
Accepted for ORSA Journal of Computing

1

Towards a Taxonomy of ParallelTabu Search HeuristicsTeodor Gabriel CrainicCentre de recherche sur les transportsUniversit�e de Montr�ealandD�epartement des sciences administrativesUniversit�e du Qu�ebec �a Montr�ealMichel ToulouseCentre de recherche sur les transportsandEcole PolytechniqueUniversit�e de Montr�ealMichel GendreauCentre de recherche sur les transportsandD�epartement d'informatique et de recherche op�erationnelleUniversit�e de Montr�ealFebruary 1995

AbstractIn this paper we present a classi�cation of parallel tabu search metaheuristicsbased, on the one hand, on the control and communication strategies used in thedesign of the parallel tabu search procedures and, on the other hand, on how the searchspace is partitionned. These criteria are then used to review the parallel tabu searchimplementations described in the literature. The taxonomy is further illustrated bythe results of several parallelization implementations of a tabu search procedure formulticommodity location-allocation problems with balancing requirements.Key words: Tabu search metaheuristics, Parallelization strategies, TaxonomyR�esum�eNous pr�esentons un sch�ema de classi�cation des algorithmes parall�eles de rechercheavec tabous. La taxonomie est bas�ee, d'une part, sur les strat�egies de contrôle etde communication des algorithmes parall�eles de recherche avec tabous et, d'autrepart, sur les r�egles de partitionnement du domaine. Ces crit�eres sont ensuite utilis�eslors de la revue des r�ealisations d�ecrites dans la litt�erature et sont illustr�es de fa�conplus d�etaill�ee par les r�esultats d'une �etude de plusieurs approches de parall�elisationd'un algorithme de recherche avec tabous pour le probl�eme de localisation-allocationmultiproduits avec des demandes d'�equilibrage.Mots cl�es: M�ethodes de recherche avec tabous, strat�egies de parall�elisation, sch�emade classi�cation.

1 IntroductionTabu search [15, 16, 17, 18] is often described as a higher level heuristic for solvingoptimization problems, designed to guide other heuristics, or parts thereof, to avoidthe trap of local optimality. Thus, tabu search is an adaptive search technique thataims to intelligently explore the solution space in search of good, hopefully optimal,solutions. Broadly speaking, two mechanisms are used to direct the search trajec-tory. The �rst is intended to avoid cycling through the use of tabu lists that keeptrack of recently examined solutions. The second mechanism makes use of one or sev-eral memories to direct the search either into a thorough exploration of a promisingneighbourhood, or towards previously unexplored regions of the solution space.It is noteworthy that these memory mechanisms may be viewed as learning capa-bilities that gradually build up images of good or promising solutions. The existenceof these learning capabilities and guidance mechanism implies, on the one hand, thatthe knowledge tabu search supplies about the instance of the problem to be solved isricher than, say, the one generated during execution of a branch-and-bound algorithmfor the same problem. On the other hand, it also clearly di�erentiate tabu search fromrandom search by introducing a purposeness into the process of domain exploration.Hence, a wider gamut of tabu search procedures may be designed for a given classof problems, and this characteristic is emphasized when parallel implementations arecontemplated.Parallel computer architectures o�er the possibility to design procedures that ex-plore more e�ciently the solution space. Generally, this extra e�ciency may beachieved by accelerating some particularly tedious computational phases of the al-gorithm, or by redesigning the algorithm. In the context of branch-and-bound al-gorithms, Trienekens and Bruin [27] refer to these approaches as low and high levelparallelization, respectively, because a low level parallel implementation of an algo-rithm does not change the interactions between its various parts; hence, it is notintrinsically di�erent from its sequential version, only faster. In the context of tabusearch, this distinction may become signi�cantly more blurred. In particular, onehas to consider how the parallelization strategy a�ects the information relative tothe global search trajectory and history, as well as how much of this knowledge isavailable to each process at any given moment. Hence, issues relative to inter-processinformation exchanges and treatment, central to the design of any parallel procedure,take on an even more preeminent position when parallel tabu search is considered.The taxonomy that we propose explicitly addresses these considerations by incor-porating classi�cation criteria based not only on how the search space is partitioned,but also on the control and communication strategies used in the design of the parallel1

tabu search procedures. It thus aims to present the �rst comprehensive picture ofparallelization strategies for tabu search, and contributes toward performing a moremeaningful analysis and comparison of the various procedures proposed in the liter-ature. The taxonomy may also help better understand the relationships between thenature of tabu search, especially its knowledge acquisition and utilization features,and parallel computation. Finally, it identi�es new parallelization strategies, andsuggests interesting future work.The next section details the taxonomy and its criteria, while Section 3 is ded-icated to a review of the main strategies proposed in the literature according tothe parameters of the proposed classi�cation. Finally, Section 4 further illustratesthe taxonomy by using results from several parallel implementations of the same se-quential tabu search algorithm for multicommodity location-allocation problems withbalancing requirements, and shows that several other parallelization strategies, be-sides those usually found in the literature, may be advantageously used to develope�cient parallel tabu search procedures.

2

2 Classi�cation of Parallel ApproachesThere exists so far only a limited body of knowledge concerning the design of paralleltabu search methods, and we are aware of only one attempt (Vo�[28]) to classify thedi�erent types of parallelism that may be applied in this context. Vo�'s classi�cationis based on an analogy to the classical taxonomy of parallel machine models proposedby Flynn [12]. It discriminates parallel algorithms into four categories according to thechoice of identical or di�erent initial solutions, and of identical or di�erent explorationstrategies for each process. In our opinion, this classi�cation is incomplete since itfails to account both for the di�erences in control and communication strategies whichare so important when designing parallel algorithms, and for the various mechanismsused to exchange and process information central to tabu search metaheuristics. Thetaxonomy we present aims to �ll these gaps.2.1 The Tabu Search ApproachWe briey recall the main components of tabu search. For more detailed descriptionsof the method, as well as for reviews of successful applications, see Glover [15, 16, 17],Glover and Laguna [18], Glover, Taillard and de Werra [19], and references therein.A schematic tabu search procedure for solving an optimization problem(P) Minimize f(x) subject to x 2 X � Rnmay be viewed as the combination of three main steps: local search, intensi�cationof the search in a selected subregion, moving the search to a previously unexploredregion. While exploring the domain according to the rules of one of these procedures,knowledge is collected, stored and processed in order to gain an understanding of theproblem and its domain, to extract an image of a good solution, to identify regionswhere such good solutions might be found, and to guide the search.Typically, local search is performed by evaluating moves from a current solution�x 2 X. A move is any procedure that allows to pass from a solution to (P) to adi�erent solution to (P) (in some applications, either one of these solutions, or both,may be allowed to be infeasible). All solutions that may be thus reached from �x formthe neighbourhood N(�x) of �x. Local search may then be performed over the entireneighbourhood, or only on a selected subset, identi�ed as the candidate list at iterationk, C(�x; k) � N(�x). The best move-candidate, with respect to some criterion (usuallybased on the objective value), in the candidate list is selected and implemented.To avoid cycling, a record is kept of the recent search history; this short term3

memory is implemented as tabu lists that forbid the selection of certain moves. Thenumber, size, contents and management policies of the tabu lists are as varied asthe speci�c applications and the researchers' imagination permit, and jointly formone of the main strengths of tabu search. In this context, local search selects thebest move that is not tabu, that is from �x to ~x 2 C(�x; k) and ~x 62 ST (k) [T ,where ST (k) represents the set of short term tabu lists at iteration k, while T standsfor any combination of longer term tabu memories. The combined e�ect of theserestrictions implies that the absolute best candidate might not be selected at eachmove. Of course, one may always override the tabu status of a candidate by using anaspiration criterion. While locally exploring the solution space, one registers the bestsolutions found and, eventually, some of their attributes. The search is then continueduntil a certain stopping criterion (typically, a maximum number of iterations withoutimprovement in the best solution found) is met.The procedure may be enhanced by using intensi�cation and diversi�cation phases.Intensi�cation corresponds to a more intense (even thorough) exploration of partof the solution space identi�ed during the current local search cycle as containinggood solutions, and is based on solution attributes stored in medium term mem-ories MT (k). Intensi�cation of the search often implies identifying and �xing thedesired attribute values (\�x the solution core"), and then looking out for the bestcorresponding solution. If an improving solution is found, local search is resumed.Diversi�cation, on the other hand, is a device used to guide the search towards zonesbelieved not yet explored. This is achieved by recording in long term memories LT (k)information (attributes) concerning the (best) solutions encountered so far, and byselecting a new solution with di�erent attribute values (\complement the solutioncore").This is a rather coarse summary of tabu search, and it overlooks many of the �neraspects of its implementations. Yet, it captures the essence of the method and it issu�cient for the purposes of this paper. In particular, it allows the description of thetabu search procedures reviewed later in the paper.2.2 Taxonomy DimensionsAs previously mentioned, tabu search makes extensive use of information concern-ing the regions already explored and the attributes of the solutions found duringthe search. We do not intend to classify parallel tabu search algorithms accordingto their basic exploration and knowledge acquisition design. This is clearly beyondthe scope of this paper. Yet, we want to emphasize that since this is one of thefundamental building blocks of tabu search, the strategies used for its parallelization4

must constitute an important criterion of the taxonomy. Furthermore, any paral-lelization strategy implies some decomposition either of the domain, or of the basicsteps and tasks of the algorithm, or of both. Consequently, not all information is nec-essarily available at all times during a parallel resolution of a problem instance, and,therefore, how the knowledge gathered during the parallel exploration of the domainis exchanged and combined among processes is as important as how the domain isdivided among, or how the tasks are allocated to, the various processes.Our taxonomy is built according to three dimensions meant to capture all thesefactors. The �rst two represent the parallelization schemes relative to the control ofthe search trajectory and the communication and information processing approach,while the third accounts for the strategies used to partition the domain and to specifythe parameters for each search. The three dimensions are illustrated in Figure 1,summarized in Table 1, and detailed in the following.Control Cardinality 1-controlp-controlControl and Rigid SynchronizationCommunication Knowledge SynchronizationType CollegialKnowledge CollegialSearch SPSSDi�erentiation SPDSMPSSMPDSTable 1: Taxonomy Dimensions2.2.1 Search Control CardinalityControl of the parallel search may either stay with one processor, usually calledmasteror main processor, or be distributed among several processors. Two categories maybe de�ned.The �rst case, that we call 1-control, trivially corresponds to the sequentialcase. In a parallel context, it represents the approach where one processor essentiallyexecutes the algorithm, but delegates some of its work to other processors. Themaster collects and reconciliates the information, distributes the tasks to be executedby the other processors, and determines when the search has to stop. The tasksthat are delegated may consist of only time-consuming numerical computations; this5

corresponds to what Trienekens and de Bruin [27] call low level parallelism in thebranch-and-bound context. It may also imply, however, the parallel exploration ofthe neighbourhood [3, 5], or the construction and evaluation of the candidate list. Astraightforward implementation of the sequential fan candidate list strategy [19] fallsunder this heading.In the second case, control of the search is shared among p; p > 1, processors;hence, we identify it as p-control. The classical collegial or multithread arrangementof processes belongs to this category. Each process is in charge of its own search, aswell as of establishing communications with the other processes. The global searchterminates once each individual search stops. Coordination of information exchangesand attempts to ensure that the adequate information is available when required areamong the main issues in this context, and also play an important role in de�ningthe type of control that is exerted.2.2.2 Control and Communication TypeThe second dimension of the taxonomy is based on the type and exibility of thecontrol: it takes into account the communication organization, synchronization andhierarchy, as well as the way information is processed and shared among processes.The control-type dimension is made up of four stages or degrees, that combine tothe two levels of cardinality control to de�ne the parallelization strategies relative toprocess and information handling.The �rst degree corresponds to a rigid synchronization of the processes. Asynchronous operation mode [2] usually indicates that all processes have to stop,and engage in some form of communication and information exchange, at points(number of iterations, time intervals, speci�ed algorithmic stages, etc.) exogenouslydetermined: either hard-coded into the procedures or determined by a control process.We qualify such an organization as \rigid" when little, if any, information exchangetakes place among processes that are dedicated to executing the same level of tasks.In particular, rigid synchronization ideally complements the 1-control approach.This is the classical master{slave case, where the master executes what amounts toa sequential tabu search by using other processors to perform computing intensivetasks. There is no communication among the slave processes, and information is keptand handled exclusively by the master, which also initiates all communication phases.The extension to the p-control case is the straightforward parallelization strategywhere independent searches are performed simultaneously. Each search may startfrom a di�erent initial solution, or may be using a di�erent set of parameters, or6

both. Again, there is no communication among processes during the search, and eachterminates when its own stopping criteria are met. The best solution is selected onceall processes have stopped.The next stage is also characterized by a synchronous operating mode, but anincreased level of communication permits to build and exchange knowledge. Hence,we identify it as knowledge synchronization.When operating within the 1-control framework, the master continues to be thekeeper of the information, to synchronize the processes, and to dispatch work tothe slaves, but it delegates a larger part of the work. The slave processes still donot communicate among themselves. Their tasks, however, are more complex thanin the rigid synchronization case, and may imply that local memory structures arepresent. Hence, for example, a slave process may execute a limited sequence of tabusearch steps on a given subset of the neighbourhood (e.g., intensi�cation on promisingcandidates). But, on request from the master (when it synchronizes, for example) theslave process returns the problem and the results, and waits for a new task. A moresophisticated implementation of the fan candidate list belongs to this category.When a p-control strategy is adopted, the knowledge synchronization mode cor-responds to several independent search trajectories which all stop at a predeterminedmoment (e.g., number of iterations), the same for all processes. At that moment,an intensive communication phase begins among all control processes. This may beviewed as a hybrid approach between rigid synchronization and independent collegial.To summarize, in synchronous mode, the 1-control strategy implies vertical, master{slave, communication channels exclusively, while only horizontal, process to process,communications exist in a p-control strategy. The di�erence between rigid and knowl-edge synchronization is not always clear in the 1-control context, since it is mostlybased on how much work the master assigns to each slave. This di�erence is muchmore signi�cant for p-control strategies, since it corresponds to the absence or pres-ence of inter-process communications and knowledge exchanges.The third and fourth degrees of the control strategy dimension make use of asyn-chronous communication modes. In this context, each process stores and treats itsown information, initiating communications with some or all other processes accord-ing to its own internal logic and status. We de�ne two such degrees according to thequantity, quality and treatment of the exchanged information. Note that we do notintend to classify parallel procedures according to the precise means of communicat-ing information and work (see, for example, the survey by Gendron and Crainic [13]or the recent work by Karp and Zhang [20]). Rather, we focus on the role that com-munication play in reconstructing a global search pattern when several independent7

search threads explore the solution domain.In the third stage, that we call collegial, each process executes an eventuallydi�erent tabu search on all or on part of the domain. When a process �nds animproving solution (locally or globally, according to the chosen strategy), it broadcastsit (together, eventually, with its context and history) to all or to some (e.g., theneighbouring ones) of the other search processes. It may also deposit it in a centralmemory, and only broadcast (if at all) that a better solution has been found. Inall cases, however, communications are simple, in the sense that the message sentcorresponds to the message received.This is not necessarily the case, however, in the fourth, knowledge collegial,stage. Here, the contents of communications are analyzed to infer additional infor-mation concerning the global search trajectory and the global characteristics of goodsolutions. Global memories (e.g., the status change frequency of some variables) andtabu lists that reect the dynamics of the asynchronous parallel exploration of thedomain may thus be built, while new solutions may be constructed based on the so-lutions and memory contents sent by the individual searches. Therefore, the messagereceived by a process is generally richer than, and not identical to, the one initiallysent by another process.2.2.3 Search Di�erentiation StrategyIn Vo�'s classi�cation [28], the only criteria considered refer to the number of di�er-ent starting solutions, and to the number of di�erent solution strategies (parametersettings, tabu list management policies, etc.) used by the particular implementation.This corresponds to our third dimension, that we identify as the search di�erentiationstrategy.Although the balls and mountains imagery Vo� uses in naming the classes of histaxonomy has a certain appeal, we prefer to refer directly to the decision to start theexploration of the domain from the same or from di�erent points, and to use either aunique or di�erent search strategies for each search thread. We use the term \searchstrategy" in its most general sense that includes di�erent neighbourhood de�nitions,parameter settings, memory management rules, diversi�cation schemes, etc.We identify the following four cases:SPSS: The Single (Initial) Point Single Strategy is the most simple case, and itgenerally allows for only low level parallelism.8

SPDS: The Single Point Di�erent Strategies approach refers to the case when eachprocessor runs a di�erent tabu search but starts with the same initial solution.MPSS: The Multiple Points Single Strategy label identi�es the case when each pro-cessor starts from a di�erent solution of the domain, but use the same tabusearch settings and rules to explore the domain.MPDS: Finally, the Multiple Points Di�erent Strategies class is the most generaland has all others as special cases.

9

3 Review of Parallel Tabu Search AlgorithmsAlthough parallel tabu search is still in its infancy, a number of signi�cant contribu-tions have already been realized. We now examine how the taxonomy applies to someof the implementations of parallel tabu search found in the literature.Malek et al. [21] implement and compare serial and parallel simulated annealingand tabu search algorithms for the traveling salesman problem. The parallel experi-ments are performed on a 10 processor Sequent Balance 8000 computer. The authorsreport that the parallel tabu search implementation outperforms the serial one, andconsistently produces comparable or better results than sequential or parallel simu-lated annealing. Their implementation may be described as a 1-control, knowledgesynchronization, SPDS method with one main process and four child processes. Eachchild process runs a serial tabu search algorithm with di�erent tabu conditions andparameters. The child processes are stopped after a speci�ed time interval, the so-lutions are compared, and bad areas of solution space are eliminated. The childprocesses are then restarted with a good solution and an empty tabu list. Note that,in order to strictly implement this strategy, the diversi�cation long term memoryfunction is disabled.Taillard [24] studies tabu search based algorithms for vehicle routing problems.His parallelization strategies are based on partitioning the solution space, using ap-control, knowledge synchronization, MPSS approach, and are simulated for p = 4on a Silicon Graphics 4D/35 workstation. The �rst strategy applies to Euclideanproblems with uniformly distributed cities, and decomposes the domain into polarregions, to which vehicles are allocated. Once the initial partition is performed,each subproblem is solved by an independent tabu search. All processors stop aftera certain number of iterations (this number varies according to the total numberof iterations already performed), and the partition is modi�ed. This is done by aninformation exchange phase, during which tours, undelivered cities and empty vehiclesare exchanged between adjacent processors (corresponding to neighbouring regions).Load balancing problems seem to impair this approach. The second strategy is aimedat non-Euclidian problems, or at problems where cities are not uniformly distributed.The main di�erence between the two strategies appears in the partitioning method(the space is partitioned based on the arborescence build by the shortest paths fromthe depot to all cities), and in the information that is exchanged (the best solutiononly).Fiechter [11] also makes use of a p-control, knowledge synchronization, MPSSstrategy to parallelize his tabu search algorithm for traveling salesman problems.The exact operation that is to be executed in parallel is speci�c to the particular step10

of the tabu search procedure. For the intensi�cation phase, each process optimizes aspeci�c slice of the tour. At the end of the intensi�cation phase, processes synchro-nize to recombine the tour and to modify (shift part of the tour to a predeterminedneighbouring process) the slice of the tour each process will continue to work on.For the diversi�cation phase, each process determines among its subset of sities acandidate list of most promising moves. The processes then synchronize to exchangethese lists, so that all processes build the same �nal candidate list and apply themoves. The algorithm has been implemented on a network of transputers arraangedin a ring structure. The author reports near-optimal solutions to large (500, 3000 and10000 vertices) problems, and almost linear (less so for the 10000 vertices problems)speedups.Taillard [23] makes use of a 1-control, rigidly synchronized SPSS parallelizationapproach for his tabu search aimed at the quadratic assignment problem. The set ofpossible moves is partitioned into p sets, and each set is assigned to a di�erent proces-sor. Each processor then evaluates the pairwise interchange moves and identi�es thebest one. Intriguingly, it seems that Taillard dispenses with a speci�c master proces-sor. Indeed, once each processor �nds its best move, it communicates it to all otherprocessors. Then, each processor performs all the tasks of the master: choosing thebest overall move, implementing it, making the necessary adjustments and updates,partitioning the neighbourhood, etc. No implementation details are given. Load bal-ancing through partition of the neighbourhood is acknowledged as critical, but noindication is given on how it is performed. A ring of 10 transputers (T800C-G20S) isused for the experiments.Chakrapani and Skorin-Kapov [3, 5] also address the quadratic assignment prob-lem by using a parallelization approach which is essentially a 1-control, rigidly syn-chronous, SPSS procedure, where the search is performed sequentially, while the moveevaluation is performed in parallel. However, the implementation is speci�cally de-signed to take advantage of the special features of the Connection Machine CM-2,a massively parallel SIMD machine: for a size n problem, n2 processors are usedto evaluate moves and communicate information. The authors report that the bestknown or improved solutions were obtained for problems studied in other comparativestudies and that their method required a signi�cantly smaller number of iterations.Furthermore, they were also able to determine good suboptimal solutions to biggerproblems in reasonable time.Chakrapani and Skorin-Kapov [4] apply a similar strategy to the problem, ap-proximated by a very large quadratic assignment problem with sparse ow matrix, ofmapping tasks to processors in a multi-processor system in order to minimize the timespent in inter-processor communication. It is noteworthy that, due to the sparsity ofthe task graph, implementing a move (swap a single pair of tasks) does not signi�-11

[1] Battiti & Tecchiolli p-RS MPSS

p-KS MPSS

p-RS MPSS

1-RS SPSS

1-KS SPDS

p-RS MPSS

1-RS SPSS

Knowledge Synchronous

Collegial

Knowledge Collegial

Rigid Synchronous

SPSS SPDS MPSS MPDS

1

Search

Differentiation

21

Control and

Communication Type

Control

Cardinality

[23,25] Taillard

[23] Taillard

[21] Malek & all

[11] Fiechter

[3,4,5] Chakrapani & Skorin-Kapov

[24] Taillard

[3,4,5,23]
[1,23,25]

[11,24]

p

Figure 1: Taxonomy Dimensions12

cantly a�ect the values of most other possible moves; hence, most improving movesare still improving. Two operations are therefore performed in parallel: the candidatemoves are identi�ed and evaluated and, second, multiple moves are implemented. Toalleviate the evaluation error inherent in such a procedure (the total value of multipleswaps is not equal to the sum of the individual moves), an aggressive diversi�cationphase is introduced into the procedure. Very good results are reported on a 8192processor hypercube con�guration of a CM-2 Connection Machine.Battiti and Tecchiolli [1] also use the quadratic assignment problem to present atabu search with hashing procedure, and to discuss a parallelization scheme basedon several independent searches. The hashing feature is used to have the searchreact to the detection of cycles by suitably modifying the length of the tabu lists.The authors then analyze a parallelization scheme where several independent searchprocesses start the exploration of the domain from di�erent, randomly generated,initial con�guration. This corresponds to the p-control, rigid synchronization, MPSSstrategy of the taxonomy. The authors then proceed to derive probability formulasfor the success of the global search that tend to show that the independent searchparallelization scheme is e�cient { the probability of success increases, while theaverage success time decreases with the number of processors { provided the tabuprocedure does not cycle.Taillard also studies the p-control, rigid synchronization, MPSS parallelizationstrategy that performs many independent searches, starting every one with di�erentinitial solutions. The main study is to be found in his paper on parallel tabu methodsfor job shop scheduling problems [25]. For this type of problems, Taillard shows thata tabu search approach (that includes a diversi�cation phase) is very competitive:simpler to implement and generally more e�cient than either the simulated annealingor the shifting bottleneck procedures (the two best heuristics proposed at the time), ithelped establish new best known solutions for every problem in two sets of benchmarkproblems, while optimally solving random problems with m machines� n jobs (e.g.,m = 5, n = 2000) in polynomial mean time. Several parallelization ideas focusing onspeeding up computations related to the neighbourhood evaluation (1-control, rigidsynchronization) did not yield good results, either because the available computingplatforms (a ring of transputers and a 2-processor Cray computer) were not suitablefor the implementations, or because the communication times were much higher thanthe computation ones.Taillard then proceeds to examine the theoretical bases of the many independentsearches parallelization approach for \random" iterative algorithms (tabu search, sim-ulated annealing, etc.). His results show that the conditions needed for the parallelapproach to be \better" than the sequential one, i.e., that the probability of theparallel algorithm to achieve success with respect to some condition (in terms of op-13

timality or near-optimality) by time t is higher than the corresponding probability ofthe sequential algorithm by time pt, are rather strong. However, the author also men-tions that, in many cases, the empirical probability function of iterative algorithmsis not very far from an exponential one and, so that the many independent searchesparallelization approach is very e�cient. The results for the job shop problem [25]and the quadratic assignment problem [23] seem to justify this claim.This brief literature survey emphasizes a few points:� The use of parallelism may improve the performance of tabu search procedures.� The parallelization of a tabu search procedure may conict with some of thebasic tabu search mechanisms (e.g. the diversi�cation feature in [21]).� The taxonomy we propose is su�ciently comprehensive to account for the par-allelization strategies already reported.� Despite signi�cant implementation di�erences, due to the speci�city of the prob-lems, tabu search characteristics, computer environment, etc., few paralleliza-tion paradigms have yet been called for in the reported experiments. Indeed, asillustrated in Figure 1, synchronization seems to be the adopted norm, parallelcomputation being mostly used to evaluate moves, or to accelerate a restartingstrategy.In the following sections, we show that other strategies, identi�ed by our taxon-omy, are available to build e�cient parallel tabu search procedures.
14

4 Illustrating the TaxonomyTo further illustrate the taxonomy presented previously, we briey review the study ofCrainic, Toulouse and Gendreau who have designed and tested several synchronous[10] and asynchronous [9] parallel tabu search variants of a sequential tabu searchprocedure for the multicommodity location-allocation problem with balancing re-quirements.Our main objective is to demonstrate that the proposed taxonomy does not con-stitute an empty shell: that each group of parallel implementation strategies it de�nesdoes indeed correspond to a particular algorithmic case with distinctive characteristicsand behaviour. Hence, while the results of extensive testing are reported and ana-lyzed in [10] and [9], we present in this section only illustrative synthetic performancemeasures.4.1 Model and Sequential Tabu Search ProcedureThe multicommodity location-allocation problem with balancing requirements typi-cally arises in the context of the medium termmanagement of a eet of heterogeneousvehicles (containers, in our application), where vehicle depots have to be selected, theassignment of customers to depots has to be established for each type of vehicle, andthe interdepot vehicle tra�c has to be planned to account for di�erences in suppliesand demands in various zones of the geographical territory served by the company.One aims to minimize the total system cost: the \�xed" cost associated to the se-lection of depots, plus the transportation costs between customers and depots, plusthe costs of the inter-depot movements required to balance supply and demand foreach type of vehicle. The problem is formulated as a linear mixed integer program-ming model, where integer (binary) variables represent the decision to select or notthe corresponding depots, while continuous variables capture the vehicle ows on thearcs of the network. Other than the usual sign restrictions, two sets of constraintsdetermine the feasible region for this problem: (i) a set of linking constrains that for-bid the use of an unselected depot, and (ii) the usual uncapacitated multicommoditydemand-ow conservation equations of a network ow problem.The mathematical model is fully presented and analyzed in [6]. It is, however,worthwhile to recall that the formulation displays an interesting network structure.In particular, for �xed binary variables, it becomes an uncapacitated multicommodityminimum cost network ow problem, a well known model for which e�cient solutionmethods exist. This property has been used to de�ne a tabu search procedure, which isfully described and analyzed in Crainic et al. [8]. In the following, we only summarize15

its main characteristics, illustrated in Figure 2, to facilitate the presentation of theparallelization developments.The search space is de�ned with respect to the binary depot decision variablesthat specify the depot con�guration. For any con�guration, the optimal values ofthe continuous ow variables and the corresponding value of the objective function,may be computed by solving an uncapacitated multicommodity network ow prob-lem. The neighbourhood of any such solution includes all con�gurations that maybe obtained by either opening (add move) or closing (drop move) a currently closedor open, respectively, depot, or by performing a swap that simultaneously opens adepot while closing another. Such a neighbourhood is usually too large, however,and sampling is used to build a candidate list. Furthermore, the evaluation of allpossible moves by solving the associated network ow problem is too time consum-ing, and surrogate functions (based on estimates of di�erences in objective functionvalues) are used in most instances; the real value is however computed once a moveis selected and implemented.The search strategy combines a local search with intensi�cation and diversi�cationphases, and terminates with a postoptimization phase.Local search consists of an add/drop sequence (stopped once a prede�ned numberof iterations are performed without improving the solution), followed by a normalswap (the best candidate move evaluated by using the surrogate functions is im-plemented regardless of its real impact on the objective function) sequence that isinitiated from the best solution found by performing the add/drops. When the bestlocal solution yielded by this process is feasible, search intensi�cation is immediatelyperformed, otherwise the local search phase is continued until a feasible local solutionis encountered.Add/drop and swap sequences use di�erent short-term memory tabu lists. Foradd and drop moves, lists record the last depots added or dropped from the solution,and the reverse moves are forbidden. The swap tabu list records the most recentlyperformed swaps as pairs of depots, and the reversal or repetition of the moves isforbidden. Note that long term (diversi�cation) tabu lists further a�ect the status ofcandidates while performing local search.An intensi�cation phase consists of a strict swap sequence, which starts from thebest solution identi�ed during the previous local search phase, and implements onlythose selected moves that improve on the current solution. A diversi�cation move isperformed starting from the best global solution found so far in the search, and isbased on a long-term memory that records the level of \activity" of each depot: thenumber of times its status has been modi�ed (changed from open to closed or vice-16

Start

Stop

outer
loop Intensification Phase:

Stopping Criteria

Postoptimization

Diversification

Initialisation

Local Search:

Add/Drop Seq.

Strict Swap Seq.

Move

Phase
Inner Loops < N

Normal Swap Seq.

Yes

Yes

No

inner
loop

Figure 2: Sequential Tabu Search17

versa). Based upon the values stored in this memory, the prede�ned number of depotswith the lowest activity counts are selected and complemented. Considering the factthat values in the long-term memory tend to evolve rather slowly, another memoryhas been provided to record the last set of depots selected for diversi�cation. Thislist is used both to exclude depots from being considered in the next diversi�cationphases, and to prevent too quick a reversal of the diversi�cation moves during thefollowing local search steps.A sequence of local search and intensi�cation phases is called an inner loop. Afterexecuting N inner loops, the search procedure is re-directed to previously unexploredregions of the search space by performing a diversi�cation step, which completes anouter loop. The overall search procedure starts from an initial solution and performsa sequence of outer loops until some termination criterion is met. In the currentimplementation, this termination criterion is the total number of iterations since thebeginning of the search.A postoptimization phase, which aims at ensuring that no better solution existsclose to the best solution identi�ed so far, is invoked once the prespeci�ed number ofregular iterations has been performed. This phase consists in a comprehensive neigh-bourhood exploration search that considers all possible simple (add, drop) moves.Surrogates are used to rank moves, while exact evaluations determine the (�rst) im-proving move to be implemented. This procedure continues for as long as strictlybetter solutions are found.Several parameters inuence the e�ciency of the search: the lengths of the tabulists and memories, the lengths of the add/drop and swap sequences, the selectionprobabilities of the add, drop and swap moves, how these probabilities vary duringthe search, the initial solution that is chosen, etc. Crainic et al. [8] study these issuesand show, in particular, that several combinations of parameters may be e�cientlyused for di�erent types of problem characteristics.4.2 Experimentation EnvironmentSixteen problems are used for testing: twelve randomly generated, and four basedon an actual application [7]. The random problems have some 44 depots (integervariables), 220 customers, and either 1 or 2 products, which yields more than 7000 and14000 continuous variables, respectively. For the last four problems, the corresponding�gures are 130 integer and 56616 continuous variables.All procedures are stopped after 300 iterations, and the solution quality is mea-18

sured by computing the gap, in percentage, between the best solution determined byeach procedure and the optimal solution computed by a branch-and-bound algorithm[14]. Note that the objective is to illustrate the taxonomy, not to �ne-tune a givenprocedure on a given set of problems. Hence, we did not calibrate each individualprocedure for best performance over the problem set. Instead, the best parametersettings observed for the sequential tabu search [8] were used for all the experimentsreported in this section.All tests have been conducted on a heterogeneous network of SUNSparc work-stations. Communications are handled by our own set of procedures, written in C,that use the TLI/UDP protocol, modi�ed to ensure that all packets reach their des-tination. The tabu search is programmed in FORTRAN77, while the minimum costnetwork ow subproblems are solved by using the RNET code [22].4.3 Parallel Tabu Search ImplementationsFor each parallelization strategy de�ned by the taxonomy, several di�erent implemen-tations are generally possible. The procedures described in the following represent onesuch possible implementation for each of the 14 parallelization strategies. Tables 2and 3 display the average gaps, computed over the set of test problems, obtainedby each parallel implementation for 4, 8 and 16 processors, as well as (the \SEQ"column) the average gap of the sequential procedure. The evolution of the averagegaps with the number of processors is also illustrated in Figures 3 and 5 for thesynchronous and asynchronous procedures, respectively.The �rst synchronous parallel tabu search procedure is built according to a 1-control rigidly synchronized (1-RS) SPSS strategy. In this implementation, the masterprocess executes the tabu search algorithm, while the evaluation of the N elements ofthe local search candidate list is divided between p processes. Each process evaluatesN=p moves, by using a surrogate function, according to the tabu lists transmitted bythe master process, and returns the best move found. Note that each slave processalso computes the exact value of its best move. Hence, with little additional cost,the master may choose among several exactly evaluated moves. This improvementrelative to the sequential version is reected in the quality of the solutions found.A variant of the 1-control knowledge synchronous (1-KS) SPSS approach is re-lated to the probing strategy proposed by Glover (see also [17]). Here, not only theexploration of the neighbourhood is divided among the p processes, but each processalso performs a few (two, for the results reported in this section) local search itera-tions. The master then selects the sequence of moves that has resulted in the best19

p SEQ 1-RS 1-KS p-RS p-KSSPSS SPSS SPDS MPSS MPDS SPDS MPSS MPDS4 0.63 0.51 0.39 0.32 0.20 0.15 0.53 0.65 0.618 0.63 0.45 0.16 0.18 0.17 0.06 0.49 0.50 0.3216 0.63 0.35 0.12 0.08 0.15 0.04 0.44 0.41 0.21Table 2: Average Gaps (%) { Synchronous Proceduresp SEQ p-C p-KCSPDS MPSS MPDS SPDS MPSS MPDS4 0.63 0.19 0.28 0.10 0.25 0.44 0.158 0.63 0.17 0.15 0.05 0.31 0.36 0.2016 0.63 0.04 0.17 0.04 0.13 0.13 0.19Table 3: Average Gaps (%) { Asynchronous Proceduresimprovement, and implements it by appropriately updating the various tabu lists andmemories.Three p-control knowledge synchronous (p-KS) parallelization strategies were im-plemented corresponding to the SPDS, MPSS and MPDS search di�erentiation ap-proaches identi�ed by the taxonomy. Note that we did not implement the SPSSstrategy since, in a synchronous environment, it reduces to p repetitions of the samesearch. Here, p independent tabu search threads explore the problem domain andexchange information, at predetermined synchronization points, that may modify thecurrent trajectory of any given process. Each process performs a given number of it-erations (25, in the present case), then broadcasts either its best solution (the SPDScase), or its set of p best solutions (for the MPSS and MPDS strategies). Followingthis communication and synchronization phase, the best of all solutions becomes theinitial solution for the next parallel phase of a SPDS implementation. For MPSS andMPDS approaches, the p overall best solutions are identi�ed and distributed amongthe p processes. For single initial solution strategies, the best parameter settings forthe sequential tabu search are used. When di�erent search strategies are implemented(in SPDS and MPDS strategies), we varied the lengths of the short and medium termtabu lists, the number of consecutive add/drop iterations without improvement, andthe number of depots temporarily �xed by a diversi�cation move.20

No special implementation is required for the p-control rigid synchronous (p-RS)parallelization approach: one simply runs totally independent tabu searches, by vary-ing the initial solution and the parameter settings according to the chosen strategy.Note that because a SPSS approach reduces to p repetitions of the same search, itwas not implemented.The introduction of synchronization points into parallel iterative search proce-dures is often motivated by a desire to ensure that parallel computations display adeterministic behavior and a search trajectory similar to that of a sequential method.Yet, in most cases, this is achieved at a price in algorithmic e�ciency, since a sig-ni�cant number of processes are often idle waiting for other processes to completetheir activities. Consequently, to improve the algorithmic performance, various levelsof asynchronism may be introduced into the parallel procedure. In the context ofour taxonomy, such strategies fall under the p-control collegial or knowledge collegialheadings.Let the context of a solution of a n-decision-variable problem be a vector of cardi-nality n that contains the values of the n decision variables. There could be severalcontexts for a given objective function value but, given a context, there is only onepossible objective function value. The present implementation of the asynchronousparallel framework, illustrated in Figure 4, makes use of a central memory throughwhich pass all communications, and that captures the global knowledge acquiredduring the search. Note that this is an implementation device which helps to keepin check communication and accounting e�orts, as compared, for example, with astrategy where each process broadcasts its solution to all other processes, which, inturn, have to accept, compare, update, and store the information. It also enforces theasynchronous paradigm, since it lifts the need for an acceptance decision by each pro-cess at broadcast time: each thread decides to access the central memory informationbased exclusively on its own internal schedule and history.By using this framework, the p-C parallel strategy proceeds as follows: (i) Eachprocess sends its solution and context to the central memory each time it improvesits best global solution. (ii) The central memory keeps and updates the best globalsolution found so far. Together with its associated context, we call this solution thecentral memory best solution. (iii) If the best global solution of a process is worstthan the central memory best solution, the process retrieves the central memorybest solution. (iv) After a certain number of iterations without improving its globalsolution, a process requests the best central memory solution. More complex versionsof this framework can be de�ned (e.g., instead of storing the overall best solution inthe central memory, build a pool of good solutions to distribute, on request, amongthe search threads [9]; more sophisticated approaches would use the solution pool toderive new solutions), but this is beyond the scope of this paper.21

0

0.1

0.2

0.3

0.4

0.5

0.6

4 8 16

A
ve

ra
ge

 g
ap

Number of processors

p-RS mpds
p-RS spds
p-RS mpss
p-KS mpds
p-KS spds
p-KS mpss
1-RS spss
1-KS spss

Figure 3: Gap Comparisons { Synchronous Implementations22

Pool of Best Solutions

 +

Process 1

Process Best

Solution &

Context

Local

Information

Solution &

Context

Global

Information

Induced Information

Global Tabu Memories

 + +

Process i

Central Memory

Process i-1

A Memory

Initial Solution x i
Tabu Strategy y ixi = xj8i; j xi 6= xj8i; jyi = yj8i; j SPSS MPSSyi 6= yj8i; j SPDS MPDSFigure 4: Examples of p-Control Asynchronous Parallelization23

Note that a process always resumes its computations from the same state (shortterm tabu lists and memories, best local search solution, current solution context,etc.) it was in just before communicating with the central memory. However, beforeinitiating a diversi�cation phase, the process compares and, eventually, replaces itsbest global solution and context by the central memory best solution. Then, either thesearch resumes from the central memory best solution (this amounts to an externallyimposed diversi�cation), or a normal diversi�cation step is performed. In this way,one can reconciliate the tabu search behaviour based on long term memories of eachprocess, to the import of exogenous information. Implementation details may befound in [9].It is noteworthy that in the classic asynchronous collegial parallel framework il-lustrated above, at any given moment, a process knows, at best, its own history andthe value and context of the current best global solution, without any indication ofthe global evolution of the search. In a sense, we do not achieve the global picture ofthe combined e�ects of the search threads performed by the individual processes, andlose, at least partially, the e�ect of the learning and memory mechanisms central totabu search approaches. The class of strategies the taxonomy identi�es as p-controlknowledge collegial (p-KC), are intended to address this issue.Figure 4 illustrates a very simple version of the p-KC strategy. The previouslyde�ned general framework is used, but more information is exchanged among pro-cesses and a new structure is de�ned at the level of the central memory to record theevolution of the global search. This long term global memory is updated each timethe central memory solution is improved, and records the frequency in the change ofstatus of each depot in the sequence of best solutions reported by the various pro-cesses. Hence, in the long run, this consistency memory tends to build an image ofa good solution: depots that seem de�nitively open or closed and undecided ones.The consistency memory is part of the solution context that is communicated to eachprocess, which then uses it to inect its own search trajectory. In the current imple-mentation, this is accomplished via a \diversi�cation-like" tabu mechanism: the tabustatus of candidate moves is modi�ed during local search according to the consistencyvalues.The experimental results, summarized in Tables 2 and 3 and illustrated in Fig-ures 3 and 5, support the conclusion of Section 3 that the use of parallelism mayimprove the performance of tabu search procedures. Indeed, on average, all parallelstrategies have yielded better quality solutions. Furthermore, the results of [10] and[9] show that over the 672 reported runs, parallel procedures stopped with the samesolution as the sequential procedure in 25% of the cases, while improving the solutionfor 68% other. In particular, the optimal solution is identi�ed 48% of the time, ascompared to 12% for the sequential version.24

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

4 8 16

A
ve

ra
ge

 g
ap

Number of processors

p-C mpds
p-C mpss
p-C spds

p-KC mpds
p-KC mpss
p-KC spds

Figure 5: Gap Comparisons { Asynchronous Implementations25

The taxonomy has allowed to imagine new, relative to reported implementations,parallelization strategies, and o�ered a comprehensive framework for comparativestudies. First, it appears that, indeed, the class of multiple independent search threadsstrategies performs very well, and outperforms most of the synchronous strategies.However, if this strategy is chosen, it also appears that it is bene�cial to vary not onlythe initial point, but also the search strategy. Furthermore, strategies that exploit thesearch for a better knowledge of the neighbourhood and the consequences of promisingmoves (1-KS strategies, see also [19]) seem to hold their own and o�er interestingperspectives for further research. Secondly, asynchronous strategies suggested bythe taxonomy appear to hold great promises. Opening up communications amongprocesses without imposing the need to regularly synchronize the processes improves,for the class of problems studied, the performances and appears to be better thanthe multi threads strategy. The taxonomy also suggests that improved parallelizationstrategies could be obtained by extracting knowledge from the information exchangesamong processes. While the implementations referred to in this paper do not quiterealize these promises, they indicate that this is an interesting research direction.

26

5 Conclusions and Further ResearchWe have presented a taxonomy of parallel tabu search procedures. In our opinion,it is the most comprehensive yet to be proposed, since it accounts for the mainparameters of parallelization strategies: how the control of the acquired knowledgeand of the parallel processes is managed, the type and complexity of communications,the di�erentiation strategies for the various search threads.The taxonomy permits to classify the reported parallel tabu search procedures.This review also reveals that a rather limited range of parallelization strategies havebeen implemented so far. The taxonomy also points out to di�erent approachesthat may yield more e�cient procedures. In particular, the whole dimension of asyn-chronous parallelization and information management appears to hold great promisesand constitutes an exiting area of research.The taxonomy is independent of any particular problem class or tabu search de-sign. It is also independent of particular computing platforms. The reported imple-mentations have been carried out over the years by using a great number of computers,operating systems and computer languages. Of course, each individual parallel im-plementation of a particular tabu search method for a given class of problems maygain in performance if it takes advantage of the characteristics of the computer it is torun on. As a general indication, however, it is clear that all the strategies suggestedby the taxonomy can be developed on both shared memory and distributed message-passing MIMD (Multiple Instruction Multiple Data [12]) computers. SIMD (SingleInstruction Multiple Data) architectures could also be used to implement some in-stances (e.g., master-slave strategies as in [3, 5]), but appear less interesting for allcases where several search threads are used.More work is required in order to apply, �ne-tune, and evaluate the behaviourand e�ciency of the parallelization strategies de�ned by the proposed taxonomy tovarious optimization problems. Also needed is a thorough exploration of a number offundamental questions related to the parallelization of tabu search, such as speed upanomalies, the impact of parallelization on the long term behaviour of tabu search,what information to exchange and how it can be transformed to gain additionalknowledge about the search (the recent work of Toulouse, Crainic and Gendreau[26] constitutes a �rst step in this direction), etc. Yet, it is already clear that tabusearch may bene�t signi�cantly from a parallel environment, and that, for any givenproblem, it is worth the e�ort to explore alternate parallelization paradigms.27

AcknowledgmentsWe wish to thank one anonymous referee whose insightful comments helped us im-prove the paper. This research has been supported by grants from the Fonds F.C.A.R.of the Province of Qu�ebec, and the Natural Sciences and Engineering Research Coun-cil of Canada.

28

References[1] R. Battiti and G. Tecchiolli. Parallel Biased Search for Combinatorial Opti-mization: Genetic Algorithms and TABU. Microprocessors and Microsystems,16:351{367, 1992.[2] D.P. Bertsekas and J.N. Tsitsiklis. Parallel and Distributed Computation, Nu-merical Methods. Prentice-Hall, 1989.[3] J. Chakrapani and J. Skorin-Kapov. A Connectionist Approach to the QuadraticAssignment Problem. Computers & Operations Research, 19(3/4):287{295, 1992.[4] J. Chakrapani and J. Skorin-Kapov. Mapping Tasks to Processors to MinimizeCommunication Time in a Multiprocessor System. Technical report, HarrimanSchool for Management and Policy State University of New York at Stony Brook,1993.[5] J. Chakrapani and J. Skorin-Kapov. Massively Parallel Tabu Search for theQuadratic Assignment Problem. Annals of Operations Research, 41:327{341,1993.[6] T.G. Crainic, P.J. Dejax, and L. Delorme. Models for Multimode Multicom-modity Location Problems with Interdepot Balancing Requirements. Annals ofOperations Research, 18:279{302, 1989.[7] T.G. Crainic, L. Delorme, and P.J. Dejax. A Branch-and-Bound Method forMulticommodity Location with Balancing Requirements. European Journal ofOperational Research, 65(3):368{382, 1993.[8] T.G. Crainic, M. Gendreau, P. Soriano, and M. Toulouse. A Tabu Search Pro-cedure for Multicommodity Location/Allocation with Balancing Requirements.Annals of Operations Research, 41:359{383, 1993.[9] T.G. Crainic, M. Toulouse, and M. Gendreau. Parallel Asynchronous TabuSearch for Multicommodity Location-Allocation with Balancing Requirements.Publication 935, Centre de recherche sur les transports, Universit�e de Montr�eal,1993.[10] T.G. Crainic, M. Toulouse, and M. Gendreau. Synchronous Tabu Search Par-allelization Strategies for Multicommodity Location-Allocation with BalancingRequirements. OR Spektrum, 17(2/3), 1995.[11] C.-N. Fiechter. A parallel tabu search algorithm for large travelling salesmanproblems. Discete Applied Mathematics, 51:243{267, 1994.29

[12] M.J. Flynn. Very High-Speed Computing Systems. Proceedings of the IEEE,54:1901{1909, 1966.[13] B. Gendron and T.G. Crainic. Parallel Branch-and-Bound Algorithms: Surveyand Synthesis. Operations Research, 42(6):1042{1066, 1994.[14] B. Gendron and T.G. Crainic. A Branch-and-Bound Algorithm for Depot Loca-tion and Container Fleet Management. Location Science, 1995.[15] F. Glover. Tabu Search - Part I. ORSA Journal on Computing, 1(3):190{206,1989.[16] F. Glover. Tabu Search - Part II. ORSA Journal on Computing, 2(1):4{32, 1990.[17] F. Glover. Tabu Search: A Tutorial. Interfaces, 20(4):74{94, 1990.[18] F. Glover and M. Laguna. Tabu search. In C.R. Reeves, editor, Modern Heuris-tic Techniques for Combinatorial Problems, pages 70{150. Blackwell Scienti�cPublications, London, 1993.[19] F. Glover, E. Taillard, and D. de Werra. A user's guide to tabu search. Annalsof Operations Research, 41:3{28, 1993.[20] R. Karp and Y. Zhang. Randomized Parallel Algorithms for Backtrack Searchand Branch-and-Bound. Journal of the Association for Computing Machinery,40(3):765{789, 1993.[21] M. Malek, M Guruswamy, M. Pandya, and H. Owens. Serial and Parallel Simu-lated Annealing and Tabu Search Algorithms for the Traveling Salesman Prob-lem. Annals of Operations Research, 21:59{84, 1989.[22] Grigoriadis M.D. and Hsu T. RNET { The Rutgers Minimum Cost NetworkFlow Subroutines. Technical report, Rutgers University, New Brunswick, NewJersey, 1979.[23] E. Taillard. Robust Taboo Search for the Quadratic Assignment Problem. Par-allel Computing, 17:443{455, 1991.[24] E. Taillard. Parallel Iterative Search Methods for Vehicle Routing Problems.NETWORKS, 23:661{673, 1993.[25] E. Taillard. Parallel Taboo Search Techniques for the Job Shop Sheduling Prob-lem. ORSA Journal on Computing, 6(2):108{117, 1994.[26] M. Toulouse, T.G. Crainic, and M. Gendreau. Communication Issues in Design-ing Cooperative Multi Thread Parallel Searches. Publication, Centre de recherchesur les transports, Universit�e de Montr�eal, 1995.30

[27] H.W.J.M. Trienekens and A. de Bruin. Towards a taxonomy of parallel branchand bound algorithms. Report EUR-CS-92-01, Department of Computer Science,Erasmus University Rotterdam, 1992.[28] S. Vo�. Tabu Search: Applications and Prospects. In D.-Z. Du and P.M. Parda-los, editors, Network Optimization Problems, pages 333{353. World Scienti�cPublishing Co., 1993.

31

