
STABILITY ANALYSIS FOR A CLASS OF NONLINEARSWITCHED SYSTEMSBo Hu1 Xuping Xu 2 Anthony N. Michel 3 Panos J. AntsaklisDepartment of Electrical EngineeringUniversity of Notre DameNotre Dame, IN 46556, U.S.A.AbstractIn the present paper, we study several qualitativeproperties of a class of nonlinear switched systems un-der certain switching laws. First, we show that if allthe subsystems are linear time-invariant and the sys-tem matrices are commutative componentwise and sta-ble, then the entire switched system is globally expo-nentially stable under arbitrary switching laws. Next,we study the above linear switched systems with certainnonlinear perturbations, which can be either vanishingor non-vanishing. Under reasonable assumptions, globalexponential stability is established for these systems.We further study the stability and instability properties,under certain switching laws, for switched systems withcommutative subsystem matrices that may be unstable.Results for both continuous-time and discrete-time casesare presented.I. IntroductionSwitched systems are hybrid systems that consist of sev-erals subsystems and are controlled by switching law.These switching laws may be either supervised or unsu-pervised, and may be time-driven or event-driven. Re-cently, there has been increasing interest in the stabilityanalysis of such systems ([1]-[8]).The methodologies used in studying switched sys-tems are very diverse. For example, multiple Lya-punov functions were employed to establish certain gen-eral Lyapunov-like results for both linear time-invariantswitched systems [1] and nonlinear switched systems [2],and Linear Matrix Inequality (LMI) techniques were for-mulated to study stability and robust stability problems[5]. In [6], a class of general nonlinear switched systemswere treated as a special case of sampled-data controlsystems with multiple sampling periods and some sta-bility criteria were obtained. A conic switching law wasproposed in [7], [8] to study second-order linear time-invariant switched systems, which was shown to be very1Supported in part by a Center of Applied Mathematics Fel-lowship, University of Notre Dame.2Supported in part by a Center of Applied Mathematics Fel-lowship, University of Notre Dame.3Corresponding author. Supported in part by an Alexandervon Humboldt Foundation Senior Research Award, Institut f�urNachrichtentechnik, Ruhr{Universit�at Bochum, Germany.

e�cient. However, this conic switching law does notseem to be applicable to higher dimensional problems.In [4], recent developments in the study of these issuesis summarized in detail.In the present paper, we propose an approach tostudy the stability properties of a speci�c class of non-linear switched systems which di�ers signi�cantly fromthe existing works. The switched systems under inves-tigation in the present paper consist of dominant linearparts, for which the matrices are commutative, and cer-tain nonlinear perturbation terms. We demonstrate thatunder reasonable assumptions, the qualitative proper-ties of the above linear time-invariant switched systemsare preserved if the perturbation terms are su�ciently\small".The paper is organized as follows. In Section 2, thestability analysis for continuous-time switched systemsis conducted, while in Section 3, similar results are es-tablished for discrete-time switched systems.II. Continuous-Time Switched SystemWe will consider three general cases for the class ofswitched systems considered.Case 1: All the dominant subsystems are lineartime-invariant and Hurwitz stableConsider linear switched systems described by equa-tions of the form_x(t) = Aix(t); i = 1; 2; � � � ;m; (2.1)where m � 2 is an integer and x(t) 2 Rm1 , Ai 2Rm1�m1 .In the following, we will always assume that the so-lutions of (2.1) are right di�erentiable. We will use thenotation fikgk�0 � f1; 2; � � � ;mg to denote the switch-ing sequence and we let [tk; tk+1) denote the time periodover which the ik-th subsystem is activated. Assumethat(A1) limk!1 tk =1;(A2) the Ai's are all Hurwitz stable, i.e., for each i, allthe eigenvalues of matrix Ai lie in the left-half complexplane;(A3) AiAj = AjAi for all i 6= j.We have the following result.Theorem 2.1. Assume that hypotheses (A2)-(A3) aretrue. Then the equilibrium xe = 0 of switched sys-
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Figure 1: Phase plot of the switched system in Example2.1 with initial value x1(0) = x2(0) = 0:2.tem (2.1) is globally exponentially stable under arbitraryswitching laws satisfying (A1).Proof : Since the Ai's are Hurwitz stable, it is well-known that there exist constants ki; � > 0, such that foreach i = 1; 2; � � � ;m, the following inequality holds:keAitk � kie��t; i = 1; 2; � � � ;m: (2.2)Now, for any initial condition (t0; x0) (Without loss ofgenerality, we assume in the sequel that t0 � 0) andt 2 [tk; tk+1), we havex(t) = eAik (t�tk)eAik�1 (tk�tk�1) � � � eAi1 (t2�t1)eAi0 (t1�t0)x0:If Ti(t0; t), i = 1; 2; � � � ;m; denotes the total time thatthe i-th subsystem is activated during the time t0 to t,then we have thatPmi=1 Ti(t0; t) = t� t0. Since the Ai'sare commutative pairwise, we rewrite the above expres-sion as x(t) = eA1T1(t0;t) � � � eAmTm(t0;t)x0: (2.3)By (2.2), we havekx(t)k � (Qmi=1 ki)e��(T1(t0;t)+���+Tm(t0;t))kx0k= (Qmi=1 ki)e��(t�t0)kx0k; which implies that switchedsystem (2.1) is globally exponentially stable under arbi-trary switching laws. 2It is natural to ask whether the above result remainstrue if the subsystem matrices of (2.1) do not commutepairwise. The answer is in general not true. Counterex-amples can be found in [3] and [7]. Using the reversedconic switching law as proposed in [7], we know thateven when every subsystem has stable foci, the entiresystem may still not be asymptotically stable under ar-bitrary switching laws. The following example showsthat there exist certain switching laws which make aswitched system unstable even though the subsystemshave stable foci.

Example 2.1. Consider the switched system (2.1) withm = 2, andA1 = � �1 �132 �3 � ; A2 = � 1 �210 �3 � :For initial point (x1(0); x2(0))T = (0:2; 0:2)T , we incor-porate the following inverse conic switching law: when-ever the trajectory is inside the region of subsystemi (which is partitioned by two straight lines: x2 =0:0097x1 and x2 = 3:734x1, as depicted in Figure 1),subsystem Ai is employed until the trajectory intersectsthe above boundary lines. Then another subsystem willbe activated. From the phase plot, we know that thetwo subsystems with stable foci are made unstable bythe switching law speci�ed above. 2We may now ask: what happens if all the subsys-tems are \almost commutative"? In the following, westudy the qualitative properties of system (2.1) undercertain perturbations, which may either be vanishing ornon-vanishing. Thus, we consider switched nonlinearsystems described by equations of the form_x(t) = Aix(t) + fi(t; x(t)); i = 1; 2; � � � ;m; (2.4)where the perturbation term fi are either vanishing inthe sense thatkfi(t; x(t))k � kx(t)k; i = 1; 2; � � � ;m; (2.5)or are non-vanishing in the sense thatkfi(t; x(t))k � kx(t)k+ �(t); i = 1; 2; � � � ;m; (2.6)where  is a constant and �(�) is a nonnegative Lebesgueintegrable function such that R10 e���(�)d� <1, where� is the constant given in (2.2) or will be speci�ed later.Theorem 2.2. Assume that there exist constants ki,�,  > 0 and a nonnegative Lebesgue integrable func-tion �(�) such that conditions (2.2) and (2.6) hold. Ifhypotheses (A2)-(A3) are true, then for switched sys-tem (2.4) with initial condition (t0; x0), under arbitraryswitching law satisfying (A1), it is true thatkx(t)k � K0(Z 10 e���(�)d� + kx0k)e�(��K0)(t�t0)(2.7)where K0 = Qmi=1 ki. Therefore, under the conditionthat  < �K0 , if �(t) � 0, then xe = 0 is an equilibriumwhich is globally exponentially stable. Otherwise, theentire system is uniformly bounded and and the solu-tions converge to the origin exponentially.Proof : For t 2 [tk; tk+1), we havex(t1) = eAi0 (t1�t0)x0 + Z t1t0 eAi0 (t1��)fi0(�; x(�))d�;x(t2) = eAi1 (t2�t1)x(t1) + Z t2t1 eAi1 (t2��)fi1(�; x(�))d�= eAi1 (t2�t1)+Ai0 (t1�t0)x0



+ Z t1t0 eAi1 (t2�t1)+Ai0 (t1��)fi0(�; x(�))d�+ Z t2t1 eAi1 (t2��)fi1(�; x(�))d�;and by induction, we obtain thatx(t) = eAik (t�tk)+Aik�1 (tk�tk�1)+���+Ai1 (t1�t0)x(t0)+ R t1t0 eAik (t�tk)+Aik�1 (tk�tk�1)+���+Ai0 (t1��)fi0(�; x(�))d�+ R t2t1 eAik (t�tk)+Aik�1 (tk�tk�1)+���+Ai1 (t2��)fi1(�; x(�))d�+ � � �+ R tktk�1 eAik (t�tk)+Aik�1 (tk��)fik�1(�; x(�))d�+ R ttk eAik (t��)fik(�; x(�))d�: (2.8)Grouping the elapsed time intervals for each subsystemas in the proof of Theorem 2.1, we have, since ki � 1,kx(t)k � K0[e��(t�t0)kx0k+ R t1t0 e��(t��)(kx(�)k+�(�))d� + � � �+ R tktk�1 e��(t��)(kx(�)k+ �(�))d�+ R ttk e��(t��)(kx(�)k+ �(�))d� ]:Therefore,kx(t)ke�t � K0e�t0kx0k+K0 R tt0 e�� (kx(�)k+ �(�))d�� K0(R10 e���(�))d� + e�t0kx(t0)k)+K0 R tt0 e��kx(�)kd�:By the Gronwall inequality (see, e.g., [9]), we havekx(t)k � K0(R10 e���(�)d� + e�t0kx0k)eK0(t�t0)e��t� K0(R10 e���(�)d� + kx0k)e�(��K0)(t�t0):This proves the theorem. 2Application to switched interval systemsConsider switched interval systems described byequations of the form_x(t) = Bix(t) 4= (Ai +�Ai)x(t); i = 1; 2; � � � ;m; (2.9)where for each i, the interval matrix Bi is centered atAi entrywise, with radii dir(i)kl2 (di > 0, r(i)kl � 0; k; l =1; 2; � � � ;m1), at the (k; l)-entry.In order to guarantee the global exponential stabil-ity of interval switched systems (2.9), we need to addsome constraints on the radii. Let d = max1�i�m di.Then by Theorem 2.2, under the condition thatmax1�i�m k�Aik � dmax1�i�m(Pnk;l=1(r(i)kl )2) 12 <�K0 , i.e., d < �K0 min1�i�m( nXk;l=1(r(i)kl )2)� 12 ;the switched interval system (2.9) is globally exponen-tially stable.Case 2: All subsystem matrices are unstable,but the corresponding negative subsystemmatrices are Hurwitz stable

Rather than (A2), we now assume that the followingassumption holds for switched system (2.1):(A4) �Ai is Hurwitz stable for i = 1; 2; � � � ;m.Suppose that there exist constants ki; � > 0 suchthat ke�Aitk � kie��t; i = 1; 2; � � �m: (2.10)We have the following result.Theorem 2.3. Assume that there exist constantski; �;  > 0 such that conditions (2.5) and (2.10) hold.If hypotheses (A3) and (A4) are true, then for switchedsystem (2.4) with initial condition (t0; x0), and underarbitrary switching law satisfying (A1), it is true thatkx(t)k � 1K0 e(�� K0 )(t�t0)kx0k: (2.11)Therefore, if � > K0 , then the switched system is expo-nentially unbounded.Proof : The proof can be given by reversing theprocess in the proof of Theorem 2.2. It is omitted dueto space limitation. 2Note that in the above theorem, condition (2.5) in-stead of (2.6) is used.Case 3: Mixed-type switched systemsWhen the switched systems consist of both stableand unstable subsystems, their qualitative analysis be-comes more di�cult. In such cases, the trajectory be-havior depends greatly on the switching law.Example 2.2. Consider the switched system describedby_x(t) = Aix(t); A1 = � 2 00 �2 � ; A2 = � �4 00 1 � :It is not di�cult to show that under di�erent switchinglaws, the properties of the solutions of this system varysigni�cantly. Assume that T > 0 is a constant:i) if subsystemsA1 andA2 are activated alternativelywith the same duration T , then the entire system isexponentially stable;ii) if subsystems A1 and A2 are activated alterna-tively with durations T and 2T , respectively, then theentire system is uniformly stable but not asymptoti-cally stable;iii) if subsystems A1 and A2 are activated alterna-tively with durations T and 3T , respectively, then theentire system is unstable. 2From above we conclude that, in order to study thequalitative properties of the switched systems of thepresent case, the switching law has to be speci�ed. De-note fAi : i = 1; 2; � � � ;mg = fA�i : i = 1; � � � ; r1g [fA+i : i = r1 + 1; � � � ;mg; where 1 � r1 � m � 1 is aninteger, the A�i 's are Hurwitz stable, while the A+i 's arenot. Assume that there exist ki; �1; �2 > 0 such thatkeA�i tk � kie��1t; i = 1; 2; � � � r1 (2.12)keA+i tk � kie�2t; i = r1 + 1; � � �m: (2.13)



In [�; t], let T�(�; t) (resp., T+(�; t)) denote the to-tal time period that stable subsystems from fA�i : i =1; � � � ; r1g (resp., unstable subsystems from fA+i : i =r1 + 1; � � � ;mg) are activated. In the next result, weassume that(A5) the switching law guarantees that for any giveninitial time t0, inft�t0 T�(t0;t)T+(t0;t) = q > �2�1 , where �1 and�2 are speci�ed in (2.12) and (2.13).Theorem 2.4. Assume that there exist constantski; �1; �2 > 0 and such that conditions (2.12), (2.13)hold. If hypothesis (A3) is true, then for switchedsystem (2.1) with initial condition (t0; x0), and un-der any switching law satisfying (A1) and (A5), thenkx(t)k � K0e��(t�t0) with � = �1q��21+q .Proof : Notice that under assumption (A5), it istrue that��1T�(t0; t) + �2T+(t0; t) � �(�1 � �2q )T�(t0; t)� �(�1 � �2q ) q1+q (t� t0) = ��(t� t0):Thus, the inequality in the above theorem can be deriveddirectly from (2.8). 2In the presence of perturbations, we have similar re-sults to Theorem 2.2, yet we need to add more restrictivecondition (A6) on switchings.(A6) Let t10 < t20 < t11 < t21 < : : : < t1i < t2i < : : :(limi!1 ti = +1) be the time instants such that forswitched system (2.1) only in intervals [t1i ; t2i ) is one ofthe unstable subsystems A+i activated. Assume thatinf i�0 t1i+1�t2it2i�t1i = q > �2�1 , supift2i � t1i g = T < 1 andt10 � t0 � T1, where T1 > 0 is a constant and �1 and �2are speci�ed in (2.12) and (2.13).We have the following result.Theorem 2.5. Assume that there exist constantski; �1; �2 > 0 and a nonnegative Lebesgue integrablefunction �(�) such that conditions (2.12), (2.13) and(2.6) (with � = �1q��21+q ) hold. If  < �K0 (whereK0 = Qmi=1 ki) and hypothesis (A3) is true, then forswitched system (2.4) with initial condition (t0; x0),there exist constants c1; c2; c3 > 0 such that under anyswitching law satisfying (A1) and (A6), for t 2 [t1i ; t1i+1),i = 0; 1; : : :, the following estimate holds.kx(t)k � (c1kx0k+ c2 Z 10 e���(�)d�)e�(��K0)(t�t0)+c3e��t Z t1i+(q+1)Tt1i e���(�)d�: (2.14)Therefore, if �(t) � 0, then xe = 0 is an equilibriumwhich is globally exponentially stable. Otherwise, theentire system is uniformly bounded and the solutionsconverge to the origin exponentially.Proof : We calculate the following three numberedinequalities and then combine them together.First, for t 2 [t2i + q(t2i � t1i ); t1i+1], let (t0; x0) =

(t10; x(t10)) in (2.8), we have the following inequality.kx(t)k � K0e��1T�(t10;t)e�2T+(t10;t)kx(t10)k+K0 R t1t10 e��1T�(�;t)e�2T+(�;t)(kx(�)k+ �(�))d� + � � �+K0 R tktk�1 e��1T�(�;t)e�2T+(�;t)(kx(�)k+ �(�))d�+K0 R ttk e��1T�(�;t)e�2T+(�;t)(kx(�)k+ �(�))d�;(2.15)where t1; : : : ; tk are the time instants (between t10 and t)at which certain subsystem is enabled. Under assump-tion (A6), for � 2 [tj�1; tj ] (j = 0; 1; : : : ; k), we musthave��1T�(�; t) + �2T+(�; t) � �(�1 � �2q )T�(�; t)� �(�1 � �2q ) q1+q (t� �) = ��(t� �):Thus, (2.15) yields kx(t)k � K0e��(t�t10)kx(t10)k +K0 R tt10 e��(t��)(kx(�)k+ �(�))d�; which implies thatkx(t)k � K0(R1t10 e���(�)d� + kx(t10)k)e�(��K0)(t�t10):(2.16)(If for some i, t1i+1�t2i = q(t2i �t1i ), the above inequalitystill holds for t = t1i+1. We can simply derive this byallowing the last activated stable subsystem (before t =t1i+1) to be held until t > t1i+1.)Next, for t 2 [t0; t10), only the stable subsystems areactivated, similar to the above arguments, we obtainthat kx(t)k � K0e��1(t�t0)kx0k+K0 R tt0 e��1(t��)(kx(�)k+ �(�))d�:Using Granwall inequality, we havekx(t)k � (K0kx0k+K0 Z t10t0 e�1��(�)d�)e(��1+K0)(t�t0):Therefore,kx(t10)k � K0kx0k+K0 Z T10 e�1��(�)d�: (2.17)For t 2 [t1i ; t2i + q(t2i � t1i )), let t0 = t1i in (2.8), wehave the following estimatekx(t)k � K0e�2(t�t1i )kx(t1i )k+K0 R tt1i e�2(t��)(kx(�)k+ �(�))d�;which implies thatkx(t)k �(K0kx(i1)k+K0 R t2i+q(t2i�t1i )t1i �(�)d�)e(�2+K0)(t�t1i )� ~c1kx(t1i )k+ ~c2e��t R t1i+(q+1)Tt1i e���(�)d�; (2.18)where ~c1; ~c2 > 0 are two constants.



Combining inequalities (2.16), (2.17) and (2.18), weknow that inequality (2.14) holds. 2Similar inequality results can be established as The-orem 2.3 to Theorem 2.2.Remark 2.1. It is always easy to choose a switch-ing law that satis�es either (A5) or (A6). For example,the switching law can be chosen as follows: beginningwith a stable subsystem, we alternatively require thateach stable subsystem be activated for a time periodbetween 3�2T to 4�2T , while each unstable subsystembe activated for a time period between �1T to 2�1T ,where T > 0 is a given constant. In fact, we do notrequire that all the activating time periods be uniformlybounded as time elapses. 2Remarks 2.2. Some of the above results can be gen-eralized to switched systems that do not possess com-mutative properties by using switching laws based onaverage dwell time (see, e.g., [10], [11]). 2III. Discrete-Time Switched SystemFor discrete-time switched systems, we can studysimilar problems as was done in Section 2.Consider discrete-time switched systems describedby di�erence equations of the formz[n+ 1] = Diz[n]; i = 1; 2; � � � ;m (3.1)where m � 2 is an integer, z[n] 2 Rm1 , Di 2Rm1�m1 ; i = 1; 2; � � � ;m. As in the continuous-timecase, we use the notation fikgk�0 � f1; 2; � � � ;mg to de-note the switching sequence and we let [nk; nk+1)\N =fnk; nk + 1; � � � ; nk+1 � 1g denote the discrete-time in-stants when the ik-th subsystem is activated. Withoutloss of generality, we assume that in the subsequent dis-cussion n0 � 0. Assume that(B1) theDi's are Schur stable, i.e., there exist constantski � 1, 0 < r < 1 such thatkDni k � kirn; i = 1; 2; � � � ;m: (3.2)(B2) DiDj = DjDi for all i 6= j.We have the following result.Theorem 3.1. Assume that (B1) and (B2) are true.Then the equilibrium ze = 0 of switched system (3.1)is globally exponentially stable under arbitrary switchinglaw.Proof : Similar to the proof of Theorem 2.1. Omit-ted. 2Next, we endow system (3.1) with perturbationterms. Thus, we consider perturbed switched systemsdescribed by equations of the formz[n+ 1] = Diz[n] + gi(n; z[n]); i = 1; 2; � � � ;m; (3.3)with either vanishing perturbations described bykgi(n; z[n])k � pkz[n]k; i = 1; 2; � � � ;m (3.4)

or non-vanishing perturbations described bykgi(n; z[n])k � pkz[n]k+ q[n]; i = 1; 2; � � � ;m; (3.5)where p > 0 is a constant and fq[n]gn�0 is a nonnegativesequence satisfying the condition P1j=0 r�jq[j] < 1,where r is either the constant in (3.2) or will be speci�edlater.Theorem 3.2. Under hypotheses (B1) and (B2), as-sume that (3.5) holds. Then for switched system (3.3)with initial value (n0; z0), and under arbitrary switchinglaw, it is true thatkz[n]k � K0((1 + pr )kz0k+ 1Xj=0 r�j�1q[j])(pK0 + r)n�n0 (3.6)where K0 = Qmi=1. Therefore, under the condition thatp < 1�rK0 , if q[n] = 0 for n � n0, ze = 0 is an equi-librium of switched system (3.3) and is globally expo-nentially stable. Otherwise, the entire system is uni-formly bounded and the solution satis�es the conditionlimn!1 z[n] = 0.Proof: By induction, for nk � n < nk+1, we havez[n0 + 1] = Di0z[n0] + gi0(n0; z[n0]);z[n0 + 2] = Di1z[n1] + gi1(n1; z[n1])= D2i0z[n0] +Di0gi0(n0; z[n0]) + gi1(n1; z[n1]);� � �z[n1] = Dn�n0i1 z[n0] +Dn1�n0�1i0 gi0(n0; z[n0])+Dn1�n0�2i0 gi0(n0 + 1; z[n0 + 1]) + � � �+gi0(n1 � 1; z[n1 � 1]);� � �z[n] = Dn�nkik Dnk�nk�1ik�1 � � �Dn1�n0i0 z[n0]+Dn�nkik Dnk�nk�1ik�1 � � �Dn1�n0i0 gi0(n0; z[n0]) + � � �+Dn�nkik Dnk�nk�1ik�1 � � �Dn2�n1i1 gi0(n1 � 1; z[n1 � 1])+Dn�nkik Dnk�nk�1ik�1 � � �Dn2�n1�1i1 gi0(n1; z[n1])+ � � �+Dn�nkik � � �Dn3�n2i2 gi1(n2 � 1; z[n2 � 1])+ � � �+Dn�nkik Dnk�nk�1�1ik�1 gik�1(nk�1; z[nk�1])+ � � �+Dn�nkik gik�1(nk � 1; z[nk � 1])+Dn�nk�1ik gik (nk; z[nk])+ � � �+ gik(n� 1; z[n� 1]): (3.7)By (3.2) and (3.7), we have thatkz[n]k � K0(rn�n0kz[n0]k+ rn�n0�1(pkz[n0]k+ q[n0])+rn�n0�2(pkz[n0 + 1]k+ q[n0 + 1]) + � � �+(pkz[n� 1]k+ q[n� 1])):Therefore,r�nkz[n]k � K0r�n0(1 + pr )kz[n0]k+K0r Pn�1j=n0 r�j�1q[j] + K0pr (r�(n�1)kz[n� 1]k+r�(n�2)kz[n� 2]k+ � � � r�(n0�1)kz[n0 + 1]k)� K0r�n0 (1 + pr )kz[n0]k+K0P1j=0 r�j�1q[j]+K0pr (r�(n�1)kz[n� 1]k+ r�(n�2)kz[n� 2]k+ � � � r�(n0�1)kz[n0 + 1]k): (3.8)



We require the following intermediate lemma to pro-ceed.Lemma 3.1. If for a nonnegative sequence fy[n]gn�0,there exist two constants h0; h1 > 0 such that for everyn � n0 (n0 �xed) the inequality: y[n] � h0 + h1(y[n �1] + y[n� 2] + � � �+ y[n0+1]) holds, then y[n] � h0(1+h1)n�n0�1 for n � n0+1; If there exist two constantsh0; h1 > 0 such that for every 0 � n0 < n (n �xed) theinequality: y[n0] � h0+h1(y[n0+1]+y[n0+2]+� � �+y[n�1]) holds, then y[n0] � h0(1 + h1)n�n0�1 for n0 �n� 1:Proof: By induction. Omitted due to space limita-tion. 2By the �rst part of the above lemma and the inequal-ity (3.8), we obtain thatr�nkz[n]k � (K0r�n0(1 + pr )kz[n0]k+K0 1Xj=0 r�j�1q[j])(1 + K0pr )n�n0 ;which implies thatkz[n]k � K0((1 + pr )kz[n0]k+ 1Xj=0 r�j�1q[j])(r +K0p)n�n0 :Thus, Theorem 3.2 follows. 2When all the eigenvalues of Di lie outside the unitdisc, we have the following result.Theorem 3.3. Assume that there exist constantski � 1, 0 < r < 1, p > 0 such that kD�ni k � kirnfor i = 1; 2; � � � ;m and (3.4) holds. If hypothesis (B2) istrue and K0pr < 1, then for switched system (3.3) withinitial value (n0; z0), the inequalitykz[n]k � 1K0 (1�K0prr )n�n0kz0k: (3.9)holds. Therefore, if p < 1�rK0r , then the equilibrium ze =0 of switched system (3.3) is exponentially unstable.Proof: By (3.7), we have thatz[n0] = (D�1ik )n�nk (D�1ik�1)nk�nk�1 � � � (D�1i0 )n1�n0z[n]�(D�1ik )n�nk (D�1ik�1)nk�nk�1 � � � (D�1i0 )n1�n0�gik(n� 1; z[n� 1])� � � ��(D�1ik )(D�1ik�1 )nk�nk�1 � � � (D�1i0 )n1�n0gik (nk; z[nk])�(D�1ik�1)nk�nk�1 � � � (D�1i0 )n1�n0gik(nk � 1; z[nk � 1])� � � � � (D�1ik�1)(D�1ik�2 )nk�1�nk�2 � � � (D�1i0 )n1�n0�gik�1(nk�1; z[nk�1])� � � ��(D�1i1 )n2�n1(D�1i0 )n1�n0gi1(n2 � 1; z[n2 � 1])� � � � � (D�1i1 )(D�1i0 )n1�n0gi1(n2 � 1; z[n2 � 1])�(D�1i0 )n1�n0gi0(n1 � 1; z[n1 � 1])� � � � � (D�1i0 )gi0(n0; z[n0]):Therefore, we obtain that kz[n0]k � K0(rn�n0kz[n]k+prn�n0kz[n� 1]k+ � � �+ prkz[n0]k), i.e.,
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