
VisiNav: Visual Web Data Search and

Navigation

Andreas Harth⋆

National University of Ireland, Galway
Digital Enterprise Research Institute

Abstract. Semantic Web technologies facilitate data integration over
a large number of sources with decentralised and loose coordination,
ideally leading to interlinked datasets which describe objects, their at-
tributes and links to other objects. Such information spaces are amenable
to queries that go beyond traditional keyword search over documents. To
this end, we present a formal query model comprising six atomic opera-
tions over object-structured datasets: keyword search, object navigation,
facet selection, path traversal, projection, and sorting. Using these atomic
operations, users can incrementally assemble complex queries that yield
a set of objects or trees of objects as result. Results can then be either
directly displayed or exported to application programs or online services.
We report on user experiments carried out during the design phase of
the system, and present performance results for a range of queries over
18.5m statements aggregated from 70k sources.

1 Introduction

Keyword search over hypertext documents is an established technology and is
used by a large majority of web users [5]. Search engines are popular because i)
users are accustomed to the concept of hypertext: documents and links, and ii)
search engines employ a simple conceptual model: the engines return those doc-
uments that match the specified keywords. Search engines operate over millions
of documents which have been collected automatically, however, the function-
ality is limited: the engine returns only links to web pages but not directly the
actual answer or data items sought. Typical keyword phrases used for search are
insufficient to specify a complex information need since they consist mostly of
only a few words [5]; moreover, information expressed in documents in natural
language is ambiguous and thus hard to process automatically. Data formats
such as RDF1 provide more structure, however, there is the open question of
how end users should express complex queries over such datasets.

Natural language question answering interfaces are judged preferable to other
interfaces by users [10], however, are not in common use today because the ap-
proach is fraught with usability issues: despite user training with regards to the

⋆ Current affiliation: Institute AIFB, University of Karlsruhe (TH), Germany
1 Resource Description Framework, http://www.w3.org/RDF/



capabilities and limitations of a natural language system, users quickly develop
negative expectations about the system due to the relatively high error rates in
parsing and interpreting natural language [16]. Users are unable to understand
the limitations of such systems, that is, to distinguish between conceptual cov-
erage (i.e. does the dataset contain the answer?) and linguistic coverage (i.e. is
the system capable of parsing the query?).

A promising approach is to use a menu-based dialogue system in which users
incrementally construct the query [16] [18]. Offering only valid choices ensures
that the user can only pose queries which can be satisfied by the available data,
preventing empty result sets. Designing an interaction model and developing a
useable system for interrogating collaboratively-edited datasets raises a number
of challenges:

1. Intuitive Use: both occasional users and subject-matter experts should be
able to interact with the data immediately. The user interface should be
consistent and allow users to quickly derive results with a few clicks.

2. Universality: previous attempts at using structured information have been
restricted to manually crafted domain-specific datasets since the data on the
web lacked quantity (no general-domain information available) and quality
(no shared identifiers, no inter-linkage).

3. Zero Configuration: data on the web comes in an abundance of formats and
vocabularies. Consequently, manual intervention is a labour intensive task.
In addition, web data is often chaotic and may contain duplicates, erroneous
items, malformed syntax and incorrect formatting.

4. Scalability: since we target the web as a data source the system has to scale
competently, which has implications on the architecture and implementation
of the system.

5. User Satisfaction: the system should be visually appealing and users should
be able to import the results of their information seeking task into application
programs to get a sense of achievement immediately.

In this paper, we describe VisiNav, a fully implemented system2 based on
a visual query construction paradigm. The users of the system can construct
complex queries from several atomic operations. Our system is unique in that
it is the first system which offers these features in combination over datasets
collected from a large number of web sources. To leverage existing familiarity of
users with search engines, the first step in our interaction model is typically a
keyword search to locate objects. In subsequent steps, users refine their query
based on the navigation primitives; as such, the interaction model leads to an
explorable system that can be learned through experimentation. Since the system
calculates the possible next steps based on the current state, only legal choices
are displayed and thus the user can only compose queries which the system can
answer.

Our contributions are as follows:

2 http://visinav.deri.org/



– We define and formalise a set of atomic query operations on object-orientated
data models which can be combined to form complex queries.

– We introduce the notion of result trees which extend single-set results to
multiple result sets containing result paths.

– We describe the architecture and implementation of a prototype system to
investigate the practicality of the interaction model.

– We define the notion of topical subgraphs, subsets of the data which contain
both the answer to the query and auxiliary information required to derive
prospective choices and render the results.

– We propose a set of indices supporting the atomic operations and a query
processing algorithm with top-k processing, and present a performance eval-
uation of the system on a web dataset with 18.5m statements.

We provide an overview of the user interface and preliminary definitions in
Section 2, define and formalise the atomic operations and result trees in Section
3, present architecture and implementation in Section 4 and discuss experiments
and evaluation in Section 5. Section 6 covers related work, and Section 7 con-
cludes.

2 Overview and Preliminaries

In the following, we describe the characteristics of the target dataset collected
from the web, present example queries, and introduce the conceptual model and
the user interface.

2.1 Web Data

Common to data currently found on the web in structured formats (microfor-
mats, XML, RDF) is that data publishers take a loosely object-centred view.
RDF in particular uses URIs3 as global identifiers for objects, which, if multiple
sources reuse identifiers, leads to an interconnected object space encoded in a
graph-structured data format. Currently, reuse of identifiers is particularly com-
mon in social networking and social media data, expressed in FOAF4 for people,
SIOC5 for online community sites, and DC6 for documents. While a large num-
ber of current RDF files use a mix of these vocabularies, data publishers use
a plethora of other vocabularies. Our dataset7 of 18.5m statements from 70k
sources contains over 21k different vocabulary URIs.

Given the wide availability of information about people and communities,
we use the social network scenario to study user interfaces on collaboratively-
edited datasets. However, the interaction model and the implemented system are

3 Uniform Resource Identifiers, http://www.rfc-editor.org/rfc/rfc3305.txt
4 Friend-of-a-Friend, http://foaf-project.org/
5 Semantically Interlinked Online Communities, http://sioc-project.org/
6 Dublin Core, http://dublincore.org/
7 Crawled six hops from the seed URI http://www.w3.org/People/Berners-Lee/card

and with materialised authoritative inferences [7]



domain independent. We list a number of example queries – that can be answered
with currently available web data – with increasing complexity in Table 18. We
use these queries instantiated with different names and object URIs to conduct
performance tests in Section 5.

Query Description
1 objects matching the keyword phrase “tim berners-lee”
2 information available about timbl:i
3 objects foaf:made by timbl:i

4 sioc:Posts foaf:made by timbl:i

5 objects that timbl:i foaf:knows

6 objects foaf:made by objects that timbl:i foaf:knows

7 query 6, results sorted by dc:date

Table 1. Example queries. Users typically start with a keyword query (“tim
berners-lee”) and subsequently select the URI identifying the intended object.
Further choices are made from a menu of valid selections.

2.2 Conceptual Model

Our conceptual model for navigation assumes an object-oriented view, describing
objects (U), their attributes and links to other objects. Attributes of objects are
expressed using datatype properties (PD), and links to other objects are specified
using object properties (PO)9. Please note that there is no clear distinction
between instance-level objects and schema-level ones – classes and properties
can be instances themselves.

Users are able to search over the object space yielding objects as a result
set. Users can restrict the result set to objects matching specified facets - com-
binations of properties and objects or datatype values (L). In addition, query
operations can be used to navigate in the result set along object properties,
yielding another set of objects. The individual object sets form, in combination,
a result tree, and previous result sets can be used later in the search process.
The current result set can be modified by projecting out datatype properties
and sorting the object result set according to datatype properties. Users can
choose to display the result set in detail, list, and table view; optionally, a map,
timeline, or graph view are available if the result objects contain suitable infor-
mation for the view. Users are able to export the results to application programs
or services. We discuss each operation in detail in Section 3.

The interface in Figure 1 shows results for the query “objects foaf:made by
objects that timbl:i foaf:knows, sorted by dc:date” (Query 7). The results
displayed have been aggregated and integrated from multiple web sources.

8 timbl:i expands to http://www.w3.org/People/Berners-Lee/card#i; we assume
the standard namespace prefixes for foaf, sioc and dc

9 as specified in OWL, Web Ontology Language, http://www.w3.org/2004/OWL/



Query

Datatype

properties

Object

properties

Results

Export

View

Fig. 1. User interface displaying “objects foaf:made by objects that timbl:i

foaf:knows, sorted by dc:date” (Query 7). The interface consists of three main
sections: i) the current result set in the main content area, ii) the current query
in the top part and iii) the prospective choices on the left, divided into datatype
properties and object properties to reflect the different operations possible on
each.

3 Search and Navigation Operations

In the following we introduce our query operations and a grammar describing
how to compose complex queries from atomic operations, and present a formal-
isation of query results using trees.

3.1 Query Operations

– Keyword Search A search session can start with the user specifying key-
words to pinpoint objects of interest. The operation leads to an initial set
of results based on a broad matching of string literals connected to objects.
We perform matching on keywords without manually extending the query
for synonyms or other natural language processing techniques. Rather, we
leverage the noise in web data, ie. the fact that the same resource might be
annotated using different spellings or different languages.



– Object Navigation The object navigation operation is similar to follow-
ing a hypertext link in a web browser. The user either starts with a set of
results or a single result, and clicks on a node to bring it into focus. The
operation yields always a result set with a single element.

– Facet Selection Another way of restricting the result set is via selecting
facets. A facet is a combination of a property and a literal value or an
object (distinguishing between datatype and object properties). Facets are
calculated relative to the current result set. Based on derived facets, the user
can reformulate the query and obtain increasingly specific result sets.

– Path Traversal Rather than arriving at a single result by performing a
object navigation operation, users are also able to navigate along an object
property to establish a new set of results. Users can select an object property
which allows them to perform a set-based focus change, ie. they follow a
certain link, either from a single result or a set of results.

– Projection For views which display individual values of datatype proper-
ties (such as the table view), our framework includes a projection operation
to select only a number of datatype properties for display.

– Sorting Users are often required to sort the result set according to specific
datatype property values. In our model, users can select one or more sorting
criteria which can be applied to the current result set.

Users start a query building process via specifying a keyword or a URI of the
object to bring into focus. The Extended Backus-Naur Form grammar in Figure
2 describes how the individual operations can be combined (via interactions with
the user interface) to form complex queries.

<query> ::= <init> { <refine> | <modify> } ;

<init> ::= keyword search | object navigation ;

<refine> ::= <facet> | path traversal ;

<facet> ::= datatype facet | object facet;

<modify> ::= project | sort ;

keyword search ::= specify keyword ;

object navigation ::= specify object focus ;

datatype facet ::= restrict result by PD, L facet ;

object facet ::= restrict result by PO, U facet ;

path traversal ::= traverse path PO ;

project ::= add PD to projection criteria ;

sort ::= sort results according to PD ;

Fig. 2. EBNF grammar describing queries. Terminals describe end user actions.



3.2 Result Trees

Iterative application of the restriction and navigation operations leads to a set
of focus nodes R. Using one result set is sufficient for keyword searches, object
navigation (specifying a single-element result set), and faceted browsing (incre-
mentally reducing the size of the result set). The path traversal (or set-based
navigation) operation is different: often, users are interested in the objects on
the navigation path that led them to the current result set. Thus, the system
adds a new result set Ri whenever the user performes a path traversal operation.
The result of multiple path traversal operations are result sets R0 . . . Rn where
n is the number of path traversal operations in a query. Users are able to select
result sets R0 . . . Rn for display; Rn is the result set displayed as default.

Consider, for example, the query “objects foaf:made by objects that timbl:i
foaf:knows” (Query 6). That query yields three result sets R0, R1, R2. We as-
sume that the query was constructed in the following way: the user teleports to
Tim Berners-Lee R0 = timbl:i, from there performs a path traversal along the
foaf:knows property R1 = people that Tim knows, and from there again per-
form a path traversal along the foaf:made property yielding R2 = things made
by people Tim knows. When inspecting the results, users might be interested
not only in the things made by Tim’s acquaintances, but also in retaining the
connection between the things and the person who made them. To this end, we
incorporate the notion of result trees, ie. objects connected to each other based
on the path traversal steps performed. An example result tree is shown in Figure
3 below.

Tim Berners-Lee

Dan Brickley Henry Story Dan Connolly

FoaF Document for
Dan Brickley

Henry Story’s
FOAF file

del.ici.ous links
and notes

Semantic Web Tutorial
Using N3

Fig. 3. Partial result tree for query “objects foaf:made by objects that timbl:i
foaf:knows” (Query 6). Labels displayed instead of URIs for clarity.

4 Architecture and Implementation

To verify our ideas, we implemented a prototype system as a Java web appli-
cation. We present first the architecture, describe our indexing and query pro-
cessing component, explain how we generate a set of prospective choices for the
current result set, and finally describe the rendering pipeline.



4.1 System Architecture

The architecture is based on the Model-View-Controller (MVC) paradigm. The
Controller, implemented as servlet, receives queries from the users and retrieves
the topical subgraph (Section 4.2) from the database – we use top-k processing
over specialised index structures described in Section 4.3. The Model classes
parse the statements comprising the topical subgraph for the query into Java
objects and generate the set of prospective choices (Section 4.4). Finally, in the
View, the results are rendered and returned to the web browser (Section 4.5).
Optionally the user can request the results in a format suitable for import in
external services or applications.

4.2 Topical Subgraphs

We use the notion of a “topical subgraph”, which contains all information re-
quired to firstly display the results tree and secondly calculate possible next
steps for navigation. Figure 4 depicts a topical subgraph. To retrieve the topical
subgraph we first calculate the sets of focus nodes: the nodes directly match-
ing the query criteria. Then, we expand the sets by following outgoing links up
to a specified limit ǫ. The parameter ǫ denotes how much information in the
neighbourhood of the focus nodes should be returned as input to the subsequent
processing steps. In our current implementation we use ǫ = 2, however, applica-
tions might require larger portions of the graph to operate. To be able to track
the sources of a given piece of data, the topical subgraph refers to a directed
labeled graph of data with context [4] derived for a particular query.

Fig. 4. Topical subgraph for one focus node with ǫ = 1, 2, 3.

Please observe that our notion of topical subgraph does not contain in-links
to nodes. Given that the notion of directionality of links in semantic graphs
is both somewhat arbitrary and difficult to communicate to end users, we just



assume out-links from nodes. In case browsing is required both from and to
a node, we assume that a property is either specified as symmetric or has its
inverse property defined. Upon reasoning [7], a link is inferred in both directions.

4.3 Indexing and Query Processing

The query processing component performs top-k processing of the queries, based
on a set of rankings for all identifiers in the system. Top-k processing – which is
not sufficiently supported in current RDF query processors – is a crucial feature
for the application since the intermediate result sizes become large, leading to
performance degradation, and a simple cut-off of unranked identifiers leads to
suboptimal results. Ranking is out of scope for this paper, however, one can
assume a simple frequency-based ranking where the rank of an identifier depends
on how often the identifier occurs.

We devise a set of index structures to match the navigation primitives of-
fered to the user. Conceptually, our index structures match the <key, posting
list> structure known from Information Retrieval systems. The current proto-
type utilises the following indices:

– Statement Index (<subject, poc list>): store a list of predicate/object/context
tuples (poc) per subject. This index is used for topical subgraph lookups
where ǫ = 1.

– Path Index (<subject, path list>): store the topical subgraph with ǫ = 2
per subject. This index is used for topical subgraph lookups where ǫ = 2.

– Text Index (<term, subject list>): store a list of subjects per term. This
inverted index is used for keyword lookups, intersecting the postings list in
case of multiple search terms.

– Facet Index (<po, subject list>): store a list of subjects per facet (predi-
cate/object pair). The index is used for facet restrictions.

– Out-link Index (<sp, object list>): store a list of objects per subject/predicate
(sp) pair. The index is used for the path traversal operation.

The Statement Index in combination with the Path Index is used for topical
subgraph lookup. In case there is no Path Index available, or subgraphs with
ǫ > 2 are requested, the query processor computes the joins between Statement
Index and Path Index in a breadth-first manner.

The query processing is carried out as follows: execute each navigation op-
eration using the respective index, sort the posting lists according to the global
ranks, intersect the posting lists (starting with the smaller one), and look up the
topical subgraph for the resulting focus nodes. During query processing, each
navigation primitive is applied to an index, which returns a set of focus nodes,
which are in turn again used as input for the next operation. Lastly, the topical
subgraph for the final result set is retrieved, and returned as set of statements.
In case of path traversals, the topical subgraphs for the multiple result sets are
retrieved, and information to link together the objects on the results path is
added. We use the sets of statements abstractions rather than storing objects



directly to be able to optionally plug in an RDF store as the back-end, or perform
lookups on live RDF sources.

The Model component converts the information in the topical subgraphs to
Java objects that other components can conveniently process the data.

4.4 Computing Prospective Choices

The users should be able to refine their queries relative to the current result
set (now encoded in Java objects). The system computes prospective choices
(possible facets and path traversals) from the current result set. Similarly to
result sets, we rank the properties and also rank the values and objects that are
part of a facet based on their global rank.

4.5 Result Rendering Pipeline

Having processed and ranked the dataset, the View components prepare the
display of information to the user. The system can present the results using
different visualisation views, ie. detail view, list view, table view. The table view
is similar to a spreadsheet program, where users are allowed to specify projections
to show only selected properties of the returned objects. Depending on the types
of objects returned, a map view (for geographic coordinates) or a timeline view
(for objects with associated date) can be selected. In case users performed path
traversal operations, they can optionally select a graph view which renders the
result tree in a node-link diagram.

There are three ways of rendering results:

– Results display in the web browser: the web application renders the view in
XML; the browser then applies XSL and CSS to finally render the view to
the user.

– XML-based data export: the web application renders the view in XML and
returns the file to the requester.

– Text-based data export: the web application renders the results in plain text
returns the file to the requester.

In addition, the system offers to generate certain files in matching data for-
mats for subsequent processing by the user via software programs. For example,
geographic coordinates can be exported to KML10 or objects with associated
dates to iCalendar format (RFC 2445).

Displaying and exporting based on the result types requires export plug-
ins to process and convert the objects to the target file format. This is the
inverse to data integration systems where wrappers are used to convert the data
to a common data format. With Semantic Web data, the objects are already
described in the common data format RDF, so export plugins are becoming
important. The system currently allows to export objects containing RDF literals

10 Keyhole Markup Language, http://www.opengeospatial.org/standards/kml/



of type xsd:date in RSS and Timeline11 formats, geo:lat and geo:long in
KML, and result trees in JSViz12. We provide rendering views of these formats
in Timeline, Google Maps, and JSViz widgets directly in the user interface.

5 Experiments and Evaluation

We implemented a series of prototypes operating on a number of datasets to
validate and refine our design ideas. Our methodology was iterative: once we
received feedback on a version of the implementation, we incorporated the user
feedback into the next prototype. We tested the system on a number of datasets:
the Mondial database13 consisting of information about countries, an RDF ver-
sion of CrunchBase14 containing information about technology startups, and an
RDF web crawl, seven hops from a seed URI15, containing information mainly
about people. We first provide anecdotal evidence of the utility of our system,
and then present measurements evaluating the performance of query processing
and view rendering.

5.1 Iterative Design and Continuous Feedback

We initiated the design process using the Mondial dataset and several queries
(e.g. “islands in calabria”, “gdp of countries bordering italy”). We asked in total
ten participants to evaluate early versions of the interface design based on several
user tasks and a questionnaire. One session took around 20 minutes; we asked
users to interact with the system immediately without a training or introduction
phase since visitors to the web site would not receive training either.

The setup was the participants’ laptop together with a projector so that the
evaluator could track the user actions. We utilised the “thinking aloud” method
to gain insight into what the users would expect from the system. The results
were mixed: some users picked up quickly the conceptual model behind the user
interface and were able to complete all queries, while the majority were able to
retrieve the right answers only for about half of the queries.

The suggestions and comments of the first round of evaluations were taken
into account for subsequent versions of the interface, and a second round of
evaluations were conducted on a new user interface using a different dataset.
This time, we used CrunchBase as the dataset, and performed only a few tests
to verify the changes made were actually benefitting the users (which the small
study confirmed).

Finally, we performed a series of user tests with the current version of the
user interface on the web dataset with five participants. All five participants
were able to find the correct answers to queries over the web dataset (“find

11 http://simile.mit.edu/timeline/
12 JavaScript graph visualisation, http://www.jsviz.org/
13 http://www.dbis.informatik.uni-goettingen.de/Mondial/
14 http://cb.semsol.org/
15 http://www.w3.org/People/Berners-Lee/card



foaf:Person X”, “find foaf:Persons that X foaf:knows”, “find objects that
X foaf:made”). While the initial user studies have proved very valuable during
the design phase, we plan to conduct larger, more rigorous user studies.

5.2 Performance Evaluation

For the performance evaluation we use the queries from Table 1 as templates;
we inserted into the query templates the names and URIs of six selected people
for which a sizable amount of information is available. We measure separately
the time elapsed in query processing and rendering the view on the server; data
transmission time and rendering performance on the client are independent of
our method and thus not covered in the measurements. The measurements were
carried out on a machine with a 2.2GHz AMD Opteron CPU, 4GB of main
memory and a 160GB hard disk. The servlet container was Tomcat 5.5 in com-
bination with a Sun Java 1.6.0. Figure 5 shows the average performance of query
processing and view rendering.

 0

 1000

 2000

 3000

 4000

 5000

 6000

Q1 Q2 Q3 Q4 Q5 Q6 Q7

T
im

e 
in

 m
s

Query

604

1

27 1

66

577

577

query time
rendering time

Fig. 5. Average query processing and view rendering performance for queries
from Table 1. The numbers above the bars denote the average result sizes for
the final layer in the result tree.

The results indicate that the majority of time spent is on query processing;
we indeed removed a previous bottleneck due to the use of a method which
renders the XML in-memory rather than stream-based.

Queries with many path traversal steps (Q5 - Q7) are the most expensive
ones due to the join method used. We expect major performance improvements
by replacing the current hash join implementation with an index nested loops
join algorithm.



6 Related Work

NLMenu [16] is an early system advocating the use of multi-step query construc-
tion based on menus. Faceted browsing [18], while less expressive in terms of the
complexity of queries, has become popular and is used on e-commerce sites such
as Ebay.com. Polaris [15] provides complex query and aggregation operations,
however, operates over relational data and thus requires a priori knowledge about
the schema used.

A number of systems exist that operate over graph-structured data, which
range from quite basic browsing facilities (e.g. Disco16 allows only object navi-
gation) to systems allowing complex constructs such as negation [13] or nested
facets [17]. Table 2 provides a feature-set comparison of related systems.

S
ys

te
m

K
ey

w
or

d
s

F
ac

et
s

N
av

ig
at

io
n

R
es

u
lt
s

R
an

ki
n
g

C
on

fi
gu

ra
ti
on

D
at

a
so

u
rc

es

Flamenco [18] x x - set - manual one
Magnet [14] x x - set - schema one
MuseumFinland [9] x x - set - rules several
GRQL [1] - o x set - schema one
/facet [6] x x - set group-by auto one
BrowseRDF [13] x x - set facets auto one
ESTER [2] x x - set top-k auto one
TcruziKB [12] x - x set - schema several
Humboldt [11] x x x sets - auto one
Parallax [8] x x x sets - auto several
VisiNav x x x trees facets/top-k auto web

Table 2. Feature comparison of related systems.

In general, system designs have to balance a trade-off between ease of use
and query expressiveness. Our system uses the combined set of query primitives
offered by a range of established browsing and navigation systems for graph-
structured data, providing evidence that the selection of features in our system
represent a consensus in the community. This suggests that a sizeable user com-
munity is able to understand the operations.

The systems most closely related to our system in terms of features are GRQL
[1], Humboldt [11] and Parallax [8]. GRQL relies on schema information rather
than automatically deriving the schema from the data itself, a feature required
for web data which does not necessarily adhere to the vocabulary definitions.
GRQL lacks keyword search, a useful feature when operating on arbitrary data,

16 http://www4.wiwiss.fu-berlin.de/bizer/ng4j/disco/



since keywords are independent of any schema. Rather than allowing arbitrary
facets, GRQL allows to restrict based on the rdf:type predicate. GRQL is, to
our knowledge, the earliest system that provides functionality to perform set-
based navigation. Parallax [8] is a recent system which exhibits browsing features
similar to ours. However, Parallax operates over the Freebase dataset which is
manually curated; our system operates over RDF data collected from the web.
Parallax lacks ranking, a crucial feature when operating on web data. Our system
prioritises facets, navigation axes and results based on global ranks. Although
Parallax uses multiple result sets, the connections between the result sets are not
propagated to the level of the user interface; our system maintains result paths
in the results trees. Finally, we provide a set of export plug-ins which allows to
directly load result sets into application programs and online services for display
or further processing.

Regarding methodology, our system can be described in terms of the Se-
mantic Hypermedia Design Method [3]. We describe our abstract interface – the
information exchange between users and system – in terms of user operations,
formalised in EBNF, and result trees. Our concrete interface – the look and feel
– is implemented using a multi-layered rendering pipeline spanning server (RDF,
queries and XML) and client (XSLT and CSS).

7 Conclusion

Established efforts such as the Linked Open Data17 already provide large cor-
pora of structured data in various domains, and more efforts are underway18.
Projects such as FOAF and SIOC provide vocabularies and best practices, en-
abling both individuals and organisations to publish high-quality data on the
web. More structured and interlinked data, in combination with a search and
navigation system as presented in this paper, represents an opportunity to bring
novel and powerful ways for interacting with data to the web. To this end, we
have demonstrated VisiNav, a system based on a formal interaction model that
empowers users to search, browse, and navigate a large, domain-independent
dataset collectively created by a global user community. Future work includes
further improvements of the usability of the system; in particular we would like
to enhance the query response times and streamline the user experience based
on insights obtained through additional user testing.

Acknowledgements

I gratefully acknowledge the comments of the participants of the user stud-
ies, and discussions with Brian Davis, Renaud Delbru, Armin Haller, Aidan
Hogan, Sheila Kinsella, Axel Polleres, Rene Schubotz, and Jürgen Umbrich.
This work has been supported by Science Foundation Ireland under Grant No.
SFI/08/CE/I1380 (Lion-2).

17 http://linkeddata.org
18 e.g. http://openflydata.org/ and http://www.w3.org/2001/sw/hcls/



References

1. N. Athanasis, V. Christophides, and D. Kotzinos. Generating on the fly queries for
the semantic web: The ics-forth graphical rql interface (grql). In 3rd International

Semantic Web Conference, pages 486–501, Nov 2004.
2. H. Bast, A. Chitea, F. Suchanek, and I. Weber. Ester: efficient search on text, enti-

ties, and relations. In 30th ACM SIGIR Conference on Research and Development

in Information Retrieval, pages 671–678, 2007.
3. S. S. de Moura and D. Schwabe. Interface development for hypermedia applications

in the semantic web. In Joint Conference 10th Brazilian Symposium on Multimedia

and the Web & 2nd Latin American Web Congress, pages 106–113, 2004.
4. A. Harth and S. Decker. Optimized index structures for querying rdf from the

web. In 3rd Latin American Web Congress, pages 71–80, 2005.
5. M. Henzinger. Search Technologies for the Internet. Science, 317(5837):468–471,

2007.
6. M. Hildebrand, J. van Ossenbruggen, and L. Hardman. /facet: A browser for

heterogeneous semantic web repositories. In 5th International Semantic Web Con-

ference, pages 272–285, Nov 2006.
7. A. Hogan, A. Harth, and A. Polleres. Saor: Authoritative reasoning for the web.

In 3rd Asian Semantic Web Conference, pages 76–90, 2008.
8. D. F. Huynh and D. Karger. Parallax and companion: Set-

based browsing for the data web. Available online (2008-12-15)
http://davidhuynh.net/media/papers/2009/www2009-parallax.pdf.

9. E. Hyvnen, E. Mkel, M. Salminen, A. Valo, K. Viljanen, S. Saarela, M. Junnila,
and S. Kettula. Museumfinland – finnish museums on the semantic web. Journal

of Web Semantics, 3(2):25, 2005.
10. E. Kaufmann and A. Bernstein. How useful are natural language interfaces to the

semantic web for casual end-users? In 6th International Semantic Web Conference,
pages 281–294, Nov 2007.

11. G. Kobilarov and I. Dickinson. Humboldt: Exploring linked data. In Linked Data

on the Web Workshop, 2008.
12. P. Mendes, B. McKnight, A. Sheth, and J. Kissinger. Tcruzikb: Enabling complex

queries for genomic data exploration. IEEE International Conference on Semantic

Computing, pages 432–439, Aug. 2008.
13. E. Oren, R. Delbru, and S. Decker. Extending faceted navigation for rdf data. In

5th International Semantic Web Conference, Nov 2006.
14. V. Sinha and D. R. Karger. Magnet: supporting navigation in semistructured data

environments. In ACM SIGMOD International Conference on Management of

Data, pages 97–106, 2005.
15. C. Stolte, D. Tang, and P. Hanrahan. Polaris: A system for query, analysis, and

visualization of multidimensional relational databases. IEEE Transactions on Vi-

sualization and Computer Graphics, 8(1):52–65, 2002.
16. C. W. Thompson, K. M. Ross, H. R. Tennant, and R. M. Saenz. Building us-

able menu-based natural language interfaces to databases. In 9th International

Conference on Very Large Data Bases, pages 43–55, 1983.
17. M. Tvarozek and M. Bielikova. Adaptive faceted browser for navigation in open

information spaces. In 16th International Conference on World Wide Web, pages
1311–1312, 2007.

18. K.-P. Yee, K. Swearingen, K. Li, and M. Hearst. Faceted metadata for image search
and browsing. In SIGCHI Conference on Human factors in Computing Systems,
pages 401–408, 2003.


