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Abstract—This paper presents a multiobjective optimization
model of wind turbine performance. Three different objectives,
wind power output, vibration of drive train, and vibration of
tower, are used to evaluate the wind turbine performance. Neural
network models are developed to capture dynamic equations
modeling wind turbine performance. Due to the complexity and
nonlinearity of these models, an evolutionary strategy algorithm
is used to solve the multiobjective optimization problem. Data
sets at two different frequencies, 10 s and 1 min, are used in this
study. Computational results with the two data sets are reported.
Analysis of these results points to a reduction of wind turbine
vibrations potentially larger than the gains reported in the paper.
This is due to the fact that vibrations may occur at frequencies
higher than ones reflected in the 10-s data collected according to
the standard practice used in the wind industry.

Index Terms—Blade pitch angle, data analysis, data mining,
drive train acceleration, evolutionary strategy (ES) algorithm,
multiobjective optimization, neural networks (NNs), power opti-
mization, torque, tower acceleration, wind turbine vibrations.

I. INTRODUCTION

I NTEREST in renewable energy has increased in recent
years due to environmental concerns and growing aware-

ness of the limited supply of fossil fuels. The anticipated
increase in the cost of electricity generated from fossil fuels
due to carbon taxation has become a catalyst in the quest for
clean energy.

Wind energy has been most successfully commercialized
among all forms of renewable energy.1 Research in wind energy
has significantly intensified in recent years. Areas with the most
research progress include the design of wind turbines [1], [2],
the design and reliability of wind farms [3]–[5], the control
of wind turbines [6], [7], [22], [23], wind energy conversion
[8], [9], the prediction of wind power [10], [11], and condi-
tion monitoring of wind turbines [12], [13]. Optimization has
been considered as one critical issue tightly involved in these
wind energy research areas. Boukhezzar et al. [27] designed
a nonlinear controller for optimizing the power of the DFIG
generator [27]. Abdelli et al. [28] applied a multiobjective
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genetic algorithm to optimize the efficiency of a small-scale
turbine.

The goal of this paper is to model and optimize wind turbine
performance in three objectives, maximization of the power pro-
duced by a wind turbine, and minimization of vibrations of the
turbine’s drive train and tower.

Numerous studies of wind power models have been reported
in the literature [27], [29]. A passive control method using a
tuned mass damper to mitigate vibrations of the blades and
tower of a wind turbine was presented in [14]. The research re-
ported in [15] discussed the estimation of aero-elastic damping
of operational wind turbine modes based on experiments. The
majority of the published research falls into parametric and
physics-based models. This paper illustrates nonlinear and
nonparametric models for optimization of wind power and
vibration using a data-driven approach. Such an approach
has been successfully applied to optimize power plants and
industrial processes [32].

The sources of wind turbine vibrations [25] are diverse. The
focus of this paper is on vibrations attributed to the control of
wind turbines, e.g., control of the generator torque and blade
pitch. Two parameters, drive train acceleration and tower ac-
celeration, are selected to represent vibrations of the drive train
and tower. Two data-driven models of wind turbine vibrations
are developed, one to predict the drive train accelerations and
the other to predict the tower accelerations. The power output
is also modeled by a similar methodology. Neural network
(NN) [16]–[18] is applied to extract these data-driven models
from industrial (wind turbine) data. The three models are then
integrated into a multiobjective optimization model [19]. As
the models are nonparametric and nonlinear, obtaining analyt-
ical form solutions is difficult, and therefore, an evolutionary
strategy (ES) algorithm [20], [21], [26] is used to solve them.
Different control preferences lead to numerous control strate-
gies.

The data used in this research was obtained from a large
(150 MW) wind farm, and its sampling frequency is 0.1 Hz.
Since the frequency of wind turbine vibrations is higher than
0.1 Hz, the information loss due to the low (0.1 Hz) frequency
of available data has been reflected in the research results. To
address the information loss, a 1-min (lower frequency) data set
is derived from the 0.1-Hz (10-s) data set. Computational exper-
iments with the two data sets, i.e., 10 s and 1 min, demonstrated
a potential for further reduction of turbine vibrations. Due to
the limited data frequency, this paper investigates the potential
for vibration reduction by adjusting certain controllable param-
eters, such as blade pitch angle and generator torque. Industrial
implementation of the approach proposed in this paper calls for
higher frequency data.
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TABLE I
SAMPLE DATA SET OF 10-s DATA COLLECTED BY SCADA SYSTEM

TABLE II
SAMPLE 1-min DATA COMPUTED BASED ON THE 10-s DATA

II. MODELING WIND TURBINE VIBRATIONS

AND POWER OUTPUT

A. Data Description

Two types of data sets, 10-s data and 1-min data of a wind tur-
bine, are used in this research. The 10-s data was collected from
a supervisory control and data acquisition (SCADA) system,
and the 1-min data set was derived by averaging the values of
all parameters across each 60-s period from the 10-s data set.
The total length of each data set is two months. The SCADA
system contains values of more than 120 parameters; however,
only certain parameters that could be potentially related to wind
turbine vibrations and their power output were selected based on
the domain expertise and past studies in wind energy. Tables I
and II demonstrate the general format of the data sets used in
this research.

The columns in Tables I and II represent the parameters re-
lated to wind turbine vibrations and the power output. All data
is time stamped.

B. Data Preprocessing

Data preprocessing is critical to the data mining for correct-
ness and accuracy of the results. Some of the data errors may
have been caused by sensor failures, transmission errors, and
failures of various subsystems. The errors usually appear as data
exceeding physical constraints or missing values. All incorrect
data were deleted from the data sets used in this paper.

C. Wind Turbine Vibration Model

In this paper, understanding and modeling vibrations of a
wind turbine from the operational data collected from the tur-
bine are presented. Two significant vibration sources are con-
sidered: vibrations due to the air passing through the wind tur-
bine and vibrations due to the forces originating with the con-
trol system that affect the torque and the blade pitch angle. The
values of the drive train acceleration recorded by the SCADA
system are used to represent the vibration of the drive train of
a wind turbine, while the tower vibration is represented by the
acceleration measurements from the tower.

1) Drive Train Vibration Model: In this research, drive train
part acceleration is measured by a sensor installed at the bottom
back of a nacelle. Since two identical drive train acceleration
values are reported by the SCADA system, an average value of

the two is used in this paper. The vibration of the drive train
system is expressed as

(1)

where all parameters are time dependent, and represents the
drive train vibrations; is the wind speed, is the torque,
is the blade pitch angle, and is the previous sampling time
period. Parameter selection is mainly based on domain knowl-
edge. Details are presented in Table VIII. In addition, the symbol

represents model (1) derived from the data with an NN al-
gorithm.

2) Tower Vibration Model: The sensor to measure tower ac-
celeration is located near the connection of a nacelle and a tower.
The model of a tower vibration is presented in

(2)

The parameters of model (2) are identical to those in model
(1) with representing the tower vibrations. The symbol
is used to represent model (2) extracted with an NN.

In models (1) and (2), the torque value at time and blade
pitch angle at time are considered as controllable param-
eters used to realize the potential for controlling vibrations of
a wind turbine. Wind speed at time and the past states of all
parameters are considered as noncontrollable parameters.

D. Power Output Model

It is known that the power extracted from the wind is ex-
pressed as the nonlinear expression

(3)

where the air flow density is represented by , is the rotor ra-
dius, is the wind speed, and is the power coefficient
function of the blade pitch angle and the tip-speed ratio .
Model (3) does not exactly match the actual power curve illus-
trated in Fig. 1. In this power curve, a given wind speed value
is mapped onto a range of power values for a variety of reasons,
including sensor errors and faults of various types; for example,
a small error in wind speed could result in a large error of
the power output due to the cube relationship. To model actual
power curves, neural networks, -NN ( nearest neighbor) and
other data-mining algorithms can be used. In this paper, an NN
model is used to estimate power output, and it is expressed
as

(4)

The notation used here is identical to the notation of model
(1).

E. Validation of the Models

The accelerometers measuring accelerations are sensitive to
noise, and therefore, wavelet analysis is applied to denoise the

Authorized licensed use limited to: The University of Iowa. Downloaded on June 25,2010 at 17:49:01 UTC from IEEE Xplore.  Restrictions apply. 



68 IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, VOL. 1, NO. 2, JULY 2010

Fig. 1. Prediction with a data-driven time-series models.

TABLE III
MEAN SHIFT OF THE NOISED DRIVE TRAIN ACCELERATION

measured drive train and tower accelerations. This improves
stability of the models extracted by the data-mining algorithms.
Comparative analysis is discussed to select the most appro-
priate combination of order and level Daubechies wavelets [30],
namely DB7 Level 10, DB7 Level 7, and DB5 Level 5. The
difference between the mean of the original and denoised data
(mean shift) is used as the selection criterion in the comparative
analysis. A smaller mean shift is favored in data smoothing.
Table III shows the difference between the mean shift of the
drive train acceleration for three combinations of the wavelet
order and level. The data set from 10/1/2008 12:00:10 A.M. to
10/8/2008 12:00:00 A.M. has been selected in this analysis.

As shown in Table III, DB5 Level 5 is selected based on its
smallest mean shift. To illustrate the value of data denoising, two
experiments are developed. An NN is applied to extract models
based on the original data and the data denoised by DB5 Level
5 for drive train acceleration. Training and test results of the
experiments are presented in Tables IV and V, respectively.

Four metrics (5)–(8), shown at the bottom of the page, are
used to evaluate the performance of the data-derived models,
the mean absolute error (MAE), the standard deviation of mean
absolute error (SD of MAE), the mean absolute percentage

TABLE IV
TRAINING RESULTS OF THE NN MODEL

TABLE V
TEST RESULTS OF THE NN MODEL

error (MAPE), and the standard deviation of mean absolute
percentage error (SD of MAPE) where is the value of th
instance predicted by the NN, is the observed value of th
instance, and means the total number of instances in the data
set.

Based on results in Tables IV and V, it is obvious that de-
noising and smoothing data is beneficial for modeling. The large
MAPE and SD of MAPE for the original dataset in Table IV are
caused by the small values in the training set and the nature of
these two metrics. For example, some instances with values as
small as 0.00002 are contained. A small error (the difference
between the observed and predicted value) such as 2 results in
a large MAPE of (7) and a large SD of MAPE in (8).

To build data-driven models, the 10-s and 1-min data sets are
divided into a training data set (2/3 of all data) and a test data set
(1/3) of all data. In the 10-s data set, there are a total of 204 894
instances, and in the 1-min data there are a total of 34 149 in-
stances. Each training data set is used to train an NN, while the
test data set is used to test the accuracy of data-derived models.
Four metrics (5)–(8) are used to evaluate the quality of models.

Table VI presents the test results of three NN models ex-
tracted from the 10-s data set. The mean value of the drive train
acceleration in this data set is 67.24 and the standard devia-
tion (SD) of the drive train acceleration is 36.81. As shown in
Table VI, the MAE of the drive train acceleration predicted by
the NN model is 1.27, the corresponding MAPE is 0.02, which
means that the model is 98% accurate. For the tower accelera-
tion, the mean value of the tower acceleration is 72.83 and the

(5)

(6)

(7)

(8)
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TABLE VI
TEST RESULTS OF THE NN MODELS FOR 10-s DATA

Fig. 2. First 50 test points of the drive train acceleration for 10-s data.

Fig. 3. First 50 test points of the tower acceleration for 10-s data.

Fig. 4. First 50 test points of the power output for 10-s data.

SD is 45.40. The MAE in predicting tower acceleration is 4.73
and the SD is 8.92. The MAPE is 0.06, i.e., the model is 94%
accurate. Although the MAPE is quite impressive, the SD of
MAPE, which equals 0.10, is somewhat large. This indicates
that the accuracy of the model predicting tower acceleration is
not steady. However, considering the complexity of the tower
acceleration itself, this result is acceptable for tower vibration
analysis. The mean value of the power generated is 633.83 and
the SD is 460.36. The MAE of the model predicting power is
9.86. The corresponding MAPE for the power prediction is 0.03,
i.e., the model is 97% accurate.

Figs. 2–4 illustrate the first 50 predicted and observed values
of the 10-s test data set for the three models: drive train acceler-
ation (Fig. 2), tower acceleration (Fig. 3), and power (Fig. 4).

TABLE VII
TESTING RESULTS OF THE NN MODELS FOR 1-min DATA

Fig. 5. First 50 test points of the drive train acceleration for 1-min data.

Fig. 6. First 50 test points of the tower acceleration for 1-min data.

The test results for three models extracted from the 1-min
data set are included in Table VII. The MAE of the drive train
acceleration is 0.77, and the MAPE of 0.01 implies a 99% ac-
curacy of the model. For the model to predict the tower ac-
celeration, the MAPE is 0.03, i.e., the model is 97% accurate.
The MAPE of the model predicting the generated power is 0.03
(97% model accuracy). Although the model accuracy is impres-
sive, the SD is relatively high. The results indicate that even
though the models can quite accurately predict acceleration and
power output, some predicted instances could involve a signifi-
cant error.

Fig. 5 presents the first 50 points of the observed and pre-
dicted values of the drive train accelerations. Fig. 6 illustrates
the first 50 points for the tower acceleration, and Fig. 7 shows
the power prediction results.

III. MULTIOBJECTIVE OPTIMIZATION MODEL

In modeling vibrations and power output, torque and blade
pitch angle are considered as controllable parameters. Param-
eters such as wind speed and past states of noncontrollable pa-
rameters serve as inputs to the data-driven models. Both the gen-
erator torque and the blade pitch angle impact vibrations of the
drive train and the tower.

In the model considered in this paper, the drive train accelera-
tion, the tower acceleration, and the inverse of power output are
the three objectives to be minimized. Solutions of this model
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Fig. 7. First 50 test points of the power output 1-min data.

TABLE VIII
DESCRIPTION OF PARAMETERS

become control strategies for the wind turbine. This multiob-
jective minimization model is formulated in (9), shown at the
bottom of the page, where , , and

are the three objectives to be minimized.
Table VIII lists all parameters used in model (9). The first

three parameters in Table VIII represent the three objectives to
be minimized. Two controllable parameters, and , are
the torque and the blade pitch angle at time . The remaining
variables on the list in Table VIII are the noncontrollable pa-
rameters at time and .

The two inequality constraints in model (9) impose
the upper and lower bounds on the two controllable pa-
rameters, i.e., they define the feasible ranges for these
parameters. The range for the torque value at

TABLE IX
DESCRIPTION OF PARAMETERS

time is between and
. The torque value was

normalized in the interval . The change of the torque
value in two consecutive time intervals (10 s or 1 min) is
limited to 50% of the maximal torque. This value is determined
by considering the turbine specifications and realistic control.
Based on manufacturing specifications, the generator torque
is limited to 10 090 Nm, and the maximum change rate of
the torque is 4500 Nm/s, which corresponds to 45% of the
maximum torque per second. The average blade pitch angle

at time is in the range
and . The values of the blade
pitch angle change in the interval . The values were
determined based on the maximum and minimum value of the
blade pitch angle in the data set considered in this research. The
maximum one time (10-s or 1-min) change of the blade pitch
angle is fixed at 5 .

Table IX provides correlation coefficients [24] between con-
trollable parameters and the three parameters considered as the
model objectives, i.e., drive train acceleration, tower accelera-
tion, and power. Although the relationship between these pa-
rameters is nonlinear, the linear relationship expressed with the
correlation coefficient provides certain insights into dependen-
cies among them. As illustrated in Table IX, torque and blade
pitch angle are correlated to a different degree to the three pa-
rameters in the model’s objective. These correlation coefficients
indicate that changing the values of the torque and the blade
pitch angle impacts power output, drive train acceleration, and
tower acceleration simultaneously. Thus, optimization of the
trade-off between vibrations and power becomes a challenge.

To recognize the importance of the three model objectives
in model (9), a weighted sum of these objectives is presented

(9)
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in (10), shown at the bottom of the page. The weights indicate
different control preferences.

The notation is the same as in model (9). The weight assign-
ment to the objectives serves as a mechanism for solution selec-
tion among many nondominant solutions contained in the Pareto
set.

IV. SOLVING THE MULTIOBJECTIVE OPTIMIZATION MODEL

A. Evolutionary Algorithm

Model (9) is learned by an NN rather than provided in an an-
alytical form. To solve this multiobjective minimization model,
evolutionary algorithms are the most natural choice. Here a par-
ticular ES algorithm, the Strength Pareto Evolutionary Algo-
rithm (SPEA) [20], is used to solve model (9).

The solutions to the multiobjective minimization model (9),
the torque value and the blade pitch angle, are encoded as
vectors. These solutions are treated as individuals defined as

at the th generation, where and
. The elements and of the solution

vector represent the torque and the blade pitch angle at the
th generation. The parameter represents the vector of SDs

of the normal distribution with mean equal to zero. In this
vector, and are the SDs associated with torque and blade
pitch angle. Two uniform distributions, and ,
are applied to initialize the values of elements in the vector of
SDs . Offspring (children) in SPEA are then produced by
recombination of parents and the mutation procedure presented
in [31].

B. Tuning Parameters of the ES Algorithm

Numerous SPEA parameters need to be determined ahead of
computation. In this research, parameters such as , , tourna-
ment size, and the number of parents used in recombination, are
arbitrarily selected, as they do not significantly impact computa-
tional results. The value of is 0.5, , the tournament
size is four, and the number of recombined parents is two. Be-
sides these parameters, the value of two other parameters needs
to be determined: the selection pressure (SP) and the population
size. The SP is the ratio of the parent set size divided by the size
of the offspring set

(11)

TABLE X
TWO EXPERIMENTS FOR TUNING SP AND POPULATION SIZE

where SP the selection pressure, the size of parent set
, and the size of offspring set .

Two experiments are conducted to tune SP and population
size of the ES algorithm applied to 10-s and 1-min data sets.
Table X presents details of the two experiments.

Ten different SPs are considered: SP-1 (2parents/2offspring),
SP-2 (2parents/4offspring), SP-3 (2parents/6offspring), SP-4
(2parents/8offspring), SP-5 (2parents/10offspring), SP-6
(2parents/12offspring), SP-7 (2parents/14offspring), SP-8
(2parents/16offspring), SP-9 (2parents/18offspring), and SP-10
(2parents/20offspring).

Three extreme cases of the SP accelerating the convergence of
the ES algorithm are considered, minimizing the drive train ac-
celeration only (Case 1), minimizing the tower acceleration only
(Case 2), and minimizing the inverse of power only (Case 3).
These three extreme cases can be expressed with three weight
assignments used in model (10). In Case 1, , ,
and ; in Case 2, , , and ; and in
Case 3, , , and .

Table XI illustrates the convergence of the ES algorithm as a
function of the SP for experiment 1. To determine the best SP,
the ES algorithm has run for 1500 generations for each SP. As
shown in Table XI, the fastest average convergence of the ES
algorithm corresponds to SP-9. The ES algorithm converges in
Case 1 at the 106th generation. It is observed that the ES algo-
rithm converges at the 180th and 41st generation in Case 2 and
Case 3, respectively. The selection pressure SP-9 in Table XI
involves the smallest average number of generations at 109.

(10)
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TABLE XI
CONVERGENCE FOR 10 VALUES OF THE SP IN EXPERIMENT 1

TABLE XII
CONVERGENCE FOR 10 VALUES OF THE SP IN EXPERIMENT 2

Table XII illustrates the convergence for different values of
the SP in experiment 2 with the best convergence attained for
SP-10. The ES algorithm in Cases 1 and 2 converges at the 36th
generation and in Case 3 at the 55th generation.

In addition to the analysis of the SP, two population sizes for
each experiment are evaluated, where one of them is five times
larger than the base population. For example, the two popula-
tions in experiment 1 are denoted as PS1 (2 parents/18 offspring)
and PS2 (10 parents/90 offspring). Larger population sizes are
not considered here due to the excessive computational cost of
the ES algorithm.

Table XIII illustrates the convergence of the ES algorithm for
two population sizes of experiment 1. As shown in Table XIII,
the fastest convergence is attained for population size PS2 with
10 parents and 90 offspring. The minimum inverse of power
(Case 3) is attained at the first generation. The latter is due to
the fact that the maximum torque value was included in the ini-
tial solution. In Cases 1 and 2, the ES algorithm converges at
the 18th and 51st generation. In this experiment, the average
number of generations was much lower than for the case with a
population size of 2 parents and 18 offspring (see Table XIII).

Table XIV shows that the population with 2 parents and 20
offspring leads to the best performance in experiment 2. For this
population size, the ES algorithm converges at the 36th genera-
tion in Case 1. It also converges at the 36th generation in Case
2, and in Case 3 at the 55th generation.

TABLE XIII
CONVERGENCE OF THE ES ALGORITHM FOR TWO POPULATIONS OF

EXPERIMENT 1

TABLE XIV
CONVERGENCE OF THE ES ALGORITHM FOR TWO POPULATIONS OF

EXPERIMENT 2

V. COMPUTATIONAL RESULTS

Three types of computational results will be discussed in this
section. First, the results of a single-point optimization based on
the 10-s data set are introduced. Then, the optimization results
over a period of 11 min (multipoint) are presented for three ex-
treme cases, which are defined later in this section. Finally, a
comparison between the optimization for the 10-s data set and
1-min data set is discussed to demonstrate the impact on miti-
gating wind turbine vibrations over a 10-min period.

A. Single-Point Optimization

Optimizing a trade-off between wind turbine vibrations and
the power output produces a set of nondominant solutions. An
instance of the 10-s data set shown in Table X is selected to
compute the solution set. Table XV presents a partial solution
set for this instance. As presented in Table X, the original av-
erage drive train acceleration is 147.43, the original tower accel-
eration is 164.64, and the original generated power is 1484.47.
Each solution in Table XV represents different settings of torque
value (TV) and blade pitch angle (BPA). For example, Solution
4 in Table XV shows that for the torque value (TV) of 67.6 and
blade pitch angle (BPA) at 15, the average drive train acceler-
ation is reduced from 147.43 to 136.71, and the tower accel-
eration could be reduced from 164.64 to 120.34. However, the
turbine generated power is reduced from 1484.47 to 1031.21.
Under this control strategy, the respective gains of the drive train
acceleration and the tower acceleration are 7.27% and 26.90%,
respectively. However, the reduced vibrations also reduced the
power output by 30.53%. Solution 7 illustrates a modest gain
in tower accelerations. As presented in Table XV, the tower ac-
celerations are reduced from 164.64 to 119.41, i.e., the gain is
27.48%. Simultaneously, the drive train acceleration is reduced
from 147.43 to 136.98, and the turbine generated power is re-
duced from 1484.47 to 1005.11. The respective gains are 7.09%
and 32.29%.

Fig. 8 shows the values of three objective functions produced
by nondominated solutions of the elite set in a three-dimensional
space. The vertical axis represents power output. One horizontal
axis represents the drive train acceleration and the other rep-
resents the tower acceleration. The elite set characterizes the
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TABLE XV
CONVERGENCE FOR 10 VALUES OF THE SP IN EXPERIMENT 2

Fig. 8. Pareto optimal fronts.

Pareto front and represents the best solutions satisfying the three
objective functions simultaneously.

B. Multipoint Optimization

The results presented in Table XV involved one instance only.
In this section, multipoint optimization will be introduced, and
the same three cases discussed in Section IV-B are considered.
The data from 10/19/08 2:43:00 A.M. to 10/19/08 2:54:00 A.M. (a
total of 11 min of 10-s data) are used in this study. Optimization
results for three cases are presented.

Fig. 9 illustrates the optimization results of Case 1. The cor-
responding control strategies are illustrated in Figs. 10 and 11.
Fig. 10 shows the original and computed torque. Fig. 11 illus-
trates the original and the computed blade pitch angle. The mean
reduction of the drive train acceleration over the 11-min time pe-
riod is shown in Table XVI. The mean of the drive train acceler-
ation has been reduced from 131.67 to 119.67 (a 9.16% gain).

Fig. 12 presents the results of Case 2. Fig. 13 illustrates the
computed torque and the original torque. Fig. 14 shows the com-
puted blade pitch angle (controls) and the original blade pitch
angle. In controlling the tower vibrations, the value of torque
and blade pitch angle should both be decreased at the same
time. Table XVII presents the mean gain of reduced tower accel-
erations over the 11-min period. The mean value of minimum

Fig. 9. Optimized and original drive train acceleration of Case 1 for 10-s data.

Fig. 10. Computed and original torque value of Case 1 for 10-s data.

Fig. 11. Computed and original blade pitch angle of Case 1 for 10-s data.

TABLE XVI
GAINS IN VIBRATION REDUCTIONS OF THE DRIVE TRAIN FOR CASE 1

tower acceleration is 86.38. The mean of the original tower ac-
celeration is 127.47. The tower acceleration has been reduced
by 32.23%.

Fig. 15 shows the optimization results for Case 3 over the
11-min period. The original and computed values of the torque
and the blade pitch angle are shown in Figs. 16 and 17, respec-
tively. In this case, the simulation results indicate that to obtain
the maximum power, output does not necessarily require a max-
imum torque value but an increase of the mean blade pitch angle.
Table XVIII shows a mean gain of 1.05% in maximizing power
output. The average of the maximized power output shown in
Table XVIII is 1498.02, and the mean original power output is
1482.42.

In this section, only three sets of weight assignments for the
multiobjective optimization model were considered. Methods
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Fig. 12. Optimized and original tower acceleration of Case 2 for 10-s data.

Fig. 13. Computed and original torque value of Case 2 for 10-s data.

Fig. 14. Computed and original blade pitch angle of Case 2 for 10-s data.

TABLE XVII
GAIN IN REDUCTION TOWER VIBRATIONS FOR CASE 2

Fig. 15. Optimized and original power output of Case 3 for 10-s data.

for optimal generation of weights need to be considered in the
future.

Fig. 16. Computed and original torque value of Case 3 for 10-s data.

Fig. 17. Computed and original blade pitch angle of Case 3 for 10-s data.

TABLE XVIII
GAINS IN POWER OUTPUT FOR CONTROL STRATEGY OF CASE 3

C. Comparison of Computational Results

In this section, computational experience with 10-s and 1-min
data sets is presented. The information loss due to the reduced
data sampling frequency is addressed. The results (all mean
values) included in Table XIX summarize the gains in vibra-
tion reduction due to increased data sampling frequency by con-
sidering three cases for two types of data sets. Ten minutes
worth of 10-s data (from 10/19/2008 2:43:00 A.M. to 10/19/2008
2:52:50 A.M.) were selected, and the mean gains are compared
to the results obtained of the same 1-min data. Table XIX illus-
trates that the gain in reduction of the drive train vibration based
on the model extracted from 10-s data is 9.10%. This gain is
larger than the one for the model extracted from the 1-min data
set (5.87%). For Case 2, shown in Table XIX, the mean reduc-
tion of the tower acceleration for the 10-s data set is 31.76%, and
the mean gain for the 1-min data set is 18.46%. Even though
in Case 3 the gain of the power output for the 10-s data set
is larger than the gain of the power for the 1-min data set, it
is not as significant as the gain in reducing vibrations. This is
due to the different characteristics of the power output and vi-
bration in high frequency, as well as the bounded wind turbine
power, here at 1.5 MW. These results indicate that using the
current data frequency (0.1 Hz) could limit even larger gains
in vibrations. Using higher frequency data would likely unleash
additional gains in vibrations reduction. The accelerometer and
the SCADA system available for this research are typical of the
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TABLE XIX
COMPARISON OF COMPUTATIONAL RESULTS FOR 10-s DATA SET AND 1-min

DATA SET OVER 10-min HORIZON

present industrial standard and did not offer higher frequency
vibration data.

VI. CONCLUSION

In this paper, a multiobjective optimization model involving
wind turbine power output, vibration of drive train, and vibra-
tion of tower was studied. A data-driven approach for model de-
velopment was introduced. The drive train vibration and tower
acceleration were represented with accelerations of the drive
train and the tower. Models developed for prediction of vibra-
tions and the power produced by the turbine were trained by
NN and were accurate. Although the power output was consid-
ered as an objective, it also served as a bound constraining the
mitigation aimed at curtailing drive train vibration and tower vi-
bration.

Industrial data sets used in the study were collected by an
SCADA system. The original data set was sampled at 10-s in-
tervals (0.1-Hz frequency). Although the research showed that
the data collected by the industry-accepted frequency could not
be sufficient to fully mitigate turbine vibrations, the method-
ology presented in this paper could be used once suitable data
becomes available. Bounded by the data availability, a 1-min
data set was derived by averaging instances in the original 10-s
data set. Both data sets were used to model drive train vibration,
tower vibration, and the power output of a wind turbine. The
prediction accuracy of the derived models was tested with inde-
pendent data sets. Four metrics, MAE, SD of MAE, MAPE, and
SD of MAPE, all defined in the paper, were introduced to eval-
uate the performance of data-driven models. Comparative study
of computational experiments demonstrated that the potential to
reduce vibration of the drive train and tower by optimized con-
trol.

The multiobjective optimization model was solved with an
ES algorithm. The impact of SP and population size on the effi-
ciency of the ES algorithm was studied. The optimization results
generated based on three weight assignment cases presented the
potential gains of vibration mitigation and power maximization
by adjusting two controllable variables, the generator torque and
the blade pitch angle. The computational results demonstrated
that the gains in reduced wind turbine vibrations and increased
power output were larger for the 10-s data sets than those for the
1-min data sets. All 1-min data sets were obtained by averaging
the corresponding 10-s data.

The objective of this paper, building accurate data-driven
models to study the impact of turbine control on their vibrations
and power output and demonstrating the optimization results of
wind turbine performance, was accomplished.
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