Accepted for ORSA Journal of Computing

Towards a Taxonomy of Parallel
Tabu Search Heuristics

Teodor Gabriel Crainic
Centre de recherche sur les transports
Université de Montréal
and
Département des sciences administratives
Université du Québec a Montréal

Michel Toulouse
Centre de recherche sur les transports
and
Ecole Polytechnique
Université de Montréal

Michel Gendreau
Centre de recherche sur les transports
and
Département d’informatique et de recherche opérationnelle
Université de Montréal

February 1995

Abstract

In this paper we present a classification of parallel tabu search metaheuristics
based, on the one hand, on the control and communication strategies used in the
design of the parallel tabu search procedures and, on the other hand, on how the search
space is partitionned. These criteria are then used to review the parallel tabu search
implementations described in the literature. The taxonomy is further illustrated by
the results of several parallelization implementations of a tabu search procedure for
multicommodity location-allocation problems with balancing requirements.

Key words: Tabu search metaheuristics, Parallelization strategies, Taxonomy

Résumé

Nous présentons un schéma de classification des algorithmes paralleles de recherche
avec tabous. La taxonomie est basée, d’une part, sur les stratégies de controle et
de communication des algorithmes paralleles de recherche avec tabous et, d’autre
part, sur les regles de partitionnement du domaine. Ces criteres sont ensuite utilisés
lors de la revue des réalisations décrites dans la littérature et sont illustrés de fagon
plus détaillée par les résultats d’une étude de plusieurs approches de parallélisation
d’un algorithme de recherche avec tabous pour le probleme de localisation-allocation
multiproduits avec des demandes d’équilibrage.

Mots clés: Méthodes de recherche avec tabous, stratégies de parallélisation, schéma
de classification.

1 Introduction

Tabu search [15, 16, 17, 18] is often described as a higher level heuristic for solving
optimization problems, designed to guide other heuristics, or parts thereof, to avoid
the trap of local optimality. Thus, tabu search is an adaptive search technique that
aims to intelligently explore the solution space in search of good, hopetully optimal,
solutions. Broadly speaking, two mechanisms are used to direct the search trajec-
tory. The first is intended to avoid cycling through the use of tabu lists that keep
track of recently examined solutions. The second mechanism makes use of one or sev-
eral memories to direct the search either into a thorough exploration of a promising
neighbourhood, or towards previously unexplored regions of the solution space.

It is noteworthy that these memory mechanisms may be viewed as learning capa-
bilities that gradually build up images of good or promising solutions. The existence
of these learning capabilities and guidance mechanism implies, on the one hand, that
the knowledge tabu search supplies about the instance of the problem to be solved is
richer than, say, the one generated during execution of a branch-and-bound algorithm
for the same problem. On the other hand, it also clearly differentiate tabu search from
random search by introducing a purposeness into the process of domain exploration.
Hence, a wider gamut of tabu search procedures may be designed for a given class
of problems, and this characteristic is emphasized when parallel implementations are
contemplated.

Parallel computer architectures offer the possibility to design procedures that ex-
plore more efficiently the solution space. Generally, this extra efficiency may be
achieved by accelerating some particularly tedious computational phases of the al-
gorithm, or by redesigning the algorithm. In the context of branch-and-bound al-
gorithms, Trienekens and Bruin [27] refer to these approaches as low and high level
parallelization, respectively, because a low level parallel implementation of an algo-
rithm does not change the interactions between its various parts; hence, it is not
intrinsically different from its sequential version, only faster. In the context of tabu
search, this distinction may become significantly more blurred. In particular, one
has to consider how the parallelization strategy affects the information relative to
the global search trajectory and history, as well as how much of this knowledge is
available to each process at any given moment. Hence, issues relative to inter-process
information exchanges and treatment, central to the design of any parallel procedure,
take on an even more preeminent position when parallel tabu search is considered.

The taxonomy that we propose explicitly addresses these considerations by incor-
porating classification criteria based not only on how the search space is partitioned,
but also on the control and communication strategies used in the design of the parallel

tabu search procedures. It thus aims to present the first comprehensive picture of
parallelization strategies for tabu search, and contributes toward performing a more
meaningful analysis and comparison of the various procedures proposed in the liter-
ature. The taxonomy may also help better understand the relationships between the
nature of tabu search, especially its knowledge acquisition and utilization features,
and parallel computation. Finally, it identifies new parallelization strategies, and
suggests interesting future work.

The next section details the taxonomy and its criteria, while Section 3 is ded-
icated to a review of the main strategies proposed in the literature according to
the parameters of the proposed classification. Finally, Section 4 further illustrates
the taxonomy by using results from several parallel implementations of the same se-
quential tabu search algorithm for multicommodity location-allocation problems with
balancing requirements, and shows that several other parallelization strategies, be-
sides those usually found in the literature, may be advantageously used to develop
efficient parallel tabu search procedures.

2 Classification of Parallel Approaches

There exists so far only a limited body of knowledge concerning the design of parallel
tabu search methods, and we are aware of only one attempt (VoB[28]) to classify the
different types of parallelism that may be applied in this context. Vof}’s classification
is based on an analogy to the classical taxonomy of parallel machine models proposed
by Flynn [12]. It discriminates parallel algorithms into four categories according to the
choice of identical or different initial solutions, and of identical or different exploration
strategies for each process. In our opinion, this classification is incomplete since it
fails to account both for the differences in control and communication strategies which
are so important when designing parallel algorithms, and for the various mechanisms
used to exchange and process information central to tabu search metaheuristics. The
taxonomy we present aims to fill these gaps.

2.1 The Tabu Search Approach

We briefly recall the main components of tabu search. For more detailed descriptions
of the method, as well as for reviews of successful applications, see Glover [15, 16, 17],
Glover and Laguna [18], Glover, Taillard and de Werra [19], and references therein.

A schematic tabu search procedure for solving an optimization problem
(P) Minimize f(x) subjectto x € X C R"

may be viewed as the combination of three main steps: local search, intensification
of the search in a selected subregion, moving the search to a previously unexplored
region. While exploring the domain according to the rules of one of these procedures,
knowledge is collected, stored and processed in order to gain an understanding of the
problem and its domain, to extract an image of a good solution, to identify regions
where such good solutions might be found, and to guide the search.

Typically, local search is performed by evaluating moves from a current solution
£ € X. A move is any procedure that allows to pass from a solution to (P) to a
different solution to (P) (in some applications, either one of these solutions, or both,
may be allowed to be infeasible). All solutions that may be thus reached from & form
the neighbourhood N(z) of . Local search may then be performed over the entire
neighbourhood, or only on a selected subset, identified as the candidate list at iteration
k, C(z,k) C N(z). The best move-candidate, with respect to some criterion (usually
based on the objective value), in the candidate list is selected and implemented.

To avoid cycling, a record is kept of the recent search history; this short term

memory is implemented as tabu lists that forbid the selection of certain moves. The
number, size, contents and management policies of the tabu lists are as varied as
the specific applications and the researchers’ imagination permit, and jointly form
one of the main strengths of tabu search. In this context, local search selects the
best move that is not tabu, that is from & to @ € C(z,k) and & & ST(k) U T,
where ST'(k) represents the set of short term tabu lists at iteration k, while T' stands
for any combination of longer term tabu memories. The combined effect of these
restrictions implies that the absolute best candidate might not be selected at each
move. Of course, one may always override the tabu status of a candidate by using an
aspiration criterion. While locally exploring the solution space, one registers the best
solutions found and, eventually, some of their attributes. The search is then continued
until a certain stopping criterion (typically, a maximum number of iterations without
improvement in the best solution found) is met.

The procedure may be enhanced by using intensification and diversification phases.
Intensification corresponds to a more intense (even thorough) exploration of part
of the solution space identified during the current local search cycle as containing
good solutions, and is based on solution attributes stored in medium term mem-
ories MT (k). Intensification of the search often implies identifying and fixing the
desired attribute values (“fix the solution core”), and then looking out for the best
corresponding solution. If an improving solution is found, local search is resumed.
Diversification, on the other hand, is a device used to guide the search towards zones
believed not yet explored. This is achieved by recording in long term memories LT (k)
information (attributes) concerning the (best) solutions encountered so far, and by
selecting a new solution with different attribute values (“complement the solution
core”).

This is a rather coarse summary of tabu search, and it overlooks many of the finer
aspects of its implementations. Yet, it captures the essence of the method and it is
sufficient for the purposes of this paper. In particular, it allows the description of the
tabu search procedures reviewed later in the paper.

2.2 Taxonomy Dimensions

As previously mentioned, tabu search makes extensive use of information concern-
ing the regions already explored and the attributes of the solutions found during
the search. We do not intend to classify parallel tabu search algorithms according
to their basic exploration and knowledge acquisition design. This is clearly beyond
the scope of this paper. Yet, we want to emphasize that since this is one of the
fundamental building blocks of tabu search, the strategies used for its parallelization

must constitute an important criterion of the taxonomy. Furthermore, any paral-
lelization strategy implies some decomposition either of the domain, or of the basic
steps and tasks of the algorithm, or of both. Consequently, not all information is nec-
essarily available at all times during a parallel resolution of a problem instance, and,
therefore, how the knowledge gathered during the parallel exploration of the domain
is exchanged and combined among processes is as important as how the domain is
divided among, or how the tasks are allocated to, the various processes.

Our taxonomy is built according to three dimensions meant to capture all these
factors. The first two represent the parallelization schemes relative to the control of
the search trajectory and the communication and information processing approach,
while the third accounts for the strategies used to partition the domain and to specify
the parameters for each search. The three dimensions are illustrated in Figure 1,
summarized in Table 1, and detailed in the following.

Control Cardinality || 1-control

p-control
Control and Rigid Synchronization
Communication Knowledge Synchronization
Type Collegial

Knowledge Collegial
Search SPSS
Differentiation SPDS

MPSS

MPDS

Table 1: Taxonomy Dimensions

2.2.1 Search Control Cardinality

Control of the parallel search may either stay with one processor, usually called master
or main processor, or be distributed among several processors. Two categories may

be defined.

The first case, that we call 1-control, trivially corresponds to the sequential
case. In a parallel context, it represents the approach where one processor essentially
executes the algorithm, but delegates some of its work to other processors. The
master collects and reconciliates the information, distributes the tasks to be executed
by the other processors, and determines when the search has to stop. The tasks
that are delegated may consist of only time-consuming numerical computations; this

corresponds to what Trienekens and de Bruin [27] call low level parallelism in the
branch-and-bound context. It may also imply, however, the parallel exploration of
the neighbourhood [3, 5], or the construction and evaluation of the candidate list. A
straightforward implementation of the sequential fan candidate list strategy [19] falls
under this heading.

In the second case, control of the search is shared among p, p > 1, processors;
hence, we identify it as p-control. The classical collegial or multithread arrangement
of processes belongs to this category. Each process is in charge of its own search, as
well as of establishing communications with the other processes. The global search
terminates once each individual search stops. Coordination of information exchanges
and attempts to ensure that the adequate information is available when required are
among the main issues in this context, and also play an important role in defining
the type of control that is exerted.

2.2.2 Control and Communication Type

The second dimension of the taxonomy is based on the type and flexibility of the
control: it takes into account the communication organization, synchronization and
hierarchy, as well as the way information is processed and shared among processes.
The control-type dimension is made up of four stages or degrees, that combine to
the two levels of cardinality control to define the parallelization strategies relative to
process and information handling.

The first degree corresponds to a rigid synchronization of the processes. A
synchronous operation mode [2] usually indicates that all processes have to stop,
and engage in some form of communication and information exchange, at points
(number of iterations, time intervals, specified algorithmic stages, etc.) exogenously
determined: either hard-coded into the procedures or determined by a control process.
We qualify such an organization as “rigid” when little, if any, information exchange
takes place among processes that are dedicated to executing the same level of tasks.

In particular, rigid synchronization ideally complements the 1-control approach.
This is the classical master—slave case, where the master executes what amounts to
a sequential tabu search by using other processors to perform computing intensive
tasks. There is no communication among the slave processes, and information is kept
and handled exclusively by the master, which also initiates all communication phases.

The extension to the p-control case is the straightforward parallelization strategy
where independent searches are performed simultaneously. Each search may start
from a different initial solution, or may be using a different set of parameters, or

both. Again, there is no communication among processes during the search, and each
terminates when its own stopping criteria are met. The best solution is selected once
all processes have stopped.

The next stage is also characterized by a synchronous operating mode, but an
increased level of communication permits to build and exchange knowledge. Hence,
we identify it as knowledge synchronization.

When operating within the 1-control framework, the master continues to be the
keeper of the information, to synchronize the processes, and to dispatch work to
the slaves, but it delegates a larger part of the work. The slave processes still do
not communicate among themselves. Their tasks, however, are more complex than
in the rigid synchronization case, and may imply that local memory structures are
present. Hence, for example, a slave process may execute a limited sequence of tabu
search steps on a given subset of the neighbourhood (e.g., intensification on promising
candidates). But, on request from the master (when it synchronizes, for example) the
slave process returns the problem and the results, and waits for a new task. A more
sophisticated implementation of the fan candidate list belongs to this category.

When a p-control strategy is adopted, the knowledge synchronization mode cor-
responds to several independent search trajectories which all stop at a predetermined
moment (e.g., number of iterations), the same for all processes. At that moment,
an intensive communication phase begins among all control processes. This may be
viewed as a hybrid approach between rigid synchronization and independent collegial.

To summarize, in synchronous mode, the 1-control strategy implies vertical, master—
slave, communication channels exclusively, while only horizontal, process to process,
communications exist in a p-control strategy. The difference between rigid and knowl-
edge synchronization is not always clear in the 1-control context, since it is mostly
based on how much work the master assigns to each slave. This difference is much
more significant for p-control strategies, since it corresponds to the absence or pres-
ence of inter-process communications and knowledge exchanges.

The third and fourth degrees of the control strategy dimension make use of asyn-
chronous communication modes. In this context, each process stores and treats its
own information, initiating communications with some or all other processes accord-
ing to its own internal logic and status. We define two such degrees according to the
quantity, quality and treatment of the exchanged information. Note that we do not
intend to classify parallel procedures according to the precise means of communicat-
ing information and work (see, for example, the survey by Gendron and Crainic [13]
or the recent work by Karp and Zhang [20]). Rather, we focus on the role that com-
munication play in reconstructing a global search pattern when several independent

search threads explore the solution domain.

In the third stage, that we call collegial, each process executes an eventually
different tabu search on all or on part of the domain. When a process finds an
improving solution (locally or globally, according to the chosen strategy), it broadcasts
it (together, eventually, with its context and history) to all or to some (e.g., the
neighbouring ones) of the other search processes. It may also deposit it in a central
memory, and only broadcast (if at all) that a better solution has been found. In
all cases, however, communications are simple, in the sense that the message sent
corresponds to the message received.

This is not necessarily the case, however, in the fourth, knowledge collegial,
stage. Here, the contents of communications are analyzed to infer additional infor-
mation concerning the global search trajectory and the global characteristics of good
solutions. Global memories (e.g., the status change frequency of some variables) and
tabu lists that reflect the dynamics of the asynchronous parallel exploration of the
domain may thus be built, while new solutions may be constructed based on the so-
lutions and memory contents sent by the individual searches. Therefore, the message
received by a process is generally richer than, and not identical to, the one initially
sent by another process.

2.2.3 Search Differentiation Strategy

In Vof’s classification [28], the only criteria considered refer to the number of differ-
ent starting solutions, and to the number of different solution strategies (parameter
settings, tabu list management policies, etc.) used by the particular implementation.
This corresponds to our third dimension, that we identify as the search differentiation
stralegy.

Although the balls and mountains imagery Vof uses in naming the classes of his
taxonomy has a certain appeal, we prefer to refer directly to the decision to start the
exploration of the domain from the same or from different points, and to use either a
unique or different search strategies for each search thread. We use the term “search
strategy” in its most general sense that includes different neighbourhood definitions,
parameter settings, memory management rules, diversification schemes, etc.

We identify the following four cases:

SPSS: The Single (Initial) Point Single Strategy is the most simple case, and it
generally allows for only low level parallelism.

SPDS: The Single Point Different Strategies approach refers to the case when each
processor runs a different tabu search but starts with the same initial solution.

MPSS: The Multiple Points Single Strategy label identifies the case when each pro-
cessor starts from a different solution of the domain, but use the same tabu
search settings and rules to explore the domain.

MPDS: Finally, the Multiple Points Different Strategies class is the most general
and has all others as special cases.

3 Review of Parallel Tabu Search Algorithms

Although parallel tabu search is still in its infancy, a number of significant contribu-
tions have already been realized. We now examine how the taxonomy applies to some
of the implementations of parallel tabu search found in the literature.

Malek et al. [21] implement and compare serial and parallel simulated annealing
and tabu search algorithms for the traveling salesman problem. The parallel experi-
ments are performed on a 10 processor Sequent Balance 8000 computer. The authors
report that the parallel tabu search implementation outperforms the serial one, and
consistently produces comparable or better results than sequential or parallel simu-
lated annealing. Their implementation may be described as a 1-control, knowledge
synchronization, SPDS method with one main process and four child processes. Each
child process runs a serial tabu search algorithm with different tabu conditions and
parameters. The child processes are stopped after a specified time interval, the so-
lutions are compared, and bad areas of solution space are eliminated. The child
processes are then restarted with a good solution and an empty tabu list. Note that,
in order to strictly implement this strategy, the diversification long term memory
function is disabled.

Taillard [24] studies tabu search based algorithms for vehicle routing problems.
His parallelization strategies are based on partitioning the solution space, using a
p-control, knowledge synchronization, MPSS approach, and are simulated for p = 4
on a Silicon Graphics 4D /35 workstation. The first strategy applies to Euclidean
problems with uniformly distributed cities, and decomposes the domain into polar
regions, to which vehicles are allocated. Once the initial partition is performed,
each subproblem is solved by an independent tabu search. All processors stop after
a certain number of iterations (this number varies according to the total number
of iterations already performed), and the partition is modified. This is done by an
information exchange phase, during which tours, undelivered cities and empty vehicles
are exchanged between adjacent processors (corresponding to neighbouring regions).
Load balancing problems seem to impair this approach. The second strategy is aimed
at non-Euclidian problems, or at problems where cities are not uniformly distributed.
The main difference between the two strategies appears in the partitioning method
(the space is partitioned based on the arborescence build by the shortest paths from
the depot to all cities), and in the information that is exchanged (the best solution
only).

Fiechter [11] also makes use of a p-control, knowledge synchronization, MPSS

strategy to parallelize his tabu search algorithm for traveling salesman problems.
The exact operation that is to be executed in parallel is specific to the particular step

10

of the tabu search procedure. For the intensification phase, each process optimizes a
specific slice of the tour. At the end of the intensification phase, processes synchro-
nize to recombine the tour and to modify (shift part of the tour to a predetermined
neighbouring process) the slice of the tour each process will continue to work on.
For the diversification phase, each process determines among its subset of sities a
candidate list of most promising moves. The processes then synchronize to exchange
these lists, so that all processes build the same final candidate list and apply the
moves. The algorithm has been implemented on a network of transputers arraanged
in a ring structure. The author reports near-optimal solutions to large (500, 3000 and
10000 vertices) problems, and almost linear (less so for the 10000 vertices problems)
speedups.

Taillard [23] makes use of a 1-control, rigidly synchronized SPSS parallelization
approach for his tabu search aimed at the quadratic assignment problem. The set of
possible moves is partitioned into p sets, and each set is assigned to a different proces-
sor. Each processor then evaluates the pairwise interchange moves and identifies the
best one. Intriguingly, it seems that Taillard dispenses with a specific master proces-
sor. Indeed, once each processor finds its best move, it communicates it to all other
processors. Then, each processor performs all the tasks of the master: choosing the
best overall move, implementing it, making the necessary adjustments and updates,
partitioning the neighbourhood, etc. No implementation details are given. Load bal-
ancing through partition of the neighbourhood is acknowledged as critical, but no
indication is given on how it is performed. A ring of 10 transputers (T800C-G20S) is
used for the experiments.

Chakrapani and Skorin-Kapov [3, 5] also address the quadratic assignment prob-
lem by using a parallelization approach which is essentially a 1-control, rigidly syn-
chronous, SPSS procedure, where the search is performed sequentially, while the move
evaluation is performed in parallel. However, the implementation is specifically de-
signed to take advantage of the special features of the Connection Machine CM-2,
a massively parallel SIMD machine: for a size n problem, n? processors are used
to evaluate moves and communicate information. The authors report that the best
known or improved solutions were obtained for problems studied in other comparative
studies and that their method required a significantly smaller number of iterations.
Furthermore, they were also able to determine good suboptimal solutions to bigger
problems in reasonable time.

Chakrapani and Skorin-Kapov [4] apply a similar strategy to the problem, ap-
proximated by a very large quadratic assignment problem with sparse flow matrix, of
mapping tasks to processors in a multi-processor system in order to minimize the time
spent in inter-processor communication. It is noteworthy that, due to the sparsity of
the task graph, implementing a move (swap a single pair of tasks) does not signifi-

11

Control and
Communication Type

A

Knowledge Collegia 4
Collegia i
Knowledge Synchronous _} 021 @ [11,24]
l l
| |
| |
Rigid Synchronous 1 [3'4<'D5'23] ! o [1,23,25]
l l l
| | |
| | | Search
I I I C
— — —t —=
| gss | &S | MpPss mPDs Differentiation
_____ T
!
%
ly
____________________ y
Control [1] Battiti & Tecchiolli p-RSMPSS
Cardinality [3,4,5] Chakrapani & Skorin-Kapov ~ 1-RSSPSS
[11] Fiechter p-RSMPSS
[21] Maek & dll 1-KS SPDS
[23] Taillad 1-RSSPSS
[23,25] Taillard p-RSMPSS
[24] Taillard p-KSMPSS

Figure 1: Taxonomy Dimensions

12

cantly affect the values of most other possible moves; hence, most improving moves
are still improving. Two operations are therefore performed in parallel: the candidate
moves are identified and evaluated and, second, multiple moves are implemented. To
alleviate the evaluation error inherent in such a procedure (the total value of multiple
swaps is not equal to the sum of the individual moves), an aggressive diversification
phase is introduced into the procedure. Very good results are reported on a 8192
processor hypercube configuration of a CM-2 Connection Machine.

Battiti and Tecchiolli [1] also use the quadratic assignment problem to present a
tabu search with hashing procedure, and to discuss a parallelization scheme based
on several independent searches. The hashing feature is used to have the search
react to the detection of cycles by suitably modifying the length of the tabu lists.
The authors then analyze a parallelization scheme where several independent search
processes start the exploration of the domain from different, randomly generated,
initial configuration. This corresponds to the p-control, rigid synchronization, MPSS
strategy of the taxonomy. The authors then proceed to derive probability formulas
for the success of the global search that tend to show that the independent search
parallelization scheme is efficient — the probability of success increases, while the
average success time decreases with the number of processors — provided the tabu
procedure does not cycle.

Taillard also studies the p-control, rigid synchronization, MPSS parallelization
strategy that performs many independent searches, starting every one with different
initial solutions. The main study is to be found in his paper on parallel tabu methods
for job shop scheduling problems [25]. For this type of problems, Taillard shows that
a tabu search approach (that includes a diversification phase) is very competitive:
simpler to implement and generally more efficient than either the simulated annealing
or the shifting bottleneck procedures (the two best heuristics proposed at the time), it
helped establish new best known solutions for every problem in two sets of benchmark
problems, while optimally solving random problems with m machines < n jobs (e.g.,
m =5, n. = 2000) in polynomial mean time. Several parallelization ideas focusing on
speeding up computations related to the neighbourhood evaluation (1-control, rigid
synchronization) did not yield good results, either because the available computing
platforms (a ring of transputers and a 2-processor Cray computer) were not suitable
for the implementations, or because the communication times were much higher than
the computation ones.

Taillard then proceeds to examine the theoretical bases of the many independent
searches parallelization approach for “random” iterative algorithms (tabu search, sim-
ulated annealing, etc.). His results show that the conditions needed for the parallel
approach to be “better” than the sequential one, i.e., that the probability of the
parallel algorithm to achieve success with respect to some condition (in terms of op-

13

timality or near-optimality) by time ¢ is higher than the corresponding probability of
the sequential algorithm by time pt, are rather strong. However, the author also men-
tions that, in many cases, the empirical probability function of iterative algorithms
is not very far from an exponential one and, so that the many independent searches
parallelization approach is very efficient. The results for the job shop problem [25]
and the quadratic assignment problem [23] seem to justify this claim.

This brief literature survey emphasizes a few points:

e The use of parallelism may improve the performance of tabu search procedures.

e The parallelization of a tabu search procedure may conflict with some of the
basic tabu search mechanisms (e.g. the diversification feature in [21]).

e The taxonomy we propose is sufficiently comprehensive to account for the par-
allelization strategies already reported.

o Despite significant implementation differences, due to the specificity of the prob-
lems, tabu search characteristics, computer environment, etc., few paralleliza-
tion paradigms have yet been called for in the reported experiments. Indeed, as
illustrated in Figure 1, synchronization seems to be the adopted norm, parallel
computation being mostly used to evaluate moves, or to accelerate a restarting
strategy.

In the following sections, we show that other strategies, identified by our taxon-
omy, are available to build efficient parallel tabu search procedures.

14

4 Illustrating the Taxonomy

To further illustrate the taxonomy presented previously, we briefly review the study of
Crainic, Toulouse and Gendreau who have designed and tested several synchronous
[10] and asynchronous [9] parallel tabu search variants of a sequential tabu search
procedure for the multicommodity location-allocation problem with balancing re-
quirements.

Our main objective is to demonstrate that the proposed taxonomy does not con-
stitute an empty shell: that each group of parallel implementation strategies it defines
does indeed correspond to a particular algorithmic case with distinctive characteristics
and behaviour. Hence, while the results of extensive testing are reported and ana-
lyzed in [10] and [9], we present in this section only illustrative synthetic performance
measures.

4.1 Model and Sequential Tabu Search Procedure

The multicommodity location-allocation problem with balancing requirements typi-
cally arises in the context of the medium term management of a fleet of heterogeneous
vehicles (containers, in our application), where vehicle depots have to be selected, the
assignment of customers to depots has to be established for each type of vehicle, and
the interdepot vehicle traffic has to be planned to account for differences in supplies
and demands in various zones of the geographical territory served by the company.
One aims to minimize the total system cost: the “fixed” cost associated to the se-
lection of depots, plus the transportation costs between customers and depots, plus
the costs of the inter-depot movements required to balance supply and demand for
each type of vehicle. The problem is formulated as a linear mixed integer program-
ming model, where integer (binary) variables represent the decision to select or not
the corresponding depots, while continuous variables capture the vehicle flows on the
arcs of the network. Other than the usual sign restrictions, two sets of constraints
determine the feasible region for this problem: (i) a set of linking constrains that for-
bid the use of an unselected depot, and (ii) the usual uncapacitated multicommodity
demand-flow conservation equations of a network flow problem.

The mathematical model is fully presented and analyzed in [6]. It is, however,
worthwhile to recall that the formulation displays an interesting network structure.
In particular, for fixed binary variables, it becomes an uncapacitated multicommodity
minimum cost network flow problem, a well known model for which efficient solution
methods exist. This property has been used to define a tabu search procedure, which is
fully described and analyzed in Crainic et al. [8]. In the following, we only summarize

15

its main characteristics, illustrated in Figure 2, to facilitate the presentation of the
parallelization developments.

The search space is defined with respect to the binary depot decision variables
that specify the depot configuration. For any configuration, the optimal values of
the continuous flow variables and the corresponding value of the objective function,
may be computed by solving an uncapacitated multicommodity network flow prob-
lem. The neighbourhood of any such solution includes all configurations that may
be obtained by either opening (add move) or closing (drop move) a currently closed
or open, respectively, depot, or by performing a swap that simultaneously opens a
depot while closing another. Such a neighbourhood is usually too large, however,
and sampling is used to build a candidate list. Furthermore, the evaluation of all
possible moves by solving the associated network flow problem is too time consum-
ing, and surrogate functions (based on estimates of differences in objective function
values) are used in most instances; the real value is however computed once a move
is selected and implemented.

The search strategy combines a local search with intensification and diversification
phases, and terminates with a postoptimization phase.

Local search consists of an add/drop sequence (stopped once a predefined number
of iterations are performed without improving the solution), followed by a normal
swap (the best candidate move evaluated by using the surrogate functions is im-
plemented regardless of its real impact on the objective function) sequence that is
initiated from the best solution found by performing the add/drops. When the best
local solution yielded by this process is feasible, search intensification is immediately
performed, otherwise the local search phase is continued until a feasible local solution
is encountered.

Add/drop and swap sequences use different short-term memory tabu lists. For
add and drop moves, lists record the last depots added or dropped from the solution,
and the reverse moves are forbidden. The swap tabu list records the most recently
performed swaps as pairs of depots, and the reversal or repetition of the moves is
forbidden. Note that long term (diversification) tabu lists further affect the status of
candidates while performing local search.

An intensification phase consists of a strict swap sequence, which starts from the
best solution identified during the previous local search phase, and implements only
those selected moves that improve on the current solution. A diversification move is
performed starting from the best global solution found so far in the search, and is
based on a long-term memory that records the level of “activity” of each depot: the
number of times its status has been modified (changed from open to closed or vice-

16

Initialisation
;I;
|
R
|
|
: Local Search:
| L —
| Add/Drop Seq. :
|
: Diversification Normal Swap Seq. :
|
: Move L
. | Stopping Criteria
, inner |
; loop I
outer |
loop : Intensification Phase: |_ _!
: Strict Swap Seq.
|
|
|
|
|
| Postoptimization
: -y Phase
| Inner Loops< N
|
|
|
|
' (o)
'

Figure 2: Sequential Tabu Search

17

versa). Based upon the values stored in this memory, the predefined number of depots
with the lowest activity counts are selected and complemented. Considering the fact
that values in the long-term memory tend to evolve rather slowly, another memory
has been provided to record the last set of depots selected for diversification. This
list is used both to exclude depots from being considered in the next diversification
phases, and to prevent too quick a reversal of the diversification moves during the
following local search steps.

A sequence of local search and intensification phases is called an inner loop. After
executing NV inner loops, the search procedure is re-directed to previously unexplored
regions of the search space by performing a diversification step, which completes an
outer loop. The overall search procedure starts from an initial solution and performs
a sequence of outer loops until some termination criterion is met. In the current
implementation, this termination criterion is the total number of iterations since the
beginning of the search.

A postoptimization phase, which aims at ensuring that no better solution exists
close to the best solution identified so far, is invoked once the prespecified number of
regular iterations has been performed. This phase consists in a comprehensive neigh-
bourhood exploration search that considers all possible simple (add, drop) moves.
Surrogates are used to rank moves, while exact evaluations determine the (first) im-
proving move to be implemented. This procedure continues for as long as strictly
better solutions are found.

Several parameters influence the efficiency of the search: the lengths of the tabu
lists and memories, the lengths of the add/drop and swap sequences, the selection
probabilities of the add, drop and swap moves, how these probabilities vary during
the search, the initial solution that is chosen, ete. Crainic et al. [8] study these issues
and show, in particular, that several combinations of parameters may be efficiently
used for different types of problem characteristics.

4.2 Experimentation Environment

Sixteen problems are used for testing: twelve randomly generated, and four based
on an actual application [7]. The random problems have some 44 depots (integer
variables), 220 customers, and either 1 or 2 products, which yields more than 7000 and
14000 continuous variables, respectively. For the last four problems, the corresponding
figures are 130 integer and 56616 continuous variables.

All procedures are stopped after 300 iterations, and the solution quality is mea-

18

sured by computing the gap, in percentage, between the best solution determined by
each procedure and the optimal solution computed by a branch-and-bound algorithm
[14]. Note that the objective is to illustrate the taxonomy, not to fine-tune a given
procedure on a given set of problems. Hence, we did not calibrate each individual
procedure for best performance over the problem set. Instead, the best parameter
settings observed for the sequential tabu search [8] were used for all the experiments
reported in this section.

All tests have been conducted on a heterogeneous network of SUNSparc work-
stations. Communications are handled by our own set of procedures, written in C,
that use the TLI/UDP protocol, modified to ensure that all packets reach their des-
tination. The tabu search is programmed in FORTRANTY7, while the minimum cost
network flow subproblems are solved by using the RNET code [22].

4.3 Parallel Tabu Search Implementations

For each parallelization strategy defined by the taxonomy, several different implemen-
tations are generally possible. The procedures described in the following represent one
such possible implementation for each of the 14 parallelization strategies. Tables 2
and 3 display the average gaps, computed over the set of test problems, obtained
by each parallel implementation for 4, 8 and 16 processors, as well as (the “SEQ”
column) the average gap of the sequential procedure. The evolution of the average
gaps with the number of processors is also illustrated in Figures 3 and 5 for the
synchronous and asynchronous procedures, respectively.

The first synchronous parallel tabu search procedure is built according to a 1-
control rigidly synchronized (1-RS) SPSS strategy. In this implementation, the master
process executes the tabu search algorithm, while the evaluation of the N elements of
the local search candidate list is divided between p processes. Each process evaluates
N/p moves, by using a surrogate function, according to the tabu lists transmitted by
the master process, and returns the best move found. Note that each slave process
also computes the exact value of its best move. Hence, with little additional cost,
the master may choose among several exactly evaluated moves. This improvement
relative to the sequential version is reflected in the quality of the solutions found.

A variant of the 1-control knowledge synchronous (1-KS) SPSS approach is re-
lated to the probing strategy proposed by Glover (see also [17]). Here, not only the
exploration of the neighbourhood is divided among the p processes, but each process
also performs a few (two, for the results reported in this section) local search itera-
tions. The master then selects the sequence of moves that has resulted in the best

19

p | SEQ | 1-RS | 1-KS p-RS p-KS

SPSS | SPSS | SPDS | MPSS | MPDS | SPDS | MPSS | MPDS
41063 | 051 | 0.39 | 0.32 0.20 0.15 0.53 0.65 0.61
8 1063 | 045 | 0.16 | 0.18 0.17 0.06 0.49 0.50 0.32
16 | 0.63 | 0.35 | 0.12 0.08 0.15 0.04 0.44 0.41 0.21

Table 2: Average Gaps (%) — Synchronous Procedures

p | SEQ p-C p-KC

SPDS | MPSS | MPDS | SPDS | MPSS | MPDS
4 1063 | 0.19 0.28 0.10 0.25 0.44 0.15
8 | 0.63 | 0.17 0.15 0.05 0.31 0.36 0.20
16 | 0.63 | 0.04 0.17 0.04 0.13 0.13 0.19

Table 3: Average Gaps (%) — Asynchronous Procedures

improvement, and implements it by appropriately updating the various tabu lists and
memories.

Three p-control knowledge synchronous (p-KS) parallelization strategies were im-
plemented corresponding to the SPDS, MPSS and MPDS search differentiation ap-
proaches identified by the taxonomy. Note that we did not implement the SPSS
strategy since, in a synchronous environment, it reduces to p repetitions of the same
search. Here, p independent tabu search threads explore the problem domain and
exchange information, at predetermined synchronization points, that may modify the
current trajectory of any given process. Each process performs a given number of it-
erations (25, in the present case), then broadcasts either its best solution (the SPDS
case), or its set of p best solutions (for the MPSS and MPDS strategies). Following
this communication and synchronization phase, the best of all solutions becomes the
initial solution for the next parallel phase of a SPDS implementation. For MPSS and
MPDS approaches, the p overall best solutions are identified and distributed among
the p processes. For single initial solution strategies, the best parameter settings for
the sequential tabu search are used. When different search strategies are implemented
(in SPDS and MPDS strategies), we varied the lengths of the short and medium term
tabu lists, the number of consecutive add/drop iterations without improvement, and
the number of depots temporarily fixed by a diversification move.

20

No special implementation is required for the p-control rigid synchronous (p-RS)
parallelization approach: one simply runs totally independent tabu searches, by vary-
ing the initial solution and the parameter settings according to the chosen strategy.
Note that because a SPSS approach reduces to p repetitions of the same search, it
was not implemented.

The introduction of synchronization points into parallel iterative search proce-
dures is often motivated by a desire to ensure that parallel computations display a
deterministic behavior and a search trajectory similar to that of a sequential method.
Yet, in most cases, this is achieved at a price in algorithmic efficiency, since a sig-
nificant number of processes are often idle waiting for other processes to complete
their activities. Consequently, to improve the algorithmic performance, various levels
of asynchronism may be introduced into the parallel procedure. In the context of
our taxonomy, such strategies fall under the p-control collegial or knowledge collegial
headings.

Let the context of a solution of a n-decision-variable problem be a vector of cardi-
nality n that contains the values of the n decision variables. There could be several
contexts for a given objective function value but, given a context, there is only one
possible objective function value. The present implementation of the asynchronous
parallel framework, illustrated in Figure 4, makes use of a central memory through
which pass all communications, and that captures the global knowledge acquired
during the search. Note that this is an implementation device which helps to keep
in check communication and accounting efforts, as compared, for example, with a
strategy where each process broadcasts its solution to all other processes, which, in
turn, have to accept, compare, update, and store the information. It also enforces the
asynchronous paradigm, since it lifts the need for an acceptance decision by each pro-
cess at broadcast time: each thread decides to access the central memory information
based exclusively on its own internal schedule and history.

By using this framework, the p-C parallel strategy proceeds as follows: (i) Each
process sends its solution and context to the central memory each time it improves
its best global solution. (ii) The central memory keeps and updates the best global
solution found so far. Together with its associated context, we call this solution the
central memory best solution. (iii) If the best global solution of a process is worst
than the central memory best solution, the process retrieves the central memory
best solution. (iv) After a certain number of iterations without improving its global
solution, a process requests the best central memory solution. More complex versions
of this framework can be defined (e.g., instead of storing the overall best solution in
the central memory, build a pool of good solutions to distribute, on request, among
the search threads [9]; more sophisticated approaches would use the solution pool to
derive new solutions), but this is beyond the scope of this paper.

21

Average gap

0.6 .

p-RS mpds —=—

4 8
Number of processors

Figure 3: Gap Comparisons — Synchronous Implementations

22

16

Process 1

Central Memory
Pool of Best Solutions
+
Global Tabu Memories
Induced Information

A Memory Process Best
Solution & Solution & Process i-1
Context Context
+ +
Global Local
Information Information
Processii
Initial Solution X j
Tabu Strategy Yy

J}Z':J}]‘\V/Z',j irs 7£$]\V/Z,]
yi = y,;Vi, SPSS MPSS
Yi 7 YV,] SPDS MPDS

Figure 4: Examples of p-Control Asynchronous Parallelization

23

Note that a process always resumes its computations from the same state (short
term tabu lists and memories, best local search solution, current solution context,
etc.) it was in just before communicating with the central memory. However, before
initiating a diversification phase, the process compares and, eventually, replaces its
best global solution and context by the central memory best solution. Then, either the
search resumes from the central memory best solution (this amounts to an externally
imposed diversification), or a normal diversification step is performed. In this way,
one can reconciliate the tabu search behaviour based on long term memories of each
process, to the import of exogenous information. Implementation details may be

found in [9].

It is noteworthy that in the classic asynchronous collegial parallel framework il-
lustrated above, at any given moment, a process knows, at best, its own history and
the value and context of the current best global solution, without any indication of
the global evolution of the search. In a sense, we do not achieve the global picture of
the combined effects of the search threads performed by the individual processes, and
lose, at least partially, the effect of the learning and memory mechanisms central to
tabu search approaches. The class of strategies the taxonomy identifies as p-control
knowledge collegial (p-KC), are intended to address this issue.

Figure 4 illustrates a very simple version of the p-KC strategy. The previously
defined general framework is used, but more information is exchanged among pro-
cesses and a new structure is defined at the level of the central memory to record the
evolution of the global search. This long term global memory is updated each time
the central memory solution is improved, and records the frequency in the change of
status of each depot in the sequence of best solutions reported by the various pro-
cesses. Hence, in the long run, this consistency memory tends to build an image of
a good solution: depots that seem definitively open or closed and undecided ones.
The consistency memory is part of the solution context that is communicated to each
process, which then uses it to inflect its own search trajectory. In the current imple-
mentation, this is accomplished via a “diversification-like” tabu mechanism: the tabu
status of candidate moves is modified during local search according to the consistency
values.

The experimental results, summarized in Tables 2 and 3 and illustrated in Fig-
ures 3 and 5, support the conclusion of Section 3 that the use of parallelism may
improve the performance of tabu search procedures. Indeed, on average, all parallel
strategies have yielded better quality solutions. Furthermore, the results of [10] and
[9] show that over the 672 reported runs, parallel procedures stopped with the same
solution as the sequential procedure in 25% of the cases, while improving the solution
for 68% other. In particular, the optimal solution is identified 48% of the time, as
compared to 12% for the sequential version.

24

Average gap

0.5

0.45

0.4

0.35

0.3

025+

0.2

015 b

0.1

0.05

- p-KC mpds =

p-C mpds —=—
p-C mpss —~—
p-C spds ——

p-KC mpss =
p-KC spds -

4 8 16

Number of processors

Figure 5: Gap Comparisons — Asynchronous Implementations

25

The taxonomy has allowed to imagine new, relative to reported implementations,
parallelization strategies, and offered a comprehensive framework for comparative
studies. First, it appears that, indeed, the class of multiple independent search threads
strategies performs very well, and outperforms most of the synchronous strategies.
However, if this strategy is chosen, it also appears that it is beneficial to vary not only
the initial point, but also the search strategy. Furthermore, strategies that exploit the
search for a better knowledge of the neighbourhood and the consequences of promising
moves (1-KS strategies, see also [19]) seem to hold their own and offer interesting
perspectives for further research. Secondly, asynchronous strategies suggested by
the taxonomy appear to hold great promises. Opening up communications among
processes without imposing the need to regularly synchronize the processes improves,
for the class of problems studied, the performances and appears to be better than
the multi threads strategy. The taxonomy also suggests that improved parallelization
strategies could be obtained by extracting knowledge from the information exchanges
among processes. While the implementations referred to in this paper do not quite
realize these promises, they indicate that this is an interesting research direction.

26

5 Conclusions and Further Research

We have presented a taxonomy of parallel tabu search procedures. In our opinion,
it is the most comprehensive yet to be proposed, since it accounts for the main
parameters of parallelization strategies: how the control of the acquired knowledge
and of the parallel processes is managed, the type and complexity of communications,
the differentiation strategies for the various search threads.

The taxonomy permits to classify the reported parallel tabu search procedures.
This review also reveals that a rather limited range of parallelization strategies have
been implemented so far. The taxonomy also points out to different approaches
that may yield more efficient procedures. In particular, the whole dimension of asyn-
chronous parallelization and information management appears to hold great promises
and constitutes an exiting area of research.

The taxonomy is independent of any particular problem class or tabu search de-
sign. It is also independent of particular computing platforms. The reported imple-
mentations have been carried out over the years by using a great number of computers,
operating systems and computer languages. Of course, each individual parallel im-
plementation of a particular tabu search method for a given class of problems may
gain in performance if it takes advantage of the characteristics of the computer it is to
run on. As a general indication, however, it is clear that all the strategies suggested
by the taxonomy can be developed on both shared memory and distributed message-
passing MIMD (Multiple Instruction Multiple Data [12]) computers. SIMD (Single
Instruction Multiple Data) architectures could also be used to implement some in-
stances (e.g., master-slave strategies as in [3, 5]), but appear less interesting for all
cases where several search threads are used.

More work is required in order to apply, fine-tune, and evaluate the behaviour
and efficiency of the parallelization strategies defined by the proposed taxonomy to
various optimization problems. Also needed is a thorough exploration of a number of
fundamental questions related to the parallelization of tabu search, such as speed up
anomalies, the impact of parallelization on the long term behaviour of tabu search,
what information to exchange and how it can be transformed to gain additional
knowledge about the search (the recent work of Toulouse, Crainic and Gendreau
[26] constitutes a first step in this direction), etc. Yet, it is already clear that tabu
search may benefit significantly from a parallel environment, and that, for any given
problem, it is worth the effort to explore alternate parallelization paradigms.

27

Acknowledgments

We wish to thank one anonymous referee whose insightful comments helped us im-
prove the paper. This research has been supported by grants from the Fonds F.C.A.R.
of the Province of Québec, and the Natural Sciences and Engineering Research Coun-
cil of Canada.

28

References

1]

[10]

[11]

R. Battiti and G. Tecchiolli. Parallel Biased Search for Combinatorial Opti-
mization: Genetic Algorithms and TABU. Microprocessors and Microsystems,

16:351-367, 1992.

D.P. Bertsekas and J.N. Tsitsiklis. Parallel and Distributed Computation, Nu-
merical Methods. Prentice-Hall, 1989.

J. Chakrapani and J. Skorin-Kapov. A Connectionist Approach to the Quadratic
Assignment Problem. Computers & Operations Research, 19(3/4):287-295, 1992.

J. Chakrapani and J. Skorin-Kapov. Mapping Tasks to Processors to Minimize
Communication Time in a Multiprocessor System. Technical report, Harriman
School for Management and Policy State University of New York at Stony Brook,
1993.

J. Chakrapani and J. Skorin-Kapov. Massively Parallel Tabu Search for the
Quadratic Assignment Problem. Annals of Operations Research, 41:327-341,
1993.

T.G. Crainic, P.J. Dejax, and L. Delorme. Models for Multimode Multicom-
modity Location Problems with Interdepot Balancing Requirements. Annals of

Operations Research, 18:279-302, 1989.

T.G. Crainic, L. Delorme, and P.J. Dejax. A Branch-and-Bound Method for
Multicommodity Location with Balancing Requirements. Furopean Journal of

Operational Research, 65(3):368-382, 1993.
T.G. Crainic, M. Gendreau, P. Soriano, and M. Toulouse. A Tabu Search Pro-

cedure for Multicommodity Location/Allocation with Balancing Requirements.

Annals of Operations Research, 41:359-383, 1993.

T.G. Crainic, M. Toulouse, and M. Gendreau. Parallel Asynchronous Tabu
Search for Multicommodity Location-Allocation with Balancing Requirements.
Publication 935, Centre de recherche sur les transports, Université de Montréal,

1993.

T.G. Crainic, M. Toulouse, and M. Gendreau. Synchronous Tabu Search Par-
allelization Strategies for Multicommodity Location-Allocation with Balancing

Requirements. OR Spektrum, 17(2/3), 1995.

C.-N. Fiechter. A parallel tabu search algorithm for large travelling salesman
problems. Discete Applied Mathematics, 51:243-267, 1994.

29

[12]

[13]

[14]

[15]

[16]
[17]
[18]

[19]

[20]

[21]

[22]

23]

M.J. Flynn. Very High-Speed Computing Systems. Proceedings of the IEEFE,
54:1901-1909, 1966.

B. Gendron and T.G. Crainic. Parallel Branch-and-Bound Algorithms: Survey
and Synthesis. Operations Research, 42(6):1042-1066, 1994.

B. Gendron and T.G. Crainic. A Branch-and-Bound Algorithm for Depot Loca-

tion and Container Fleet Management. Location Science, 1995.

F. Glover. Tabu Search - Part I. ORSA Journal on Computing, 1(3):190-206,
1989.

F. Glover. Tabu Search - Part II. ORSA Journal on Computing, 2(1):4-32, 1990.
F. Glover. Tabu Search: A Tutorial. Interfaces, 20(4):74-94, 1990.

F. Glover and M. Laguna. Tabu search. In C.R. Reeves, editor, Modern Heuris-
tic Techniques for Combinatorial Problems, pages 70-150. Blackwell Scientific
Publications, London, 1993.

F. Glover, E. Taillard, and D. de Werra. A user’s guide to tabu search. Annals
of Operations Research, 41:3-28, 1993.

R. Karp and Y. Zhang. Randomized Parallel Algorithms for Backtrack Search
and Branch-and-Bound. Journal of the Association for Computing Machinery,
40(3):765-789, 1993.

M. Malek, M Guruswamy, M. Pandya, and H. Owens. Serial and Parallel Simu-
lated Annealing and Tabu Search Algorithms for the Traveling Salesman Prob-
lem. Annals of Operations Research, 21:59-84, 1989.

Grigoriadis M.D. and Hsu T. RNET - The Rutgers Minimum Cost Network
Flow Subroutines. Technical report, Rutgers University, New Brunswick, New
Jersey, 1979.

E. Taillard. Robust Taboo Search for the Quadratic Assignment Problem. Par-
allel Computing, 17:443-455, 1991.

E. Taillard. Parallel Iterative Search Methods for Vehicle Routing Problems.
NETWORKS, 23:661-673, 1993.

E. Taillard. Parallel Taboo Search Techniques for the Job Shop Sheduling Prob-
lem. ORSA Journal on Computing, 6(2):108-117, 1994.

M. Toulouse, T.G. Crainic, and M. Gendreau. Communication Issues in Design-
ing Cooperative Multi Thread Parallel Searches. Publication, Centre de recherche
sur les transports, Université de Montréal, 1995.

30

[27] H.W.J.M. Trienekens and A. de Bruin. Towards a taxonomy of parallel branch
and bound algorithms. Report EUR-C5-92-01, Department of Computer Science,
Erasmus University Rotterdam, 1992.

[28] S. VoB. Tabu Search: Applications and Prospects. In D.-Z. Du and P.M. Parda-
los, editors, Network Optimization Problems, pages 333-353. World Scientific
Publishing Co., 1993.

31

