Inversion-Sensitive Sorting Algorithms
in Practice

AMR ELMASRY

Max-Planck Institut fir Informatik
and

ABDELRAHMAN HAMMAD
Alexandria University

We study the performance of the most practical inversion-sensitive internal sorting algorithms.
Experimental results illustrate that adaptive AVL sort consumes the fewest number of comparisons
unless the number of inversions is less than 1%; in such case Splaysort consumes the fewest number
of comparisons. On the other hand, the running time of Quicksort is superior unless the number
of inversions is less than 1.5%; in such case Splaysort has the shortest running time. Another
interesting result is that although the number of cache misses for the cache-optimal Greedysort
algorithm was the least, compared to other adaptive sorting algorithms under investigation, it was
outperformed by Quicksort.

Categories and Subject Descriptors: E.0 [Datal: General; E.1 [Data Structures]: Arrays; Lists,
stacks and queues; Trees; E.2 [Data Storage Representations]: Contiguous representations;
Linked representations; E.5 [Files]: Sorting/searching; F.2.2 [Analysis of Algorithms and Prob-
lem Complexity]: Sorting and searching; G.3 [Probability and Statistics]: Experimental design
General Terms: Algorithms, Design, Experimentation, Performance, Theory

Additional Key Words and Phrases: Adaptive sorting, Inversions

ACM Reference Format:

Elmasry, A. and Hammad, A. 2008. Inversion-sensitive sorting algorithms in practice. ACM
J. Exp. Algor. 13, Article 1.11 (December 2008), 18 pages. DOI = 10.1145/1412228.1455267
http://doi.acm.org/10.1145/1412228.1455267

1. INTRODUCTION

A sorting algorithm is considered adaptive if it performs better for sequences
having a high degree of existing order. Such algorithms require less comparisons
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and running time to perform the sorting for such input instances. In the liter-
ature, many adaptive sorting algorithms have been proposed and many mea-
sures of disorder have been considered. Mannila [1985] formalized the concept
of presortedness; he studied several measures of presortedness and introduced
the concept of optimality with respect to these measures.

One of the main measures of presortedness is the number of inversions in the
input sequence [Knuth 1998]. The number of inversions is the number of pairs
in the wrong order. More precisely, for an input sequence X = (x1,xg, ..., X,),
the number of inversions is defined as

Inv(X)={G,j)11<i<j<nandx >x;}|

An adaptive sorting algorithm that runs in O(n log% + n) is considered
inversion-optimal. This follows from the fact that the information-theoretic
lower bound for any sorting algorithm with respect to the parameters n and
Inv is Q(nlog % + n) [Guibas et al. 1977].

The finger tree [Guibas et al. 1977] was the first data structure that utilized
the existing presortedness in the input sequence. The fact that the underlying
data structure is pretty complicated, and requires a lot of pointer manipula-
tions, makes finger trees impractical. Afterwords, Mehlhorn [1979] introduced
a sorting algorithm that achieves the above bound. The other inversion-
optimal sorting algorithms include Blocksort [Levcopoulos and Petersson 1996],
which runs in place, and the tree-based Mergesort [Moffat et al. 1998], which
is optimal with respect to several other measures of presortedness. Among
the inversion-optimal sorting algorithms, Splitsort [Levcopoulos and Peterson
1991] and adaptive Heapsort [Levcopoulos and Peterson 1993] are known to
be promising from the practical point of view; both algorithms require at most
2.5nlogn comparisons. Splaysort, sorting by repeated insertion in a splay tree
[Sleator and Tarjan 1985], was also proved to be inversion-optimal [Cole 2000].
Moffat et al. [1996] performed experiments showing that Splaysort is practi-
cally efficient. See Estivill-Castro and Wood [1992] and Moffat and Petersson
[1992] for a nice survey of adaptive sorting algorithms.

Later studies oriented toward improving the number of comparisons of
inversion-optimal sorting algorithms include: Binomialsort [Elmasry 2002],
adaptive AVL sort [Elmasry 2004], and the algorithms in Elmasry and Fred-
man [2008], which achieve the lower bound of n log, % + O(n) comparisons.
This bound on the number of comparisons can be also achieved utilizing the
multipartite queues of [Elmasry et al. in press; Elmasry et al. 2004] in the
adaptive Heapsort algorithm.

In another line of research [Brodal et al. 2005b], I/O-optimal cache-aware
and cache-oblivious adaptive sorting algorithms were introduced; one of these
cache-oblivious algorithms is Greedysort. These algorithms, in addition to be-
ing inversion-optimal, perform asymptotically optimal number of cache misses
even when the cache size is not given as a parameter. Expectedly, they would
work nicely in practice especially when the cache size is a bottleneck.

On the other hand, Quicksort introduced by Hoare [1961] is consid-
ered the most practical sorting algorithm. Several empirical studies illus-
trated that Quicksort is very efficient in practice [Dromey 1984; Wainwrigh
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1985]. The Quicksort algorithm and its variants also demonstrated an effi-
cient performance when applied to nearly sorted lists [Cook and Kim 1980].
Brodal et al. [2005a] showed that the expected number of swaps performed
by randomized Quicksort is O(nlog % + n), indicating that it is inversion-
optimal with respect to the number of swaps.

In this article, we are interested in demonstrating a practical study of such
inversion-optimal sorting algorithms. Our objective is to conclude which of these
algorithms would be a good candidate in practice, and which one we would use
under different circumstances. To perform our experimentations, we select the
algorithms that we think are the most promising from the practical point of view
among those introduced in the literature; these include: adaptive Heapsort,
Splitsort, Greedysort, Splaysort, and adaptive AVL sort. We also compare the
performance of these adaptive algorithms with randomized Quicksort.

This article is organized as follows: in the next section we show how our
experiments are performed, illustrating the way we generate the input, set the
test data, and the way the output is presented. Next, we proceed by exploring
alternatives for each of the studied algorithms, together with different settings
for each of them, selecting the best settings for each. Finally, we conclude the
paper with a comparison between our tuned main algorithms, and give our final
comments and conclusions.

2. EXPERIMENTAL SETTINGS

In all our experiments, the input sequence is randomly generated in a way that
the expected number of inversions is controlled. We start with a sorted sequence
(1,2,...,n) and perform two phases of permutations; we call the inversions
resulting from these two phases local and global inversions. Given a parameter
m, the goal is to permute the sorted sequence such that the expected number of
the resulting inversions is ©(n - m). For local inversions, the sorted sequence is
broken into [n/m] consecutive blocks of m elements each (except possibly the
last block), and the elements of each block are randomly permuted. For global
inversions, the resulting sequence is broken into m consecutive blocks of [n/m]
elements each (except possibly the last block). From each block one element
is selected at random, and these m elements are randomly permuted. A value
of m = 0 means that the input sequence is sorted in ascending order. A small
value of m, with respect to n, means that the input sequence is almost sorted.
A value of m, which is as big as n, means that the input sequence becomes
random.

Note that the way we produce the input guarantees that the elements are
distinct. Allowing for duplicates would introduce another factor of presorted-
ness in the input; for example a list with a single repeated element is obviously
sorted. Note that any input that has duplicates can be mapped to one of the
n! permutations of our input sample space, when assuming that an element
that comes before its duplicate in the input must come before it in the output
as well. A stable sorting algorithm will behave exactly the same for both in-
puts. An unstable sorting algorithm will find the job even easier when dealing
with duplicate inputs. Another issue is that we only applied the algorithms

ACM Journal of Experimental Algorithmics, Vol. 13, Article 1.11, Publication date: December 2008.



1.11:4 . A. Elmasry and A. Hammad

to 4-byte integers. The performance may change if we apply the algorithms to
other data types. For other structured data types, we expect the running time
to be more influenced by the number of comparisons performed and by memory
bottlenecks.

We fixed the value of n at 222. All the experiments are performed on an Intel®
Pentium® 4, 2.8 GHz machine, with 8 Kb L1 cache memory, 512 Kb L2 cache
memory, and 1 Gb RAM, running Windows XP platform. With such memory
capacity, there was no need to use virtual memory. We implemented all the
algorithms in C++ using Borland C++ Builder version 5.

Three primary outcomes are measured; the running time, the number of com-
parisons performed, and the number of cache misses. The measured running
times are CPU times, ignoring the time for I/O operations. This was done using
Windows APIs to get the CPU times for both the kernel and user modes. The
number of cache misses are measured using Intel® Pentium® 4 performance
counters and Intel® VTune™ Performance Analyzer 7.2.

In all graphs, we plot one of the measures versus log, m. For the plots demon-
strating the comparisons or the running times, each point is the average of 100
sample runs after omitting the most biased ten values out of 110 values. For
the plots demonstrating the cache misses, the average of ten sample runs was
taken.

We first proceed by investigating different alternatives and implementation
issues for each algorithm, and conclude by selecting the best implementation
for each algorithm and compare these with each other.

3. ADAPTIVE HEAPSORT

Basic Algorithm

Given a sequence X = (x1, ..., X,), the corresponding Cartesian tree [Vuillemin
1980] is a binary tree with root x; = min(xy,...,x,), its left subtree is the
Cartesian tree for (xi,...,x,_1) and its right subtree is the Cartesian tree for
(Xkt15 -+ -5 Xn)-

The first phase of the algorithm is to build a Cartesian tree from the input se-
quence in linear time. The Cartesian tree is initialized with x;. Then, the input
sequence is scanned in order and every element is inserted into the Cartesian
tree. To insert a new element x; into the Cartesian tree, the nodes along the
rightmost path of the tree are traversed bottom-up, until an element x; that is
smaller than x; is found. The right subtree of x; is made the left subtree of x;,
and x; is then made the right child of x;.

The algorithm proceeds by moving the smallest element of the Cartesian tree
into a heap. The minimum of the heap is printed and deleted, and the children
of the node corresponding to this element in the Cartesian tree are detached
and inserted into the heap. The above step is repeated until the Cartesian tree
is empty. The algorithm then continues like Heapsort by repeatedly printing
and deleting the minimum element from the heap.

The work done by the algorithm is: n insertions and n minimum-deletions in
the heap, plus the linear work for building and querying the Cartesian tree.
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Implementation Considerations

Levcopoulos and Peterson [1993] proved that the running time of the algorithm
is O(nlog @ + n) by showing that, when x; is the minimum of the heap, the
size of the heap is O(Inv(x;)), where Inu(x;) is the number of elements that are
larger than x; and appear before x; with respect to the input sequence. They
suggested implementing the algorithm using a binary heap. In such case, the
above algorithm requires at most 3n log, @ + O(n) comparisons. The storage
required by this implementation is 3n extra pointers (for the Cartesian tree,
two child pointers and a parent pointer that is reused for the binary heap), in
addition to the n pointers to the input elements.

The following improvement to the algorithm is suggested in Levcopoulos
and Peterson [1993]. Since there are at least |n/2] of the minimum-deletions,
each immediately followed by an insertion (deleting a node that is not a leaf of
the Cartesian tree must be followed by an insertion), each of these minimum-
deletions together with the insertion that follows are implemented by replacing
that minimum with the new element and proceeding to maintain the heap
property from the top down. This will cost at most 2log,r comparisons (r
is the heap size) for both the deletion and insertion, for a total of at most
2.5nlog, @ + O(n) comparisons. We call this variation the improved Heap-
sort algorithm.

Pushing the idea of reducing the number of comparisons for binary heaps
to the extreme, implementations resulting in better bounds can be used.
The best possible bounds are: O(loglogr) comparisons per insertion and
logyr + O(loglogr) comparisons per minimum-deletion [Gonnet and Munro
1986]. This implies that the Heapsort algorithm requires at most n log, % +
O(nloglog @) comparisons. We have not implemented this variation as we
expect it to be impractical.

Another possibility is to use a binomial queue instead of the binary heap. This
would result in a total of at most 2 log, % +0(n) comparisons (every insertion
takes constant amortized time, and every minimum-deletion requires at most
2 log, r comparisons). For this implementation, we need 2n more pointers (every
binomial-tree node points to: its first child, its next sibling, the corresponding
element; but we can still use the parent pointers of the Cartesian tree).

Experimental Findings

Comparing the results for the basic implementation versus the improved im-
plementation suggests that the latter is more sensitive to inversions, and that
the ratio between the comparisons performed by the two is not always 3:2.5 as
suggested by the theoretical worst-case analysis. The reason is that the basic
implementation performs comparisons spanning the entire depth of the heap
for both deletions and insertions. The improved implementation, while work-
ing top-down, saves time when the final position of the newly inserted element
is close to the root of the heap; this situation is expected when the number of
inversions is small. Empirical results suggest that the ratio is about 3:2.2 for
m = 100. On the other hand, for a large number of inversions, it is not the case
that the ratio is 3:2.5 either. In such case, the elements that have children in
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Fig. 2. Adaptive Heapsort: running times.

the Cartesian tree are deleted when the heap is still small, while the leaves
of the Cartesian tree will be deleted when the heap has its maximum depth.
This makes the weight of a deletion that is followed by an insertion less than
the weight of a deletion that is not followed by an insertion. Empirical results
suggest that the ratio is about 3:2.7 for m = 64,000.

As indicated by Figure 1, the implementation that uses binomial queues
performs the least number of comparisons. However, as Figure 2 shows, this
comparison reduction was accompanied by a noticeable increase in the running
time. This is expected as binomial queues require many pointer manipulations.

As a consequence of the Heapsort algorithm being inversion-optimal, and
since the number of inversions follows the value of m, it was expected that
the running time curve would be smoothly linear with logm. However, this
is not the case, as indicated by the sharp bends in Figure 2. We relate this
inconsistency to cache misses. When the number of inversions, and hence m,
is below some threshold value, the number of cache misses tends to be very
small because the heap fits into cache memory. After the number of inversions
exceeds that threshold value, the heap size becomes larger than cache mem-
ory, and so cache misses begin to occur and increase with logm as Figure 3
illustrates.
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Adaptive Heapsort Cache Misses
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Fig. 3. Adaptive Heapsort: cache misses.

An interesting observation, as shown by Figure 3, is that the implementation
that uses a binomial queue performs less cache misses although it requires more
storage. This is explained by noting that, when using a binary heap, the heap
operations are performed along the depth of the heap. This requires accesses to
different locations of the array of the input elements by consecutive operations.
On the other hand, when using a binomial queue, the heap operations are
performed on the roots of the binomial trees. This introduces a sort of locality
when accessing the same nodes in the near future.

4. SPLITSORT AND GREEDYSORT

Basic Algorithms

Splitsort [Levcopoulos and Peterson 1991] works by scanning the input se-
quence X to get an up-sequence (ascending subsequence) X ,. When an element
x; is scanned, it is placed in one of three sequences X, X, or X as follows. If
x; is larger than the tail of X, it is appended to the end of X ,. Otherwise, x; is
appended to X, and the tail element of X, is detached and inserted in X4 in a
way that the order of the elements in X , is the same as their original order in
X . After scanning the entire input sequence, we get a sorted up-sequence X,
and two sequences, X; and X ;. Both X; and X, are sorted recursively, then
the three sequences are merged.

Greedysort [Brodal et al. 2005b] works in a similar manner, except that it
uses a different division protocol. When a scanned element x; is larger than
the tail of X, it is appended to the end of X, similar to the case of Splitsort.
Otherwise, x; is appended to one of two sequences, X1 or X,. The algorithm
uses an odd-even approach (elements are alternatively inserted in X; and X32)
to guarantee that X ; and X5 have balanced sizes; i.e., |[Xo| < |X1] < |X 2| + 1.
After scanning the entire input sequence, we get a sorted up-sequence X, and
two sequences, X1 and Xo. Both X; and X are sorted recursively, then the
three sequences are merged.
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Splitsort and Greedysort Comparisons
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Fig. 4. Splitsort and Greedysort: number of comparisons.

Implementation Considerations

Analysis of Splitsort shows that it is inversion-optimal, and that it per-
forms at most 4.6n log % + O(n) comparisons. In the worst case, it requires
2.5nlogn + 5 comparisons [Levcopoulos and Peterson 1991]. Greedysort, be-
sides being inversion-optimal, is also cache-optimal, meaning that it performs
O(3 log% %) cache misses, where B is the block size and M is the cache size
(using the tall-cache assumption M = Q(B?)) [Brodal et al. 2005b].

In addition to the array-based Greedysort, we implemented two variations
of Splitsort: one array-based and one pointer-based.

Our first implementation for Splitsort is array-based, similar to the one in
Levcopoulos and Peterson [1991]. We make use of an auxiliary array of n point-
ers. The elements in the up-sequence are linked together using such pointers
keeping track of the current tail of the up-sequence. The other entries of the
auxiliary array are used for indicating which of X ;, and X, the corresponding
elements belong to. After the first phase, we scan the auxiliary array writing
into each entry the final position of the corresponding element. Finally, we re-
arrange the input array according to the auxiliary array. The same auxiliary
array is used for merging. First, we merge the two shorter sequences, then we
merge the result with the longest sequence.

Our second implementation for Splitsort relies on linked structures. Each of
the three subsequences is implemented as a linked list. In order to keep the
order of the elements of X, the same as their order in X, in addition to the
pointers of the linked lists, we maintain an extra pointer with every node of
X, that points to a position in X ;. If this node is to be moved to X ,, the extra
pointer is utilized to locate the correct insertion point. This requires 2n extra
pointers.

Experimental Findings

As illustrated by Figure 4, Splitsort performs fewer comparisons than
Greedysort. The difference between the two algorithms is smaller for very small
values of m as well as large values of m. For an explanation, consider the case of
m = 0 (the input sequence is already sorted). In such case, the two algorithms
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Splitsort and Greedysort Running Times
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Fig. 5. Splitsort and Greedysort: running times.
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Fig. 6. Splitsort and Greedysort: cache misses.

will perform exactly the same where all the elements will be appended to X,.
On the other hand, consider the case when the input sequence is inversely
sorted. In such case, the two algorithms will again perform exactly the same:
the sequence X, will always be empty, while the elements will be alternatively
distributed on the other two sequences in the same reversed order.

On the other hand, as shown in Figure 5, the running time of the array-
based Splitsort is smaller than that of the pointer-based implementation.
This is a result of the fact, indicated by Figure 6, that the number of cache
misses of the array-based Splitsort is mush less than that of the pointer-based
implementation.

Figure 6 indicates that Greedysort is the best with respect to the number of
cache misses. Note also the tilt for the pointer-based Splitsort around logm =
15. We relate this tilt to the size of the cache memory, where for smaller values
of m the working data-set fits nicely in the cache memory and the algorithm
starts performing much more cache misses as m increases.
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Splaysort Running Times
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Fig. 7. Splaysort: running times.

5. SPLAYSORT

Basic Algorithm

Splaysort works by repeatedly inserting the elements into a splay tree [Sleator
and Tarjan 1985]. A splay tree is a binary search tree that uses a series of edge
rotations with every insertion, which results in bringing the inserted element
to the root. Once the splay tree is constructed, an in-order traversal produces
the sorted sequence.

Implementation Considerations

As a consequence of Cole [2000], the running time of Splaysortis O(n log % +

n).

Two variations of this algorithm are implemented: one using bottom-up
splaying and the other using top-down splaying. The difference is in the way
the rotations are performed along the path from the root to a leaf node. The
bottom-up splaying performs the rotations after the insertion is done starting
from the inserted node upwards toward the root. Both algorithms use the same
data structures, except that the bottom-up (BU) splay trees need extra par-
ent pointers. Top-down (TD) splaying performs rotations while searching the
tree during the insertion from the root to leaf nodes, with no need for parent
pointers.

Experimental Findings

Although the number of comparisons is the same for both implementations,
the running time for TD Splaysort is much less, see Figure 7. This is because
in BU Splaysort we trace the elements back from a leaf to the root, which
almost doubles the pointer operations. This same conclusion was obtained in
Moffat et al. [1996].

Asindicated by Figure 8, TD Splaysort performs fewer cache misses than BU
Splaysort. We relate this to the extra storage used by the BU Splaysort, and
to the double passes performed by the BU Splaysort along the splaying path.
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Splaysort Cache Misses
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Figure 8 also shows that the number of cache misses is more for sequences
with a larger number of inversions. For sequences with a small number of
inversions, the insertions are biased to be performed in the right subtrees. As
a consequence, the splaying operations result in these right subtrees being
smaller in size. This influences subsequent insertions to be performed faster,
resulting in fewer cache misses.

6. ADAPTIVE AVL SORT

Basic Algorithm

AVL sort [Elmasry 2004] works by repeatedly inserting the elements into AVL.
trees. The AVL trees are organized into a list of consecutive bands from left to
right. Every band has 1, 2, or 3 AVL trees. The AVL trees are implemented as
search trees with the data elements stored only in the leaves while the internal
nodes contain indexing information. The elements in the bands are sorted in
increasing order from left to right; the same holds for trees within a band. In
other words, the elements of an AVL tree are smaller than the elements of
the trees to the right of this tree. After inserting all the elements, the sorted
sequence is produced by an in-order traversal to the trees from left to right.

A rank value is assigned to every band. The trees in a band with rank 2 have
heights &, except for at most one of these trees that may have height A—1. At any
stage of the algorithm, the ranks of the bands form an increasing consecutive
sequence s,s + 1,s + 2, ..., from left to right, with the value of s changing
through the algorithm depending on the number of inversions resulting from
the already inserted elements. The value of s, while inserting the element x;,
is computed as: s = [log,r:] + 1, where 1 < 6 < 2 is a tuning parameter,
o= > 1<jk tj» and i; is the order of x; in the sorted sequence after the
J-th insertion.

With every insertion, the bands are scanned from left to right to locate the
band into which the element will be inserted. Within this band, the trees are
also scanned to locate the tree into which the element will be inserted. To do
that efficiently, we keep track of the largest element within every band as well
as within every tree.
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After each insertion, as a result of the above conditions, the band list would
require reorganization, though on a relatively infrequent basis. This can be
accomplished using the following four basic operations:

1. Split: An AVL tree of height 2 can be split in constant time into two trees,
one of height 2 — 1 and the other of height 2 — 1 or A — 2, by removing its
root (h > 2).

2. Combine: Two AVL trees, one of height 2~ — 1 and the other of height 2 — 1 or
h — 2, can be combined in constant time in an AVL tree of height & by adding
a new root. The values of the left tree must not be larger than those of the
right tree.

3. Find largest: The value of the largest member of a given tree can be accessed
in constant time. A pointer to the largest value is maintained after each
operation.

4. Tree-insertion: The insertion of a new value in an AVL tree of height 2 can be
performed in O(h) time within & comparisons [Adelson-Velskii and Landis
1962].

Implementation Considerations

Following the analysis in Elmasry [2004], AVL sort performs at most
1.44nlog Inﬂ + O(n) comparisons and runs in O(n log I% +n).

A linked list of band headers is maintained. Every band points to its first tree
header and stores the number of trees in the band for faster processing. Tree
headers within a band are organized in a linked list, every header pointing to
its tree root.

To facilitate the find-largest operation in constant time, we store and main-
tain with every tree node the maximum element within its subtree. Every tree
node also stores the size of its subtree. For a new insertion, when we scan the
bands from left to right, the size of every passed band is accumulated. Within
the band into which the element will be inserted, tree sizes are also summed up
until we reach the tree into which the element will be inserted. The number of
elements smaller than the inserted element in its tree is calculated using this
size information, while the tree is searched for the insertion. Because every tree
node stores the size of its subtree, this size must be maintained by the above
operations, including rotations.

In order to recalculate the new value of s, instead of calling the time-
consuming logarithm function with every insertion, this is done by saving a
table for powers of 6. Once the value of 6 is decided, such table is constructed
and stored. The size of this table is logarithmic with respect to the maximum
value of s.

The extra storage required by AVL sort is 26n + O(logn) bytes; 21 bytes for
each of the n internal nodes (each node holds: left, right, data, and maximum
pointers, 1 byte for balancing information, and 4 bytes for its subtree size),
5n bytes for each of the n leaves (each node has a pointer to the data, and an
extra byte to distinguish it from internal nodes), and O(logn) bytes for band
and tree-header data.
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Adaptive AVLsort Comparisons
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Fig. 9. AVLsort: number of comparisons.

Adaptive AVLsort Running Times
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Fig. 10. AVLsort: running times.

Experimental Findings

Consider the case when the value of s, as calculated by the above formula,
oscillates (increases by 1 after an insertion and decreases by 1 after the next
insertion). This would result in several split and combine operations to update
the rank of the leftmost band. Experimental results showed that the algorithm
suffers from a degradation in performance in such situations. The conditions for
changing such a rank were relaxed as follows. We still increment the rank of the
leftmost band when the calculated value for s increases. But, we only decrement
the rank of the leftmost band when such value for s becomes 2 less than the
current value for such rank. For example, if the current leftmost rank is 7 and
then after an insertion the calculated value for s becomes 6, the rank will not
change. The rank is only decremented to 6 if the computed value becomes 5.
As indicated by Figures 9 and 10, tuning the parameter 6 has an important
influence on the performance of the AVL sort algorithm. Analytically [Elmasry
2004], to guarantee the worst-case performance, a value of 6 equal to the golden
ratio is used. For the average-case performance, the best value of § would be
close to 2. Experimental results show that, with less inversions, values of ¢
close to 2 are preferable. This is a result of the fact that for low inversions most
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Adaptive AVLsont Cache Misses
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Fig. 11. AVLsort: cache misses.

insertions are performed in the left trees, while most of the other trees are
produced by combine operations, making these AVL trees near balanced. On
the other hand, with more inversions, lower values of 6 are better.

The two figures also show that changing 6 is more effective on the number
of comparisons than the running times. The reason is that we use integer data,
and hence the comparisons are not dominating the running time.

When there are few inversions, the leftmost trees will have smaller heights
and the newly inserted elements are expected to be inserted in these trees. This
results in fewer cache misses. See Figure 11.

7. CONCLUSIONS AND COMMENTS

One of our main observations, with respect to the running time of the algo-
rithms that require linked structures, is that the dynamic allocations of such
structures are time consuming. We noticed that more than 15% of the time of
such algorithms (Heapsort, Splaysort and AVL sort) was used for such memory
allocations. Our solution, that saves around 15% of the time, was to allocate
a chunk of memory at the beginning of the algorithm that is enough for the
memory requirement of the algorithm throughout its execution.

Regarding the number of comparisons, all the implemented adaptive sort-
ing algorithms were noticeably much better than Quicksort for low inversions.
This behavior is expected, since Quicksort is not adaptive with respect to the
number of comparisons: the expected number of comparisons performed by
the implemented version of randomized Quicksort is O(nlogn), regardless of
the number of inversions in the input. Some of the algorithms always perform
fewer comparisons than Quicksort, even for random lists. Empirical results
illustrate that all the adaptive sorting algorithms under study perform at most
c-nlog % + O(n) comparisons, with ¢ between 1 and 2; for AVL sort, ¢ ~ 1.
See Figure 12.

As illustrated by the running-time curves in Figure 13, randomized Quick-
sortis preferable for sequences with alarger number of inversions. TD Splaysort
shows the best performance when the number of inversions in the input se-
quence is small. For the given input size 222, TD Splaysort is better than
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Fig. 12. All algorithms: number of comparisons.
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Fig. 13. All algorithms: running times.
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Cache Misses
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Fig. 14. All algorithms: cache misses.

Table I. Extra storage used by the implemented algorithms

[ Algorithm | Implementation | Extra memory (bytes) |

Heapsort binary heaps 16n

binomial queues 24n + O(logn)
Splaysort bottom-up 16n
top-down 12n

Splitsort array-based 4n 4+ O(logn)

pointer-based 8n + O(logn)

AVL sort 26n + O(logn)

Quicksort O(logn)

randomized Quicksort, as long as the number of inversions is less than 21°.
Splitsort, though not the best with low inversions, is better than TD Splaysort
for high inversions, while it is not much worse than Splaysort with low inver-
sions. It is also interesting to demonstrate that the running time of Quicksort
is slightly better for a smaller number of inversions; this is a consequence of
the result of Brodal et al. [2005a] that randomized Quicksort is adaptive with
respect to the number of swaps.

The most effective factor among our performance measures is the cache
misses. Although some algorithms, like AVL sort, have some advantage re-
garding the number of comparisons, cache misses degrade their performance
causing their running time to be worse than the algorithms that perform fewer
cache misses. Both Quicksort and Greedysort perform the fewest number of
cache misses. See Figure 14.

The extra storage used by each of the algorithms is given in Table I (a pointer
is stored in 4 bytes).
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