
The Design and Analysis of Graphical Passwords

Ian Jermyn� Alain Mayery Fabian Monrosez Michael K. Reiterx Avi Rubin{

March 8, 1999

Abstract

In this paper we propose and evaluate new graphical password schemes that exploit

features of graphical input displays to achieve better security than text-based passwords.

Graphical input devices enable the user to decouple the position of inputs from the temporal

order in which those inputs occur, and we show that this decoupling can be used to generate

password schemes with substantially larger (memorable) password spaces. In order to

evaluate the security of one of our schemes, we devise a novel way to capture a subset

of the \memorable" passwords that, we believe, is itself a contribution. In this work we

are primarily motivated by devices such as personal digital assistants (PDAs) that o�er

graphical input capabilities via a stylus, and we describe our prototype implementation of

one of our password schemes on such a PDA, namely the Palm PilotTM.

1 Introduction

For the vast majority of computer systems, passwords are the method of choice for authenti-

cating users. It is well-known, however, that passwords are susceptible to attack: users tend to

choose passwords that are easy to remember, and often this means that they are also easy for

an attacker to obtain by searching for candidate passwords. In one case study of 14,000 Unix

passwords, almost 25% of the passwords were found by searching for words from a carefully

formed \dictionary" of only 3 � 106 words [Kle90]. This relatively high success rate is not

unusual despite the fact that there are roughly 2 � 1014 8-character passwords consisting of

digits and upper and lower case letters alone.

In this paper we explore an approach to user authentication that generalizes the notion of

a textual password and that, in many cases, improves the security of user authentication over

that provided by textual passwords. We design and analyze graphical passwords, which can be

input by the user to any device with a graphical input interface. A graphical password serves

the same purpose as a textual password, but can consist, for example, of handwritten designs

(drawings), possibly in addition to text. The devices by which we are primarily motivated

�Department of Computer Science, New York University, New York, NY, USA; jermyn@cs.nyu.edu
yBell Laboratories, Lucent Technologies, Murray Hill, NJ, USA; alain@research.bell-labs.com
zDepartment of Computer Science, New York University, New York, NY, USA; fabian@cs.nyu.edu
xBell Laboratories, Lucent Technologies, Murray Hill, NJ, USA; reiter@research.bell-labs.com
{AT&T Labs|Research, Florham Park, NJ, USA; rubin@research.att.com

Submission to the 8th USENIX Security Symposium.

are \personal digital assistants" (PDAs) such as the Palm PilotTM, Apple NewtonTM, Casio

Cassiopeia E-10TM, and others, which allow users to provide graphics input to the device via

a stylus. More generally, graphical passwords can be used whenever a graphical input device,

such as a mouse, is available.

To the best of our knowledge, the notion of a \graphical password" is due to Blonder [Blo96].

That work proposed a password scheme in which the user is presented with a predetermined

image on a visual display and required to select one or more predetermined positions (\tap

regions") on the displayed image in a particular order to indicate his or her authorization to

access the resource. Beyond this proposal, however, [Blo96] did not further explore the power

of graphical passwords or argue security for its particular proposal.

In this paper we considerably advance the theory and practice of graphical passwords. We

take as a main criterion the need to evaluate graphical passwords' security relative to that

of textual passwords. We design two graphical password schemes that we believe to be more

secure than textual passwords (and more secure than the scheme of [Blo96]), and we employ

novel analysis techniques to make this argument. Moreover, we describe our implementation

of one of our graphical password schemes on the Palm Pilot.

The graphical password schemes that we propose derive their strength from the following

observation: A graphical interface for providing input enables the user to decouple the positions

of the inputs from their temporal order. This is in contrast to textual passwords input via a

keyboard: here, the temporal order in which the user types characters uniquely determines

their position in the password. However, in a graphical password, e.g., consisting of several

drawn lines, the �nal position of each line can be determined independently of the temporal

order in which the lines are drawn. We show that this independence between input position

and order can be used to build interesting new password schemes, and in some cases obtain

authentication that is convincingly stronger than textual passwords but not signi�cantly harder

to remember.

The �rst graphical password scheme builds directly on textual password schemes, by en-

hancing the input of textual passwords using graphical techniques. In this case, if we assume

the same underlying distribution on the choice of the password, the graphical password is at

least as strong as the textual password that underlies it, and even a conservative estimate of

the variations introduced by the graphical input yields a substantial improvement in strength

over the purely textual version. We propose and implement a second scheme, called \draw a

secret" (DAS), which is purely graphical; the user draws a secret design (the password) on a

grid. Here, to argue an improvement over textual passwords, we de�ne a class of DAS pass-

words that, we believe, captures a small subset of the memorable ones. This class consists of

those passwords that can be generated by a short program in a simple grid-based language.

We do not argue that every memorable password has a short program to describe it, but that

passwords describable by short programs are memorable. We show that even this subset of

memorable DAS passwords is larger than the dictionaries of textual passwords to which a high

percentage of passwords typically belong.

Throughout this paper we focus on graphical passwords that are exactly repeatable by the

2

user. This distinguishes our work from all works on graphical pattern recognition of which

we are aware (see Section 4), where it su�ces for the device to recognize an input as being

\su�ciently similar" to|but not necessarily the same as|a previously stored input. Because

pattern recognition schemes require the storage of (some representation of) the plaintext pass-

word on the device, the password is vulnerable to an attacker who captures and probes the

device. In contrast, because graphical passwords are repeatable, our schemes can derive a

secret key, e.g., to encrypt and decrypt �les, without need to store the password on the device.

This protects both the password and the encrypted content from the attacker if the device falls

into the attacker's hands.

The rest of this paper is outlined as follows: In Section 2, we present textual passwords with

graphical assistance. In Section 3, we proceed to purely graphical passwords with a scheme

called \draw-a-secret" (DAS). Section 3.2 shows our design and implementation of a memo pad

encryption scheme based on DAS. Section 3.3 proposes novel ways to analyze and estimate the

security of DAS and graphical passwords in general. In Section 4 we overview other password

schemes, unrelated to graphical passwords, but putting our work in context. Finally, Section 5

concludes.

2 Textual Passwords with Graphical Assistance

In this section we present a password selection and input scheme which uses textual passwords

augmented by some minimal graphical capabilities that enable the decoupling of temporal order

of input and the position in which characters are input. This scheme is interesting because

it simply demonstrates the power of graphical input abilities while yielding a scheme that is

convincingly stronger than textual passwords are today.

We start by de�ning a normal, k-character textual password as a total function � :

f1; : : : ; kg ! A, where A is the set of allowed characters for the textual password. Intu-

itively, the domain of � denotes the temporal order of inputs, so that the user �rst enters �(1),

then �(2), and so on. That is, for a password \tomato", we have �(1) = t, �(2) = o, �(3) = m,

�(4) = a, �(5) = t, and �(6) = o.

Now suppose that the user is presented with a simple graphical input display consisting

of, say, eight positions into which to enter a textual password, as illustrated in Figure 1. In

this �gure, step 0 is the initial row of blanks, and steps 1{6 indicate the temporal order in

which the user �lls in the blanks; i.e., �(i) is entered in row i. The password can be placed

in the \normal", left-to-right positions as shown in Figure 1a. Due to the graphical nature

of the input interface, however, the user could enter the password in other positions, as well.

For example, Figure 1b shows a modi�cation in which the user enters the password in a left-

to-right manner, but starting from a di�erent initial position than the leftmost. Figure 1c

shows entering the password in an \outside-in" strategy. And, of course, these variations can

be combined in the obvious way, as shown in Figure 1d.

Formally, a k-character graphical password in this scheme can be de�ned by a total function

�0 : f1; : : : ; kg ! A�f1; : : : ;mg, where m � k is the number of positions into which characters

3

0.

1. t

2. t o

3. t o m

4. t o m a

5. t o m a t

6. t o m a t o

0.

1. t

2. o t

3. o m t

4. o m a t

5. o m a t t

6. o m a t o t

(a) Left-to-right (b) Rotated left

0.

1. t

2. t o

3. t m o

4. t m a o

5. t m t a o

6. t m t o a o

0.

1. t

2. o t

3. m o t

4. m a o t

5. m t a o t

6. m t o a o t

(c) Outside-in (d) A more complex example

Figure 1: Variations on inputting tomato. The word tomato can be input in the \normal" left to right manner as

shown in (a). Step 0 is the initial row of blanks, and steps 1{6 indicate the temporal order in which the user �lls in the

blanks. In addition, however, the user can vary the position of the letters in tomato. Figure (b) demonstrates shifting the

input left by one, (c) represents an outside-in input strategy, and (d) is the combination of these.

can be entered (m = 8 in Figure 1). If �0(i) = (c; j), then this means that the i-th entry

(temporally) is the character c in position j. A conventional textual password �, entered in

the standard left-to-right way, can be expressed in this scheme as a graphical password �0

where �0(i) = (�(i); i). But as shown in Figure 1, more generally we can have variations �0 in

which �0(i) = (�(i); j) and i 6= j. In fact, it is easy to see that each k-character conventional

password � yields m!=(m� k)! graphical passwords �0, and indeed this is the factor by which

the size of the graphical password space exceeds the k-character conventional password space.

This can be a relatively large number: e.g., for k = 8 and m = 10, this factor is approximately

2� 106.

Of course, there are far fewer than 2 � 106 variations of each 8-character password that

are memorable for human users. However, it is easy to derive a convincing lower bound on

the improvement this achieves over a conventional password scheme. It is conservative to

assume that the m positional rotations of a password, plus perhaps a handful of others (e.g.,

reversal, outside-in, inside-out, evens-then-odds, odds-then-evens), and combinations thereof,

are memorable, because the choices of position involved in these cases can be derived from

simple algorithms that are more memorable than the positions themselves. (We will return to

this characteristic of memorability in the next section.) The attacker's work load will thus be

increased by a factor of at least m. An important feature of this scheme is that it is at least as

strong as the initial textual password that was chosen by the user, assuming that users do not

reduce the size of the space of character sequences that they choose in response to the need to

4

remember a positional order.

There are a number of steps that we can take to make this scheme more usable. First,

to maximize the ease of inputting passwords with varied position, each character should be

echoed once the user places it in a position, at least with a nondescript character (e.g., \�")

but preferably with the letter itself. This is a departure from most password-input interfaces,

which echo at most a nondescript character in order to protect the password from onlooking

persons. However, for the platforms by which we are primarily motivated, i.e., hand-held PDAs

such as the Palm Pilot, it is much easier to shield the screen from onlookers entirely. Going

further, the interface might allow the user to �rst enter the password \normally" (left-to-right),

and then drag each character to its �nal position in the desired temporal order.

Inevitably, there are numerous variations on the scheme presented here. One direction

includes arranging the k input positions in some other way than a straight line (e.g., a grid),

to promote other variations in position. Rather than pursuing these options here, we instead

explore a purely graphical approach.

3 The Draw-a-Secret (DAS) Scheme

In this section we present a purely graphical password selection and input scheme, which we

call \draw a secret" (DAS). In this scheme, the password is a simple picture drawn on a grid.

This approach is alphabet independent, thus making it easily accessible for users speaking

Chinese, Hebrew, etc. Users are freed from having to remember any kind of alphanumeric

string.

The most compelling reason for exploring the use of a picture-based password scheme is

that humans seem to possess a remarkable ability for recalling pictures (i.e., line drawings and

real objects). The \picture e�ect", that is, the e�ect of pictorial and object representations

on a variety of measures of learning and memory has been studied for decades [Cal98, She67,

PRS68, Sta73, BKD75]. Cognitive scientists and psychologists have shown that there is a

substantial improvement of performance in recall and recognition with pictorial representations

of to-be-remembered material than for verbal representations.

Superiority in recall of objects over words in immediate recall and over short retention

intervals has been demonstrated through a number of experiments. Empirical evidence of

the power of pictures over words dates back to the early 1800s; experiments performed by

Calkins [Cal98] showed the recall of words declining by 50% or more over a 72 hour reten-

tion interval, and recall of objects dropping by less than 20% over the same period. Studies

exhibiting strikingly high di�erences in memory recall of pictures over words have since been

replicated on numerous occasions [She67, Sta73, NRW76, BSH77]. Some theories that have

been proposed to explain these experimental results are outlined in Appendix A.

5

3.1 Password Selection and Input

Consider an interface consisting of a rectangular grid of size G � G. Each cell in this grid is

denoted by discrete rectangular coordinates (x; y) 2 [1::G]� [1::G]. Suppose that the the user

is given a stylus with which she can draw a design on this grid. The drawing is then mapped to

a sequence of coordinate pairs by listing the cells through which the drawing passes in the order

in which it passes through them, with a distinguished coordinate pair inserted in the sequence

for each \pen up" event, i.e., whenever the user lifts the stylus from the drawing surface. For

example, consider the drawing in Figure 2. Here, the coordinate sequence generated by this

drawing is

(2; 2); (3; 2); (3; 3); (2; 3); (2; 2); (2; 1); (5; 5)

where (5; 5) is the distinguished \pen up" indicator. If there were a second stroke in this

example, then its sequence would be appended to the end of the sequence above, and similarly

for subsequent strokes. In this way, we divide the space of possible drawings into equivalence

classes, two drawings being equivalent if they have the same encoding, or in other words if

they cross the same sequence of grid cells, with the breaks between strokes occurring in the

same places.

3

4
56

2

1

1 2 3 4

3

4

1

2

Figure 2: Input of a graphical password on a 4� 4 grid. The drawing is mapped to a sequence of coordinate pairs by

listing the cells in the order which the stylus passes through them, with a distinguished coordinate pair inserted in the

sequence whenever the stylus is lifted from the drawing surface.

First we give some terminology. We de�ne the neighbors, N(x;y), of a cell (x; y) to be the

subset of the set of cells f(x� 1; y); (x+1; y); (x; y� 1); (x; y+1)g whose elements exist in the

grid. We then de�ne a stroke to be a sequence of cells fcig, in which ci 2 Nci�1
, and which does

not contain a \pen up" event. A password is then de�ned to be a sequence of strokes separated

by \pen up" events. The length of a stroke is the number of coordinate pairs it contains, while

the total length of a password is the sum of the lengths of its component strokes (excluding

the \pen up" characters).

As with the scheme of Section 2, this scheme is most viable if the user's strokes are echoed

as curves while they are drawn. Again we appeal to the maneuverability of the devices we are

targeting (i.e., PDAs) to support the restriction that the user must shield the input display

from onlookers.

6

Our requirement of repeatability constrains the parameters of this scheme. As long as

the user's current drawing lies in the same equivalence class as the original drawing, she has

successfully repeated a chosen password. In general, this gives the user su�cient tolerance

when (involuntarily) varying the drawing, provided that the cells of the grid are not too small.

Indeed, this was the purpose of separating the drawings into equivalence classes to begin with.

Di�culties might arise however, when the user chooses a drawing that contains strokes that

pass too close to a grid-line. In those cases, the user might vary the drawing in such a way as

to change the resulting sequence of coordinates. We consider the following two possibilities to

address this problem: (1) The user is o�ered to view the internal representation, depicting the

path of cells, when she chooses a password so that she can con�rm which cells were actually

touched by the drawing. (2) The system does not accept a drawing which contains strokes

that are located \too close" to a grid line. In the implementation, described in Section 3.2, we

o�er both alternatives.

3.2 Application of DAS: An Encryption Tool for a PDA

Our graphical password schemes are motivated primarily by PDAs that o�er graphical input

capabilities. We now describe our implementation of a memo pad encryption tool for the Palm

Pilot that uses a user-input graphical password to derive the encryption key. Either of the

schemes of Sections 2 and 3 could be used to enter the password. Here we illustrate our tool

using the DAS scheme, which we have implemented and use regularly.

In our tool, an encryption/decryption key is derived from a DAS password (i.e., its sequence

of coordinates) as follows: Let B be a bit string that represents the sequence of coordinates

(including the unique \pen up" indicator). Let h denote a cryptographic hash function, such

as MD5 or SHA. The key, k, is de�ned as h(BjjP)128, where P is unambiguous padding,

resulting from �rst adding a single 1-bit and then all 0-bits so that the result is a full input

block for the hash function h. k results from, e.g., taking the �rst 128 bits of the output of h.

Our key derivation assures that two distinct coordinate sequences are transformed (with high

probability) into two distinct, �xed-length keys. A standard symmetric encryption scheme E

with k as its symmetric key is used to encrypt and decrypt data records stored on the PDA.

Key selection is as follows: the user is prompted with an empty grid to input the password

design. Once the password is entered, a symmetric key k is derived and a pre-de�ned phrase p

is encrypted (as Ek(p)) and stored on the PDA. On repeat access, the user is prompted again

with the empty grid, upon which she draws the same design. A symmetric key k0 is derived

and an attempt is made to decrypt Ek(p). If it results in p, then k0 = k and the password (and

key) is accepted. The user then can proceed to encrypt/decrypt data records. k is deleted

from the PDA at the latest when the PDA is powered o�.

An adversary who captures the PDA can presumably obtain all of the ciphertext encrypted

under k, and since p is either public or stored in plaintext on the device, the adversary has

at least one known plaintext/ciphertext pair with which to attack E. For a strong encryption

scheme E, however, the best bet for the attacker remains to guess the original password, which,

as we will show in Section 3.3, on average is likely to be much harder than if the attacker were

7

faced with attacking a textual password.

We implemented the DAS scheme on the Palm Pilot and use it regularly to encrypt/decrypted

information on our PDAs. The Pilot is based on the Palm operating system that is integrated

with the Graffiti writing technology. The Palm OS supports a very natural form of data

input, and as such, provides an ideal platform for implementing the DAS scheme.

(a) User inputs desired secret (b) Internal representation (c) Raw bit string

(d) interface to database (e) Re-entry of secret (f) Authorization failed

Figure 3: A password is created by drawing the secret on the display as shown in (a). Both the internal representation

of the input password showing the cells covered by the user's drawing and the derived key are depicted in (b) and (c)

respectively. To apply a symmetric cryptographic function to records in the database (shown in (d)), the user selects the

records and then re-inputs the DAS password. If the encryption of a known clear-text with the input password matches

the stored ciphertext created during initialization, then the symmetric cryptographic routine, Ek(x), is applied to the

selected records. Otherwise, the user is prompted to re-enter the DAS secret.

The interface for our DAS implementation is shown in Figure 3. Our application shares

the database of the memopad application, and allows a user to encrypt/decrypt records in the

database based on a user speci�ed drawing. Our implementation conforms to the methodology

outlined in Section 3.2, with SHA-1 as the cryptographic hash function and 3DES1 as the

symmetric encryption scheme.

3.3 Security of the DAS Password Scheme

We de�ne the information content of a password space as the entropy of the probability dis-

tribution over that space given by the relative frequencies of the passwords that users actually

choose. Information content is the correct measure for describing di�culty of attack, since it

determines the optimal choices to be made when trying di�erent possibilities for a password.

1Based on Ian Goldberg's crypto library for his port of SSLeay for the Pilot (see http://www.isaac.cs.

berkeley.edu/pilot).

8

High information content renders a password scheme more or less invulnerable. For exam-

ple, if users did in fact choose passwords uniformly from the space of all textual passwords,

successful attacks would be extremely unlikely. What is it that renders such attacks successful

in practice? There are two factors. The �rst is that in reality users do not choose their pass-

words uniformly. If we assume that the data collected in Klein's study [Kle90] is representative

of the general population, then users in fact use only 10�8 of the possible passwords 25% of

the time. Such a distribution is highly peaked, and the information content of the textual

password space is correspondingly reduced.

However, the fact that users do not pick passwords uniformly is in itself not su�cient to

make password guessing attacks successful. The second factor that renders textual passwords

vulnerable is that the attacker has signi�cant knowledge of the distribution of user passwords,

and can use that knowledge to her advantage. In the case of textual passwords, this knowledge

includes information about speci�c peaks in the distribution (users often choose passwords

based on their own name), and information about gross properties (words in the English

dictionary are likely to be chosen). Without information about the distribution, an attacker

would be no better o� than if users were in fact choosing uniformly.

Due to the dependence of the security of a scheme on the passwords that users choose in

practice, a new password scheme can not be proven better than an old scheme. Performing trials

on subjects in order to learn the distribution of user passwords for a new scheme is impractical

for such large sample spaces. In the case of textual passwords, learning the knowledge that

attackers routinely use would correspond to trying to learn the English dictionary (among

others) given no prior knowledge of the types of letter combinations used in English, by having

subjects type in 8-character passwords. In the absence of such objective proof, we present

three plausibility arguments that suggest that the DAS scheme is considerably harder to crack

than the conventional textual scheme. Two of these are estimates of the information content

of the DAS password space, and hence address why textual passwords are vulnerable to attack

in practice. The third argument discusses the e�ect that lack of knowledge of the distribution

of user choices has on an attacker and the likelihood that such lack of information can be used

in a deliberate and constructive manner to attack a password scheme.

3.3.1 Argument 1: The Size of the Password Space

First we consider the raw size of the password space, or in other words, its information content

assuming users are equally likely to pick any element as their password. The raw size is an upper

bound on the information content of the distribution that users choose in practice. We need

some way to delimit the password space in order to obtain a �nite answer, or in probabilistic

terms, a way to ascribe probability zero to an in�nite subset of passwords, leaving a �nite

subset which we will count. We will assume that all passwords of total length (as de�ned

in Section 3.1) greater than some �xed value have probability zero. We compute the size

�(Lmax; G) of the space of passwords of total length less than or equal to Lmax on a grid of

size G � G. � is de�ned in terms of the number of passwords with total length equal to L,

9

P (L;G) by:

�(Lmax; G) =

LmaxX
L=1

P (L;G) (1)

In turn, P (L;G) can be de�ned in terms of N(l; G), the number of strokes of length equal

to l by:

P (L;G) =
l=LX
l=1

P (L� l; G)N(l; G) (2)

In words, the above equation says that a new stroke of length l may be added to any shorter

password of length L � l to make a password of total length L. By de�ning P (0; G) = 1, we

complete the de�nition of the recurrence, once we have given an expression for N(l; G).

The following recurrence relation de�nes N(l; G). Let n(x; y; l; G) be the number of strokes

of length l ending at the cell (x; y) in a grid of size G�G. Then N can be de�ned in terms of

n by

N(l; G) =
X

(x;y)2[1::G]�[1::G]

n(x; y; l; G) (3)

Clearly, 8(x; y) 2 [1::G]� [1::G]; n(x; y; 1; G) = 1. Moreover, it is convenient to de�ne n at the

\boundaries" of the grid as follows:

n(0; y; l; G) = n(x; 0; l; G) = n(G+ 1; y; l; G) = n(x;G+ 1; l; G) = 0

The function n can then be evaluated using the following recurrence:

n(x; y; l; G) = n(x� 1; y; l � 1; G) + n(x+ 1; y; l � 1; G)

+n(x; y � 1; l � 1; G) + n(x; y + 1; l � 1; G)

Putting the pieces together, we can calculate the size of the password space. The results for

di�erent upper bounds on total password length on a 5� 5 grid are given in Table 1.

Lmax 1 2 3 4 5 6 7 8 9 10

log2(# passwords) 5 10 14 19 24 29 33 38 43 48

Lmax 11 12 13 14 15 16 17 18 19 20

log2(# passwords) 53 58 63 67 72 77 82 87 91 96

Table 1: Number of passwords of total length less than or equal to Lmax on a 5� 5 grid.

The data in Table 1 shows that the raw size of the graphical password space surpasses

that of textual passwords for reasonable password con�gurations. While these numbers are

encouraging, in practice not all graphical passwords are equally likely to be chosen by users,

rendering a uniform distribution overly optimistic. For example, although the number of

passwords of length greater than or equal to 12 is already greater than the number of textual

passwords of 8 characters or less constructed from the printable ASCII codes (958 � 253), this

includes all possible combinations of twelve isolated dots.

10

In order to obtain a more realistic estimate of the information content, in the following

section we suggest a model in which we characterize passwords as being \memorable" in terms

of the programs which generate them.

3.3.2 Argument 2: Modeling User Choice

We assume that the reason that users choose from such a small subset of textual passwords

is that the passwords in that set are more memorable than those outside it. That lack of

imagination on the part of the user is not the cause for the lack of variety is supported by

the fact that system-generated passwords have been so unsuccessful [Bis91]. By making the

same assumption about DAS passwords, we can \reduce" our task to that of modeling the set

of \memorable" graphical passwords. If we can show that this set, or some subset of it, has

cardinality larger than the dictionary of textual passwords from which users typically choose,

we can plausibly claim that as far as information content goes, DAS is more secure than

conventional textual password schemes. Here, we identify two such subsets using di�erent

criteria of memorability, and show that the cardinalities of these sets do indeed satisfy the

above criterion.

What constitutes a memorable password? In the textual case, one obvious component is

semantic content. If the sequence of characters has a meaning for the user, the password is

more likely to be memorable [Mil56, She67, BSH77]. This semantic de�nition is extremely

hard, if not impossible, to characterize in the abstract. It is only because the semantic content

of many character combinations has been established by the common use of a written language

that we can talk about such content at all. In the DAS scheme, there are obvious password

components that have meaning, but it is impossible a priori to identify exactly which passwords

will have semantic content, and to how many users, precisely because it is not a representation

with meanings established by common use.

Memorability based on simple shapes The �rst set of \memorable" passwords that we

de�ne is a subset of those passwords that might reasonably be expected to carry meaning. We

look at all strokes in the form of rectangles, and show that by combining two such strokes, we

already reach the size of the dictionaries used to crack textual schemes. To be more precise,

consider the set of rectangles within a G � G grid. Since a rectangle can be de�ned by two

rows (the top and bottom edges of the rectangle) and two columns (the left and right edges),

it is clear that the number R(G) of rectangles on a G�G grid is

R(G) =

G

2

!2

=
1

4
G2(G� 1)2 (4)

Each of these rectangles can be generated in many ways. For example, the starting point of

a stroke can be at any of the corners, and the stroke direction can be clockwise or counter-

clockwise. This yields 8 possibilities for each rectangle. In addition, one can choose whether

to close the rectangle by returning to the starting cell or not, again doubling the possibilities.

11

On a 5 � 5 grid, this amounts to 1600 possible strokes. Two such strokes in succession gives

2:56 � 106 passwords, already roughly the size of the textual dictionary that contained the

passwords of 25% of users in Klein's study [Kle90]. Clearly we can generate a much larger

set of passwords by considering variations on the theme of rectangles, or by considering other

Gestalt forms [Wer38].

Memorability based on short algorithms The second set of passwords that we describe

is suggested by the discussion of text-based graphical passwords in Section 2, which pointed

toward a di�erent de�nition of memorability. There, a memorable sequence of positions seemed

characterized by the fact that there existed a short algorithm to describe the sequence. It is

this de�nition of memorable that we wish to apply here, since it can be characterized in precise

terms. We do not argue that every memorable password has a short algorithm to describe it,

but that passwords describable by short algorithms are memorable. We will show that the

cardinality of this subset of memorable passwords is already larger than the dictionary of

character sequences from which users most often draw their passwords, and that therefore,

following the argument above, the DAS password scheme should be harder to crack in practice

than the conventional textual scheme.

In order to characterize the `complexity' of the algorithm required to generate a DAS pass-

word, we de�ne a very simple language suited to the task of describing DAS passwords. Then,

we generate all programs in this language whose complexity is at most a chosen maximum.

In order to avoid counting di�erent programs that produce the same password twice, we then

execute the generated programs to output the passwords, which are then bucketed, and dis-

tinct passwords counted. The result is the number of DAS passwords generated by programs

of complexity at most the chosen maximum.

Before describing the results of this endeavor, we give some details of the language in which

we generated the programs. The grammar of the language is as follows:2

program ! digit digit block

block ! statement block

statement ! instr j repeat digit block end

instr ! up j down j right j left j penup j pendown

digit ! 1 j 2 j 3 j 4 j 5

The �rst two digits represent a starting position. The instructions up, down, left, and

right move the pen one square in the indicated direction. If the pen is currently in the

down position, then moving in the speci�c direction will draw a line. Otherwise, the direction

statement will merely move the pen location. The pen begins in the up position. The repeat

statement is our iterator. We allow digit values up to the number of grid squares on each axis

(i.e., 5 on a 5� 5 grid) to indicate the number of repetitions, although in principle a password

2Those readers old enough to remember the APPLE II will recognize that our language bears a striking

resemblance to Turtle Graphics [SP76], the kid's language based on LOGO (see, e.g., [ABGP75]).

12

consisting of more than 5 repetitions of something on a 5� 5 grid are possible (e.g., ten dots

in the same position).

To calculate the complexity for a given program, we assign a complexity to each literal in

our language. We assign every statement and digit complexity one, except for the end marker,

which has complexity zero. This means that repeat loops have a complexity of two (one

for the repeat statement, and one for the integer indicating the number of repetitions) plus

the complexity of the repeated block. In addition, the last penUp statement of a program

is assigned a complexity of zero (lifting one's pen from the surface at the end of entering a

password is di�cult to forget). So, for example, there are no programs of complexity only two,

since the integers describing the starting position of the program already consume a complexity

of two without allowing any penDown statements. The �rst complexity of which there are

any programs is three|the two digits describing the initial starting position, followed by a

penDown|and the passwords generated by programs of complexity three are simply those

consisting of a single tap on one of the grid squares. Note that our complexity calculations for

programs are very conservative, in the sense that even pen movements between strokes (i.e.,

while the pen is raised) are counted in the complexity of a program.

The results of using the above described procedure for counting the number of DAS pass-

words of a given complexity on a 5 � 5 grid are shown in Figure 4. As expected, this data

shows that the number of DAS passwords grows exponentially as a function of the maximum

complexity of the program. What is more interesting, however, is that by extrapolation3 we see

that the number of DAS passwords generated by programs of only complexity 12 far surpasses

the dictionary size of approximately 3� 106 used in Klein's password-cracking studies [Kle90].

As a point of comparison, even just tracing the outermost cells of a 5 � 5 grid to make a

square already requires a program of complexity at least �fteen in our simple language. And,

obviously this design and many other, more complex ones will fall in the realm of memorable

for most users. We believe that this is compelling evidence that DAS passwords, of which

those generated by programs of complexity at most twelve are but a very small subset, will be

signi�cantly harder to crack in practice than textual passwords. Example DAS passwords and

the shortest programs that generate them are given in Appendix B.

3.3.3 Argument 3: Lack of Knowledge of the Distribution

Given the size of typical password spaces, knowledge of the distribution of user passwords is

essential to an adversary. Without such knowledge the adversary has no way of directing her

search toward more probable passwords, and is no better o� than if users really did pick their

passwords uniformly from the set of possibilities [Cov91].

Where did the knowledge of the distribution come from in the case of textual passwords?

For the most part, dictionaries have been compiled by using reasonable assumptions about

likely choices. The assumptions stem from the use of a shared language, and shared knowledge

3Calculating the exact number of `memorable' graphical passwords, as de�ned by our language, for complex-

ities greater than 10 requires signi�cantly more computational resources (and time) than we have available to

us. An attacker wishing to build any such database will face similar di�culties.

13

8

10

12

14

16

18

20

5 6 7 8 9 10

lo
g(

pa

ss
w

or
ds

)

complexity

Complexity Passwords

3 25

4 105

5 398

6 1,645

7 7,370

8 34,026

9 165,760

10 614,660

Figure 4: Number of DAS passwords generated by programs of short complexity on a 5� 5 grid.

of the semantic content of words. For example, in the work of Klein [Kle90] the sources for

likely passwords included the St. James Bible, the Unix dictionary, and many other sources

of English words that were available to the author precisely because they are a part of our

language. If these assumptions had turned out to be incorrect, textual password schemes would

be extremely di�cult to break in practice.

The assumptions made about likely password choices are strongly con�rmed by Klein's

work, and by successful attacks on textual passwords, but con�rmation of pre-existing dic-

tionaries is not the same as deriving a dictionary in the �rst place by learning from example

without prior knowledge. In the case of textual passwords, this would mean learning the En-

glish dictionary (or some equivalent corpus of words) by collecting user passwords. This would

involve acquiring millions of veri�ed passwords, and, as such, represents a signi�cant challenge

for a would-be adversary.

In the case of the DAS scheme, similar reasonable assumptions about user choice do not

exist. Furthermore, the learning task is made even more di�cult by two factors. First, argu-

ments 1 and 2 suggest that both the space of passwords and the space of likely user choices are

considerably larger than for textual passwords. Second, the platform that we are targeting,

PDAs, renders the task of data collection much harder than on, e.g., networked computers.

3.4 Summary

The above arguments do not prove that graphical password schemes are more secure than tra-

ditional textual schemes. In fact, as we have argued, such a proof is impossible. Nevertheless,

taken together they provide convincing evidence that this would indeed be the case.

4 Prior Work

There is a considerable amount of prior work on authenticating users via graphical inputs to

a device, particularly handwritten signatures (see, e.g., [LP90, LP94, Nal97]). None of these

14

works strive for exact repeatability by the user, and therefore, a model of the user's graphical

input is stored on the device and used to ascertain whether a new input is su�ciently similar

to the previously-stored one to grant access. This renders it essential to protect the device's

(PDA's) storage from probes by an attacker. In contrast, repeatability is achieved in our

schemes, thereby enabling designs in which the device, if captured, is of little help to the

attacker (see Section 1).

The security of textual passwords has been examined by numerous researchers, notably [MT79,

Kle90, FK90, Spa92, Wu99]. Without exception, these studies reiterate the fact that people

choose passwords that are easy to �nd by automated search. In order to improve the security of

passwords, it is common practice for system administrators to invoke reactive password check-

ers to identify weak passwords [RU88, Muf92], or to use proactive checkers to �lter out certain

classes of weak passwords when the user inputs her password for the �rst time [Bis95, Spa91].

A technique to improve the security of even a poorly chosen password is to salt the password

by prepending it with a random number, R, before hashing [MT79]. R is typically stored with

the hash value so that the hash input can be reconstructed from the plaintext password.

When a user tries to authenticate and enters a password, R is retrieved from the password

table, prepended to the password and hashed. The result is compared to the stored hash. The

net e�ect is that the search space of the attacker is increased by a factor of 2jRj if the attacker

does not have access to the stored salts. A variation on this is to not store R [Man96]. During

a login sequence the password is input and the system searches for R by trying all possible

values for the salt. This variation increases the search space for the attacker by a factor of

2jRj even if the attacker captures all stored information related to password authentication.

However, this results in signi�cant additional overhead on each login if R is large.

The techniques in this paper can be combined in natural ways with the techniques discussed

above for strengthening textual passwords|i.e., proactive and reactive password checking, and

salting|to improve the security of graphical passwords, as well.

More distantly related is work on one-time passwords (e.g., [Hal93]). One-time password

schemes are relevant primarly for network settings, to defend against the threat of a network

eavesdropper capturing password information in transit between the user and a secure authen-

tication server. To render such eavesdropping harmless, a one-time password scheme varies

the user's password from each login to the next in a way that only the user and the server can

predict, based on state shared between the server and user. In the main setting we consider,

however, there is no network communication that is vulnerable to eavesdropping, and conse-

quently the attacks with which we are concerned is the capture and analysis of all stored state

relevant to authentication (the PDA in our setting, or equivalently the server's and client's

states in the one-time password setting). One-time password schemes of which we are aware

o�er no bene�t against this attacker over traditional password schemes.

15

5 Conclusions and Future Work

We have presented graphical password schemes that achieve better security than conventional

textual based passwords alternatives. Our approaches exploit the input capabilities of graphical

devices that allow us to decouple the position of inputs from the temporal order in which they

occur. We presented arguments for the security of our schemes in which we analyzed the

information content of the resulting password spaces. We also presented a novel approach for

capturing the `memorability' of graphical passwords by examining the class of DAS passwords

generated by short programs in a simple grid-based language, and showed that even this

relatively small subset of graphical passwords (for some �xed program complexity) constitutes

a much larger password space than the dictionaries of textual passwords to which a high

percentage of passwords typically belong.

We have been using our DAS-based memo pad encryption on the Palm Pilot for a few

months and we are quite happy with its ease-of-use. We hope to initiate some user studies to

collect further feedback on (1) user acceptance and (2) their choices of passwords.

For future work we are exploring alternative schemes for modeling the memorability of

DAS passwords that we hope will capture their high-level structure more intuitively than our

current models. The goal is to capture the concept of organized drawings, in which the view of

the whole is more than just the sum of the individual parts that constitute it. For example, one

can view a square as an object in itself and not simply as an arrangement of the individual lines

from which it is composed. In this way, we can de�ne a set of primitive structures from which

all `memorable' drawings can be derived using meta-level compositions of these primitives. We

hope to show that even this reduced set of DAS passwords (for some reasonable number of

primitives) constitutes a larger space than that of textual-based passwords, and as such will

be signi�cantly harder to crack in practice.

References

[ABGP75] H. Abelson, J. Bamberger, I. Goldstein, and S. Papert. Logo Progress Report 1973-1975. MIT, AI

memo 356, September 1975.

[Alv90] A. Alvare. How crackers crack passwords or what passwords to avoid. In Proceedings of the 2nd

USENIX Security Workshop, August 1990.

[Bis91] M. Bishop. Password management. In Proceedings of COMPCON '91, pages 167{169, February

1991.

[Bis95] M. Bishop. Improving system security via proactive password checking. Computers and Security

14(3):233-249, April 1995.

[Blo96] G. Blonder. Graphical passwords. United States Patent 5559961, 1996.

[BKD75] G. H. Bower, M. B. Karlin, and A. Dueck. Comprehension and memory for pictures. Memory and

Cognition 2:216{220, 1975.

[BSH77] M. A. Borges, M. A. Stepnowsky, and L. H. Holt. Recall and recognition of words and pictures by

adults and children. Bulletin of the Psychonomic Society 9:113{114, 1977.

[Cal98] M. W. Calkins. Short studies in memory and association from the Wellesley College Laboratory.

Psychological Review 5:451{462, 1898.

16

[Cov91] T. M. Cover,and J. A. Thomas. Elements of Information Theory, John Wiley and Sons, 1991.

[FK90] D. Feldmeier and P. Karn. UNIX password security { Ten years later. In Advances in Cryptology|

CRYPTO '89 Proceedings (Lecture Notes in Computer Science 435), 1990.

[GS96] S. Gar�nkel and E. Spa�ord. Practical Unix & Internet Security. O'Reilly & Associates, Inc., 1996.

[Hal93] N. Haller. The s/key(tm) one-time password system. In Proceedings of the 1994 Symposium on

Network and Distributed System Security, pages 151{157, February 1994.

[Kle90] D. Klein. Foiling the cracker: A survey of, and improvements to, password security. In Proceedings

of the 2nd USENIX Security Workshop, August 1990.

[LP94] F. Leclerc and R. Plamondon. Automatic signature veri�cation: The state of the art|1989{1993.

International Journal on Pattern Recognition and Arti�cial Intelligence 8(3):643{660, June 1994.

[LP90] G. Lorette and R. Plamondon. Dynamic approaches to handwritten signature veri�cation. In Com-

puter Processing of Handwriting, pages 21{47, World Scienti�c, 1990.

[Mad83] S. Madigan. Picture memory. In Imagery, Memory, and Cognition, pages 65{86, Lawrence Erlbaum

Associates, 1983.

[Man96] U. Manber. A simple scheme to make passwords based on one-way functions much harder to crack.

Computers & Security, 15(2):171{176, 1996.

[Man91] G. Mandler. Your face looks familiar but I can't remember your name: A review of dual process

theory. Relating Theory and Data 207{225, 1991.

[Mil56] G. A. Miller. The magical number seven, plus or minus two: Some limits on our capacity for

processing information. Psychological Review 63:81{97, 1956.

[MT79] R. Morris and K. Thompson. Password security: A case history. Communications of the ACM,

22(11):594{597, November 1979.

[Muf92] A. Mu�et. Crack: A sensible password checker for Unix. Available via anonymous ftp from cert.org.

[Nal97] V. S. Nalwa. Automatic on-line signature veri�cation. Proceedings of the IEEE, pages 215{239,

February 1997.

[NRW76] D. L. Nelson, U. S. Reed, and J. R. Walling. Picture superiority e�ect. Journal of Experimental

Psychology: Human Learning and Memory 3:485{497, 1977.

[Pai71] A. Paivio. Imagery and Verbal Processes. Holt, Rinehard, and Winston, New York, 1971.

[Pai76] A. Paivio. Imagery in recall and recognition. Recall and Recognition, John Wiley, New York, 1976.

[PRS68] A. Paivio, T. B. Rogers, and P. C. Smythe. Why are pictures easier to recall than words? Psycho-

nomic Science 11:137{138, 1968.

[RU88] T. Raleigh and R. Underwood. CRACK: A distributed password advisor. In Proceedings of the 1st

USENIX Security Workshop, pages 12{13, August, 1988.

[She67] R. N. Shepard. Recognition memory for words, sentences, and pictures. Journal of Verbal Learnings

and Verbal Behavior 6: 156{163, 1967.

[Spa91] E. Spa�ord. Preventing weak password choices. In Proceedings of the 14th National Computer

Security Conference, pages 446{455, October 1991.

[Spa92] E. Spa�ord. Observations on reusable password choices. In Proceedings of the 3rd USENIX Security

Symposium, September 1992.

[Sta73] L. Standing. Learning 10,000 pictures. Quarterly Journal of Experimental Psychology 25:207{222,

1973.

[SP76] Cynthia J. Solomon and Seymour Papert. A case study of a young child doing Turtle Graphics in

LOGO. MIT AI memo 375, July 1976.

[Wel72] J. E. Wells. Encoding and memory for verbal and pictorial stimuli. Journal of Experimental Psy-

chology 24:242{252, 1972.

17

[Wer38] Max Wertheimer. Laws of organization in perceptual forms. In W. Ellis, W (Ed. & Trans.), A source

book of Gestalt psychology (pp. 71-88). London: Routledge & Kegan Paul. 1938. (Original work

published in 1923 as Untersuchungen zur Lehre von der Gestalt II, in Psycologische Forschung, 4,

301-350.)

[Wu99] T. Wu. A real-world analysis of Kerberos password security. In Proceedings of the ISOC Symposium

on Network and Distributed System Security, 1999.

A A Picture is Worth a Thousand Words

Our \draw-a-secret" scheme is motivated by the experimentally-proven fact that pictures are

easier to remember than words. Why are pictures easier to recall? Four hypotheses have been

o�ered as explanations of picture-word di�erences in recall:

� Common-code theory: this view of memory and recall theorizes that pictures and words

access semantic information in a single conceptual system that is neither word-like or

picture-like. This theory hypothesizes that pictures and words both require analogous

processing before accessing semantic information, but pictures require less time than

words for accessing the common conceptual system. Common-code theorists attribute

better picture recall to di�erences in the encoding of pictures and words: pictures share

fewer common perceptual features among themselves and therefore need to be discrim-

inated from a smaller set of possible alternatives than words. The greater number of

dictionary meanings or the greater lexical complexity of words create uncertainty and

confusion, and hence poorer recall.

� Dual-code theory: unlike the common-code approach, this theory postulates that lan-

guage and knowledge of worlds are represented in functionally distinct verbal and non-

verbal memory systems. The verbal system is specialized for dealing with linguistic

information whereas the non-verbal stores perceptual information. The most evident ex-

amples of dual process theory can be found in experiences that we have all had at some

time or the other: we meet someone, know them to be familiar but do not know who

they are; we recognize a melody, but fail to remember its name or when or where we

heard it before; we read a line of a poem, know it, but do not know where we have read it

before, much less the title or author of the poem. In all these cases, we experience a sense

of familiarity, but have | at least at �rst | no access to any contextual or conceptual

information [Man91].

Dual code theory suggests that there are qualitative di�erences between the ways words

and pictures are processed during memory and hypothesizes that the reason for supe-

rior picture memory is that pictures automatically engage multiple representations and

associations with other knowledge about the world, thus encouraging a more elaborate

encoding than occurs with words [PRS68, Pai71].

� Abstract-propositional theory: in contrast to the dual-code approach, this theory rejects

any notion of sophisticated distinctions between verbal and nonverbal modes of repre-

sentation, but instead describes representations of experience or knowledge in terms of

18

an abstract set of relations and states, called propositions. This theory postulates that

better free recall with pictures may be due to even more elaborative encoding e�ects

than those suggested by dual-code theorists. Propositional theorists view the involve-

ment of abstractive and interpretive processes in picture memory as the explanation for

the picture e�ect [Mad83]. Therefore, a series of line drawings will be poorly remembered

if a subject is unable to interpret the drawings in a meaningful way, whereas memory

for the same drawings, presented in the same way will be much better if a conceptual

interpretation is provided, and it this interpretive process which is responsible for better

picture memory recall.

While the strongest evidence thus far for the picture e�ect can be best explained by dual-

code theory (see [Man91]), an understanding of picture memory and the means by which we

acquire and maintain information about the visual environment is still an ongoing challenge.

Nonetheless, the research to date provides strong arguments in terms of the memorability of

drawings over words in recognition tasks and hence its applicability to computer security.

19

B Examples

1 1
p e n d o w n
repeat 4
r ight
e n d
repeat 4
d o w n
e n d
repeat 4
left
e n d
repeat 4
u p
e n d
p e n u p

1 1
pendown
repeat 4
down
end
right
r ight
up
up
down
down
right
r ight
repeat 4
up
end
penup

(a) (b)

2 2 end
pendown right
repeat 2 r ight
r ight pendown
down left
left left
end penup
penup
right
r ight
down
pendown
left
left
penup
repeat 4
up

1 1 repeat 3
repeat 2 up
pendown end
down right
r ight end
up pendown
penup repeat 4
left down
repeat 3 end
down penup
end
pendown
down
right
up
penup

(c) (d)

1 1 repeat 2 repeat 4
pendown penup right
penup down end
repeat 4 left pendown
right pendown penup
end end
pendown penup
penup right
down right
repeat 3 pendown
left penup
end down
pendown repeat 3
penup left
r ight end
right pendown
pendown penup

1 1 end penup
pendown repeat 4 up
repeat 4 r ight repeat 4
r ight end left
end pendown end
down down repeat 3
left repeat 4 left
up left pendown
left end penup
left up end
down right
left down
up left
penup left
repeat 3 up
down right

(e) (f)

Figure 5: The drawings above have complexities 15, 17, 24, 26, 39, and 42, respectively (recall that �nal pen-ups have

zero cost).

20

