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Abstract: The dynamic characteristics, in the uprising phase, of an overhead crane carrying
two carriages and a cylindrical payload are studied in this article. The crane system investigated
mainly consists of a twin beam, two carriages, a rigid payload, and two wire ropes. A new analytical
model, in which the beam, carriages, payload, and wire ropes are, respectively, considered as
uniform Euler–Bernoulli beam, lumped masses, rigid body, and springs, is presented to describe
the uprising dynamics of the specific crane system. The most distinguished characteristic of the
model is the dynamic coupling deriving from the presence of a flexible beam, carriages, and the
cylindrical payload.

The kinetic and potential energies, during the pre-tensing and lifting phases, of the components
in the system are presented in particular. Then, utilizing the Rayleigh–Ritz method, one can obtain
the differential equations of the dynamic system substituting the energy into Lagrange’s equation.
The differential equations are numerically solved by the fourth-order Runge–Kutta method, and
then some useful results representing the dynamic features of the system are obtained according
to the calculation. The validity of the analytical model is demonstrated by an equivalent FE model
created by ANSYS and ADAMS. Comparison of the results, obtained by two distinct approaches,
indicates good agreements, which can be the validity evidence of the analytical model.

Keywords: overhead crane, dynamic model, mass-loaded beam, uprising dynamics, system
simulation

1 INTRODUCTION

The primary use of an overhead crane is in the transfer
of payloads from one location to another. In the trans-
shipment of cylindrical equipment, henceforth called
payload, the equipment needs to be horizontally
upraised and fleetly trans-shipped to the prearranged
location utilizing a double-carriage overhead crane.
Then the payload will be lowered down by the carriages
in which the payload is converted from horizontality to
verticality. The crane system mainly consists of a twin
beam, two carriages, a cylindrical payload, and two
wire ropes. It is considered as a dynamic model, which
can be employed for the dynamic response analysis of
the crane system.

Systems of a beam carrying masses are frequently
used as design models in engineering. Generally,
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studies [1–10] have focused on natural frequencies
and mode shapes of mass-loaded beams associated
with different boundary conditions. Cha [3] has gen-
erally summarized the researches about the approxi-
mate and exact analyses and classified the analysing
approaches commonly used (i.e. the Lagrange multi-
pliers formalism, dynamic Green’s function approach,
Laplace transform with respect to the spatial variable
approach, and the analytical–numerical combined
method).

Although a wealth of articles concern the vibra-
tion analyses of structures with rigidly attached or
elastically mounted equipments, fewer investigations
have been made in the crane industry. Oguamanam
et al. [11, 12] have done the researches on dynamics
for an overhead crane, which is modelled as a point
mass carriage traversing a simply supported Euler–
Bernoulli beam and suspending the payload vibrating
in and out of plane via a massless beam, in 1998
and 2001. Yang et al. [13] have studied the dynam-
ics of a tower crane handling the payload via rotation
and moving the carriage simultaneously, in which the
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crane was modelled as a system consisting of a flexible
clamed-free beam with the spherical payload pendu-
lum that moves along the beam.The authors presented
that the following two features distinguish the mov-
ing mass problem in the crane industry from that
in civil engineering. The first is that the structure on
which the moving mass moves always has travelling or
rotating motion. The second is that the payload of a
crane is attached via cables to a carriage moving along
the structure. Thus, the dynamics of an overhead or
rotary tower crane includes both the vibration of the
structure and the dynamics of the payload pendulum.
Some studies [14] on the quayside container crane
with double carriage can be obtained; however, in
such a system, the two carriages transfer the payloads
separately. Hence, they are distinct from the system
presented in this article.

Unfortunately, the information on such a special
system in which two carriages traverse the beam and
suspend the payload synchronously is rare. The object
of this article is to present a thorough mathematical
analysis model for the uprising dynamics of such a
double-carriage overhead crane. The uprising phase
can be divided into three subphases (i.e. the empty
run, and the pre-tensing and lifting phases). This arti-
cle mainly focuses on the last two subphases, which
can be considered as forced and free vibration pro-
cesses, respectively. The study can be the foundation
of dynamic design and stress calculation of the crane
system in the uprising phase.

2 DESCRIPTION OF THE SYSTEM

Figure 1 illustrates the trans-shipment process of the
special crane system. From the figure, one can see that

the system can hardly be abstracted as a model only
consisting of lumped masses and springs, which can-
not accurately describe the dynamic characteristics of
the investigated system.The two carriages suspend the
rigid payload via two wire ropes and vibrate on the twin
beam. Thus, the components inevitably affect each
other due to the interactional structure of the system.
The interaction induces the distinctive dynamic char-
acteristic (i.e. coupling). Accordingly, a new analytical
model is required to depict the dynamics of the special
crane system. Before modelling, some assumptions
are put forward to give prominence to the main char-
acteristics and simplify the minor ones of the physical
crane system.

1. The crane system can be divided into two identical
subsystems due to the symmetry of the structure
and payload about the vertical plane xoy. Therefore,
the twin beam can be simplified to a single one and
the mass properties of the components should be
reduced to half of the physical values.

2. The beam can be considered as a simply supported
beam of rectangular cross-section with uniform
material properties. The carriage, payload, and wire
rope are considered as lumped mass, rigid body,
and spring, respectively.

3. System vibrations are assumed only occurring in
the xoy plane; thus, the out-of-plane vibrations are
ignored.

4. If the length alteration of the wire rope is less than 5
per cent of the whole length, the stretching stiffness
of the rope can be regarded as invariable.

5. Damping can always be ignored in the calculation
of the maximum dynamic load.

According to the aforementioned assumptions, the
dynamic study of the crane system can then be
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Fig. 1 Diagrammatic sketch of the trans-shipment process of a double-carriage crane system
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converted into the study of a mass–beam–payload
system.

3 VIBRATION ANALYSIS OF A SIMPLY
SUPPORTED BEAM CARRYING LUMPED
MASSES

The associated problems of the mass-loaded beam
have been studied by numerous authors for many
years. In the succedent analysis, flexural free vibra-
tions of a uniform Euler–Bernoulli beam, carrying
lumped masses, are presented. The flexural vibration
equations of the beam can be expressed as

ρA
∂2y(x, t)

∂t 2
+

N∑
i=1

miδ(x − xmi)
∂2y(x, t)

∂t 2

+ EI
∂4y(x, t)

∂x4
= 0 (1)

The fourth-order partial differential equation can be
solved by the method of separation of variables. Before
the solution, it is expedient to introduce the following
non-dimensional parameters

ξ = x
lb

, ξi = xmi

lb
, Mi = mi

ρAlb
(2)

The parameters are introduced to make the formu-
lar format more regular and the numerical calculations
more accurate. According to the introduced parame-
ters, the analytical solution of equation (1) can then be
assumed as [15, 16]

y(x, t) = Y (ξ)q(t) (3)

where Y (ξ) is the mode shape function of the mass-
loaded beam.

Substituting the assumption into equation (1), one
can obtain the ordinary differential equation of Y (ξ) as

Y (4)(ξ) − β4Y (ξ) = β4
N∑

i=1

MiY (ξ)δ(ξ − ξi) (4)

where

β4 = ρAl4
bω

2

EI
(5)

Performing Laplace’s transformation [17] on equa-
tion (4), one can obtain

L[Y (ξ)] = s3Y (0) + s2Y ′(0) + sY ′′(0) + Y ′′′(0)

s4 − β4

+ β4
N∑

i=1

MiY (ξi)
e−sξi

s4 − β4
(6)

Performing the inverse Laplace’s transformation on
equation (6), one can obtain

Y (ξ) = Y (0)S(βξ) + Y ′(0)T (βξ)

+ Y ′′(0)U (βξ) + Y ′′′(0)V (βξ)

+ β4
N∑

i=1

MiY (ξi)V [β(ξ − ξi)]u(ξ − ξi) (7)

Equation (7) is the detailed expression of the mode
shape function Y (ξ). Thereinto, S(kx), T (kx), U (kx),
and V (kx) are the Krylov functions, which can be
described as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S(βξ) = 1
2
(ch βξ + cos βξ),

T (βξ) = 1
2β

(sh βξ + sin βξ)

U (βξ) = 1
2β2

(ch βξ − cos βξ),

V (βξ) = 1
2β3

(sh βξ − sin βξ)

(8)

The functions have some useful characteristics,
which can be denoted as⎧⎨

⎩
S′(βξ) = β4V (βξ), T ′(βξ) = S(βξ)

U ′(βξ) = T (βξ), V ′(βξ) = U (βξ)
(9)

Utilizing equations (8) and (9), one can arrange
equation (7) to a more regular form after some alge-
braic manipulations as [16]

Y (ξ) = Y (0)

{
S(βξ) +

N∑
i=1

V [β(ξ − ξi)]

× u(ξ − ξi) W (i)
1 (β)

}

+ Y ′(0)

{
T (βξ) +

N∑
i=1

V [β(ξ − ξi)]

× u(ξ − ξi) W (i)
2 (β)

}

+ Y ′′(0)

{
U (βξ) +

N∑
i=1

V [β(ξ − ξi)]

× u(ξ − ξi) W (i)
3 (β)

}

+ Y ′′′(0)

{
V (βξ) +

N∑
i=1

V [β(ξ − ξi)]

× u(ξ − ξi) W (i)
4 (β)

}
(10)
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where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W (i)
1 (β)

= β4Mi

⎧⎨
⎩S(βξi) +

i−1∑
j=1

V [β(ξj+1 − ξj)]W (j)
1 (β)

⎫⎬
⎭

W (i)
2 (β)

= β4Mi

⎧⎨
⎩T (βξi) +

i−1∑
j=1

V [β(ξj+1 − ξj)]W (j)
2 (β)

⎫⎬
⎭

W (i)
3 (β)

= β4Mi

⎧⎨
⎩U (βξi) +

i−1∑
j=1

V [β(ξj+1 − ξj)]W (j)
3 (β)

⎫⎬
⎭

W (i)
4 (β)

= β4Mi

⎧⎨
⎩V (βξi) +

i−1∑
j=1

V [β(ξj+1 − ξj)]W (j)
4 (β)

⎫⎬
⎭

are introduced as operation symbols.
The boundary conditions of a simply supported

beam can be described as Y (0) = Y ′′(0) = 0 and
Y (1) = Y ′′(1) = 0. Substituting the boundary condi-
tions into equation (10) and setting the corresponding
determinant of coefficients to zero, one can obtain the
following transcendental frequency equation of the
mass-loaded beam∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

T (β) +
N∑

i=1

V [β(1 − ξi)]W (i)
2 (β)

V (β) +
N∑

i=1

V [β(1 − ξi)] W (i)
4 (β)

β4V (β) +
N∑

i=1

T [β(1 − ξi)]W (i)
2 (β)

T (β) +
N∑

i=1

T [β(1 − ξi)] W (i)
4 (β)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0 (11)

Equation (11) is a transcendental equation about β,
which can be used to evaluate the eigenfrequency ω in
equation (5) and the eigenmode Y (ξ) according to the
boundary conditions.

4 DYNAMIC RESEARCH IN THE PRE-TENSING
PHASE

At the end of empty run, it is assumed that the uprising
velocity of the drop-hanger has achieved the nomi-
nal value v0. The payload does not take part in the
vibration as it lies on ground all the time in the pre-
tensing phase. The crane system in this phase can
then be equalled to a dynamic model illustrated in
Fig. 2. In the model, the beam is considered as a simply
supported uniform Euler–Bernoulli beam and the car-
riages are considered as two lumped masses attached

x1

x2

lb

L
o

x

y

F2F1

Fig. 2 Dynamic model of pre-tensing phase

to the beam. The mass-loaded beam is motivated by
two external forces deriving from the elasticity of the
ropes. Kinetic energy of the system consists of the con-
tributions from the beam Tb(t) and the carriages Tc(t).
They can be expressed as

Tb(t) =
∫ lb

0

1
2
ρA[ẏ(x, t)]2 dx (12)

Tc(t) = 1
2

m1ẏ2(x1, t) + 1
2

m2ẏ2(x2, t) (13)

Potential energy of the system consists of the contri-
bution from the beam Ub(t), which can be expressed as

Ub(t) = 1
2

∫ lb

0
EI

[
∂2y(x, t)

∂x2

]2

dx (14)

Using the non-dimensional co-ordinate ξ , the elas-
tic displacement of the beam y(x, t) can be assumed
such that

y(x, t) = lbY (ξ)Tq(t) (15)

where q(t) = [q1(t)q2(t) · · · qn(t)]T is the column
vector of undetermined coefficients and Y (ξ) =
[Y1(ξ)Y2(ξ) · · · Yn(ξ)]T is the column vector of basis
functions, which in this case are the orthonormal
eigenfunctions of a mass-loaded beam with sim-
ply supported boundary conditions. The orthonormal
eigenfunctions Y (ξ) are determined by equation (11)
and the boundary conditions. Furthermore, the
orthogonality can be deduced as

∫ 1

0
Y (ξ)Y (ξ)T dξ + M1Y (ξ1)Y (ξ1)

T

+ M2Y (ξ2)Y (ξ2)
T = I (16)∫ 1

0
Y ′′(ξ)Y ′′(ξ)Tdξ = �4

β = diag(β4
1 , β4

2 , . . . , β4
n) (17)

where �β = diag(β1, β2, . . . , βn) is a diagonal matrix of
βi(i = 1, 2, . . . , n).

The generalized force, F g(t) = [Fg1(t)Fg2(t), . . . ,
Fgn(t)]T, of the system can be derived utilizing the prin-
ciple of virtual power. The manipulation process can
be described in particular as

δW (t) = F1(t)δy(x1, t) + F2(t)δy(x2, t)

= δqT(t)[F1(t)lbY (ξ1) + F2(t)lbY (ξ2)] (18)
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Thus, the generalized force can be expressed as

F g(t) = F1(t)lbY (ξ1) + F2(t)lbY (ξ2) (19)

where F1(t) = −k1v0t and F2(t) = −k2v0t are the exter-
nal forces motivating at the co-ordinates x1 and x2.

Some dimensional ratios and a non-dimensional
parameter are also introduced such that

K1 = k1

ρAlb
, K2 = k2

ρAlb
, V0 = v0

lb
,

	2 = g
lb

and M = m
ρAlb

(20)

Ignoring dissipation energy according to assump-
tion (5), one can obtain the dynamic equation of the
system in the pre-tensing phase substituting equa-
tions (12) to (14) and (19) into Lagrange’s equation as

q̈(t) + �2
ωq(t) + [K1V0Y (ξ1) + K2V0Y (ξ2)]t = 0 (21)

where �ω = diag(ω1, ω2, . . . , ωn) is a diagonal matrix of
the eigenfrequencies ωi(i = 1, 2, . . . , n). Equation (21)
can be solved by the numerical method, setting the
initial conditions to zero in the pre-tensing phase.

The finish time t1 of the pre-tensing phase can be
defined as the time when the summation of the exter-
nal elastic forces achieves the gravity of the payload.
Then the payload will leave the ground and the bal-
ance equation of external forces and gravity can be
expressed as

K1[V0t + Y (ξ1)
Tq(t)] + K2[V0t + Y (ξ2)

Tq(t)] = M	2

(22)

The finish time t1 is determined by equation (22) and
the vibration states of the system at that time are the
initial values for the lifting phase.

5 DYNAMIC RESEARCH IN LIFTING PHASE

In the lifting phase, all components participate in
the vibration. The crane system can be equalled to a
dynamic model illustrated in Fig. 3. The main beam
and carriages are considered as Euler–Bernoulli beam
and lumped masses as in Fig. 2. The wire ropes are
considered as springs and the payload is considered
as a rigid cylinder.

Kinetic energy in this phase is composed of con-
tributions from the beam Tb(t), carriages Tc(t), and
the payload Tp(t). Descriptions of the kinetic energy
Tb(t) and Tc(t) are identical to equations (12) and (13).
The displacement of the payload mass centre y(t) is

x1

x2

lb

L
o

x

y

l1 l2

Fig. 3 Dynamic model of lifting phase

defined as

y(t) = yc(t) − yc0 (23)

Therefore, one can describe kinetic energy of the
payload Tp(t) as

Tp(t) = 1
2

mẏ2(t) + 1
2

Jcθ̇
2
c (t) (24)

Potential energy in this phase is composed of con-
tributions from the beam Ub(t) and wire ropes Uw(t).
Similarly, Ub(t) is identical to equation (14) and one
can describe the potential energy of the wire ropes
Uw(t) as

Uw(t) = 1
2

k1{y(x1, t) − [y(t) + θc(t)l1 − v0t]}2

+ 1
2

k2{y(x2, t) − [y(t) − θc(t)l2 − v0t]}2 (25)

Before the formular arrangement, it is expedient to
introduce the following symbol vectors and matrices

αT
1 = [1, −l1], αT

2 = [1, l2], αT
3 = [1, 0],

Y T
D(t) =

[
y(t)

lb
,
θc(t)

lb

]
, MD = diag

(
m

ρAlb
,

Jc

ρAlb

)
(26)

The generalized independent variable in energy
functions are specified as [qT(t)Y T

D(t)]T and, further-
more, the differential equations in the lifting phase are
derived substituting equations (12) to (14), (24), and
(25) into the Lagrange’s equation as

q̈(t) + [�2
ω + K1Y (ξ1)Y (ξ1)

T + K2Y (ξ2)Y (ξ2)
Tq(t)

− [K1Y (ξ1)α
T
1 + K2Y (ξ2)α

T
2 ]Y D(t)

+ [K1Y (ξ1) + K2Y (ξ2)]V0t = 0 (27)

MDŸ D(t) + (K1α1α
T
1 + K2α2α

T
2 )Y D(t)

− [K1Y (ξ1)α
T
1 + K2Y (ξ2)α

T
2 ]q(t)

− (K1α1 + K2α2)V0t = 0 (28)

Equations (27) and (28) can be solved simulta-
neously by the numerical method with the initial
conditions determined by equations (21) and (22).
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6 NUMERICAL EXAMPLES

This section is devoted to the numerical evaluations
of the dynamic equations obtained in the aforemen-
tioned studies. It is known that the work condition
in the early stage of a crane system can always be
one of the worst conditions. Therefore, this section
mainly focuses on the dynamic responses in the pre-
tensing and initial lifting phases. Parameter values of
structure and mass properties of the crane system are
listed in Table 1. The cross-section configuration of
the main beam is illustrated in Fig. 4 and the sec-
tional dimensions are listed in Table 2. Cross-sectional
inertia moment of the beam can be calculated as
I = 9.0 × 10−3 m4 according to the formula

I = [(h1 + h2)h3 + (h3
3 + h3

4)b]
12

+ b(h3 + h4)

(
h
2

)2

(29)

According to assumption (4), the duration employed
in dynamic calculation is set to 3 s. Length alternation
in the duration can be calculated as

�l = v0t
l0

= 0.133 × 3
14.25

= 2.8 per cent (30)

Table 1 Parameter values of the crane system

m 104 kg Jc 3 × 104 kg m2 mb 104 kg
lb 19.5 m l0 14.25 m yc0 −14.25 m
v0 0.133 m/s D 0.018 m L 3.7 m
a1 2 m l1 2.3 m m1 2.0 × 103 kg
a2 5.7 m L2 1.4 m m2 2.0 × 103 kg

b

h

h3

h4

h1h2

Fig. 4 Cross-section of the main beam

Table 2 Sectional dimensions of the main beam

h1 0.006 m h2 0.006 m h 1.55 m
h3 0.008 m h4 0.008 m b 0.55 m

Table 3 Parameter values in calculation of wire rope stiff-
ness

E D α1 α2 lk

2.06 × 1011 N/m2 0.018 m 13 ∼ 16◦ 16 ∼ 18◦ 14.25 m

which is smaller than 5 per cent. Thus, the stiffness of
wire rope can be considered invariable and calculated
as k = 2.5 × 106 N/m by the formula

k = πD2E cos4 α1 cos4 α2

4lk
(31)

Parameter values in equation (31) are listed in
Table 3.

6.1 Dynamic calculation of the model

The first three eigenfrequencies and eigenmodes,
which are calculated by equations (5) and (11) and
listed in Table 4, of the mass-loaded beam are
employed in calculation. Differential equations are
calculated by the fourth Runge–Kutta method in MAT-
LAB. The time step is set as �t = 0.0005 s to capture
the dynamic response of the system in detail.

Before the interpretation of the calculation results,
some supplementary specifications need to be repre-
sented that the lifting phase is set temporally indepen-
dent of the pre-tensing phase, which means that the
initial time of lifting phase is set as t = 0 but not t1, in
the numerical calculation.

Displacements and velocities, employed as initial
values in the lifting phase, of carriages at the finish time
t1 are listed in Table 5. The finish time t1 is calculated
as 0.304 s.

Figure 5 illustrates the uplifting displacement y(t)
of payload mass centre in the lifting phase. From the
picture, one can see that the curve increases with a
near-linear trend due to the stationary uplifting veloc-
ity v0 of the hanger. Some mild and tiny fluctuations,
deriving from the flexibility of wire ropes and beam,
can be seen on the curve.

Figure 6 describes the uplifting velocity of the pay-
load mass centre. Conspicuous fluctuations with wave
crest value as 0.26 m/s and wave hollow value as 0 m/s
can be seen on the graph. The curve has a mean
value of 0.13 m/s, which is the uplifting velocity of the
hanger. However, the velocity curve does not converge
to 0.13 m/s as time goes on and oscillates with the sus-
tained amplitude. The reason for this phenomenon
can be derived from the ignoring of system damping
in assumption (5).

Figure 7 illustrates the angular displacement of the
payload rotating around its mass centre in a lifting
motion. The angle curve oscillates between −0.15◦ and
0.35◦ and has a mean value of 0.12◦, which reflects a
fact that the payload is oblique with a clockwise slope
and vibrates around the obliquity in the lifting motion
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Table 4 Comparison of eigenfrequencies and eigenmodes of mass-loaded beam

Modal order in
ADAMS 1st 2nd 3rd

Eigenfrequencies in MATLAB (Hz) 10.6271 40.7298 85.6621
Eigenfrequencies in ADAMS (Hz) 10.5138 39.5935 82.1520

Corresponding eigenmodes

Relative errors of frequencies (%) 1.07 2.79 4.10

Relative error is defined as 100 × |MATLAB − ADAMS|/MATLAB.

Table 5 Initial values of lifting phase (i.e. the final states of pre-tensing phase, and the finish time t1)

Initial displacement (m) y10 y20 Finish time of pre-tensing phase t1
−1.391 × 10−3 −3.272 × 10−3

Initial velocity (m/s) v10 v20 0.304 s
−4.427 × 10−3 −1.050 × 10−2

y10 and y20 represent the displacements of carriages at the very beginning of lifting phase. v10 and v20 represent the
corresponding velocities of carriages at that time.
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Fig. 5 Displacement of the payload mass centre in lifting
motion
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Fig. 6 Velocity of payload mass centre in lifting motion
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Fig. 7 Angular displacement of payload rotating around
its mass centre in lifting motion

due to the asymmetry of the two external forces acting
on it.

6.2 Calculation of the dynamic load coefficients

It can be evaluated that the maximum vibration ampli-
tude, ydmax, of the beam occurs at the location x =
9.316 m. Therefore, the dynamic load coefficient of the
beam, ϕ1, at that location can be denoted as

ϕ1 = ydmax

ys
(32)

where ys is the deformation of beam deriving from the
static load equivalent to the maximum dynamic load.

The dynamic load coefficient of the payload, ϕ2, is
defined as

ϕ2 = |F1(t) + F2(t)|max

mg
(33)
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where |F1(t) + F2(t)|max denotes the maximum sum-
mation of the external elastic forces, F1(t) and F2(t),
acting on the payload.

The maximum vibration amplitude ydmax and exter-
nal forces F1(t) and F2(t) can be obtained in numerical
calculation. Thus, the dynamic load coefficients ϕ1 and
ϕ2 are evaluated as ϕ1 = 1.51 and ϕ2 = 1.29 according
to equations (32) and (33).

7 VALIDITY CHECKING

The models and equations in the pre-tensing and
lifting phases can be verified utilizing the dynamic
simulation software ADAMS. ADAMS is chosen for the
verification; it not only is a well-known engineering
software extensively accepted and used by mechani-
cal engineers but also supplies a different approach to
evaluate the dynamic response of the crane system.

7.1 Modelling in ADAMS

Modelling process of the main beam can be described
as follows. First, the model of the main beam is cre-
ated in ANSYS; second, the model is divided into 40
cells by beam3 element, which is a uniaxial element
with tension, compression, and bending capabilities;
third, four interface nodes, interacting with outside,
marked as 1–4 are added to the beam; moreover, the
rigid sections surrounding the nodes are also defined;
and finally, the finite-element model is transformed
into a modal neutral file (.mnf), which can be exported
into ADAMS to generate the flexible main beam.

Modelling process of the wire rope [18] can be
described as follows. The wire rope is dispersed and
represented by a large number of short cylinders con-
nected with bushings, as illustrated in Fig. 8. If the
cylinders are short enough compared with the whole
length of the wire rope, the discrete model can then
be considered continuous and represent the stretch-
ing and bending characteristics of the wire rope well
and truly. The employed cylinder length is set to 20 cm,
which is merely 1.5 per cent of the whole length.

The carriages and payload are, respectively, mod-
elled as two cubes and a cylinder with the same mass
and dimension properties as the physical objects.

Defining of constraints and motions can be
described in particular as follows. Owing to the bound-
ary condition of the main beam, two revolve joints are
employed on both ends of the flexible beam at nodes
1 and 4. Two dumbed masses, which are modelled

as the interaction medium, transferring the interac-
tion forces and motions, of the carriages and beam,
are fixed at nodes 2 and 3. The carriages and payload
are connected by wire ropes via revolve joints. The
involution motion of the reel is substituted by trans-
lational motion, which is much easier to carry out, of
carriage to uplift the payload. Therefore, two transla-
tional joints along axis y between the carriages and
dumbed masses are added to proffer the translational
motions. To balance the gravity of the payload at the
pre-tensing phase, a contact force is added between
the payload and the ground. The sketch diagram of the
dynamic model of the crane system created in ADAMS
is illustrated in Fig. 9. The black points, marked as
1–4 from the left to the right end of beam, respectively,
represent the four interface nodes.

Defining the translational velocity of carriages as
v0 = 0.133 m/s, setting the simulation time as t = 3 s,
one can carry out the dynamic simulation of the crane
system in ADAMS. Corresponding results obtained can
be employed for the verifications of those obtained in
aforementioned studies.

7.2 Comparison of eigenfrequencies and results

Creating a new model including the flexible beam and
two carriages, connecting both ends of the beam to
the ground by revolve joints at interface nodes 1 and
4, fixing the two carriages at interface nodes 2 and 3,
and removing system gravity, one can obtain eigenfre-
quencies and eigenmodes of the mass-loaded beam
in ADAMS. Comparison of the eigenfrequencies and
eigenmodes is listed in Table 4. It can be seen that the
eigenmodes are correspondingly identical and the dif-
ferences between the eigenfrequencies are tiny. The
errors are less than 5 per cent, which can be regarded
as acceptable from the engineering point of view.

Comparison of some other results is listed in Table 6,
which exhibits that errors between the two models
are all acceptable. The displacements D1, D2, D3, and
dynamic load coefficient ϕ1 calculated in MATLAB are
smaller than those in ADAMS; however, the maximum
summation of wire rope forces and the dynamic load
coefficient ϕ2 are bigger in MATLAB. Differences are
derived from the errors between eigenfrequencies and
eigenmodes calculated in the two models. In Table 4,
the eigenfrequencies in MATLAB are bigger than those
in ADAMS, which implies a higher stiffness of the
beam. Therefore, the beam deformation and dynamic
load coefficient ϕ2 are smaller for the stiffer beam in

Cylinder
Bushing

Cylinder
Bushing

Cylinder

Fig. 8 A section of the wire rope model employed in ADAMS
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Wire rope
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Contact force
The ground
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Revolve joint

Revolve joint

Left carriage

Interface node

Right
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Revolve joint
1

2 3
4

Bushing

Cylinder

Translational
motion

Fig. 9 Dynamic model of the crane system created in ADAMS

Table 6 Comparison of some results

Displacement Displacement Displacement Force Coefficient Coefficient
Results D1 (m) D2 (m) D3 (m) F (kN) ϕ1 ϕ2

Value in ADAMS 3.35 × 10−3 8.37 × 10−3 9.86 × 10−3 119.77 1.56 1.22
Value in MATLAB 3.21 × 10−3 8.19 × 10−3 9.54 × 10−3 126.46 1.51 1.29
Relative errors (%) 4.36 2.20 3.35 5.59 3.31 5.43

D1 denotes the maximum displacement of the left carriage. D2 denotes the maximum displacement of the right
carriage. D3 denotes the maximum deformation of the beam. F denotes the maximum summation force of the wire
ropes. Relative error is defined as 100 × |MATLAB − ADAMS|/MATLAB.

MATLAB. On the contrary, the dynamic forces and
dynamic load coefficient ϕ2 are bigger.

From the comparisons above, one can conclude
that the results obtained by the analytical and FE
models show good agreements. Errors between the
two models are tiny and can be considered accept-
able. The latter model can be the validity evidence
for the former one. Therefore, the models and equa-
tions, obtained in the aforementioned studies, can be
considered feasible and reliable.

8 CONCLUSIONS

In this article, the dynamics of an overhead crane, car-
rying two carriages and payload, in pre-tensing and
lifting phases has been studied. The analytical model
of the crane system, consisting of the beam, lump
masses, rigid body, and springs, differs from the prior
models that include only point masses and springs.
The most distinguished characteristic is the dynamic
coupling deriving from the distributed mass beam,
dump masses, and rigid body. Differential equations
in the pre-tensing and lifting phases are derived sub-
stituting the kinetic and potential energy functions of
the system into Lagrange’s equation. The equations are
solved by a numerical method with the corresponding
initial values.

The identical crane system is studied by a different
approach, in which a rigid and flexible coupling model

of the system is created by ANSYS and ADAMS. Com-
parisons of the results are listed and analysed. It can
be observed that errors between the two approaches
are acceptable and the results show good agreements.
Thus, the analytical models and differential equations
can be considered feasible and reliable. Furthermore,
it can proffer valuable references for modelling and
analysing other similar engineering problems.
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APPENDIX

Notation

a cross-sectional area of the main
beam

ADAMS automatic dynamic analysis of
mechanical system

d virtual value of wire rope
diameter

E elastic modulus

Fg(t) generalized force of system
F1(t), F2(t) elastic external forces of the

wire ropes
I inertia moment of the beam

cross-section
Jc rotary inertia of the payload

with respect to its mass centre
k1, k2 stiffness of the wire ropes
l1, l2 distances of the payload mass

centre as measured from the
left and right suspension points
of wire rope

lb span of the beam
lk virtual value of the wire rope

length
l0 initial length of the wire rope
L distance of the carriage mass

centres
m mass of the uplifting payload
m1, m2 mass of the left and right

carriage
mb mass of the beam
mi mass of the ith lumped mass on

the beam
n order of truncation modal basis
N total number of lumped masses
o origin of co-ordinate
q(t) modal co-ordinate vector
t time
t1 finish time of pre-tensing phase
Tb(t), Tc(t), Tp(t) kinetic energies of the beam,

carriage, and payload
u(x) Unit step function
Ub(t), Uw(t) potential energies of the beam

and wire rope
v0 nominal uprising velocity
x axial co-ordinate (horizontal)
xmi co-ordinate of the ith lumped

mass on the beam
y transverse co-ordinate

(vertical)
y(t) displacement of payload
y(x, t) transverse displacement of the

beam at co-ordinate x and
time t

yc0 initial co-ordinate of payload
mass centre along axis y

yc(t) co-ordinate of payload mass
centre at time t along axis y

ydmax maximum dynamic vibration
amplitude of the main beam

ys static deformation amplitude
of the main beam

Y (ξ) eigenmode vector of the
mass-loaded beam

α1 spiral angle of the wire rope
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α2 skew angle of strand and rope
axis

β non-dimensional circular
frequency of beam

δ Dirac function
θc(t) rotation angle around the mass

centre
ξ non-dimensional axial

co-ordinate
ρ density of the main beam
ϕ1, ϕ2 dynamic load coefficients of

beam and payload

ω circular frequency of the
beam

Superscripts

′ derivative with respect to
spatial variable x

· derivative with respect to
temporal variable t

Subscript

c mass centre

Proc. IMechE Vol. 225 Part C: J. Mechanical Engineering Science

 at PENNSYLVANIA STATE UNIV on April 8, 2016pic.sagepub.comDownloaded from 

http://pic.sagepub.com/

