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ABSTRACT: We present a new theoretical framework, called
Multiconfiguration Pair-Density Functional Theory (MC-
PDFT), which combines multiconfigurational wave functions
with a generalization of density functional theory (DFT). A
multiconfigurational self-consistent-field (MCSCF) wave
function with correct spin and space symmetry is used to
compute the total electronic density, its gradient, the on-top
pair density, and the kinetic and Coulomb contributions to the
total electronic energy. We then use a functional of the total
density, its gradient, and the on-top pair density to calculate
the remaining part of the energy, which we call the on-top-
density-functional energy in contrast to the exchange-
correlation energy of Kohn−Sham DFT. Because the on-top pair density is an element of the two-particle density matrix,
this goes beyond the Hohenberg−Kohn theorem that refers only to the one-particle density. To illustrate the theory, we obtain
first approximations to the required new type of density functionals by translating conventional density functionals of the spin
densities using a simple prescription, and we perform post-SCF density functional calculations using the total density, density
gradient, and on-top pair density from the MCSCF calculations. Double counting of dynamic correlation or exchange does not
occur because the MCSCF energy is not used. The theory is illustrated by applications to the bond energies and potential energy
curves of H2, N2, F2, CaO, Cr2, and NiCl and the electronic excitation energies of Be, C, N, N+, O, O+, Sc+, Mn, Co, Mo, Ru, N2,
HCHO, C4H6, c-C5H6, and pyrazine. The method presented has a computational cost and scaling similar to MCSCF, but a
quantitative accuracy, even with the present first approximations to the new types of density functionals, that is comparable to
much more expensive multireference perturbation theory methods.

1. INTRODUCTION

In Kohn−Sham Density Functional Theory, KS-DFT,1 as
extended to spin-polarized electronic systems,2,3 the electronic
energy is expressed as a functional of the electron spin densities
(in the local-spin-density approximation, LSDA) and their
gradients (in the generalized gradient approximation, GGA), as
well as possibly as a functional of orbital-dependent quantities
such as exchange energy density or kinetic energy density. The
dependence on these quantities, as opposed to a dependence on
the full two-particle density matrix,4 makes the method
computationally simpler and more affordable than wave function
theory (WFT).5

A key concern in the present article is the treatment of
inherently multiconfigurational systems, that is, systems whose
electronic structure cannot be described to a good approximation
by only a single way of distributing the electrons in the orbitals of
a Slater determinant. Such systems are usually labeled as
“strongly correlated” systems or “multireference” systems, where
the latter reminds us that a converged treatment by most WFT
methods requires a multiconfiguration reference state or zero-
order wave function. In WFT, the special types of errors in the

energy that arise from using a single-reference treatment of an
inherently multiconfigurational system are called “static,”
“nondynamical,” “near-degeneracy,” or “left−right” correlation
energy.6−8 Examples of inherently multiconfigurational systems
include many transition metal atoms and molecules and solids
containing them, partially broken bonds, most excited states of
molecules, and some transition states.
In KS-DFT,1−3 the spin densities are represented by a single

Slater determinant, and the spin−orbitals of this determinant are
used to evaluate the kinetic energy of the noninteracting electron
system with the same density as the real system. The correction
to the kinetic energy, the exchange energy, and the correlation
energy are then represented by a functional of the spin densities.
This functional, called the exchange−correlation functional, is so
complicated it will probably never be known exactly.9 In order to
obtain correct energetics, a determinant that is not a spin
eigenfunction and has the wrong symmetry may be necessary.4
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Nevertheless, one must be careful: not all broken symmetry
solutions are permissible. Because the true density must respect,
e.g., some spatial symmetries, the exact KS theory must only lead
to solutions whose total density preserves the appropriate
symmetries of the density. Note, however, that producing a
density with the correct symmetry is generally less of a constraint
on a Slater determinant than producing a wave function with the
correct symmetry. Notice also that, in a different approach, it has
been proposed to generate true spin-density functionals based on
a size-extensive construction of self-interaction correction
orbitals.10

Moreover, even if a system is inherently multiconfigurational,
KS-DFT with the exact functional is exact, even with the single-
configuration representation of the density, but the accuracy is
typically low with existing functionals.11−13 Furthermore, it is not
always clear which of the nearly degenerate states is being
approximated, leading to the development of strategies for
interpreting broken-symmetry solutions.14−21 Therefore, one of
the unmet challenges for DFT is the proper treatment of
multireference systems and, more generally, the treatment of
nearly degenerate states by enforcing their spatial and spin
symmetries. Multiconfiguration self-consistent-field (MCSCF)
methods, such as the complete active space self-consistent field
(CASSCF)22 method, on the other hand, are able to treat near-
degeneracies with no ambiguity about which state is being
approximated, but they do not include dynamic correlation
energy, which is essential for a quantitative treatment of chemical
properties such as bond energies and electronic excitation
energies, nor do they include core−valence correlation, which
can also be important. Both of these effects can be added by a
post-SCF method, for example, multireference perturbation
theory [such as complete-active-space second-order perturbation
theory (CASPT2)23] or multireference configuration interaction
(MRCI)24 methods, using the MCSCF wave function as a
reference, but these methods are limited in their applicability,
because of high computational cost, which rises steeply as a
function of the increasing size of the system (unfavorable scaling
with system size). Modern extensions of these methods allow the
use of larger active spaces with the formulation of restricted
active space (RAS),25 generalized active space (GAS), and
SplitGAS wave functions26−28 and with the occupation-
restricted-multiple-active-space (ORMAS) SCF method.29

However, the applicability of methods that add approximations
to the full dynamic correlation energy based on these types of
reference functions (by multireference perturbation theory,
multireference configuration interaction, or multireference
coupled cluster theory) is still limited to small- to middle-sized
systems. For large systems in which both static and dynamic
correlation energy are crucial, a method that allows a description
of both types of correlation with affordable computational costs
is needed.
Several attempts to combine multiconfigurational WFT with

DFT-basedmethods have been proposed, either based on adding
some amount of density functional correlation to a multi-
configurational wave function calculation30−73 or adding some
amount of wave function correlation to a density functional
calculation. The present paper is concerned with the former. The
general goal has been to describe static correlation by the
multiconfigurational WFT approach, while dynamic correlation
is included by DFT. However, two main problems arise in such
treatments. The first problem is the double counting of dynamic
electron correlation, since any attempt to include static
correlation energy by WFT inevitably involves including some

dynamic correlation energy. One can try to eliminate that portion
of the dynamic correlation from the exchange-correlation
functional, but it is very hard to do this in a systematic and
accurate way.43 The second problem involves the choice of input
quantities to be used in the density functionals, since existing
functionals are not compatible with spin densities of multi-
configurational wave functions or generally with any spin- and
space-adapted wave function for which the total spin, S, is smaller
than half of the number of the singly occupied orbitals (including
single-configuration, multideterminantal wave functions). This
has been called the “symmetry dilemma” in the context of KS-
DFT,74 and an analogous symmetry dilemma is well-known in
Hartree−Fock theory.75 The situations are different in that,
despite having the wrong symmetry for the Slater determinant,
KS-DFT would yield the exactly correct one-particle density if
one could use the unknown exact density functional, whereas
Hartree−Fock theory does not yield the correct one-particle
density when applied to a system with two or more interacting
electrons.
In the present article, we propose a way to circumvent both of

these difficulties. To eliminate double counting of correlation
energy, we calculate only the Coulomb energy and a multi-
configurational portion of the kinetic energy from the MCSCF
wave function, with the rest of the energy calculated by a density
functional. To overcome the symmetry dilemma, following a
suggestion of Becke et al.76 and earlier work by Moscardo ́ and
San-Fabiań,77 we express the density functional in terms of the
total density ρ and on-top pair density Π, which is defined by78

∫ σ σ σΠ = Ψ | = =
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⎝
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x x xr r r r( )
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where σi is a spin variable, and xi = (ri,σi) is a space-spin variable,
rather than in terms of the total density and the difference
between the spin-up and spin-down densities. The density
functional of the new theory will be called the “on-top density
functional”, to distinguish it from the exchange-correlation
functional of KS-DFT; the new theory is called “Multi-
configuration Pair-Density Functional Theory” (MC-PDFT).
To illustrate the theory, we employ multiconfigurational wave
functions of CASSCF-type and first approximations to the
required new type of density functionals.
We note that another very promising approach to the

combination of wave function theory with DFT is provided by
range separation.38,48−50,62 Range separation is a powerful
method for improving DFT, and it has been applied in a variety
of ways.79−86 There is no reason why the present approach could
not be combined with range separation in later work, but it is
beyond our scope to discuss it further in the present article.
We emphasize that the idea of using the total density and on-

top density in DFT is not new. Many others have worked on it,
and citations are given at appropriate places in the development
below. What is new in this work is that, unlike previous “additive”
efforts, where a mixture of the form E(WF) + ΔE(DFT) was
used, we propose evaluating only the classical Coulomb energy
and an approximation to the kinetic energy from the reference
multiconfiguration “wave function” and evaluating all the rest of
the energy from a density functional, called an on-top density
functional, in terms of the total density ρ and on-top pair density
Π, and we suggest a simple but general way to develop this kind
of density functional from Kohn−Sham exchange-correlation
functionals that depend only on up-spin and down-spin densities
and their gradients. This eliminates all double counting of
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correlation energy, and it provides a framework in which better
on-top density functionals can be developed. To our knowledge,
this has not been attempted previously. At this point, we should
also mention some recent work by Garza et al., who proposed to
describe electronic correlation without double counting via a
combination of spin-projected Hartree−Fock and density
functional theories.87,88

2. THEORY
2.1. MC-PDFT Equations. We assume the Born−Oppen-

heimer approximation, and we consider the fixed-nucleus energy
E. For a multiconfiguration electronic wave function and a spin-
free, nonrelativistic Hamiltonian, the WFT energy, obtained as
the expectation value of the Hamiltonian operator, is given by

∑ ∑= + +E V h D g d
1
2pq

pq pq
pqrs

pqrs pqrsnn
(2)

where Vnn is the sum of the nucleus−nucleus repulsions, the
indices p, q, r, and s refer to generic orbitals, hpq and gpqrs are,
respectively, the one-electron and two-electron integrals, andDpq
and dpqrs are, respectively, the one- and two-body electronic
density matrices.
In the CASSCFmethod, a complete CI expansion in space and

spin symmetry-adapted CSFs is generated by all possible
excitations within an active space. One set of orbitals, called
the inactive orbitals, is doubly occupied in all configurations. This
allows the simplification of the energy expression to
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where indices i and j denote inactive orbitals, and v, w, x, and y
denote active orbitals.
In contrast to the WFT expression, the new MC-PDFT

method calculates the energy by

ρ ρ= + ⟨Ψ| + |Ψ⟩ + + ΠE V T V V E[ ] [ , ]nn ne C ot (4)

where |Ψ⟩ is the multiconfigurational MC wave function, T is the
kinetic energy operator, Vne is the electron−nuclear interaction,
and VC[ρ] and Eot[ρ,Π] are the electronic Coulomb energy and
the on-top electronic density functional, respectively. This
energy may be written in terms of the one-electron density
matrix and the on-top density functional as

∑ ∑ ρ= + + + ΠE V h D g D D E
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When we recognize that some orbitals are doubly occupied in all
CSFs, this becomes

∑ ∑ ∑

∑ ∑ ρ

= + + +

+ + + Π

ν
ν ν

ν
ν ν

ν
ν ν

E V h g h D

g D g D D E

2 2

2
1
2

[ , ]

i
ij

ij
iijj

w
w w

i w
ii w w

wxy
wxy w xy

nn

ot

(6)

With respect to the WFT energy expression, the two-electron
contribution has been replaced by a Coulomb term involving the
product of one-particle density matrices and an on-top density
functional term.
The generalization to include scalar relativistic effects by using

the Douglas−Kroll Hamiltonian89,90 is straightforward; it simply
involves changing the definition of the one-electron terms.91

2.2. Pair-Density Functionals. Next, we discuss the choice
of on-top density functional. If one approximates an exchange-
correlation functional using only local densities and their
gradients, an exchange-correlation functional for a spin-polarized
system can be written as a functional of the total density ρ, the
spin magnetization density m (which may also be called the net
spin density), and the magnitudes, ρ′ ≡ |∇ρ| and m′ ≡ |∇m|, of
their gradients, where

ρ ρ ρ= +α βr r r( ) ( ) ( ) (7)

and

ρ ρ= −α βm r r r( ) ( ) ( ) (8)

ρα is the density of majority-spin electrons, and ρβ is the density
of minority-spin electrons at a point r. As previously
described,74,76 the exchange-correlation functionals defined in
terms of the net spin density give reasonable energies with
broken-symmetry Slater determinants in spin-polarized Kohn−
Sham theory, but the net spin densities are not appropriate
variables for density functionals if the correct spin symmetry is
imposed.
Moscardo and San-Fabiań77 discussed using the on-top

density of a multiconfiguration wave function to motivate
functional forms for including electron correlation in density
functionals of the spin densities. Becke et al.76 discussed changing
the independent variables of density functional approximations
from ρ andm to ρ andΠ. For a single-determinant wave function,
m can be related to Π and ρ by the relation76

ρ= −m Rr r r( ) ( )[1 ( )]1/2 (9)

where

ρ
= Π

R r
r

r
( )

4 ( )
( )2

(10)

with R≤ 1 at all points in space. However, for multiconfiguration
wave functions, eq 9 is not true, and R can be larger than unity.
Later, Perdew et al.74,92 discussed the use of the ρ andΠ variables
for interpreting the symmetry dilemma, and Miehlich et al.,31

McDouall,40 and Gusarov et al.42 proposed using functionals of
the density and the pair density to recover the difference between
the full correlation energy and the MCSCF correlation energy.
Tsuchimmochi et al.93 proposed using a density functional
defined in terms of ρ and Π in conjunction with another WFT
method, namely constrained-pairing mean-field theory. Here we
use ρ and Π to define the on-top density functional for MC-
PDFT.
Ultimately, we must develop new on-top density functionals

specifically for use with MC-PDFT. As a first step, we simply
“translate” previously developed exchange-correlation func-
tionals of spin densities. In particular, given Exc(ρ,m,ρ′,m′), we
write the following translation prescription:
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where we have simplified the equation by just writing R for the
functional R[ρ(r),Π(r)], defined in eq 10. To summarize, eq 11
is our postulated on-top density functional as obtained by a
“translation” protocol from a GGA; it is not derived from eqs 9
and 10; rather, its form is motivated in part by their form.

3. TEST CASES
MC-PDFT was tested for a variety of cases, including some for
which KS-DFT fails or performs poorly. There are four types of
tests: (1) multiplet splittings for selected main group atoms (Be,
C, N, N+, O, O+) and transition metals (Co, Mn, Mo, Ru, and
Sc+); (2) atomic singlet−singlet excitation energy of Be and
vertical singlet−singlet excitation energies for N2, formaldehyde,
butadiene, cyclopentadiene, and pyrazine; and (3, 4) equilibrium
dissociation energies (De) and potential energy curves of the H2,
N2, F2, CaO, Cr2, and NiCl diatomic molecules.
We do not include spin−orbit coupling in any of the

calculations. For atomic excitation energies, we removed spin−
orbit coupling from the experimental values in the usual way
(weighted average of the multiplet). However, for the molecules,
we ignore this step since the necessary data are not available for
all cases, but this correction should be small for the molecules,
because they contain no atom heavier than Ni.
Calculations on singlet−singlet excitation energies were

performed at fixed geometries obtained with the M06-L94

exchange-correlation functional and the 6-311+G(d,p)95−97

basis set, except for cyclopentadiene for which we used the 6-
31+G(2d,p)95,97−99 basis set.
Calculations of bond energies were performed at consistently

optimized geometries. For CaO and NiCl, as for the other
molecules, the bond energy is defined as the energy of the neutral
atoms in their ground states minus the energy of the molecule at
its ground-state optimized geometry. However, note that the
separated-atom ground state of CaO is a triplet (Ca 1S plus O
3P); therefore, Table 4 is based on this triplet, whereas Figure 5
shows the singlet potential curve (CaO 1Σ+). Similarly the
separated-atom limit for NiCl is triplet Ni (3F) + doublet Cl (2P),
whereas Figure 6 shows the doublet potential curve (NiCl 2Π).

4. COMPUTATIONAL DETAILS
In addition to MC-PDFT results, we report results obtained via
CASSCF, CASPT2, and KS-DFT for comparison. The MC-
PDFT method was implemented in a locally modified version of
the Molcas program package.100 All MC-PDFT, CASSCF, and
CASPT2 calculations were performed usingMolcas. All KS-DFT
calculations were performed with the Gaussian 09 program.101

Basis Sets. We employed basis sets of multiply polarized
triple-ζ and quadruple-ζ quality. In the article itself, we report the
triple-ζ results, while the quadruple-ζ ones are reported in the
Supporting Information (SI). For the various calculations
(CASSCF, CASPT2, MC-PDFT, and KS-DFT) on the same
system, we use the same basis set.
For the calculations presented in the article itself, we use the

following basis sets. For the multiplicity-changing excitation
energies of the main-group atoms and diatomic molecules, CaO,
and the singlet-to-singlet excitation energies except for N2 and
butadiene, we used the cc-pVTZ102 basis set. For excitation

energies of N2 and butadiene, we used aug-cc-pVTZ.
103 The Cr2

calculations employ the cc-pVTZ-DK104 basis set. For the NiCl
and transition-metal atom calculations, we used the ANO-RCC-
VTZP105,106 basis set. For Cr2, NiCl, and the transition-metal
atoms, the second-order Douglas−Kroll−Hess Hamiltonian was
used;90 the other calculations are nonrelativistic.

CASSCF. For each system, the minimal-size active space that
gives qualitatively correct results was employed. The active
spaces are specified in footnotes to the tables; the same active
spaces were used for the figures. In some cases, results for other
active spaces are reported in the SI.

CASPT2. For CASPT2, an imaginary shift is introduced to
remove problems with intruder states (states giving small
denominators in second-order perturbation, and hence having
a spuriously large effect on the energy, even when they are weakly
coupled to the ground state), and an ionization-potential−
electron-affinity (IPEA) shift is introduced as an empirical
adjustment to the energies of the active orbitals to improve
agreement with the experiment. We employ the standard
imaginary shift107 of 5.44 eV and the Molcas default IPEA
shift108 of 6.80 eV. [For Cr2, one can obtain better CASPT2
results with a molecule-specific IPEA109 of 12.25 eV, but we do
not consider such molecule-specific empirical adjustments in this
article.]

KS-DFT.We use collinear spin orbitals, and we consider three
exchange-correlation functionals: one of which is a local-spin-
density approximation (LSDA), and the other two of which are
generalized gradient approximations (GGAs). The LSDA
depends only on ρ and m, not on ρ′; it employs the exchange
potential of Gaśpaŕ110 (equal to two-thirds of that used by
Slater111 and the same as used later by Kohn and Sham1), and
correlation potential No. 3 of Vosko et al.112 This is labeled
GVWN3. The GGAs depend on ρ, m, ρ′, and m′; the ones we
employ are the popular BLYP112,113 and PBE114 functionals.
In KS-DFT, with approximate exchange-correlation func-

tionals, the calculated energy is not independent of theMS value
of the Slater determinant (even though it should be). Therefore,
one does the calculation with MS equal to S, where S is the total
electronic spin quantum number of the target state. We carried
out KS-DFT calculations in two ways,16 which we call variational
(Var) and weighted-average broken symmetry (WABS). Both
types of calculations are based on the stable, broken-symmetry
solutions of the Kohn−Sham equations in which the only
symmetry enforced is the total electron spin component MS.
Thus, when SCF convergence is attained, we do a stability
check.115,116 If the solution is unstable, we break the symmetry
and continue optimizing the orbitals until a stable solution is
attained. In the Var method, we take this as the energy of the
state; this would be the correct procedure if one had the
(unknown and probably unknowable) exact Kohn−Sham
functional. In the WABS method,14,15,17−21 if MS equals one-
half the number of singly occupied orbitals (such a state is called a
maximal-MS state), the result is the same as in the Var method.
However, if MS is smaller, we also perform a calculation on the
state with maximal MS and use the weighted average formula of
Yamaguchi and co-workers14,15 to calculate the energy of the
pure spin state.
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The singlet-to-singlet excitation energies considered here all
correspond to an excitation that changes the spatial symmetry.
We enforce the spatial symmetry in these cases so that we can
calculate the KS-DFT excitation energies by the difference of two
SCF calculations, without needing to use time-dependent
response methods.
MC-PDFT. The CASSCF wave functions generated by the

Molcas program are computed for a specified total spin and
spinprojection, but both the density and the on-top pair density
are singlet-spin quantities and are therefore Independent of spin-
projection and, hence, no ambiguity about whichMS value to use
and no spurious dependence on MS.

91 To illustrate MC-PDFT,
we implement it in this article as follows:

(a) calculate a CASSCF wave function self-consistently;
(b) calculate ρ, Π, and ρ′ from the CASSCF wave function;
(c) calculate the on-top density functional using eq 11; and
(d) calculate the energy (post-SCF) by eq 6, which involves an

integration over all values of r of the translated density
functionals obtained by eq 11.

The translated on-top density functionals are called tVWN3,
tBLYP, and tPBE (the prefix “t” is used to denote “translated”).

5. RESULTS
Tables 1 and 2 give multiplicity-changing excitation energies of
atoms. Table 3 gives singlet-to-singlet excitation energies, and
Table 4 gives equilibrium bond dissociation energies. All mean
errors in tables are computed from unrounded data, not from the
rounded data in the tables. Figures 1−6 show potential energy
curves for diatomic molecules that compare the CASSCF,
CASPT2, tPBE, PBE variational, and PBE WABS results. To

increase clarity, we left the tBLYP, tGVWN3, BLYP variational,
BLYP WABS, GVWN3 variational, and GVWNM3 WABS
results out of these figures, but additional figures containing these
results are provided in the SI. Figures 7 and 8 show the value of
the pair density, total density, and ratio R along the bond axis of
H2 and N2.

6. DISCUSSION

For main-group atomic multiplicity-changing excitation energies,
given in Table 1, CASSCF has a mean absolute error (MAE) of
0.3 eV. Variational and WABS KS-DFT calculations with GGAs
have much larger errors, with MAEs near 0.7 eV and 1.2 eV,
respectively; variational GVWN3 calculations also have a large
error (0.9 eV), butWABSGVWN3 does quite well, with anMAE
of only 0.12 eV. The MC-PDFT calculations with tBLYP, tPBE,
and tGVWN3 all have an MAE of 0.5 eV, much better than the
average (0.8 eV) of the six KS-DFT results. The SI shows that the
transformed functional performance is approximately independ-
ent of basis set size and almost independent of active space size,
although the MAE can be reduced to 0.3 eV with other active
space choices; however, in the rest of the main article, we
concentrate on what is achieved with the smallest reasonable
complete active space choices and triple-ζ basis sets, rather than
search for the lowest possible errors. We conclude that, on
average, the translated functionals perform better (0.5 eV) than
their KS-DFT counterparts (0.8 eV). The MC-PDFT calcu-
lations perform slightly worse than CASSCF and CASPT2.
Table 2 shows that, for transition-metal atoms, the excitation

energies obtained by the MC-PDFT calculations with the
translated functionals are better (MAE: 0.2 eV) than CASSCF

Table 1. Main Group Atomic Excitation Energies (eV)

Excitation Energy (eV)

BLYP PBE GVWN3

transition ASa CASSCF CASPT2 tBLYP tPBE tGVWN3 Var WABS Var WABS Var WABS Exp

Be 1S →3P 2, 4 2.9 2.8 2.6 2.6 2.6 2.5 2.5 2.3 2.3 2.4 2.4 2.73b

C 3P→1D 4, 4 1.6 1.3 1.0 1.1 1.0 0.3 0.7 0.4 0.8 0.6 1.3 1.26c

N+ 3P→1D 4, 4 2.2 1.9 1.5 1.5 1.4 0.6 1.1 0.6 1.2 0.9 1.9 1.89c

N 4S→2D 5, 4 2.8 2.5 1.8 1.9 1.8 0.9 1.4 1.1 1.6 1.5 2.3 2.38c

O+ 4S→2D 5, 4 3.7 3.4 2.4 2.5 2.5 1.4 2.1 1.5 2.3 2.1 3.2 3.32d

O 3P→1D 6, 4 2.2 2.0 1.2 1.3 1.2 0.7 1.3 0.7 1.4 0.9 1.8 1.96c

mean absolute error, MAEe 0.3 0.07 0.5 0.5 0.5 1.2 0.8 1.2 0.7 0.9 0.12
aThe active space (AS) choices are given for each atom with the notation n, m, where n is the number of active electrons, and m is the number of
active orbitals. In this table, the active spaces include the valence 2s and 2p orbitals. bData taken from ref 123. cData taken from ref 124. dData taken
from ref 125. eMean unsigned deviation from the experimental value.

Table 2. Transition Metal Atomic Excitation Energies

Atomic Excitation Energy (eV)

BLYP PBE GVWN3

transition ASa CASSCF CASPT2 tBLYP tPBE tGVWN3 Var WABS Var WABS Var WABS Exp

Sc+ 3D→1D 2, 6 0.4 0.3 0.5 0.5 0.4 0.2 0.3 0.2 0.5 0.2 0.5 0.30b

Mn 6S→8P 7, 9 2.2 2.3 2.4 2.2 2.4 2.9 2.9 2.3 2.3 2.6 2.6 2.15b

Co 4F→2F 9, 6 2.3 0.4 1.0 0.9 0.8 0.7 1.0 0.7 1.0 0.3 0.5 0.89b

Mo 7S →5S 6, 6 1.7 1.7 1.8 2.0 1.9 0.9 1.1 1.3 1.6 1.4 1.6 1.34c

Ru 5F→3F 8, 6 1.0 1.0 0.9 1.1 0.9 0.6 0.8 0.7 0.9 0.7 0.9 0.78d

mean absolute error, MAEe 0.4 0.3 0.2 0.2 0.2 0.3 0.2 0.11 0.2 0.2 0.3
aThe active space choices are given for each atom with the notation n, m, where n is the number of active electrons and m is the number of active
orbitals. For Sc+ and Co, the active space consists of the 3d and 4s orbitals. For Mn, the active space includes the 3d, 4s, and 4p orbitals. For Mo and
Ru, the active space includes the 4d and 5s orbitals. bData taken from ref 126. cData taken from ref 127. dData taken from ref 128. eMean unsigned
deviation from the experimental value.
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(0.4 eV) or CASPT2 (0.3 eV) and comparable to KS-DFT
(mean MAE of 0.2 eV when averaged over either the three
variational sets of the threeWABS sets of results). Averaging over
the main group and transition-metal results, one finds that MC-
PDFT is already (that is, even with these first attempts at on-top
functionals) better, on average, than CASSCF or KS-DFT, but
not systematically better than the much more expensive and less
favorably scaling CASPT2.
Inspection of Table 3 shows that MC-PDFT calculations with

the translated functionals succeed in performing much better
(average MAE = 0.5 eV) than CASSCF (MAE = 1.4 eV) in
predicting vertical excitation energies. MC-PDFT performs
better than KS-DFT for butadiene, pyrazine, and formaldehyde,
but not for the other four cases. MC-PDFT is more accurate than
CASPT2 for butadiene and has the same accuracy for
formaldehyde, but on average is less accurate than the more
expensive method. The relatively good results for butadiene are
especially interesting, since this molecule is a case in which both
the ground and excited states have substantial double excitation
character.117

Figures 1−6 show that MC-PDFT fulfills one of its major
goals, namely, the calculation of reasonable potential energy
curves for bond breaking. The results for Cr2 in Figure 5 are
particularly striking, because the CASSCF curve does not even
have a minimum, and the CASPT2 curve has a minimum energy
at a qualitatively wrong geometry. The tPBE curve has a
minimum at a reasonable geometry. By changing the IPEA shift
in CASPT2 the curve has much better agreement with the
experimental result,109 but here we prefer to compare with only
the standard CASPT2 method.
For bond energies of the diatomic molecules considered in

Table 4, the translated GGAs, withMAE values of 0.3 and 0.4 eV,
perform better than KS-DFT for the BLYP and PBE functionals
(MAE = 0.5−0.6 eV), and the translated GVWN3 performs
better (MAE = 0.9 eV) than GVWN3 (MAE = 1.4−1.5 eV).MC-
PDFT also improves upon CASSCF (MAE = 0.8 eV). The
results for bond energies are especially encouraging, because of
the diversity of cases involved: a closed-shell single bond with no
static correlation error (H2), a closed-shell single bond with large
static correlation error if treated by Hartree−Fock (F2), a triple
bond (N2), singlet and doublet polar molecules involving metal
atoms (CaO and NiCl), and the notoriously difficult Cr2
molecule.

One of the main reasons why we developed MC-PDFT is to
avoid the ambiguity and resulting inaccuracy of using broken-
symmetry solutions for inherently multiconfigurations systems.
Molecules with partially broken bonds (that is, highly stretched
bonds) are the most commonly encountered class of such
multireference systems. In order to study how well the present
method performs for such cases, the figures show magnified
views of the intermediate-bond-distance regions of the potential
as panel (b) in five of the first six figures. The results are generally
encouraging. See especially Figures 2b, 3b, 4b, and 6b, where the
MC-PDFT results with tPBE functionals follow the CASPT2
curves better than either the Var KS-DFT results or the WABS
KS-DFT results.
The good results obtained for N2 and Cr2 dissociation are

especially noteworthy, because these are both difficult cases.
They both involve dissociation to highly open-shell atoms with
three or more unpaired electrons. While KS-DFT can properly
describe N2 at equilibrium, because it is a closed-shell singlet, KS-
DFT can only obtain reasonable results for Cr2 at equilibrium by
treating it as two antiferromagnetically coupled high-spin atoms
in a broken-symmetry solution. The ability of the new theory to
treat these most-difficult cases shows that the on-top pair density
is successful, not just for breaking a single bond in systems such as
H2 and F2, but also in providing a qualitatively correct description
for more-complicated bond-breaking processes requiring the
spin recoupling of more than one electron pair.
For both H2 and N2, the success of the on-top pair density in

describing molecular dissociations is shown in Figures 7 and 8. In
the limit of a closed-shell singlet at equilibrium, R(z) = 1. Figures
7 and 8 show the densities, on-top pair densities, and the ratio R
of eq 11, each as functions of location z along the internuclear
axis for dissociating H2 and N2. In the limit of infinite separation
for H2 in Figure 7b, R(z) = 0, because the value of the on-top pair
density is zero (corresponding to one electron on each center).
In Figure 8b, we show how the on-top pair density behaves for an
intermediate distance along the potential energy curve.
Just as CASPT2 and other WFT methods for including

dynamical correlation energy are employed as post-SCF steps,
the present version of MC-PDFT is employed as a post-SCF
procedure. If the density functional were to be dependent only
on the one-particle density matrix, the equations for the self-
consistent CASSCF wave function (in which the wave function is
optimized to minimize the MC-PDFT energy rather than the
expectation value of the Hamiltonian) would be an indetermi-

Table 3. Singlet-to-Singlet Atomic and Vertical Electronic Excitation Energies (eV)

Excitation Energy (eV)

system ASa CASSCF CASPT2 tBLYP tPBE tGVWN3 BLYP PBE GVWN3 Exp

Be 1S→1P (s → p) 2, 4 6.2 5.7 4.2 4.4 4.3 5.0 5.0 5.0 5.28b

N2
1Σg

+→1Πg (σg → πg) 6, 6 11.9 9.4 8.6 8.6 8.6 9.1 9.1 9.1 9.31c

N2
1Σg

+→1Σu
− (πu →πg) 6, 6 10.9 9.8 9.5 9.6 9.6 9.6 9.7 9.7 9.92c

s-trans-1,3-butadiene 1Ag to
1Bu (π→π*) 4, 4 7.6 6.8 5.6 5.7 5.9 5.3 5.5 5.5 5.92d

pyrazine 1Ag to
1B3u (n→π*) 10, 10 5.3 4.1 3.9 3.9 3.8 3.6 3.6 3.5 4.20e

cyclopentadiene 1A1 to
1B2 (π→π*) 4, 4 7.3 5.5 4.1 4.1 4.1 4.9 5.0 5.0 5.26f,g

formaldehyde 1A1 to
1A2 (I→π*) 8, 6 4.4 4.0 4.0 4.0 4.0 4.0 3.9 3.8 4.00h

mean absolute error, MAEi 1.4 0.3 0.6 0.5 0.5 0.3 0.3 0.3
aFor Be and N2, the active space (AS) in each case is the full valence active space. For s-trans-1,3-butadiene, cyclopentadiene, and pyrazine, the AS
includes the π electrons, π bonding and antibonding orbitals, and additional nitrogen lone pairs/orbitals for pyrazine. For formaldehyde, the AS
includes all the electrons, lone pair orbitals, and bonding and antibonding orbitals of the carbonyl. bData taken from ref 129. cData taken from ref
130. dData taken from ref 131. eData taken from ref 132. fData taken from ref 133. gData taken from ref 134. hData taken from ref 135. For N2, an
equilibrium geometry of 1.098 Å was used.4 All other geometries were optimized according to specifications in Table S5 in the SI with M06-L.3
iMean unsigned deviation from the experimental value.
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nate system of equations, because a one-electron operator does
not couple configurations differing by two orbitals, and there
would be no unique solution. However, our on-top density
functional is also dependent on part of the two-particle density
matrix; nevertheless, we include the energy contribution of the
on-top density functional as a post-SCF step.
Another topic for future work would be to develop

foundational theorems, if possible, about the existence and
uniqueness of an exact on-top density functional for use with
MC-PDFT. However, we note that the immediate goal of the
present new type of DFT is not to extend Kohn−Sham theory to
classes of systems where the density does not belong to the
representability class for which Kohn−Sham theory is applicable
and exact,118−122 but rather to develop a practical framework for
obtaining less-ambiguous and/or more-accurate densities and
energies for systems where Kohn−Sham theory with approx-
imate exchange-correlation functionals does not perform well.

7. CONCLUDING REMARKS
We have presented a theory called Multiconfiguration Pair-
Density Functional Theory (MC-PDFT). The kinetic and
Coulomb contributions to the total electronic energy are
computed from an optimized MCSCF wave function, and the
exchange and correlation contributions are computed from a
functional of the total density and the on-top pair density; this
functional is called the “on-top density functional”. Just as for
exchange-correlation functionals in Kohn−Sham density func-
tional theory (DFT), the on-top density functional can also be a
function of functionals of the density. For example, it could be
dependent on the density gradient or the orbital-dependent
kinetic energy density. For a first set of approximate on-top
density functionals, we use functionals of the density, the density
gradient, and the on-top density that we obtain by translating
Kohn−Sham exchange-correlation functionals according to a
simple prescription. Also, we would like to eventually include the
dependence on the pair-density gradient and the kinetic energy
density.
The presented theory has been used in combination with the

tBLYP, tPBE, and tGVWN3 on-top density functionals
generated from the BLYP, PBE, and GVWN3 exchange-
correlation functionals. Results with the translated functionals

Figure 1. Potential energy curves for H2: (a) at equilibrium, the Var and
WABS curves for each functional are the same, but they are different at
intermediate distances (the CASPT2 minimum is just below the WABS
PBE minimum, and the entire range of distances is shown); (b)
magnification of the region of 1−3 Å (the WABS curves are lower in
energy than the Var counterparts at intermediate distances).

Figure 2. Potential energy curves for N2: (a) at equilibrium, the Var and
WABS curves for each functional are the same, but they are different at
intermediate distances (the entire range of distances is shown); (b)
magnification of the region of 1.3−2.8 Å.
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have been generated for a variety of systems and compared with
the corresponding results at the CASSCF, CASPT2, and Kohn−
Sham DFT levels. This method is promising. To provide a better
overview of the results, Table 5 provides a survey of the average
mean absolute error (MAE) values given in Tables 1−4. We see
that the first results with the new theory, using simply translated
GGA functionals, reduce the error in CASSCF by an average of
almost a factor of 2 and are ∼20% more accurate than Kohn−
Sham theory, based on the same GGAs. This theory even
produces results whose quality is similar to that of themuchmore
expensive CASPT2 method for two of the four databases. The
basis set dependence is smaller than for CASPT2, and the
troublesome problem of intruder states does not arise. In the
future, we plan to develop new functionals of the total density
and on-top pair density, which will be optimized for use with
multiconfigurational wave functions. We will also employ
RASSCF, GASSCF, and SplitGAS wave functions to be able to
deal with larger active spaces and CI problems than those that are
currently affordable with CASSCF.

Figure 3. Potential energy curves for F2: (a) at equilibrium, the Var and
WABS curves for each functional are the same, but they are different at
intermediate distances (the entire range of distances is shown); (b)
magnification of the region of 1.6−2.8 Å.

Figure 4. Potential energy curves for the 1Σ+ state of CaO: (a) the
CASPT2 and tPBE curves are very close at equilibrium and, therefore,
are hard to distinguish in the figure (the entire range of distances is
shown); (b) magnification of the region of 2.5−5.5 Å.

Figure 5. Potential energy curves for Cr2. The experimental curve
(Casey and Leopold, ref 93) is shown for experimentally measurable
distances and is shifted to a common asymptote by the experimentally
determined dissociation energy.
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The advantages of the new theory may be summarized as
follows:

(i) It can correctly describe inherently multiconfigurational

systems, including ground states and singly and doubly

excited states or any states that are qualitatively well-

described by the chosen MCSCF wave function.

Figure 6. Potential energy curves for the 2Π state of NiCl: (a) at
equilibrium, the electronic structure is ionic, with Ni+ having a 3d9

configuration, and at dissociation, Ni is in its 3d84s2 ground state (the
entire range of distances is shown); (b) magnification of the region of
2.5−5.5 Å.

Table 4. Dissociation Energies of Diatomic Molecules

Dissociation Energy (eV)

BLYP PBE GVWN3

dimer ASa CASSCF CASPT2 tBLYP tPBE tGVWN3 Var WABS Var WABS Var WABS Exp

H2 2, 2 4.1 4.6 4.9 4.7 5.0 4.8 4.8b 4.5 4.5b 4.9 4.9b 4.75c

N2 6, 6 8.8 9.4 9.4 9.8 11.1 10.4 10.4b 10.6 10.6b 11.9 11.9b 9.74d

F2 2, 2 0.9 1.5 1.9 2.1 2.8 2.2 2.2b 2.4 2.4b 3.5 3.5b 1.66e

Cr2 12, 12 0f 1.0 0.5 0.6 2.3 2.1 2.5 1.6 2.1 3.5 3.7 1.47g

CaO 8, 8 3.9 3.5 4.0 4.2 5.2 4.7 4.7h 5.0 5.0h 6.1 6.1h 4.22i

NiCl 11, 12 2.7 3.9 3.5 4.1 4.8 3.4 3.7 3.7 3.7 4.5 4.6 3.97j,k

mean absolute error, MAEl 0.8 0.3 0.4 0.3 0.9 0.5 0.5 0.5 0.6 1.4 1.5

aThe active space (AS) choice for H2 and N2 includes the bonding electrons and bonding/antibonding orbitals. For F2, the active space includes one
2p electron and orbital on each atom contributing to the 2P configuration of the neutral atom. For Cr2, the active space includes the d and 4s
electrons and orbitals on each atom. The AS for CaO includes the 4s electrons on Ca and the 2s and 2p electrons on O. In addition to these orbitals,
there is a correlating 4p shell on Ca. For NiCl, the active space includes the 4s and 3d electrons on Ni and one 2p electron and orbital on Cl that
contributes to the 2P configuration of the neutral atom. bThe WABS dissociation energy is the same as variational one, because this case has no spin
contamination at the equilibrium geometry. cData taken from ref 136. dData taken from ref 137. eData taken from ref 138. fThe potential curve has
no minimum in this case; see Figure 5. gData taken from ref 139. hThe WABS dissociation energy is the same as the variational dissociation energy in
this case, because there is negligible spin contamination in the ground-state triplet asymptote that is used to compute the dissociation energy from
the singlet equilibrium ground state, whereas the Var and WABS curves in Figure 4 differ, because they are relative to the singlet asymptote. iData
taken from ref 140. jData taken from ref 141. kData taken from ref 142. lMean unsigned deviation from the experimental value.

Figure 7. Plots of the pair density, total density, and the ratio for H2
(quantities denoted as f(z)) along the bond axis (in the plot, 0 Å is the
middle of the bond between the atoms): (a) at equilibrium (only one
atom of the dimer is represented in the plot, centered at ∼0.35 Å) and
(b) at dissociation.
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(ii) Because all states have the correct spin and spatial
symmetry, there are no ambiguities about which state is
being approximated.

(iii) There is no spurious dependence on the spin projection
quantum number.

(iv) Its computational cost scales with system size in the same
way as CASSCF (the cost depends on the choice of active
space), but produces results similar to (and sometimes
better than) CASPT2 quality.

(v) Unlike prior attempts to combine CASSCF and DFT,
which combine a portion of the energy calculated by wave
function methods with another portion calculated from a
density functional, the present method avoids any

possibility of double-counting of the electron correlation
energy.

(vi) The newmethod has a moderate dependence on the active
space choice, or at least a smaller dependence than
CASPT2. This is a promising feature, because, ideally, one
would like to work with a small active space.
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