
Bit-Error Recovery with Adaptive Packet Sizes

for Wireless Network Environments

CS261 Final Project

Final Paper

Shawn Hsiao and Adon Hwang

fshawn, adong@eecs.harvard.edu

January 15, 2000

Abstract

TCP su�ers from poor performance under error-prone wireless environments. The network

research community has explored a wide range of solutions for this situation, including link-layer

solutions, end-to-end solutions, and other hybrid solutions.

We propose a simple but novel scheme of adaptive packet sizing at the transport layer. We

argue that adaptation is necessary in a changing environment where static con�guration of error

control does not yield the best performance for many situations. We propose a multiplicative-

decrease/additive-increase packet sizing protocol in TCP, given error feedback by the network

core and peers. We present simulation results for our scheme.

1 Introduction

The future of computing is mobile and wireless. A parallel trend in networking is the convergence

of network protocols toward IP. We can envision the proliferation of compact mobile computers

equipped with wireless network interfaces conversing with each other using IP. However, existing

TCP/IP protocols do not perform well under mobile wireless environments, due to the inherently

high bit error rates.

This paper examines a novel mechanism to increase performance in error-prone environments.

To deal with high bit-error rates, we �nd that reducing the packet error rate by dynamic packet

sizing is a fundamentally e�ective solution. We combine this and prior work of explicit error

noti�cation by the intermediate routers. This ultimately reduces the overhead of retransmitted

bytes from the sending host.

We have implemented, in the ns network simulator [MF00], an adaptive algorithm similar to

TCP's congestion control and avoidance algorithms of multiplicative decrease additive increase.

We investigate performance across a range of bit-errors through several metrics such as the end-

receiver's goodput, data overhead caused by smaller packets and retransmissions, and the actual

packet loss rate. We also attempt to �nd well-suited parameters for adaptive packet sizing. Our

results show that a simple end-to-end scheme can be an e�ective mechanism to boost TCP

performance, with some minor tradeo�s. TCP with adaptive packet sizing can survive under

harsh bit errors (10�3), where traditional TCP performs rather poorly due to high packet error

rates. We argue that our proposal is a viable alternative for improving TCP performance.

1



2 Background

2.1 TCP and Bit Errors

This section discusses the basic features of TCP [Pos81] and [Ste94]. TCP is a windowed ow

control protocol. This means that the sender maintains a window of unacknowledged packets

in ight to the receiver. This allows the sender to utilize the capacity of the links, maximizing

throughput. Otherwise, for each packet, the sender would have to wait for an acknowledgment

from the receiver before sending a new data packet (this is called stop-and-go). The size of the

window is governed by end-to-end ow control feedback. Only the receiver participates in the

acknowledgment of sender's packets. The acknowledgments are cumulative, which means that

the receiver tells the sender the highest in-sequence packet it has received. A packet dropped in

an intermediate router is a signal of congestion{ the router ran out of bu�er space that would

hold the incoming packet. The sender detects this signal by a lack of acknowledgments for a

period of time { a time-out { or by a certain number of duplicate acknowledgments triggered

by a hole in the packet sequence. The obvious thing for the sender to do at this point is to

shrink the window size. The higher the congestion probability, the smaller the window size.

TCP incorporates a fast retransmit capability when it deems that a packet retransmission is

necessary and not redundant for the receiver. This mechanism requires a suÆcient window size

to work e�ectively.

The intermediate routers detect bit errors in a packet by the use of checksums. Corrupted

packets are useless for the end hosts because TCP/IP has no mechanism to recover from in-

dividual bit errors. Thus, routers or hosts sensibly drop a packet silently and let the sender

retransmit the undelivered packet. Since the sender attributes all losses to congestion, it applies

the congestion control algorithm accordingly to the transmission.

TCP performs miserably under environments that have high packet error rates. The higher

the packet error rate, the more \holes" in the stream of data. To recover from the holes, TCP

either needs to wait for timeouts, which reduce throughput dramatically, or wait for duplicate

ACKs. The high packet error rate also reduces the congestion window size{ there are fewer

packets in ight { and decreases the chances to get duplicated ACKs because there are few

packets in the window in the �rst place. So, if the packet error rate is higher than a certain

level, it is possible that the throughput is almost zero, regardless of congestion.

Under high bit error environments, the congestion control algorithm may unnecessarily hurt

TCP's performance. The only way to solve this problem is to decouple the logic of congestion

control from the error recovery logic.

2.2 Related Work

The bit error rate of a typical wireless network may be as high as 1 bit error in 10�5 bits, which

is about 100 times greater than a wired network (10�7) [CWKS97], [Gil60]. There has been

much work to address the poor performance of TCP in this environment.

One fundamental way is to decouple the control logic of congestion from the error recovery

logic.

TCP decoupling[Wan99] builds a trunk (an aggregation of many TCP connections into one),

treats user TCP packets as payload of the trunk and inserts virtual headers which are additional

small packets, just before the user packets. TCP decoupling requires that intermediate routers

drop those virtual headers instead of data packets when they have to drop packets for lack of

bu�er space or other reasons. The trunk performs congestion control when the virtual headers

get dropped but not for dropped user packets. Also, due to the small size of the virtual headers,

virtual headers are less likely to have bit errors. This decoupling approach can increase TCP

performance in high bit error environments. The trunk idea may not be appropriate for normal

2



wireless applications, but the decoupling approach can e�ectively increase the performance of

TCP.

In Snoop, the authors modify wireless bridges to insert logic to help TCP performance

[BPSK97] and [BK97]. When a bridge detects bit errors in a packet, it noti�es the sender who

retransmits it directly. The protocol enables the network core to perform packet loss signaling,

which they call Explicit Loss Noti�cation (ELN). The protocol provides a way to recover lost

packets as early as possible, which reduces the number of timeouts and improves performance.

Another way to improve TCP is to speedup retransmission of lost packets by generating

hints from receiver's side. TCP header option Selective Acknowledgments [MMFR96] takes this

approach by letting the receiver explicitly mark in the returning ACKs the holes of unreceived

packets. This enables the sender to recover from multiple packets lost, without waiting for the

sender to timeout and retransmit.

Another approach is to reduce the packet loss rate instead. Some have proposed schemes

to do dynamic packet sizing at the link layer [Mod99], [ES98] by predicting the bit error rate

of the link. Smaller packet size results in lower packet error rate under uniform bit error rate

model.

Our scheme is not similar to any one mentioned above, however, it coincidentally contains

part of them.

3 Design Issues

We focus our scheme on two parts. We believe that the combined solution can e�ectively improve

TCP performance under wireless environments.

The �rst part is Explicit Error Noti�cation (EEN). Like Snoop and SACK, this scheme

tries to recover from packet loss as soon as possible. Also like Snoop, it requires cooperation

from intermediate routers. Instead of notifying sender directly like Snoop, the routers mark the

corrupted packets and forward them to the receiver. Some packets may have corruption in the

header and may lack enough information for forwarding. These get silently discarded.

The second part is to do Multiplicative Decrease and Additive Increase on the packet size.

Over time, the error model of a wireless network is close to constant bit error rate [CWKS97], so

the smaller the packet, the smaller the probability of packet corruption. But making the packet

size small also decreases the eÆciency since the headers occupy a larger portion of the packet.

An adaptive scheme according to the error rate must be employed to improve eÆciency.

We will look into details of some design issues in the following subsections.

3.1 Multiplicative Decrease and Additive Increase

TCP does Multiplicative Decrease and Additive Increase (MDAI) control over the window size

to reect the change in bottleneck bandwidth. Much prior work has shown that MDAI provides

fairness and robustness for competing network ows, by probing the bottleneck bandwidth.

With Multiplicative Decrease and Additive Increase of window size, when the sender detects

congestion, it reduces the window size multiplicatively (one half in TCP), and otherwise it

increases the window size gradually (one packet per round-trip time). One important property of

the algorithm is aggressive retreat and conservative advance. This is an important characteristic

for fair and robust probing when the uncertainty regarding the network conditions is high.

The bit error rate (BER) experienced in wireless networks may also change over time, like

the available bandwidth above. Because of the high packet loss rate, TCP may su�er under the

change of bit error rate over time. TCP cannot eÆciently recover from high packet loss rates.

Proposals such as selective acknowledgments [MMFR96] address this problem.

3



Working from this prior experience with congestion control in TCP, we propose the use of

MDAI to change packet sizes dynamically and to probe for bit error rates. This approach can

e�ectively control the packet error rate (PER), which for TCP, results in better performance in

wireless networks.

3.2 Error Model

In wireless environments, packets transmitted over the air may have bit errors introduced. If we

assume that the bit error rate is constant over time or over a bit stream, then the packet error

rate grows exponentially when the sender increases the packet size:

PER = 1� (1� BER)(length of packet in bits)

Of course, an invariant bit error model over time or bit stream may not necessarily reect

the real world. However, this model can reveal the relationship between PER and BER.

For this study, we assume that bit error rate is constant over time, so the distance between

two consecutive bit errors is exponentially distributed over the bit stream. This model is the

prevalent one in the literature [CWKS97], [Gil60].

3.3 Bit Errors in Header and Data

We assume that upon detection of bit errors, the intermediate routers will mark the packet

as corrupted and will continue to forward packets to the end receiver. In the event of header

corruption, the router cannot rely on the information carried in the packet header to forward

the packet correctly and must discard the packet. However, an error in the data does not impact

the routing decision. Such a corrupted packet can provide both the sender and receiver with

useful information that they use to adapt to the environment.

According to the error model, the larger the packet size the higher the chance of its corrup-

tion. The relative probability of header corruption compared to data corruption, is low. This is

because, for TCP, the typical header is 40 bytes while the data may range from a couple hundred

of bytes up to the maximum segment size (MSS), usually 1500 bytes. The data payload of a

packet is 3-400 times longer than the packet header; by the relationship of PER and BER, given

a �xed bit error rate, the probability of header corruption is rare.

3.4 Forward EEN and Backward EEN

In our scheme, the EEN (Explicit Error Noti�cation) we used is a forward EEN approach. An

alternative Backward EEN method deserves some discussion here.

First, under Forward EEN, the routers mark packets with bit errors along the forwarding

path to the receiver. The receiver will mark the corresponding acknowledgment (ACK) to notify

the sender that it should retransmit the corrupted packet (instead of interpreting the absence

of an ACK as a signal for congestion).

Routers under Backward EEN, on the other hand, send a noti�cation packet to the sender

when the corrupted packet is detected. This signal does not propagate to the corresponding

receiver. Snoop protocol is a typical backward EEN example.

We make some analogies to Sally Floyd's work in comparing forward and backward conges-

tion noti�cation [Flo94]:

� Forward marking will not trigger sending extra packets that subsequently are corrupted

as well. If a packet is corrupted, chances are subsequent packets are also corrupted, due

the high bit error rate of the link at that given moment.

4



� Backward marking is more responsive than forward marking. (The sender does not have

to wait for the receiver to reect this information back.)

� Since backward marking uses an extra, special packet, it can be detected by the other

routers along the path from sender. These routers may take additional action accordingly.

We prefer to use forward marking in our scheme, because the end-to-end control semantics

state its exibility and clear design, especially in minimal involvement by intermediate routers.

The receiver may also want to collect information about the links, because it will most likely

use the link to send back data and acknowledgments.

3.5 Dynamic Sizing on Link Layer or Transport Layer

We choose to perform dynamic packet sizing at the transport layer instead of at the link layer as

previously proposed [Mod99], cite steenkist. We invoke end-to-end control arguments to support

our transport later implementation.

End-to-End arguments state that functionalities of reliable transmission should be put as

close to applications as possible, because, they may have some applications that do not need

the particular functionality. This is the central motif in IP networking. Also, to gain scalability

and exibility, higher layer protocols should not rely on the lower layers for such functionality

transparently.

More precisely, even if the packets sent over the link layer are further fragmented into smaller

chunks, chances are that some of those fragments may get corrupted in transit. The transport

layer will not be able to fully reconstruct the original packet, so the retransmission responsibility

ultimately lies with the higher layer.

Moreover, the link-layer approach introduces more latency and complexity to implement in

the link hardware. However, an end-to-end adaptive scheme su�ers from delayed feedback.

4 Adaptive Packet Sizing Algorithm

Our algorithm performs adaptation at the transport layer. It is end-to-end and adaptive as

discussed above:

� Marking: Intermediate routers discover an incoming packet's corruption by the failure

of the link-level checksum. If the IP packet header is not corrupted, the router simply

forwards the packet toward the destination (after optionally marking the EEN ag in the

packet).

� EEN Signaling: The receiver host discovers the router's EEN noti�cation by the failure of

the TCP checksum or by an optional ag in the packet header. The receiver then sets the

EEN echo ag in the corresponding acknowledgment packet. This separate and explicit

ag is necessary since the ACK packet itself may experience corruption during its return.

� Sender Reaction: Upon receiving the marked ACK packet, the sender host immediately

retransmits the missing packet. The sender then reduces the TCPMSS (maximum segment

size) by an adaptive factor (multiplicative decrease, but additive decrease may also apply).

� Sender Action: When it receives ACK packets for new data, the sender opportunistically

increases the TCP MSS by a second adaptive factor (additive increase, but multiplicative

increase may also apply).

Note that the marking of EEN ags, which is proposed by prior work such as ELN [BPSK97]

and the retransmission decision of EEN-marked packets is orthogonal to the dynamic packet

sizing.

5



5 Simulation Results

5.1 Setup

We have implemented our adaptive scheme and EEN in the UCB/LBNL/VINT network simu-

lator [MF00]. All results are for 10 simulated minutes averaged for 3 runs with di�erent random

number seeds. The variance between runs is statistically insigni�cant. There is a single TCP

sender on a drop-tail access link of 10 Mbps entering a error-prone drop-tail bottleneck link of

1 Mbps. The router queues are suÆciently large that drops due to bu�er overow do not occur

unless the error rate is zero. The end-to-end propagation delay is uniformly randomized between

45 ms and 55 ms. The congested router corrupts incoming packets in both directions, with an

exponential byte probability distribution. If the corruption is within the TCP/IP header, the

router silently discards the packet. If the corruption is beyond the TCP/IP header, the router

marks the EEN ag within the TCP header and forwards the packet toward the receiver. The

receiver, then, echoes the EEN ag to the sender in the corresponding ACK. Upon receipt of the

EEN-agged ACK, the sender retransmits and takes adaptive action (multiplicative decrease)

on the size of subsequent packets. When the sender receives non-EEN-agged ACK packets from

the receiver, it takes opportunistic adaptive action (additive increase) on the size of subsequent

packets.

We compare adaptive packet sizing TCP with unmodi�ed TCP and with TCP-EEN which

only includes EEN noti�cation and not packet sizing, to determine the exact e�ects of packet

sizing.

We note that determining the exact adaptive parameters is somewhat of a black art, as with

many other such con�guration systems. The �gures presented in this section present one of

the better-behaving parameters. There can be poor con�gurations, but any adaptive scheme

performs better than non-adaptive TCP.

5.2 Packet Size

Figure 2 shows samples of the average packet size over time. We subsequently refer to MDAI

parameters by i/j, where i is the multiplicative decrease factor, and j is the additive increase

factor. In this subsection, we present results for MDAI parameters 2/1 and 8/128, at a 1 � 10�5

bit error rate, for a 30-second portion of a 100 second simulation.

When the packet size shrinks, it is due to detection of a corrupted packet. The packet

size increases (gradually or suddenly depending on the parameter), for ACKs of non-corrupted

packets. We bound the maximum and minimum packet sizes to 1500 and 128 bytes respectively,

which means that the packet size cannot grow larger or shrink smaller than the limits. These

maximum and minimum packet sizes may not be optimal{ 1500 bytes is due to the maximum

Ethernet frame size and 128 bytes is set to retain suÆcient eÆciency in terms of header overhead.

We compute average packet size by dividing the total number of bytes sent by the total

number of packet sent, in intervals of 100 ms. Timeouts cause discontinuous interruptions, since

the sender sends no packets during that time.

Note that the choice of parameters inuences the sender's behavior. A conservative param-

eter such as 2/1 results in a stable average packet size over time, while an aggressive parameter

as 8/128 results in quick changes. From our experience, conservative parameters perform better

in terms of packet loss rate and data transmission overhead. Aggressive parameters maintain a

large average packet size that approaches the behavior of non-adaptive �xed-size packet cases.

Aggressive decrease parameters result in packet sizes too small; aggressive increase parameters

result in packet sizes too large, compared to what packet size is appropriate for the error rates.

6



0

200

400

600

800

1000

1200

1400

1600

1e-07 1e-06 1e-05 0.0001 0.001

av
er

ag
e 

pa
ck

et
 s

iz
e

exponentially distributed bit-error probability (log; 1e-7 is zero-error point)

1.1/1
1.1/4

1.1/16
1.1/128

2/1
2/4

2/16
2/128

8/1
8/4

8/16
8/128

Figure 1: Average packet size for adaptive packet sizing: i/j where i is the multiplicative decrease factor; j

is the additive increase factor.

0

200

400

600

800

1000

1200

1400

1600

30 35 40 45 50 55 60

pa
ck

et
 s

iz
e

time (seconds)

adaptive packet size 2/1
adaptive packet size 8/128

Figure 2: Average packet size change over time.

7



5.3 Packet Loss Rate

Our adaptive scheme can control the packet loss rate within a range acceptable for TCP. The

PER is as low as 12 percent even under high bit error rates as 10�3 (on average 1 bit error in

every 1000 bits!).

It is known for TCP that the packet loss rate inuences the throughput negatively:

W �

r
8

3p

where W is the window size and p is the packet loss rate [FF99].

Note that this relation does not involve the bit error rate of the communication channel. By

controlling the packet loss rate, we decrease TCP's chances of falling into timeout.

We compare our scheme to Snoop [BPSK97] that performs backward error noti�cation. We

adapt the Snoop approach (backward noti�cation) to a forward one where the receiver reects

the error signal. However, instead of adjusting the packet sizes, the sender blindly retransmits

corrupted packets.

It is clear from �gure 3(b) that our scheme improves the packet loss rate compared to a

Snoop-like mechanism (TCP-EEN). We choose to compare one of the better MDAI parameters

with the various �xed-size schemes of unmodi�ed TCP and TCP-EEN. Adaptive packet sizing

with MDAI parameter 2/1 yields 12% packet loss; EEN with 1500 byte MSS yields 54% packet

loss under bit error rate as high as 10�3. Note that the packet error rates do not di�er between

EEN-enabled TCP and unmodi�ed TCP. EEN's advantage is in increasing TCP goodput as we

show later, not in reducing packet error rates.

5.4 Data Transmission Overhead

In the course of retransmitting a corrupted packet there is overhead incurred by the sender in

this duplicate transmission. By adapting to the bit error, we lower the probablilty of packet

corruption and hence, lower the probability of retransmission. We measure the overhead of

retransmission:

As shown in �gure 4, overhead of either TCP or TCP with only EEN increased dramatically

when the BER increased. This occurs because the two implementations continue to send packets

while they disregard the link condition. Our scheme adopts to di�erent BERs well and performs

better than either of the two implementations.

Adaptive MSS with MDAI parameter 2/1 consistently performs with the least overhead

(higher the number the smaller the overhead). Again, overhead with unmodi�ed TCP and

TCP-EEN do not di�er dramatically.

We note that lowering the data transmission overhead is valuable for mobile hosts that have

strict power consumption constraints. By reducing the total amount of data transmitted, such

hosts may also reduce the power consuption by the associated machine resources.

5.5 TCP Goodput

Goodput, de�ned as the number of TCP bytes received excluding redundant data received, is a

common metric to measure end performance. It is clear that our scheme does not, in of itself,

provide much improvement beyond what EEN-induced retransmissions already provide.

This is caused by fact that we merely shrink the packet size, without updating the congestion

window size to maintain a certain level of data throughput. We are working toward a proper

way of updating congestion window size without violating any TCP properties.

8



0

0.1

0.2

0.3

0.4

0.5

0.6

1e-07 1e-06 1e-05 0.0001 0.001

pr
ob

ab
ili

ty
 o

f d
ro

p

exponentially distributed bit-error probability (log; 1e-7 is zero-error point)

MSS 1500
MSS 1024

MSS 512
MSS 256
MSS 128

adaptive-MSS 2/1

(a) TCP

0

0.1

0.2

0.3

0.4

0.5

0.6

1e-07 1e-06 1e-05 0.0001 0.001

pr
ob

ab
ili

ty
 o

f d
ro

p

exponentially distributed bit-error probability (log; 1e-7 is zero-error point)

MSS 1500/EEN
MSS 1024/EEN

MSS 512/EEN
MSS 256/EEN
MSS 128/EEN

adaptive-MSS 2/1

(b) TCP-EEN

Figure 3: Packet loss rate.

9



0.4

0.5

0.6

0.7

0.8

0.9

1

1e-07 1e-06 1e-05 0.0001 0.001

re
ce

iv
ed

/s
en

t n
um

be
r 

of
 b

yt
es

exponentially distributed bit-error probability (log; 1e-7 is zero-error point)

MSS 1500
MSS 1024

MSS 512
MSS 256
MSS 128

adaptive-MSS 2/1

(a) TCP

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1e-07 1e-06 1e-05 0.0001 0.001

re
ce

iv
ed

/s
en

t n
um

be
r 

of
 b

yt
es

exponentially distributed bit-error probability (log; 1e-7 is zero-error point)

MSS 1500/EEN
MSS 1024/EEN

MSS 512/EEN
MSS 256/EEN
MSS 128/EEN

adaptive-MSS 2/1

(b) TCP-EEN

Figure 4: Data transmission overhead.

10



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1e-07 1e-06 1e-05 0.0001 0.001

ap
pl

ic
at

io
n-

de
liv

er
ed

 b
yt

es
 a

s 
fr

ac
tio

n 
of

 li
nk

 c
ap

ac
ity

exponentially distributed bit-error probability (log; 1e-7 is zero-error point)

MSS 1500
MSS 1024

MSS 512
MSS 256
MSS 128

adaptive MSS 2/1

(a) TCP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1e-07 1e-06 1e-05 0.0001 0.001

ap
pl

ic
at

io
n-

de
liv

er
ed

 b
yt

es
 a

s 
fr

ac
tio

n 
of

 li
nk

 c
ap

ac
ity

exponentially distributed bit-error probability (log; 1e-7 is zero-error point)

MSS 1500/EEN
MSS 1024/EEN

MSS 512/EEN
MSS 256/EEN
MSS 128/EEN

adaptive MSS 2/1

(b) TCP-EEN

Figure 5: Application goodput.

11



0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

30 32 34 36 38 40 42

by
te

s 
re

ce
iv

ed
 b

y 
ap

pl
ic

at
io

n 
pe

r 
10

0 
m

s

time (seconds)

adaptive MSS 2/1
MSS 1500/EEN

baseline adaptive MSS 2/1 5e-5 BER

Figure 6: Performance under BER transition.

5.6 Error Transition

It is important to evaluate the stability of our algorithm under changing error environments. It

is clear from our results above that �xed packet size methods cannot accomodate a wide range

of bit error rates.

Figure 6 shows the number of bytes received by the end application over time, sampled every

100 ms. The bit error rate starts at 10�6 in the beginning of the simulation and changes to

5 � 10�5 after 30 seconds. The BER drops back to 10�6 after 10 seconds (40 second point).

The link bandwidth is 1 Mb/s, which is 12500 bytes per 100 ms in this �gure. There are some

spikes in the �gure, greater than the link bandwidth. This is caused by the TCP protocol. With

TCP, the end application receives data in-sequence. If there is a lost packet, data delivery to

the application is delayed until the sender �lls the hole.

The intervals with zero received bytes are TCP timeouts if longer than one second. During

the timeout, the sender sends no data, after which the sender starts from slow start.

Though omitted from the �gure, unmodi�ed TCP has poor performance during the high

error duration and recovers slowly after it. It su�ers from a couple timeouts during the 10

seconds, each accounting for more than 1 second. It also takes about 2.2 seconds to recover

after the high error duration ends. TCP-EEN performs the best during the transition and

recovers the earliest. However, the goodput varies so dramatically because there are lots of

packet losts. The sender repeatedly retransmits corrupted packets and retransmits corrupted

retransmissions, because of the high packet loss rate.

Our adaptive scheme has smooth change in goodput though it recovers from the high error

duration somewhat gradually. Though we do not show it, the sender (regardless of what type it

is) su�ers a timeout as soon as the high error duration begins. This is an unavoidable artifact

of large windows during the low error duration.

12



6 Conclusion

We have shown that performing adaptive packet sizing at the end hosts provides a good frame-

work for increasing TCP performance in error-prone wireless environments. Simulations show

that adaptive packet sizing can dramatically improve the packet loss rate and the data trans-

mission overhead. Doing so is advantageous for the mobile hosts that need to conserve power

by transmitting the least amount of data necessary. Adaptive packet sizing, however, does not

show signi�cant improvements in TCP goodput seen by the receiver. We shall investigate the

validity of this result further. We also note that the space of explorable adaptive parameters

is quite large and yields quite varied results We hope to produce a usable heuristic in choosing

the parameters for MDAI and even perhaps dynamically adapt to the parameters themselves

during the course of a TCP transfer.

Deployment of any modi�cation to TCP is quite challenging due to the large installation base

of TCP/IP. However, any compelling feature added to TCP can propagate to the end hosts in a

reasonable manner due to the limited number of TCP/IP implementations in operating systems.

Existing core routers already have the capability to mark packets under congestion. It is not

diÆcult to modify routers to mark corrupted packets.

7 Future Work

The question of high bit error rate can be solved by at least two di�erent ways: one is to

retransmit a corrupted packet as soon as possible, another is reducing packet sizes and thus

increasing the probability for packets to get through safely without corruption.

We investigate the combined solution of both approaches, and observe some improvements.

However, for the �rst approach, it's far more complicated than what we present in this paper

and other papers that mention the idea. This is because of the diÆculty in decoupling the

corrupted packet processing from the congestion control mechanism. For example, consider a

case that has a packet corrupted and the immediately following packet lost by lack of router

bu�er, all happening in the same TCP congestion window. The receiver emits two di�erent

signals for each loss{ an EEN signal for the �rst, and duplicate ACKs for the second. This

prompts the sender to �ll the �rst hole (due to EEN), the packet not received correctly due to

bit error. The duplicate ACKs, however, also indicate that the �rst hole exists, because ACKs

are cumulative and not selective. The sender can only retransmit the second lost packet after a

timeout. This problem may degrade performance because of this unnecessary timeout. We do

not have a complete solution for this yet.

For the second approach, we use the MDAI parameters 2/1 for our scheme in most of

the results presented, because it outperforms the other parameters in most cases. This is

not necessary the best parameter under all network con�gurations, and we are interested in

examining how to choose parameters appropriately.

Another question about correctness is in regard to the TCP congestion window, which is

measured in bytes. By shrinking the packet sizes, we can either shrink the window to preserve

the number of packets in the window, or we can not change the window to preserve the number

of bytes. Though the de�nition of a congestion window is in terms of bytes, the intent of TCP

may dictate preserving the number of packets. This is because the routers in the network core

perform bu�er accounting in packets, not bytes, which is the original assumption for TCP.

Our goodput measurements may su�er from this dillema. We currently choose to preserve the

number of packets. Shrinking packets, then, will decrease the number of bytes to send.

13



References

[BK97] H. Balakrishnan and R. H. Katz. Explicit Loss Noti�cation and Wireless Web

Performance. In Proc. IEEE Globecom Internet Mini-conference, December 1997.

[BPSK97] H. Balakrishnan, V. N. Padmanabhan, S. Seshan, and R. H. Katz. A Comparison

of Mechanisms for Improving TCP Performance over Wireless Links. IEEE/ACM

Transactions on Networking, December 1997.

[CWKS97] B. P. Crow, I. Widjaja, J. G. Kim, and P. T. Sakai. IEEE 802.11 Wireless Local

Area Networks. IEEE Communications Magazine, September 1997.

[ES98] David A. Eckhardt and Peter Steenkiste. Improving Wireless LAN Performance via

Adaptive Local Error Control. Sixth IEEE International Conference on Network

Protocols (ICNP'98), Austin, October 1998.

[FF99] Sally Floyd and Keven Fall. Promoting the Use of End-To-End Congestion Control

in the Internet. IEEE/ACM Transactions on Networking, August 1999.

[Flo94] Sally Floyd. TCP and Explicit Congestion Noti�cation. ACM Computer Commu-

nication Review, 24(5), October 1994.

[Gil60] E.N. Gilbert. Capacity of a burst-noise channel. Bell System Tech. Journal, 39,

September 1960.

[MF00] S. McCanne and S. Floyd. UCB/LBNL/VINT Network Simulator - ns (version 2).

http://www-mash.cs.berkeley.edu/ns/ns.html, 2000.

[MMFR96] Matthew Mathis, Jamshid Mahdavi, Sally Floyd, and Allyn Romanow. TCP Se-

lective Acknowledgement Option. Internet Request for Comments (RFC 2018),

October 1996.

[Mod99] Eytan Modiano. An adaptive algorithm for optimizing the packet size used in

wireless ARQ protocols. Wireless Networks, 1999.

[Pos81] J. B. Postel. Transmission Control Protocol. Internet Request for Comments (RFC

793), September 1981.

[Ste94] W. R. Stevens. TCP/IP Illustrated, volume 1. Addison-Wesley, 1994.

[Wan99] S.Y. Wang. Decoupling Control from Data for TCP Congestion Control. Ph.D.

Thesis, Harvard University, September 1999.

14


