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ABSTRACT

We present algorithms to label the nodes of an XML tree
which is subject to insertions and deletions of nodes. The
labeling is done such that (1) we label each node immedi-
ately when it is inserted and this label remains unchanged,
and (2) from a pair of labels alone, we can decide whether
one node is an ancestor of the other. This problem arises in
the context of XML databases that support queries on the
structure of the documents as well as on the changes made
to the documents over time. We prove that our algorithms
assign the shortest possible labels (up to a constant factor)
which satisfy these requirements.

We also consider the same problem when ”clues” that pro-
vide guarantees on possible future insertions are given to-
gether with newly inserted nodes. Such clues can be derived
from the DTD or from statistics on similar XML trees. We
present algorithms that use the clues to assign shorter la-
bels. We also prove that the length of our labels is close to
the minimum possible.

1. INTRODUCTION

XML is becoming the new standard for the exchange and
publishing of data over the Internet [11, 1]. Documents
obeying the XML standard can be viewed as trees, basically
the parse tree of the document. XML database systems of-
ten give each item in the document (node in the tree) a
unique logical identifier (called a label) and use those labels
for an efficient processing of queries, in particular queries
involving structural conditions or testing for changes in the
document content:

Structural queries Typical queries over XML documents
amount to finding nodes with particular tags (e.g. book,
author, price) having certain ancestor relationship
between them (e.g. book nodes that are ancestors of
qualifying author and price nodes) [7, 12, 13, 1]. XML
query engines often process such queries using an in-
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dex structure, typically a big hash table, whose entries
are the tag names and words in the indexed documents
[15, 14, 9]. To allow structural queries, each node in
the XML trees is given a unique label, and every en-
try (tag name or word) in the hash table is associated
with the list of identifiers of the documents contain-
ing it, and for each such document the labels of the
relevant nodes inside the document. The labels are
designed such that given the labels of two nodes we
can determine whether one node is an ancestor of the
other. Thus structural queries can be answered using
the index only, without access to the actual document.

Querying changes Users of XML data are often not only
interested in querying the current values of documents
but also in the changes in their content over time [15].
For example, they may be interested to know the price
of a particular book in some previous time, or ask for
the list of new books recently introduced into a cata-
log. To support such queries, XML databases, again,
attach a unique label to each node in the tree and use
it to connect and trace the various versions of a par-
ticular item throughout time.

Since XML documents found on the Web in general do not
have identifiers for the various items, the database needs to
provide the labels. Interestingly, all the systems that we
are aware of use two distinct labeling schemes for the two
tasks. An item is assigned one persistent label that does not
change over time and is used to connect between versions,
and another structural label (which might change when the
document is updated) that reflects the ancestor relationships
and is used for indexing. Queries involving both structural
and historical conditions thus require going back and forth
between the two labeling schemes; a significant overhead.

Why two labeling schemes? The reason is that all the struc-
tural labelings currently used by actual systems are designed
for a static setting - the full structure of the document needs
to be known before the labels can be chosen. When the
structure changes the labels change as well. Thus to trace
a given element across several document versions, a map-
ping between its different structural labels is required. To
understand this, note that all these labelings are variants of
the following interval scheme: number the leaves from left
to right and label each node with a pair consisting of the
numbers of its smallest and largest leaf descendants. An an-
cestor test then amounts to an interval containment test on
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the labels. Now, if the tree is updated and new leaves are
added, the leaves need to be renumbered, and, consequently,
the labels change. One may try to fix this by leaving some
“gaps” between the numbers of the leaves. But if one part
of the document is heavily updated we still may run out of
available numbers and need relabeling.

The goal of the research reported in this paper is to design
a persistent structural labeling scheme, namely a labeling
scheme where labels encode ancestor relationships but need
not be changed when the document is updated. The up-
dates that we want to support are the addition and deletion
of subtrees from the tree. (Naturally updates that move
around existing subtrees cannot be supported with persis-
tent labels since the existing ancestor relationships actually
change).

Our abstraction of the problem is as follows. We consider
a tree that is subject to insertions of nodes, s.t. when a
node is inserted it must be a leaf (an insertion of a subtree
can be modeled as a sequence of such insertions). When a
node is inserted we have to assign it a label, and this label
cannot be changed or replaced later on. Labels are assigned
s.t. from the labels of two nodes one can determine if one
is the ancestor of the other. We do not have an explicit
delete operation in our abstract model since labels of deleted
nodes cannot be reused. Deleted nodes still exist in some
older version and a label should uniquely identify a node
across all versions. For labeling purposes we might as well
leave the deleted node in the tree and mark it with the
version in which it ceased to exist. Thus the single tree in
our abstraction represents the union of all versions in our
previous discussion, and whenever we refer in the following
to the size of the tree we actually count the number of nodes
inserted into the tree over time, including ones that do not
exist anymore in the most recent version.

Before presenting our results we should note that the length
of the assigned labels is an important criteria in the quality
of any such labeling scheme. This length determines the size
of the index structure that contains the labels and thereby
the feasibility of keeping this index in main memory. Con-
sequently it is important to establish lower bounds on the
length of the labels that any such scheme can produce, and
design compact labelings that match those bounds. Ob-
serve that, depending on the physical representation used
for the labels, labeling schemes may have different perfor-
mance metrics: When fixed-size physical representation is
used, the goal is to reduce the maximum length of a label.
When variable-size representation is used, the sum of lengths
of labels (or the average label length) needs to be reduced.
In this paper we consider the maximum label length. We
note, however, that the schemes we propose and the corre-
sponding lower bounds are such that the average label length
is typically within a small constant of the maximum. Thus,
our results apply to both metrics.

Our results: We start by presenting a simple labeling
scheme that uses O(n)-size labels, n being the size of the
tree, and prove a matching lower bound of ©(n) on the max-
imum label length of any possible labeling scheme. In con-
trast, in the static case where the complete tree is given in
advance, there are known labeling schemes that use only
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O(log n)-size labels (e.g. the simple interval scheme de-
scribed above uses 2log(n) bits). Thus, these results show
an exponential performance gap between static and dynamic
labeling.

The above worst-case analysis assumes no knowledge or re-
strictions on the final structure of the tree. A glance back
at the real-life problem shows, however, that estimates on
the shape or size of the XML trees (or of some particular
subtrees) are often available. We show that these restric-
tions facilitate tighter analysis and can be integrated in the
labeling scheme to reduce labels size.

The first issue that we consider is the depth and the width
of the XML trees. By looking at about 2000 XML files
collected by a crawler over the web [15] we observed that
the average depth of an XML file is low, i.e. the trees are
balanced with relatively high degrees. We thus analyzed
the length of the labels as a function of the depth d of the
tree and the maximal fan-out degree A of the nodes. We
present a labeling algorithm that, even without knowing d
and A in advance, generates labels of length bounded by
O(dlog A). And again we also prove a matching lower bound
of Q(dlog A).

The second issue that we consider is estimates on the size
and shape of a subtree that will emerge underneath a par-
ticular node. Such estimates are often available in practice,
and can be derived from the DTD of the XML file or from
statistics of similar documents that obey the same DTD.
‘We model this additional information by insertion sequences
with clues. We then show that, even without any restriction
on the actual depth or width of the trees, simple clues al-
low for much more efficient dynamic labelings. We define
and analyze two types of clues. We first consider subtree
clues, where with each inserted node v we are given an es-
timate, within a constant factor, on the final number of de-
scendants of v. For this model, we provide tight upper and
lower bounds of ©(log” n) on the length of the labels. Thus,
subtree clues allow for considerably more efficient labels, but
still do not match the performance of an off-line labeling of
the tree. The second type of clues, sibling clues, are more
informative and also include an estimate on the number of
descendants of the future siblings of v. For insertion se-
quences with sibling clues we establish matching upper and
lower bounds of ©(log n) on the maximum length of the la-
bels. Thus, asymptotically, insertion sequences with sibling
clues can be labeled on-line as well as they can be labeled
off-line.

Finally, we also show how the above labeling algorithms can
be extended to cope with wrong estimates, allowing persis-
tent labeling even when the clue decelerations turn out to
underestimate the actual size of the final subtrees.

We start with preliminary definitions in Section 2. In Sec-
tion 3 we analyze insertion sequences without clues, and in
Sections 4 and 5 insertions with clues. Section 6 deals with
wrong clues. We conclude with related work.

2. PRELIMINARIES

We start by defining some of the basic terms used in the
sequel.



A static structural labeling scheme is a pair, (p, L), where p
is a 2-ary predicate over binary strings and L is a labeling
function that given a tree T assigns a distinct binary string
L(w) for each node v € T. The predicate p and the labeling
function L are such that for every tree 7" and every two
nodes v,u € T, p(L(v), L(u)) evaluates to TRUE iff v is an
ancestor of u.

A persistent structural labeling scheme is also a pair (p, L)
where p, as before, is a binary predicate over strings. The
labeling function L, however, rather than getting as input
a full tree, gets a sequence of insertions of nodes into an
initially empty tree. The root is the first to be inserted.
Each subsequent insertion is of the form “insert node u as
a child of node v”. (So when w is inserted its parent v must
already be in the tree). L does not know the insertions
sequence in advance but receives them online. As each node
is inserted, L assigns it a binary string. The label cannot
be changed subsequently. The labeling L and the predicate
p are such that for every insertion sequence and every two
nodes v,u in the resulting tree, p(L(v), L(u)) evaluates to
TRUE iff v is an ancestor of u.

The labeling function L can be deterministic or randomized,
and the scheme will be called a deterministic/randomized,
respectively.

Several static structural labeling schemes with short labels
have been recently designed [2, 8, 4]. These schemes have
been analyzed both theoretically and experimentally. (See
Section 7 for further details.) In contrast our focus here
is on the design of persistent structural labeling schemes.
For this kind of labeling we are not aware of any previous
work. Unless stated otherwise, the term labeling scheme in
the sequel refers to a persistent structural one.

Two particular type of labels which we will use in the sequel
are range and prefiz labels.

e A range labeling comes equipped with some order re-
lation < overs binary strings. The label of a node v
is interpreted as a pair of strings a,, b, and the pred-
icate p is such that a node v is an ancestor of w iff
ay < ay < by < by. The interval scheme described in
the Introduction is an example of a static such labeling
- ay and b, are interpreted as integers with < being
the standard order relation over integers.

In a prefix labeling the predicate p is such that a node
v is an ancestor of u iff L(v) is a prefix of L(u).

In the following sections we will see examples of these two
types of schemes.

3. INSERTIONSWITHOUT CLUES

We start by considering arbitrary insertion sequences and
suggest several simple labeling schemes for such sequences.
We bound the lengths of the labels produced by these algo-
rithms either in terms of the number of nodes in the resulting
tree or in terms of the depth and degree of the tree. We also
show that these algorithms are optimal.
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The schemes presented in this section are all prefix schemes.
Analogous range schemes can be developed using a tech-
nique presented in Section 6. To understand the main prin-
cipal guiding our prefix schemes, lets look first at the static
case, when the full tree is given in advance. Static prefix
schemes typically work as follows. They assign to the out-
going edges of each node a set of prefix-free binary strings’,
and then, starting from the root and going down, define
the label of each node to be the concatenation of its par-
ent label and the string assigned to the edge leading to the
node [8]. Consider, for example, a node v with three chil-
dren vy,v2,v3. We can assign the strings “0”, “10”, and
“11” to the three edges (v,v1), (v,v2), and (v, vs), respec-
tively. So the labels of v1, vz, and vz are L(vi) = L(v) - 0,
L(vz) = L(v) - 10, and L(vs) = L(v) - 11. The problem with
using this scheme in a dynamic setting is that if the tree
changes, e.g. we add a new child v4 to v, there is no string
that we can attach to the new edge (v,v4). This is because
any string would have one of the strings 0, 10 , and 11 as a
prefix. The solution, which is the basis of all the persistent
prefix schemes presented in the rest of this section, is to re-
frain from utilizing all possible prefixes. We always make
sure that for every node v we can extend the currently as-
signed strings to the edges outgoing of v to a larger prefix
free collection.

Consider the following simple prefix labeling scheme. We
label the root with the empty string. The first child of the
root is labeled with “0”, the second child with “10”, the third
with “110” (rather than the “11” in the above example), the
forth with ‘1110”, etc. Similarly for any node v the first child
of v is labeled with L(v).“0”, the second child of v is labeled
with L(v).“10”, the third with L(v).“110”, and the ** child
with L(v).“111°710”.

It is easy to see that this is indeed a correct prefix scheme,
namely for all pairs of nodes v, u, L(v) is a prefix of L(u) iff
v is an ancestor of u. Also, by induction it is easy to prove
that the length of the maximum label is at most ¢ — 1 after
inserting i nodes including the root. So for any n-node tree
the maximum label length is at most » — 1. This without
any need to know n in advance.

Interestingly, the following theorem shows that no labeling
scheme (regardless if it is prefix based, range based, or uses
any other labeling type) can achieve better bound on the
labels length.

THEOREM 3.1. For every deterministic labeling scheme
S = (p,L) there is an insertion sequence of length n such
that S assigns a label of length at least n — 1 for some node
in the sequence.

PRrROOF. For a labeling scheme S we define L(S,n) to be
the set consisting of all labels that S uses to label inser-
tion sequences of length n. We also define P(n) to be the
minimum over all labeling schemes of |L(S, n)|.

We claim that P(n) satisfies the recurrence P(n) > 2xP(n—
1), P(1) = 1. Therefore it follows that P(n) > 2" ! from

A set of strings is prefiz-free if no string in the set is a prefix
of another.



which the theorem follows. To prove the claim consider an
arbitrary insertion sequence of n nodes. After inserting the
root r and the first of its children, say v, then we can par-
tition the set of all labels that S uses to label trees with n
nodes into two disjoint sets. The first set contains all labels
which can be used for descendants of v, together with the
label of v itself. The second set consists of all labels which
can be used for descendants of r that are not descendants of
v together with the label of r. The size of the first set must
be at least P(n — 1) since v can root an arbitrary tree with
n — 1 nodes. Similarly the size of the second set should also
be at least P(n —1). [

The above proof assumes no restrictions on the tree struc-
ture. In particular it relies on the fact that a node can have
an arbitrary number of children. For XML files, the DTD
may restrict the number of children, e.g. bounding it by
some constant A. It turns out, however, that this does not
change asymptotically the situation: we can still prove the
following slightly weaker lower bound.

THEOREM 3.2. For every deterministic labeling scheme S
and every constant A, there is an n-node insertion sequence
constructing a tree of mazimum degree A on which S assigns
a label of length at least nlog,(1/a)—O(1), where v is a root
0fac+w2+...a;A =1.

In particular the theorem shows that even if we restrict our-
self only to binary trees, still, any deterministic labeling
scheme will have some label of size (n), or, more precisely,
of size at least 0.69n — O(1) (since a = 0.618.. for A = 2).
We prove Theorem 3.2 by constructing a sequence in which
each insertion decreases the remaining labels of the current
“chosen node” by a factor of @ on average. We omit the
details of the proof from this extended abstract.

What happens if the depth of the tree is also restricted?
By looking at about 2000 XML files collected by a crawler
over the web [15] we observed that the average depth of an
XML file is low, i.e. the trees are balanced with relatively
high degrees. We thus tried to find a more suitable labeling
scheme for such trees.

As before, the children of a node v have the label of v con-
catenated with the string attached to their incoming edge.
The string s(3) for the i*" child is defined such that

s(1), s(2), s(3),--- =0, 10,1100, 1101, 1110, 11110000, . . .

Namely, to obtain s(¢ + 1) we increment the binary num-
ber represented by s(i7) and if the representation of s(7) + 1
consists of all ones we also double its length by adding a
sequence of zeros.

The heuristics guiding this scheme is that the more children
that a node already has, the more likely for it to get addi-
tional children. So rather than allocating for the new child
the shortest possible available prefix-free string (as done in
the first scheme presented at the beginning of this subsec-
tion), we give it instead a longer one. This investment is
likely to pay off as it will shorten the labels of forthcoming
siblings. In the first scheme, for each new child, the length
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of the assigned prefix free string grows by exactly one bit. In
contrast, here, the length may grow by several bits at once.
But then can stay the same for several future coming nodes
(until it needs again to grow).

How long are the labels obtained by this scheme? A careful
analysis of the algorithm shows that for all ¢, |s(¢)| < 41og(¢),
and therefore,

THEOREM 3.3. The mazimum length of a label using this
scheme is at most 4dlog(A), d being the mazimal depth of
the tree and A the mazimum outdegree of a node.

Our algorithm works correctly even if A and d are not known
in advance. We can also show that the latter algorithm is
optimal up to a constant factor. Indeed, a full tree of depth d
and out-degree A has more than A% nodes. Hence, just to be
able to assign distinct labels to the nodes of such a tree, any
labeling scheme will require labels of length > dlog, A — 1.

Can randomization help? A randomized labeling scheme

selects the label of an inserted node according to some prob-

ability distribution. The following theorem extends the above
lower bounds to randomized labeling schemes showing that

randomization essentially cannot help.

THEOREM 3.4. For any randomized labeling scheme there
is an insertion sequence for which the ezpected length of the
mazimum label is at least n/2 — 1. This holds even if the
out-degree of nodes is bounded by some A > 2.

The proof constructs a probability distribution on request
sequences that causes every deterministic labeling scheme
to perform bad on this probability distribution. Then from
Yao’s lemma [16] it follows that this bad performance holds
also for randomized labeling. The details are omitted.

Furthermore notice that the (d log A) lower bound for trees
with bounded depth and degree applies to randomized schemes
as well.

4. LABELING WITH A CLUE

‘We have seen that for arbitrary trees, any persistent labeling
scheme would need labels of length Q(n) for some inputs. In
contrast, simple static labeling schemes guarantee maximum
label length of ©(logn) on arbitrary trees (e.g. the interval
scheme presented in the Introduction has labels of length
2log(n)). To understand this exponential gap better and
find ways to avoid it, we consider in this section insertion
sequences such that with each inserted node, the algorithm
gets a small amount of additional information, which we call
a clue.

Clues provided with the inserted nodes restrict the set of
possible continuations of the sequence, and thereby the set of
possible final trees. The labeling algorithms we consider here
obtain as input a list of insertions, each insertion of a node
v specifies a parent node under which v should be inserted
and an accompanying clue. We obtain bounds on the perfor-
mance of labeling with clues by first showing a tight relation



between ancestor labelings and integer markings (which we
define below). Then we establish tight bounds on integer
markings.

We use the following notation. For an insertion sequence
s and a node v € s, let pr (v) denote the prefix of s up
to (and not including) the insertion of v. We denote by
T,(v) the tree defined by pr,(v). We denote by C;(v) the
set of complete insertion sequences, of the same length as
s, that are “legal” continuations of pr (v). We also denote
by 7s(v) the set of all trees that can be obtained by such
continuations of pr,(v). Finally, for a node v we denote by
P(v) the parent of v.

4.1 Integer marking and labeling schemes

An integer marking algorithm assigns to each inserted node
v an integer N(v) > 1 such that, at the end of the insertion
sequence, the following holds for every node v.

N(’U) 2> E{u | v=P(u)}N(u) +1. (1)

Any labeling algorithm A has a corresponding integer mark-
ing algorithm A, as follows:

LEMMA 4.1. Consider an insertion sequence s and the in-
sertion of node v € s, let B(v) be the set of distinct labels
assigned by A to a descendant of v (including v itself) over
all insertion sequences in Cs(v). Then A, assigns the mark-
ing Na(v) = |B(v)|.?

PRrROOF. Let ui,us,... be the children of v in the order
they are inserted. Equation 1 holds since the sets B(u;) are
disjoint®; Vi , B(u;) C B(v); the label of v is in B(v) but is
not contained in any of the B(u;)’s. [

As a corollary of Lemma 4.1 we obtain that the maximum
length of a label assigned by A to a descendent of v in some
tree T € 75(v) is at least log Na(v) (since Na(v) distinct
labels must have at least one of length at least log N(v)).
Therefore by showing a lower bound on the minimum pos-
sible size of an integer marking one obtains a lower bound
on the maximum label length of any labeling algorithm.

We next show how any integer marking algorithm can be
converted to a labeling algorithm. Thereby we will be able
to obtain a labeling algorithm by obtaining an integer mark-
ing algorithm. We consider both range and prefix schemes.
First, given an integer marking algorithm we show how to
obtain a range labeling algorithm. The length of the la-
bels produced by the range labeling algorithm is at most
2(1 + |log N(r)]). Next we show how to obtain a prefix la-
beling algorithm. The length of the labels produced by the
prefix labeling algorithm is at most [log N(r)] + d where

?We use the integer marking algorithm A,, only as an an-
alytic tool, thus we do not consider its complexity, which
could be prohibitive.

3otherwise, we obtain a contradiction to the ancestor rela-
tion of the labels, since if B(u;) intersects B(u;), j > 4, the
insertion sequence and node that obtains that label under
u; would also be considered a descendant of ;.
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d is the depth of the final tree obtained at the end of the
insertion sequence.

Range scheme: The algorithm is a persistent variant of
the interval scheme described in the Introduction. The root
is labeled by the interval [1, N(root)], and each additional
inserted node v is assigned a subinterval that contains N(v)
integers from the interval of its parent. (Siblings intervals
are disjoint and assigned consecutively). It is easy to see
that this yields a correct labeling with labels of length at
most 2(1 + [log(N(root))]) bits.

Prefix scheme: The root is labeled by the empty string.
When the it" child, u; of a node v is inserted, it is labeled by
the label of v concatenated with a string s;, s.t. (i) s1,...,8;
are prefix free, and (ii) |s;| = [log(N(v)/N(u;))]. The fol-
lowing is easy to verify.

THEOREM 4.1. Let d be the depth of the tree obtained at
the end of the insertion sequence.
(1) A string s; with the above properties always exists, and
(2) the size of the labels generated by this prefiz scheme is
bounded by log(N (root)) + d.

PRrOOF. (sketch) To find the strings we use an auxiliary
data structure, a full binary tree T' of depth [log(IN(v))].
We label the left (respectively, right) outgoing edge of each
node in T by “0” (resp., “1”), and label each node by the
concatenation of the symbols on the path from the root.
Now, when u; is inserted, we look for the left most node
of depth [log(N(v)/N(u;)] in T s.t. neither the node nor
any of its ancestors or descendants is marked. Its label is
returned as the required s; and the node becomes marked.
To conclude the proof of item (1) it remains to prove the
correctness of the above algorithm. We omit this here.

Finally, to see that the size of the labels is bounded by
log(N (root)) + d, observe that the longest labels are those
of the leaves. The length of the label of a leaf node u is
the sum of the s; strings on the path to it, namely, can be
described by a formula of the form

[log(N (root)/N(viy )] + [og(N (viy)/N(vi, )1+
-+ [log(N(vig_, )/ N(u)]

<log(N(root)) + d.

O

We will in fact use in the sequel a slightly weaker notion
of almost integer markings and show that almost-integer-
markings can also be converted efficiently to labeling algo-
rithms. An c-almost integer marking is defined for a con-
stant ¢ and is a marking N(v) such that N(v) satisfies Equa-
tion (1) for N(v) > ¢; every node v such that N(v) < ¢
has at most ¢ descendants; and for each descendant u of v,
N(u) < N(v).

An almost integer marking can be converted into a labeling



algorithm as follows.
from Section 3.

Let L be one of the prefix schemes

e Each node with N(v) > c is labeled as with exact
integer markings. (This works the same for both prefix
and range labels).

For a node v with N(v) < ¢, let u be the closest an-
cestor of v such that N(u) > c¢. The label of v is the
concatenation of the label of u with the prefix-based
label of v, as defined by L, within the subtree rooted
at u.

Observe that when the labeling scheme used for nodes with
N(v) > cis a prefix scheme, the above combined scheme is
also a prefix scheme. Thus ancestor test amounts, as before,
to testing if one label is a prefix of the other. When the label-
ing scheme of nodes with N(v) > cis a range scheme, to test
for ancestor relationship one first needs to “chop” out, and
compare (via range containment), the first 2(1+ |log N(r)])
bits of the labels. If those turn out to be identical then
we need to continue and compare the remaining bits (via a
prefix test). Finally note that although the labels now are
longer than with exact integer marking, (e.g. by O(c) bits),
since ¢ is a constant we still have asymptotically the same
bounds.

We next show how clues on the size of the subtree that might
emerge under a node can be used to derive tight bounds
on magnitude of integer markings, and thus bounds on the
number of labels needed to label the subtree. Note the
distinction between the size of a subtree and the number
of labels needed to label it. Clues on the possible size of
XML subtrees can be derived from the DTD of the XML file
or from statistics of similar documents that obey the same
DTD. In contrast, the number of labels needed to label such
a subtree may be much larger than the subtree itself, since
it has to account for all the various possible structures of a
subtree of that size. (As demonstrated for instance in the
proof of Theorem 3.1).

For simplicity we assume first that all the provided size esti-
mations are indeed correct. In Section 6 we will see how the
algorithms can be extended to cope with wrong estimations.

4.2 Sizeestimations

We consider two types of clues. The first, which we call sub-
tree clue consists of an estimate, up to a constant factor, of
the number of future descendants of the inserted node. The
second, which we call sibling clues consists of the subtree
clue together with an additional estimate, of the number of
descendants of future siblings of the inserted node.

The precise definition of the subtree clues is as follows. Each
inserted node v is provided with a range [I(v), h(v)].

consider ranges s.t. for all v, h(v) < p*I(v) for some fixed
p > 1. We call such ranges p-tight. The range is interpreted
as a declaration that the final subtree rooted at v (including
v itself) would contain at least I(v) and at most h(v) nodes.
When analyzing the performance of our labeling schemes
we will consider only “legal” insertion sequences, that is,
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sequences where all the declarations are met by the final
tree. (Wrong declarations are considered in Section 6).

It is easy to see that if p =1 (i.e. the subtree size is known
exactly), then the above two labeling schemes can be used
with N(v) = I(v), and will produce correct labels of length
2(1 + |log(n)]) and log(n) + d, resp., n being the size of
the final tree. Interestingly, we show in Section 5 that for
p > 1 any labeling scheme requires Q(log? n) bits on some
insertion sequences. We also describe a labeling algorithm
that achieves this bound.

The second, and stronger, type of clues that we consider
are sibling clues. With each inserted node v, we obtain two
p-tight ranges. The first range is essentially a subtree clue,
with the same interpretation as above. Namely, it estimates,
within a factor of p, the final size of the subtree rooted at
v. The second range [I(v),h(v)] estimates, within a factor
of p, the sum of the sizes of all subtrees rooted at future
(not yet inserted) siblings of v. As before, we first consider
only sequences where all declarations are fulfilled by the
final tree. In particular, declarations must be consistent
with previous declarations. We show below that these more
detailed clues allow for more efficient labeling and prove in
Section 5 matching lower and upper bounds of ©(logn) on
the maximum label length. Note that the ©(logn) bound
asymptotically matches the bound for static tree labelings.

4.3 Current ranges

Before presenting the results, let us first explain a bit more
the interaction between the range declarations of different
nodes, and what additional information one can draw from
them. As nodes are inserted to the tree and further range
declarations are made, the set of possible final trees narrow
down.

Two useful notions in our analysis of subtree and sibling
clues are the current subtree range and the current future
range of a node v, denoted by [I*(v), h*(v)] and [I(v), h(v)],
respectively. Current ranges are the narrowest possible ranges
that are consistent with all legal completions of the tree.
(Thus they change, as nodes are inserted and more deceler-
ations are made).

Let T be the tree constructed by the insertions so far, and
let 7 be the set of trees that can be formed by possible le-
gal completions of the insertion sequence. The lower bound
I"(v) of v is the smallest size of a subtree rooted at v in a
tree T' € 7. The upper bound h*(v) is the maximal size
of such a subtree. The current subtree range of a node is
a sub-interval of the subtree clue that was provided with
the node. As nodes are inserted into the graph, the current
subtree range of other nodes may become more restricted.

Similarly, the current future range of a node v, [I(v), h(v)],
is such that [(v) is the minimum and h(v) is the respec-
tive maximum, over T’ € 7, of the number of descendants
of future children of v (namely children of v in T" not yet
appearing in T'). As nodes are inserted into the graph, the
upper bound on the future range may become smaller. The
lower bound, however, may decrease or increase (more pre-
cisely, as we shall see, with subtree clues it can only decrease,
but sibling clues may cause it to increase).



It is not hard to show that ranges in 7 are always contiguous.
That is, for any I*(v) < k < h*(v) there is a tree T' € T s.t.
v has a subtree of size k. A similar claim holds for current
future ranges. and l(v) < k < h(v).

The following lemma provides a computational definition of
the current subtree and future range for insertion sequences
with subtree clues. The proof is rather straightforward, and
thus omitted.

LEMMA 4.2. The lower bound of the current subtree range
of a node v can be recursively computed (bottom up) as fol-
lows.

I(v), 1+

{u|P(v)=v}
The upper bound of v’s current subtree range can be recur-

sively computed (top down) as follows.
For the root node r, h*(r) = h(r). For a node v with parent

P(v),

1" (u) (2)

1" (v) = max

h*(v) = min ¢ h(v), " (P(v)) — 1 —

>

{uluzvAP(u)=P(v)}

1" (w)
®3)

The lower and upper bounds of the current future range of
v can be computed as follows:

iv) = rwy-1- > I"(w (4)
{u|P(u)=v}

h(v) = K@ -1— > I"(u). (5)
{u|P(u)=v}

The lemma shows how the current and future ranges can
be updated as new nodes are inserted: When the root is
inserted we have I*(r) = I(r), h*(r) = h(r), l(r) =" (r) — 1,
and h(r) = h*(r) — 1. When a node u is inserted under a
node v, we have I*(u) = I(u) and h*(u) = min{h(v), h(v)}.
(We thus can assume w.Lo.g. that 0 < I(u) < h(u) < A(u).)
The future range of the new node u is I(u) = I*(u) — 1 and
h(u) = h*(u) — 1. The insertion of u requires updating the
current future range of its parent: I(v) «— max{0, [(v)—I(u)}.
It may also result in updates to the current ranges of other
nodes. If we had I(u) > l(v) when u was inserted, we need
to increase I*(v) by I(u) — i(v). The updates (increases)
on the lower bounds on the current subtree range are then
propagated through ancestors of the inserted node accord-
ing to Equation 2, and upper bounds on the current ranges
are then updated (decreased) by propagating them down
from all nodes with increased lower bounds, according to
Equation 3. The future current ranges are then recomputed
according to Equations 4 for all nodes with a child with a
modified current range.

When sibling clues are provided, the computation and up-
date process of current ranges is somewhat more involved,
and is postponed to the full version of the paper.

ExAMPLE 4.1. Consider first an insertion sequence with
subtree clues, and let p = 2. We start with the empty tree.
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Assume that the first inserted (root) node uw has declared
subtree range of [5,10], and the second insertion is a child v
of u with a subtree range of [4,8]. It is easy to see that the
current future range of u is [0, 5]: Clearly the subtrees rooted
at future children of uw cannot contain more than 5 nodes as
the tree has mazimum allowed number of 10 nodes including
the root u and the subtree rooted at v (which will contain at
least 4 nodes); On the other hand, it is possible there will
be no additional children whatsoever (hence 0 nodes) since
the complete tree may have only 5 nodes, and this is already
satisfied by the root itself and the 4 nodes that must appear
n v’s subtree.

Note that, with subtree clues, the current future range is not
necessarily p-tight (e.g., it can be [0,5]). Sibling clues will
restrict this range so that the gap between the lower and up-
per bound is at most a factor of two. Thus, the current
future range will be contained in one of the following in-
tervals [0,0], [1,2], [2,4], and [3,5]. As soon will become
evident, this seemingly small difference is what makes much
more efficient labelings possible for sibling clues.

The ezample also illustrates why we cannot simply take the
upper bound of the root subtree range, (10 in the example),
also as the bound on the required number of labels (and hence
possibly infer a bound on the labels length) . To be ready for
all possible completions of the tree, we must have at least 8
available labels for the subtree of v and 5 more for the poten-
tial future children subtrees. This, together with the label of
the root itself, implies that the domain of labels must contain
at least 14 labels.

For convenience in our analysis, we assume below that the
declared subtree clues are always contained in the current
future range of the parent node. That is, when a node
w is inserted as a child of v, 0 < Il(u) < h(u) < h(v).
For sibling clues, we assume that 0 < I(u) < h(u); that
I(u) > I(v) — h(u); and h(u) < h(v) — I(u). Note that this
assumption is made without loss of generality, as it is pos-
sible to automatically narrow down the declarations to be
consistent with current ranges.

5. BOUNDSONINSERTIONSWITH CLUES

‘We first summarize our results for insertion sequences with
subtree and sibling clues, then we illustrate the proof tech-
niques used to establish those results. We start with subtree
clues.

THEOREM b.1. For any deterministic (or randomized) la-
beling algorithm for insertion sequences with p-tight subtree
clues, there is an insertion sequence of m nodes on which
the scheme assigns an (exzpected) mazimum label of length
at least Q(log®(n)). Furthermore there is a labeling scheme
that labels each such insertion sequence with labels of length
O(log?(n)). The hidden constant factor degrades as p in-
creases.

To prove the lower bound we will show below that any inte-
ger marking algorithm has a sequence of n insertions where
the mark of the root node is n?1°8(™) which implies that we
need Q(log?(n)) bits to represent the labels. To prove the



upper bound we will show that legal integer marking can
be obtained with assignments where N(v) = h(v)C (108 ()
where h(v) is the upper bound of the subtree clue of v.

For a fixed p, the above results provide tight upper and
lower bounds of ©(log® n) on the length of the labels. This is
considerably better than the ©(n) bounds when no clues are
available, but still does not match the performance of static
labeling schemes. We will next see that insertion sequences
with sibling clues have matching upper and lower bounds
of ©(logn) on the maximum length of the labels. Thus,
asymptotically, insertion sequences with sibling clues can
be labeled online as well as they can be labeled off-line.

THEOREM 5.2. Consider insertion sequences where nodes
come with both subtree and sibling clues.

1. Let S(n) = n!/182((+D/0) A integer marking algo-
rithm that takes N(v) = S(n), when v’s subtree clue
(and thus current subtree range) is [a,n], for a > n/p,
is a correct marking.

Any deterministic or randomized integer marking al-
gorithm has a sequence where n is an upper bound on
the range of the root on which it assigns to the root an
(expected) marking of

Q(nl/ logz((p+1)/p))) )

To conclude this section we present the proof of Theorem
5.1. The proof technique of Theorem 5.2 follows similar
lines and is omitted here.

The upper and lower bound proofs rely on bounding the
function P(n) defined as follows. P(n) is the minimum,
over all integer marking algorithms A, of the maximum over
insertion sequences, of the marking N (v) that A assigns to a
node v with current subtree range upper bound of A*(v) = n.

PrROOF. (Theorem 5.1 deterministic lower-bound)
We show that P(n) > (g‘—p)ﬂ(l"g"/]"g@"/("_l)). Let A be
an arbitrary marking algorithm and consider an insertion
sequence s (see Figure 1) that inserts a root r = vo with clue
[%,n], then inserts a child v1 of vo with clue [% —1,n—p
and continue inserting a path of % nodes vy, . . . e in a
similar fashion where the clue of v; is [2 —i,n—ip]. It is easy
to check that after inserting these nodes then the current
future range of vo is [0, n%l], and the current future range

of vj, § < 35 —11is [0, (n—z’p)%].

To facilitate possible future insertions under v;, the mark-
ings must be such that

Nag(vi) > 14+ Na(vig1) + P((n — lp)%) .

For 0 <:< ,L,"—p, we obtain that

np—1

Na(vi) 2 1+ Na(vit1) + P( ) -
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[n/p:n]

[n/p-1n-p]  [On(p-1)/p]

n/p-2,0-2p]  [0,n(p-1)/p-(p-1)]

[n/p-in-ip]  [0,n(p-1)/p-(i-1)(p-1)]

/\

Figure 1: Insertion of a chain of descendants. The
dotted lines are for current sibling ranges.

p—1

Therefore we obtain that N(vo) > 3P (% >

holds for any marking algorithm A we obtain that P(n) must
satisfy the recurrence

) . Since this

p—1 p—1,2
pys p(ne=1)s nmem ")
— 2p 2 p “2p 2p 2p

where P(1) = 1. It follows that

n Q(logn/log(2p/(p—1))
P(n) > (—) .
2p

O

PrROOF. (Theorem 5.1 randomized lower-bound) We
apply Yao’s lemma which reduces the problem to finding a
distribution over insertion sequences and showing that any
deterministic algorithm is such that the expected length of
the maximum-length label it assigns on these sequences is

n ) Q(logn/log(2p/(p—1))

we = (35

‘We consider a distribution on insertion sequences obtained
by the following process: Initially, the root is the “current
node” and let n be as above. A chain of n/(2p) — 1 descen-
dants is inserted starting from the current node, as described
in the lower-bound proof of the deterministic case. The pro-
cess then selects one of the n/(2p)—1 nodes on the chain uni-
formly at random. The selected node becomes the new cur-
rent node and a new chain insertion with n < n(p—1)/(2p)
is iteratively started from that node. The process contin-
ues until n = 1. The same calculation performed for the
deterministic bound also shows that the number of distinct
insertion sequences produced by this process is M (n). Con-
sider now a deterministic algorithm and the labels it assigns
to nodes on these insertion sequences. Since the algorithm is



deterministic, two insertion sequences with identical prefixes
obtain identical labels for insertions that are part of the pre-
fix. We claim, however, that labels assigned to nodes that
are not part of the common prefix must be disjoint. It fol-
lows from this claim that the labels assigned to the last node
of each insertion sequence are distinct. Since there are M (n)
such sequences, there are the same number of disjoint labels.
Most labels in that set must thus be of length Q(log M (n));
therefore the average length of these labels (over all these
sequences must be Q(log M (n)).

To prove the claim, consider the last chain-insertion that
was common to both sequences. There are two different
nodes on that chain, v; and vz, such that the suffix of the
first insertion sequences is all under v; and the suffix of the
second sequence is all under v2. Suppose w.l.o.g. that vs is
a descendent of v1. Assume to the contrary that a node u
in the suffix of the first sequence had a common label to a
node in the suffix of the second sequence. Since the label
is on a suffix of the second sequence, it must be such that
L(u) < L(v2) (in the ancestor relation sense), but the node
u in the first sequence is not a descendant of vz, and thus
we obtain a contradiction. [

We use the following lemma for the upper-bound proof.

LEMMA 5.1. Let f(z) = 2*™° and

g(n,z) = f(z) + f(n—=z/p—2/p) .
Then

Proor.
df (z) a(lnz)z>n®
=2
dz x

using this we obtain that dg(n,z)/dz is increasing. As
g(n,z) is continuous, the maximum point(s) must be ob-
tained at the endpoints of the interval [1,n — 1], thus at
x =n—1or z =1. It is not hard to see that g(n,n —1) >
g(n,1). O

PROOF. (Theorem 5.1 upper bound) We prove an up-
per bound on P(n). Consider a function f(n) that satisfies
the following inequalities for all n > ¢(p), where c(p) is a
constant that depends on p.

(re-vesoosefi) o3

and f(n) =0 for n <0.

f(n) > max
z€[1,n]

We use two claims to conclude the proof.

e Claim 1 states that N(v) = f(h*(v)) constitute cor-
rect (c(p)-almost) integer marking (that is, satisfies
Equation (1) for all legal insertion sequences). Thus,

f(n) =2 P(n).
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o Claim 2 states that the function
s(n) = (n/p)logn/ log(p/(p—1))

satisfies Equation (6).

To prove claim 1, we start by defining the unused marking
R(v) of anode: When v is inserted then R(v) = f(h*(v))—1;
When a child u is inserted under v then R(v) «— R(v) —1—
f(h*(u)). Note that a sufficient condition for (1) to hold is
that we always have R(v) > f(h(v)).

We now prove inductively that R(v) > h(v). First recall that
the current range can only become more restricted as nodes
are inserted elsewhere in the tree whereas R(v) is decreased
only when new children are inserted to v. Thus, it suffices
to show that the inequality holds whenever a new child is
inserted to v. Initially, when the node v is inserted then
R(v) = f(h(v)). Suppose that a child u is inserted to v. By
the induction hypothesis, before the insertion v had current
future range of [lq, hq] and R(v) > f(h,). By definition of
current future range, the current subtree range of w must
be such that h*(u) < hq — 1. The updated current future
range of v after the insertion has h(v) = he — 1 — I*(u) <
ha —1 — h*(u)/p. It follows from property (6) of f() that
f(ha) = 1 = f(h*(w)) > f(h(v)). On the other hand, the
unused marking of v after u is inserted is R'(v) = R(v) —
1 — f(h*(u)). From these last two inequalities we obtain

R'(v) > f(h(v)).

The following two statements establish the correctness of
claim 2.

1. max,e1,n] {s(m —1)+s (n —1-— [%]) + 1}

is obtained for x = n.

2. We show that for n > ¢(p)

s(n) Zs(n—1)+s(np—;1)+1 . (8)

The first statement is proven in Lemma 5.1. To prove (8),

first note that
-1
25 (a1
p p

Substituting using Equation (9) in inequality (8) we obtain
that inequality (8) holds if for n > ¢(p)

(n—p_1>2 s((n—l)p—_1)+s(n—p_l)+1.
p p p
(10)
Inequality (10) is equivalent to
(E—l)s(n—p_1> —n_ls<(n—1)—p_1>+1.
p p P P

(11)
Substituting for s() using (7) we obtain that inequality (11)

s(n) 9)

n 1
-8

p

n—

>



is equivalent to

-9

p—1

>1°8p/<p—1) n-1

p? =
n-1 p= 1)1°gp/<p—1><<n—1>—1)
n-1 +1(12
( P ) <( ) p? (12)
For n > p?/(p — 1) + 1 the inequality
— 1\ '08/(p-1) =1
(-1 (%) S
p p
log,/(p—1)(n—1)
n—1 p—1 p/(p—1)
(n—1) ) +1, (13)
( P ) ( p?

which we obtained by substituting n for n — 1 in the power
on the right hand side of inequality (12), implies inequality

(12). Dividing both sides of (13) by z = (% — 1) and y =
((n—1)et
is equivalent to the following

log _1y(n-1)
p/te=h) we obtain that inequality (13)

logp/(p—1) =1 _
( n 1) > 11 (14)
n— n—p zy
For n > p?/(p—1)+ 1, y > 1, so the inequality
logy/(p—1) =1 ~1 1
(%) >2oly L )
n— n—p

implies that inequality (14) also holds. By substituting x
and rearranging (15) we obtain that it is equivalent to

(1+

If log,;(,—1ym > 4p — 1 then
1

14+ ——

( + n—1

1
14+ ——
(+n—1

4p—2
) Z(1+
and if n > 2p — 1 then
(1+4p—2 20—1

>1 .
1)‘ +n—p

Summarizing we obtain that for n > c¢(p) where ¢(p)
max{p?/(p—1)+1,(p/(p—1))**71,2p — 1}. the function s
satisfies Inequality (8).

1
n—1

2p—1
n—p

>1+

logy/(p—1)n—1
) (16)

>1°gp/(p—1) n-1

4p —2
n—1

) an

(18)

n —

O

6. COPING WITH WRONG ESTIMATES

We briefly explain how the range and prefix labeling schemes
presented in the previous section can be extended to cope
with wrong estimates. First observe that over-estimation of
the size of the final tree makes the labels longer than actually
needed, but the labeling is still correct. We next show how
to deal with under-estimations.

Extended range scheme: The key idea is to look at the
binary code of the intervals assigned to a node and view the
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lower (upper) end points as virtually padded by an infinite
sequence of 0Os (1s). For example the range [1001,1101] is
interpreted as [10010000000...,11011111111...]. The or-
der relation < used here for determining interval inclusion
is the lexicographical order on the (virtually padded) end-
point of the ranges (so the labels domain is virtually infi-
nite). When a node v gets a new child v it needs to allocate
to it a subrange that fits its clue declaration. If all declara-
tions are correct, it should be able to do it within its (non
padded) range. If it runs out of available space, the range
is extended by using longer strings for the range endpoints,
e.g. [1101000,1101111], and the required subrange within
this extended range is allocated. Since < is a lexicographi-
cal ordering on the virtually padded endpoints, the assigned
range is still included within v’s range. Further insertions
may lead to further extensions, and so on.

Extended prefix scheme: We use here the same idea as
in the prefix schemes of Section 3. Rather than consuming
all the prefix-free strings, we do not assign the last string s;,
but, instead, use it as a basis for a longer string, say s - 0.
Then the following prefix-free assigned strings will be s; - 10,
si - 110, s; - 1110, ... .

It should be noted that the more wrong estimates are made,
the longer the labels may be (up to O(n) in the worst case).
A related interesting open question is the design of opti-
mal labeling schemes when clues are provided as distribution
functions.

7. RELATED WORK

One can design labeling schemes in a static or dynamic set-
ting. The static setting, where the full structure of the tree is
known in advance, has been the focus of several recent works
[2, 4, 17, 10, 8]. The best proposed schemes use labels of
length logn + o(logn) bits, and there is a matching lower
bound of logn on the maximum label length of any such
labeling scheme. None of these schemes, however, is suit-
able for a dynamic setting where the trees undergo changes
through time.

Ancestor labeling schemes have also been studied in the con-
text of object-oriented systems, as means to determine in-
heritance relationship among classes (see e.g. [5, 3]). The
underlying graph describing the class hierarchy in these works
is a DAG and the setting is static. Persistent object identi-
fiers are used in object-oriented databases as means to iden-
tify individual objects throughout time. These ids however
do not provide ancestor information [6].

The problem of designing a persistent labeling scheme for
identifying nodes in a sequence of versions of an XML file
has been recently studied by Marian et al [9], who suggested
a scheme based on an inorder traversal of the original tree
and the new inserted subtrees, with a relatively low storage
overhead. Their labels, however, do not contain ancestor
information and hence cannot be used for structural queries
by a full text indexing mechanism. Marian et al [9] raised
in their paper the question of whether an efficient persis-
tent labeling scheme for multiple versions that also contains
ancestor information is possible.

This question is addressed by the present paper. We mod-



eled, analyzed, and obtained tight bounds for dynamic la-
beling of trees when the insertion sequence is accompanied
with different levels of additional information. The bounds
we obtained are summarized in the table below.

problem|| static dynamic
no clues | subtree clues | sibling clues
bounds || O(logn) | ©O(n) O(log” n) O(logn)

Queries may sometimes need to test for parenthood, in ad-
dition to arbitrary ancestor relationships. This is often im-
plemented, (and can be used with our labels as well), by
attaching to each label the hight of the node in the tree -
a node v is a parent of u iff the labels indicate ancestor re-
lationship and the height of the first is smaller by one that
that of the second]8, 15].
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