concludes this paper.

2 Related Work & Contributions

The problem of network anomaly detection has been extensively studied during
the last decade. Most of the approaches analyze statistical variations of traffic
volume descriptors (e.g., number of packets, bytes, or new flows) and/or partic-
ular traffic features (e.g., distribution of IP addresses and ports), using either
single-link measurements or network-wide data. A non-exhaustive list of stan-
dard methods includes the use of signal processing techniques (e.g., ARIMA
modeling, wavelets-based filtering) on single-link traffic measurements [1, 2],
Kalman filters [5] for network-wide anomaly detection, and Sketches applied
to IP-flows [6–8].

Our approach falls within the unsupervised anomaly detection domain. The
vast majority of the unsupervised detection schemes proposed in the literature
are based on clustering and outliers detection, being [12–14] some relevant ex-
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amples. In [12], authors use a single-linkage hierarchical clustering method to
cluster data from the KDD’99 data-set, based on the standard Euclidean dis-
tance for inter-patterns similarity. [13] reports improved results in the same
data-set, using three different clustering algorithms: Fixed-Width clustering, an
optimized version of k-NN, and one class SVM. [14] presents a combined density-
grid-based clustering algorithm to improve computational complexity, obtaining
similar detection results. PCA and the sub-space approach is another well-known
unsupervised anomaly detection technique, used in [3,4] to detect network-wide
traffic anomalies in highly aggregated traffic flows.

UNADA presents several advantages w.r.t. current state of the art. First and
most important, it works in a completely unsupervised fashion, which means
that it can be directly plugged-in to any monitoring system and start to work
from scratch, without any kind of calibration and/or training step. Secondly,
it uses a robust density-based clustering technique to avoid general clustering
problems such as sensitivity to initialization, specification of number of clus-
ters, detection of particular cluster shapes, or structure-masking by irrelevant
features. Thirdly, it performs clustering in very-low-dimensional spaces, avoiding
sparsity problems when working with high-dimensional data [9]. Finally, we show
that UNADA clearly outperforms previously proposed methods for unsupervised
anomaly detection in real network traffic.

3 Multi-resolution Flow Aggregation & Change-Detection

UNADA performs unsupervised anomaly detection on single-link packet-level
traffic, captured in consecutive time slots of fixed length ∆T and aggregated
in IP flows (standard 5-tuples). IP flows are additionally aggregated at differ-
ent flow-resolution levels, using 9 different aggregation keys li. These include
(from coarser to finer-grained resolution): traffic per Time Slot (l1:tpTS), source

Network Prefixes (l2,3,4: IPsrc/8, /16, /24), destination Network Prefixes (l5,6,7:
IPdst/8, /16, /24), source IPs (l8: IPsrc), and destination IPs (l9: IPdst). The 7
coarsest-grained resolutions are used for change-detection, while the remaining
2 are exclusively used in the clustering step.

To detect an anomalous time slot, time-series Zli
t are constructed for simple

traffic metrics such as number of bytes, packets, and IP flows per time slot, using
aggregation keys i = 1, . . . , 7. Any generic change-detection algorithm F(.) based
on time-series analysis is then used on Z li

t . At each new time slot, F(.) analyses
the different time-series associated with each aggregation key, going from coarser
(l1) to finer resolution (l7). Time slot t0 is flagged as anomalous if F(Z li

t0) triggers
an alarm for any of the traffic metrics at any of the 7 aggregation levels. Tracking
anomalies at multiple aggregation levels provides additional reliability to the
change-detection algorithm, and permits to detect both single source-destination
and distributed anomalies of very different intensities.

Figure 2 shows how a low intensity DDoS attack might be dwarfed by highly-
aggregated traffic. The time-series associated with the number of packets, namely
Zt = #pktst, does not present a perceptible change ∆(#pktst) at tpTS aggre-



UNADA, an Unsupervised Network Anomaly Detection Algorithm 5

Time Slot Time Slot

Time Slot Time Slot

8

6

4

2

0

6

4

2

0
0         50        100       150

0         50        100       150

0

4000

3000

2000

1000

0

6000

4000

2000

x 10
4

x 10
4

0         50        100       150

0         50        100       150

#
p
k
ts

#
p
k
ts

∆
(#

p
k
ts

)

∆
(#

p
k
ts

)

Fig. 2. Low-intensity anomalies might be hidden inside highly aggregated traffic, but
are visible at finer-grained aggregations. The DDoS attack is evident at the victim’s
network.

gation (left); however, the attack can be easily detected using a finer-grained
resolution, e.g., at the victim’s network (IPdst/24 aggregation, on the right).

4 Unsupervised Anomaly Detection through Clustering

The unsupervised anomaly detection step takes as input all the IP flows in
the flagged time slot. At this step UNADA ranks the degree of abnormality
of each of these flows, using clustering and outliers analysis techniques. For
doing so, IP flows are analyzed at two different resolutions, using either IPsrc or
IPdst aggregation key. Traffic anomalies can be roughly grouped in two different
classes, depending on their spatial structure and number of impacted IP flows:
1-to-N anomalies and N-to-1 anomalies. 1-to-N anomalies involve many IP flows
from the same source towards different destinations; examples include network
scans and spreading worms/virus. On the other hand, N-to-1 anomalies involve
IP flows from different sources towards a single destination; examples include
DDoS attacks and flash-crowds. 1-to-1 anomalies are a particular case of these
classes, while N-to-N anomalies can be treated as multiple N-to-1 or 1-to-N

instances. Using IPsrc key permits to highlight 1-to-N anomalies, while N-to-1

anomalies are more easily detected with IPdst key. The choice of both keys for
clustering analysis ensures that even highly distributed anomalies, which may
possibly involve a large number of IP flows, can be represented as outliers.

Without loss of generality, let Y = {y1, ..,yn} be the set of n aggregated-
flows (at IPsrc or IPdst) in the flagged slot. Each flow yi ∈ Y is described
by a set of m traffic attributes or features, like number of sources, destination
ports, or packet rate. Let xi ∈ R

m be the corresponding vector of traffic features
describing flow yi, and X = {x1, ..,xn} the complete matrix of features, referred
to as the feature space.
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UNADA is based on clustering techniques applied to X. The objective of
clustering is to partition a set of unlabeled samples into homogeneous groups of
similar characteristics or clusters, based on some measure of similarity. Samples
that do not belong to any of these clusters are classified as outliers. Our particu-
lar goal is to identify those outliers that are remarkably different from the rest of
the samples, additionally ranking how much different these are. The most appro-
priate approach to find outliers is, ironically, to properly identify clusters. After
all, an outlier is a sample that does not belong to any cluster. Unfortunately,
even if hundreds of clustering algorithms exist [9], it is very difficult to find a
single one that can handle all types of cluster shapes and sizes. Different cluster-
ing algorithms produce different partitions of data, and even the same clustering
algorithm provides different results when using different initializations and/or
different algorithm parameters. This is in fact one of the major drawbacks in
current cluster analysis techniques: the lack of robustness.

To avoid such a limitation, we have developed a divide & conquer clustering
approach, using the notions of clustering ensemble [16] and multiple clusterings
combination. The idea is novel and appealing: why not taking advantage of the
information provided by multiple partitions of X to improve clustering robust-
ness and identification of outliers? A clustering ensemble P consists of a set
of multiple partitions Pi produced for the same data. Each of these partitions
provides a different and independent evidence of data structure, which can be
combined to construct a new measure of similarity that better reflects natural
groupings and outliers. There are different ways to produce a clustering ensem-
ble. We use Sub-Space Clustering (SSC) [11] to produce multiple data partitions,
doing Density-based clustering in N different sub-spaces Xi of the original space.
We refer the reader once again to figure 1 to better understand this approach.

4.1 Clustering Ensemble and Sub-Space Clustering

Each of the N sub-spaces Xi ⊂ X is obtained by selecting k features from the
complete set of m attributes. To deeply explore the complete feature space, the
number of sub-spaces N that are analyzed corresponds to the number of k-
combinations-obtained-from-m. Each partition Pi is obtained by applying DB-
SCAN [17] to sub-space Xi. DBSCAN is a powerful clustering algorithm that
discovers clusters of arbitrary shapes and sizes [9], relying on a density-based
notion of clusters: clusters are high-density regions of the space, separated by
low-density areas. This algorithm perfectly fits our unsupervised traffic analysis,
because it is not necessary to specify a-priori difficult to set parameters such
as the number of clusters to identify. Results provided by applying DBSCAN
to sub-space Xi are twofold: a set of p(i) clusters {Ci

1, C
i
2, .., C

i
p(i)} and a set

of q(i) outliers {oi
1, o

i
2, .., o

i
q(i)}. To set the number of dimensions k of each sub-

space, we take a very useful property of monotonicity in clustering sets, known
as the downward closure property: “if a collection of elements is a cluster in
a k-dimensional space, then it is also part of a cluster in any (k − 1) projec-
tions of this space” [18]. This directly implies that, if there exists any interesting
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Algorithm 1 Evidence Accumulation for Ranking Outliers (EA4RO)

1: Initialization:

2: Set dissimilarity vector D to a null n× 1 vector
3: Set smallest cluster-size nmin = α . n

4: for i = 1 : N do

5: Set density neighborhood δi for DBSCAN
6: Pi = DBSCAN (Xi, δi, nmin)

7: Update D(j), ∀ outlier oi
j ∈ Pi:

8: wi ←
n

(n− nmaxi
) + ε

9: D(j) ← D(j) + dM(oi
j , C

i
max)wi

10: end for

11: Rank flows: Drank = sort(D)
12: Set anomaly detection threshold: Th = find-slope-break(Drank)

evidence of density in X, it will certainly be present in its lowest-dimensional
sub-spaces. Using small values for k provides several advantages: firstly, doing
clustering in low-dimensional spaces is more efficient and faster than cluster-
ing in bigger dimensions. Secondly, density-based clustering algorithms such as
DBSCAN provide better results in low-dimensional spaces [18], because high-
dimensional spaces are usually sparse, making it difficult to distinguish between
high and low density regions. Finally, clustering multiple low-dimensional sub-
spaces provides a finer-grained analysis, which improves the ability of UNADA
to detect anomalies of very different characteristics. We shall therefore use k = 2
for SSC, which gives N = m(m − 1)/2 partitions.

4.2 Ranking Outliers using Evidence Accumulation

Having produced the N partitions, the question now is how to use the informa-
tion provided by the multiple clusters and outliers identified by density-based
clustering. A possible answer is provided in [15], where authors introduced the
idea of Evidence Accumulation Clustering (EAC). EAC uses the clustering re-
sults of multiple partitions Pi to produce a new inter-samples similarity measure
that better reflects their natural groupings.

UNADA implements a particular algorithm for Evidence Accumulation, called
Evidence Accumulation for Ranking Outliers (EA4RO): instead of producing a
similarity measure between the n different aggregated flows described in X,
EA4RO constructs a dissimilarity vector D ∈ R

n in which it accumulates the
distance between the different outliers oi

j found in each sub-space i = 1, .., N

and the centroid of the corresponding sub-space-biggest-cluster Ci
max. The idea

is to clearly highlight those flows that are far from the normal-operation traffic
at each of the different sub-spaces, statistically represented by Ci

max.
Algorithm 1 presents a pseudo-code for EA4RO. The different parameters

used by EA4RO are automatically set by the algorithm itself. The first two
parameters are used by the density-based clustering algorithm: nmin specifies the
minimum number of flows that can be classified as a cluster, while δi indicates
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Fig. 3. Euclidean vs. Mahalanobis distance as a measure of dissimilarity.

the neighborhood distance of a sample to identify dense regions. nmin is set at
the initialization of the algorithm, simply as a fraction α of the total number
of flows n to analyze (we take α = 5% of n). δi is set as a fraction of the
average distance between flows in sub-space Xi (we take a fraction 1/10), which
is estimated from 10% of the flows, randomly selected. This permits to fast-up
computations. The weighting factor wi is used as an outlier-boosting parameter,
as it gives more relevance to those outliers that are “less probable”: wi takes
bigger values when the size nmaxi

of cluster Ci
max is closer to the total number

of flows n. Finally, instead of using a simple Euclidean distance as a measure
of dissimilarity, we compute the Mahalanobis distance dM between outliers and
the centroid of the biggest cluster. The Mahalanobis distance takes into account
the correlation between samples, dividing the standard Euclidean distance by
the variance of the samples. This permits to boost the degree of abnormality
of an outlier when the variance of the samples is smaller. Figure 3 permits to
evidence the advantage of using Mahalanobis. The Euclidean distance between
the centroid of the cluster and the outlier is the same in both figures 3.(a)
and 3.(b). However, variance in figure 3.(a) is bigger than in figure 3.(b), which
intuitively should reduce the abnormality degree of the outlier. Such a notion is
correctly captured by the Mahalanobis distance, which is smaller in figure 3.(a).

In the last part of EA4RO, flows are ranked according to the dissimilarity
obtained in D, and the anomaly detection threshold Th is set. The computation
of Th is simply achieved by finding the value for which the slope of the sorted
dissimilarity values in Drank presents a major change. In the evaluation section
we explain how to perform this computation with an example of real traffic
analysis. Anomaly detection is finally done as a binary thresholding operation
on D: if D(i) > Th, UNADA flags an anomaly in flow yi.

5 Experimental Evaluation of UNADA

We evaluate the ability of UNADA to detect different attacks in real traffic traces
from the public MAWI repository of the WIDE project [21]. The WIDE opera-
tional network provides interconnection between different research institutions in



UNADA, an Unsupervised Network Anomaly Detection Algorithm 9

Table 1. Features used by UNADA in the detection of DoS, DDoS, network/port scans, and spread-
ing worms. For each type of attack, we describe its impact on the selected traffic features.

Type of Attack Class Agg-Key Impact on Traffic Features

DoS (ICMP/SYN) 1-to-1 IPdst
nSrcs = nDsts = 1, nPkts/sec > λ1, avgPktsSize < λ2,
nICMP/nPkts > λ3, nSYN/nPkts > λ4.

DDoS (ICMP/SYN) N-to-1 IPdst
nDsts = 1, nSrcs > α1, nPkts/sec > α2, avgPktsSize < α3,
nICMP/nPkts > α4, nSYN/nPkts > α5.

Port scan 1-to-1 IPsrc
nSrcs = nDsts = 1, nDstPorts > β1, avgPktsSize < β2,
nSYN/nPkts > β3.

Network scan 1-to-N IPsrc
nSrcs = 1, nDsts > δ1, nDstPorts > δ2, avgPktsSize < δ3,
nSYN/nPkts > δ4.

Spreading worms 1-to-N IPsrc
nSrcs = 1, nDsts > η1, nDstPorts < η2, avgPktsSize < η3,
nSYN/nPkts > η4.

Japan, as well as connection to different commercial ISPs and universities in the
U.S.. The traffic repository consists of 15 minutes-long raw packet traces daily
collected for the last ten years. The traces we shall work with consist of traffic
from one of the trans-pacific links between Japan and the U.S.. MAWI traces
are not labeled, but some previous work on anomaly detection has been done on
them [8, 20]. In particular, [20] detects network attacks using a signature-based
approach, while [8] detects both attacks and anomalous flows using non-Gaussian
modeling. We shall therefore refer to the combination of results obtained in both
works as our ground truth for MAWI traffic.

We shall also test the true positive and false positive rates obtained with
UNADA in the detection of flooding attacks in traffic traces from the MET-
ROSEC project [22]. These traces consist of real traffic collected on the French
RENATER network, containing simulated attacks performed with well-known
DDoS attack tools. Traces were collected between 2004 and 2006, and contain
DDoS attacks that range from very low intensity (i.e., less than 4% of the over-
all traffic volume) to massive attacks (i.e., more than 80% of the overall traffic
volume). In addition, we compare the performance of UNADA against some
previous methods for unsupervised anomaly detection presented in section 2.

5.1 Features Selection for Detection of Attacks

The selection of the m features used in X to describe the aggregated flows in Y

is a key issue to any anomaly detection algorithm, but it becomes critical and
challenging in the case of unsupervised detection, because there is no additional
information to select the most relevant set. In general terms, using different traffic
features permits to detect different types of anomalies. In this paper we shall limit
our study to detect well-known attacks, using a set of standard traffic features
widely used in the literature. However, the reader should note that UNADA
can be extended to detect other types of anomalies, considering different sets
of traffic features. In fact, more features can be added to any standard list to
improve detection results. For example, we could use the set of traffic features
generally used in the traffic classification domain [19] for our problem of anomaly
detection, as this set is generally broader; if these features are good enough to
classify different traffic applications, they should be useful to perform anomaly
detection. The main advantage of UNADA is that we have devised an algorithm
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Fig. 4. Detection and analysis of network attacks in MAWI.

to highlight outliers respect to any set of features, and this is why we claim that
our algorithm is highly applicable.

In this paper we shall use the following list of m = 9 traffic features: number of
source/destination IP addresses and ports (nSrcs, nDsts, nSrcPorts, nDstPorts),
ratio of number of sources to number of destinations, packet rate (nPkts/sec),
fraction of ICMP and SYN packets (nICMP/nPkts, nSYN/nPkts), and aver-
age packet size (avgPktsSize). According to previous work on signature-based
anomaly characterization [20], such simple traffic descriptors permit to describe
standard network attacks such as DoS, DDoS, scans, and spreading worms/virus.

Table 1 describes the impacts of different types of attacks on the selected traf-
fic features. All the thresholds used in the description are introduced to better
explain the evidence of an attack in some of these features. DoS/DDoS attacks
are characterized by many small packets sent from one or more source IPs to-
wards a single destination IP. These attacks generally use particular packets
such as TCP SYN or ICMP echo-reply. echo-request, or host-unreachable pack-
ets. Port and network scans involve small packets from one source IP to several
ports in one or more destination IPs, and are usually performed with SYN pack-
ets. Spreading worms differ from network scans in that they are directed towards
a small specific group of ports for which there is a known vulnerability to exploit
(e.g. Blaster on TCP port 135, Slammer on UDP port 1434, Sasser on TCP port
455), and they generally use slightly bigger packets. Some of these attacks can
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use other types of traffic, such as FIN, PUSH, URG TCP packets or small UDP
datagrams.

5.2 Detecting Attacks in MAWI traffic

We shall begin by analyzing the performance of UNADA to detect network
attacks and other types of anomalies in one of the traces previously analyzed
in [8]. IP flows are aggregated according to IPsrc key. Figure 4.(a) shows the
ordered dissimilarity values in D obtained by the EA4RO method, along with
their corresponding manual classification. The first two most dissimilar flows
correspond to a highly distributed SYN network scan (more than 500 destination
hosts) and an ICMP spoofed flooding attack directed to a small number of
victims (ICMP redirect traffic, directed towards port 0). The following two flows
correspond to unusual large rates of DNS traffic and HTTP requests; from there
on, flows correspond to normal-operation traffic. The ICMP flooding attack and
the two unusual flows are also detected in [8]; the SYN scan was missed by their
method, but it was correctly detected with accurate signatures [20].

Setting the detection threshold according to the previously discussed ap-
proach results in Th1

. Indeed, if we focus on the shape of the ranked dissimilarity
in figure 4.(a), we can clearly appreciate a major change in the slope after the
5th ranked flow. Note however that both attacks can be easily detected and iso-
lated from the anomalous but yet legitimate traffic without false alarms, using
for example the threshold Th2

on D.
Figures 4.(b,c) depict the corresponding four flows in two of the N parti-

tions produced by the EA4RO method. Besides showing typical characteristics
of the attacks, such as a large value of nPkts/sec or a value 1 for attributes
nICMP/nPkts and nSYN/nPkts respectively, both figures permit to appreciate
that the detected attacks do not necessarily represent the largest elephant flows
in the time slot. This emphasizes the ability of UNADA to detect attacks of low
intensity, event lower than normal traffic.

5.3 Detecting Attacks with Ground Truth

Figure 5 depicts the True Positives Rate (TPR) as a function of the False Pos-
itives Rates (FTR) in the detection of different attacks in MAWI and MET-
ROSEC. Figure 5.(a) corresponds to the detection of 36 anomalies in MAWI
traffic, using IPsrc as key. These anomalies include network and port scans,
worm scanning activities (Sasser and Dabber variants), and some anomalous
flows consisting on very high volumes of NNTP traffic. Figure 5.(b) also cor-
responds to anomalies in MAWI traffic, but using IPdst as key. In this case,
there are 9 anomalies, including different kinds of flooding DoS/DDoS attacks.
Finally, figure 5.(c) corresponds to the detection of 9 DDoS attacks in the MET-
ROSEC data-set. From these, 5 correspond to massive attacks (more than 70%
of traffic), 1 to a high intensity attack (about 40%), 2 are low intensity attacks
(about 10%), and 1 is a very-low intensity attack (about 4%). The detection
is performed using traffic aggregated with IPdst key. In the three evaluation
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(a) MAWI, IPsrc key. (b) MAWI, IPdst key. (c) METROSEC, IPdst key.

Fig. 5. True Positives Rate vs False Alarms in MAWI and METROSEC.

scenarios, the ROC plot is obtained by comparing the sorted dissimilarities in
Drank to a variable detection threshold.

We compare the performance of UNADA against three previous approaches
for unsupervised anomaly detection: DBSCAN-based, k-means-based, and PCA-
based outliers detection. The first two consist in applying either DBSCAN or
k-means to the complete feature space X, identify the largest cluster Cmax,
and compute the Mahalanobis distance of all the flows lying outside Cmax to
its centroid. The ROC is finally obtained by comparing the sorted distances
to a variable detection threshold. These approaches are similar to those used
in previous work [12–14]. In the PCA-based approach, PCA and the sub-space
methods [3,4] are applied to the complete matrix X, and the attacks are detected
by comparing the residuals to a variable threshold. Both the k-means and the
PCA-based approaches require fine tuning: in k-means, we repeat the clustering
for different values of clusters k, and take the average results. In the case of PCA
we present the best performance obtained for each evaluation scenario.

Obtained results permit to evidence the great advantage of using the SSC-
Density-based algorithm in the clustering step w.r.t. to previous approaches. In
particular, all the approaches used in the comparison generally fail to detect all
the attacks with a reasonable false alarm rate. Both the DBSCAN-based and the
k-means-based algorithms get confused by masking features when analyzing the
complete feature space X. The PCA approach shows to be not sensitive enough
to discriminate different kinds of attacks of very different intensities, using the
same representation for normal-operation traffic.

6 Conclusions

The Unsupervised Network Anomaly Detection Algorithm that we have pro-
posed presents many interesting advantages w.r.t. previous proposals in the field
of unsupervised anomaly detection. It uses exclusively unlabeled data to detect
traffic anomalies, without assuming any particular model or any canonical data
distribution, and without using signatures of anomalies or training. Despite us-
ing ordinary clustering techniques to identify traffic anomalies, UNADA avoids
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the lack of robustness of general clustering approaches, by combining the no-
tions of Sub-Space Clustering, Density-based Clustering, and multiple Evidence
Accumulation.

We have verified the effectiveness of UNADA to detect real single source-
destination and distributed network attacks in real traffic traces from different
networks, all in a completely blind fashion, without assuming any particular
traffic model, clustering parameters, or even clusters structure beyond a basic
definition of what an anomaly is. Additionally, we have shown detection re-
sults that outperform traditional approaches for outliers detection, providing a
stronger evidence of the accuracy of UNADA to detect network anomalies.
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