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Abstract. The pattern formed by subcutaneous blood vessels is unique
attribute of each individual and can therefore be used as a biometric
characteristic. Exploiting the specific near infrared light absorption prop-
erties of blood, the capture procedure for this biometric characteristic is
convenient and allows contact-less sensors. However, image skeletons ex-
tracted from vein images are often unstable, because the raw vein images
suffer from low contrast. We propose a new chain code based feature en-
coding method, using spatial and orientation properties of vein patterns,
which is capable of dealing with noisy and unstable image skeletons.
Chain code comparison and a selection of preprocessing methods have
been evaluated in a series of different experiments in single and multi-
reference scenarios on two different vein image databases. The experi-
ments showed that chain code comparison outperforms minutiae-based
approaches and similarity based mix matching.

Keywords: biometrics, vein recognition, vascular recognition, chain code

1 Introduction

Intended to be a robust approach for liveness detection in fingerprint and hand
geometry systems, vein recognition evolved to an independent biometric modal-
ity over the last decade. Classically the capturing process can be categorized in
near and far infrared approaches. Vein recognition systems based on the near in-
frared approach are exploiting differences in the light absorption properties of the
de-oxygenated blood flowing in subcutaneous blood vessels and the surrounding
tissue. Veins become visible, as seen in figure 1, as dark tubular structures. They
absorb higher quantities of the infrared light emitted by the LED of the sensor,
than the surrounding tissue. Alternatively in the far infrared approach the heat
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(a) (b)

Fig. 1. Finger / wrist vein samples images from: (a) GUC45; (b) UC3M database.

radiation of the body can be measured. Because the temperature of blood is
typically higher than the temperature of the surrounding tissue, the tempera-
ture gradient between the blood vessels and the tissue can be measured in this
spectrum. Additionally, vein scanners can work contact-less, hence they are con-
sidered to be more hygienic than systems requiring direct physical contact. This
makes them particularly suitable for applications in public areas.

Vein patterns evolve during the embryonic vasculogenesis. Their final struc-
ture is mainly influence by the process of cell division and can therefore expected
to be random [7]. Even though scientific research about the uniqueness of vein
patterns is sparse, many resources state that vein patterns are unique among
individuals. Due to the fact, that the network of blood vessels forming the vein
patterns is located underneath the skin, a vein pattern is hard to forge without
the data subject’s knowledge. Known approaches for forging vein patterns not
only include the subject’s knowledge but also his cooperation, such as shown in
[38].

It is also expected, that the position of veins is constant over a whole lifetime
[14]. Offering the same user convenience as fingerprints while being highly secure
against forging, vein recognition has been applied in various fields of authenti-
cation and access control during the last years such as ATMs or airports. As a
reaction to increasing misuse of bank cards for instance, a number of large banks
in Japan integrated vein recognition systems into their ATMs [32]. The German
logistics service DHL decided to use vein recognition for access control to high
security areas at their new hub at Leipzig airport [33].

Still vein recognition faces challenges: limitations in capturing in-vivo images
from the inside of the body, as well as ambient sunlight, temperature and vary-
ing skin properties like the pigmentation, or the thickness influence the image
quality. As a result of all these factors the raw images delivered by the sensor
have a low contrast, contain noise and a non-uniform brightness. Sophisticated
algorithms for the preprocessing like contrast enhancement and segmentation as
well as the final feature extraction and comparison are necessary to handle the
variations and the noise.

In this paper we contribute a new chain code based feature extraction method
and investigate its performance in combination with fusion techniques of im-
age skeletons. The fusion aims at enhancing the biometric performance and



Feature Extraction using Chain Codes and Spatial Information 3

Preprocessing

Segmentation
{3.1}

Contrast 
Enhancement 

{3.1}

Skeletonization

Intersected 
Skeletons

{3.2.2}

Chain-Code based 
Error Weighting

{4.3}

Spatial Error 
Weighting

{4.3}

Chain Code 
Comparison

Unified 
Skeletons

{3.2.1}

Experiments

Assignment and 
Comparison

{4.1, 4.2}

Feature 
Extraction

{5.3, 6}

Preprocessing
{5.2, 6}

Fig. 2. Structure of this paper

the robustness against noise. Our approach is compared with minutiae-based
feature extraction and a state-of-the-art geometry-based direct comparison ap-
proach.Moreover we measure the impact of different segmentation methods, im-
age skeleton extractors and error weighting schemes on the biometric perfor-
mance of our chain code based feature extractor. The experiments using finger
vein images and wrist vein images showed that chain code comparison combined
with skeleton fusing performs better than alternative direct comparison methods
from the literature. An illustration of the work flow of our benchmark system in
connection to the structure of this work is illustrated in Figure 2

The rest of this work is structured as follows. Section 2 will give an elaborate
overview over relevant work in the field of vein recognition including work on the
enhancement of vascular images. In Section 3, image enhancement, segmentation
algorithms, the extraction of image skeletons and the skeleton fusing techniques
used during the benchmarks in this paper will be described. After having intro-
duced all necessary preprocessing steps, Section 4 will focus on the extraction
and comparison of chain codes. The experiments and benchmarks conducted on
the vein data will then be presented in Section 5. Finally Section 6 will conclude
the paper with some future perspectives concerning vein recognition.

The paper extends the work from [13]. It contains an elaborate survey on the
state of the art in the field of vein recognition and also introduces a new weighting
scheme as an extension of the already published paper. Moreover we provide
more details on the proposed algorithm and also present additional experimental
results including the impact of skeleton pruning and the impact of different
parameters on chain code comparison.

2 State-of-the-Art

Since the first suggestion to use the blood vessel network as a biometric char-
acteristic was made more than one decade ago [17], a large number of different
techniques for extracting and comparing vein patterns have been made. This
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section gives an overview of preprocessing, feature extraction and comparison
algorithms.

2.1 Preprocessing

As stated above, vein images tend to suffer from low contrast and noise. This
raises the necessity for contrast enhancement methods. these methods suppress
noise and enhance the local contrast of a vein image. Olsen achieved good results
by using the STRESS algorithm [16, 21], which not only enhances the image’s
contrast but also balances irregular shading. A very fast and simple method
for contrast enhancement is Wang and Leedham’s normalization method [31].
It stretches the contrast by normalizing the grey values contained in the images
but is not able to compensate irregular shading.

Another common problem with vein images is noise, which is hard to remove
without loosing information about the vein contours. Due to the imaging tech-
nique used by the sensor, the vein’s edges are blurry. Deepika and Kandaswamy
[6] solve this problem by using the non-linear diffusion method, which smoothens
homogeneous image regions and preserves the vein’s edges. The GSZ-Shock Fil-
ter used by Deepalmar and Madheswaran [5] can also be used for this purpose.
If no explicit edge enhancement is needed, noise can be reduced by using a
Gaussian filter [4] or dyadic wavelet transform [35].

Since many feature extraction algorithms work on image skeletons, the vein
images must be segmented after the noise has been removed. A well-established
histogram based segmentation approach was proposed by Otsu [22]. His method
calculates a number of thresholds based on the grey level histogram in such a
way that large quantities of similar grey values are considered as representing
an object. Wang and Leedham [31] propose an algorithm called Adaptive Local
Thresholds, which segments normalized images by using the local brightness
information of the image. However this method has problems with blurry edges
and low local contrast.

With their algorithms Repeated Line Tracking [19] and its successor Max-
imum Curvature Points [20], Miura and Nagasaka proposed two segmentation
methods, which are robust to irregular shading and blurry edges. The maximum
curvature points algorithm analyses brightness changes in cross-sectional image
profiles and hence is not affected by a vein’s width and brightness. Repeated
Line Tracking starts at various random points in the vein image and follows
light-coloured structures in the image. All pixels visited by the algorithm are
tracked in a separate locus image, which is representing the location of the veins
after the algorithms has terminated. A modified version of repeated line tracking
is used by Yang et. al. [37].

A widely used segmentation algorithm in different applications for segmen-
tation algorithms is the active contours method as proposed by Chan and Vese
[3]. It has been applied to vein images of palm dorsa by Soni et. al. [25]. Active
contours works with the principle of the intensity gradient. At least one initial
shape is placed at a random point in the image before active contours moves,
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splits, merges and warps this shape until it represents the contours of the veins
displayed in the image.

A completely different approach to segmentation are filter based methods.
Olsen achieved good segmentation results by using the standard technique of
Laplacian of Gaussian [21], whereas Vlachos and Dermatas designed a dedicated
compound filter, which is specialized in detecting horizontal, tubular structures
[29]. A similar approach has been propose din a earlier publication by Frangi
et. al.[9], who also designed a special filter for detecting blood vessels in retina
images.

2.2 Feature Extraction and Comparison

A multitude of different feature extractors and comparison algorithms have been
proposed over time. This chapter categorizes different comparison algorithms
applied in vein recognition following the features they are using. We differentiate
between local comparison methods, which use certain details of the image for
feature extraction, whereas holistic methods use whole images or image skeletons
for comparison.

Holistic Methods One of the most famous holistic comparison methods is the
principal component analysis (PCA), which used in numerous pattern recogni-
tion tasks. In [15] Khan et. al. applied PCA on image skeletons derived from
hand vein images. Principal component analysis can also be applied directly on
enhanced images [30].

Xueyan et. al. derive vein descriptors using invariant moments for distin-
guishing the segmented vein images from different subjects. In [10] Guan et.
al. have proposed to use bi-directional weighted modular PCA and compared
the performance of different flavour of their algorithm with each other. In their
studies, which were conducted with 132 subjects and a self-made capturing de-
vice, bi-directional weighted modular PCA showed the best performance among
the other tested approaches. In a later approach Guan et. al. also evaluate the
performance of an approach based on linear discriminant analysis on the same
database, but could not improve the biometric performance with this approach
[11].

All feature extraction and comparison algorithms enumerated so far are work-
ing with statistical properties of vein images. Chen et. al. [4] propose two algo-
rithms for direct point-wise comparison, which overcome problems with affine
transformations. Iterative Closest Point Matching (ICPM) is a modified version
of the Iterative Closest Points algorithm for registering images. The second algo-
rithm proposed by Chen et al., Similarity-based Mix-matching (SMM), compen-
sates small translation and rotation errors by comparing the segmented version
of one image with the image skeleton of the other one.

Yang and Li [36] propose a set extract energy maps from the responses of
steerable filters. Based on the amount of energy returned by a filter, they assign a
grey value to each block of 5x5 pixels in the vein image. The resulting images with
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each pixel representing the average response of a 5x5 block in the vein image
are then compared bit pixel by pixel. They evaluate the performance of their
feature extraction technique by using a database, which consists of 100 subjects,
and showed that their approach performances other approaches. However they
do not provide results using other databases.

In [18], Mirmohamadsadeghi and Drygajlo apply histograms of local binary
patterns (LBP) as well as local derivative patterns (LDP) for feature extraction
on palm vein images. In elaborate experiments they evaluated the behaviour of
these descriptors under different constraints and also measured the performance
of different distance measures for the histograms. They were able to achieve
promising results with both descriptors, especially with a histogram intersection
method.

Local Methods Known as established features from fingerprints, minutiae have
also been used for extracting features from skeletonized vein images [28]. Because
minutiae are composed of spatial coordinates, they are subject to translation and
rotation. This issue is addressed by projecting minutiae points into frequency
space [34], where translation gets eliminated and rotation becomes translation.
Spectral minutiae have also been applied to vein recognition [28] in different
variants. SML performs an element-wise comparison of two minutiae-spectra in
frequency space, whereas SML fast Rotate (SMLFR) compares the spectra while
trying different translations of them. However the number of minutiae contained
in the image can be very small. Instead of comparing their positions directly, it
is also possible to use the distances between all minutiae as features [30]. Wang
further proposes to use the line segments, which are separated by endpoints and
bifurcations [31]. Fan et. al. propose to use the watershed algorithm for detecting
dominant points from a vein image [8]. Three different filters generate a multi
resolution representations of these dominant points, which serve as features.

3 Preprocessing

3.1 Contrast Enhancement and Segmentation

As already mentioned, all vein images have to be enhanced in a preprocessing
stage before features can be extracted from the image. The vein images used
during our experiments are first enhanced by using adaptive non-local means
taken from [26] followed by the noise suppressing and edge enhancing non-linear
diffusion algorithm [1].

The image enhancement step is followed by a segmentation step. In order
to see, if there is an image segmentation method, which is particularly suitable
for segmenting vein images, three different segmentation methods have been
compared. The first of these methods is Otsu’s histogram-based segmentation
[22]. Additionally the active contours algorithm proposed by Chan and Vese [3]
and the multi-scale filter method by Frangi et. al. [9] have been tested on the
finger vein images.
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(a) Threshold 15 (b) Threshold 35

(c) Threshold 50 (d) Threshold 75

Fig. 3. Skeletons extracted by fast marching skeletonization methods using different
thresholds. The higher the threshold the more details are cut off from the skeleton.

3.2 Skeletonization

In the approaches we used in our experiments, skeleton images are the basis for
feature extraction. Because of noise and poor contrast, these skeletons can look
different, even though they come from the same biometric source. In order to
improve the reliability of the extracted image skeletons and hence the reliability
of the extracted features, we propose to use fast marching skeletonization as
proposed in [27] in combination two different approaches for fusing multiple
skeletons to a single one. The goal is to create a more stable version than any of
the input skeletons.

In fast marching skeletonization incremental indices are assigned to each
pixel on the edge of the figure. Then they are collapsed until only the center line
is left. From the difference between two neighbouring indices in the collapsed
figure, a local weight of a branch can be determined. For those party of the
image skeleton, derived from center part of the figure, the difference between
the indices is high and so is their weight. These fine-grained branches are likely
to be artifacts, which were introduced by segmentation errors or noise and can
be removed by applying a threshold. All skeleton points where the difference
between their indices falls below the threshold are deleted. All other points are
kept. Hence, depending on the threshold, more or less of these remote branches
are cut off. The larger the threshold value, the more details are removed (see
Figure 3).

3.3 Skeleton Fusing

In order to further enhance the stability of skeletons, we propose two basic fusing
techniques. The first one is called skeleton unification and produces a skeleton
which possesses all branches and details, of the input skeletons. The second one,
called skeleton intersecting, combines a variable number of input skeletons and
delivers combined skeletons which possess only the branches which the majority
of the input skeletons has in common. The goal is to create a more stable version
than any of the input skeletons.
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(a) (b) (c)

Fig. 4. Fusion based on unification (GUC45 samples) using n = 3 input skeletons:
(a) superimposed structure Suni1 ; (b) disk-shape structuring element dilated structure
Suni2 ; (c) final unified skeleton Suni.

(a) (b) (c)

Fig. 5. Fusion based on intersection (GUC45 samples) with n = 5 input skeletons and
threshold t = 3: (a) dilated density structure Sint2 ; (b) Sint3 (threshold t applied to
segment Sint2); (c) final intersection skeleton Sint.

Unified Skeletons For deriving a unified skeleton it takes n input skeletons,
where n was set to 3 in our experiments. In a first step, all input skeletons Si(x, y)
are aligned using ICP [24] and then super-imposed to a common structure Suni1

(Fig. 4(a)).
Suni1(x, y) = ∪ni=1Si(x, y) (1)

The registered input skeletons are fused together by dilating the superimposed
figure Suni1 with a disk-shaped structuring element (Fig. 4(b)) to get Suni2 .
Afterwards the fast marching skeletonization algorithm [27] is applied to the
dilated figure in order to create the unified skeleton Suni (Fig. 4(c)).

Intersected Skeletons The second proposed algorithm creates an intersected
skeleton, which possesses only those features which occur in at least t of the
input skeletons. An example for skeleton intersection with n = 5 input skeletons
is illustrated in Figure 5. The intersected skeleton in Figure 5 consists of the
lines which occur in at least three of the five input skeletons (t ≥ 3).

Similarly to the unification approach, the input skeletons Si need to be
aligned to each other. Then each of the n input skeletons is dilated with a
disk-shaped structuring element, creating binary structures Sint1 . These dilated
skeletons are then added up to form a common unified density structure called
Sint2 .

Sint2(x, y) =
∑
n

Sint1n(x, y) (2)

Sint2 contains values between 0 and n. All input skeletons having a pixel that
is classified as vein at position (x,y) in case of Sint2 = n and 0, meaning that
none of the input skeletons has any veins at this coordinate. Now a threshold
value t with 1 ≤ t ≤ n is applied to Sint2 resulting in Sint3 . In this step all pixels
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which at least occur t times in the input skeletons are kept, all other pixels are
set to zero.

Sint3(x, y) =

{
1 for Sint2 ≥ t
0 else

(3)

Finally the fast marching skeletonization is applied again, which results in
the intersected skeleton Sint.

4 Chain Code Comparison

Similarities between two image skeletons can be determined by measuring the
relative positions of the skeleton lines as well as their relative orientation. Two
lines, which are parallel should be considered to be more similar than two non-
parallel skeleton lines. Chain code based feature extraction uses the position of
each pixel on a skeleton line in combination with its local orientation reflected
by the chain code value for feature encoding. This enables the algorithm to find
associated points between the probe and the reference skeleton and to measure
parallelism.

4.1 Preliminaries and Chain Code Assignment

Before chain code values can be assigned to an image skeleton, some preliminaries
have to be met. In a first step the probe and the reference skeleton have to
be aligned with each other. As for skeleton fusing, we used ICP for skeleton
alignment. Moreover all points where veins split up (bifurcations) have to be
removed from the image skeleton in order to avoid ambiguities. To make sure
all chain codes refer to a common starting point, a reading direction has to
be defined. In our work, chain code extraction started from the bottom left
corner of the image and ended at the top right corner. If the reading direction
is fixed, chain codes extracted from the same shape with different coordinates
will be identical. After the skeletons are computed, the feature extraction module
iterates over each pixel (x,y) of the skeleton starting from the bottom left corner.
Each skeleton pixel is assigned a chain code value according to the relative
position of its successor in reading direction (see Figure 6). The chain code
assignment for each pixel indexed by its coordinates x and y in the skeleton
image Iskel is defined as

C(x, y) =



1 if Iskel(x + 1, y) = 1
3 if Iskel(x + 1, y + 1) = 1
5 if Iskel(x, y + 1) = 1
7 if Iskel(x− 1, y + 1) = 1
9 if Iskel(x− 1, y) = 1
0 else

(4)
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4.2 Comparison

After chain code assignment, the similarity between two aligned chain codes C
and C ′ is calculated. The algorithm tries to find pairs of associated points by
searching in orthogonal direction to the local orientation of the chain code value
stored at the currently examined point. The search for associated pixels stops
if either an associated point could be found or if the maximum search depth
dmax is exceeded. When a pair of associated skeleton points has been found,
their similarity is calculated based on their spatial distance d and the chain code
difference c.Where (x, y) and (x′, y′) are the coordinates of the two associated
points and C(x, y) and C ′(x′, y′) are their chain code values.

d =
√
|x− x′|2 + |y − y′|2 (5)

c = |C(x, y)− C ′(x′, y′)|2 (6)

The local error E at the point (x, y) is then calculated as follows.

E(x, y) =
d + c

Emax
(7)

Emax =
dmax + cmax

2
(8)

The values for dmax and cmax denote the maximum search depth and the max-
imum possible difference between two chain code values. Following Equation 6
and the scheme sketched in Figure 6, cmax = 82 = 64. The local error is stored at
position (x, y) in an error map E, which has the same size as the input images.

The assignment of associated points is depending on the order of the two
skeletons to be compared (probe/reference). If we start with the reference skele-
ton and search for an associated pixel in the probe skeleton, a different pixel
pair can be identified as if we would have started the other way around. This
also means that the local error depends on the order of the two skeletons. This
is handled by computing two error maps E1 and E2. E1 contains all local errors
calculated by using C as reference and C ′ as probe skeleton and E2 contains all
local errors using C ′ as probe and C as reference, respectively. The total error
map Etotal is the sum of local errors for each point in the skeleton images and
is computed as follows:

Etotal(x, y) = E1(x, y) + E2(x, y) (9)

Finally the similarity score of the skeletons to compare is defined as:

Score = 1−
∑

x

∑
y Etotal(x, y)∑

x

∑
y Emax

(10)

An example of how a point pair can be found by using the local chain code
value is shown in Figure 6(b). The algorithm starts at the boldly bordered point
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Fig. 6. Chain code extraction scheme for feature extraction from prepared image skele-
tons and calculation of local error using the spacial distance between two associated
pixels and the chain code difference

in C and searches in orthogonal direction for a corresponding point in C ′. After
two mated points have been identified, their local error, which is a value between
0 (no error) and 2 (maximum error) is calculated. The global distance measure
between all points in C and C ′ is, as stated before, the weighted sum of all local
errors.

4.3 Error Weights

Caused by the position of the infrared-LEDs in the sensor and the human phys-
iology, the contrast is not the same throughout the image region. Especially
the edge regions of the image are typically darker than the center region of the
image, which means that local error extracted from the center regions of the
image are more likely to be reliable than local error in the edge regions. In or-
der to take this into account a weighting function ω1(x, y) is introduced which
assigns higher weights to the local errors in the center regions of the image. It
calculates a weight for each local error according to its position in the image.
width represents the total width of the image. An threshold value t is defined,
which specifies the image region where the weight of the local error decreases.
We assigned an error weight smaller than one to the leftmost quarter of errors
and the rightmost quarter of error respectively. Hence the value 0.25 for t was
used here. w denotes the total with of the image.

ω1(x, y) =


y−x
w−t if x < w − t
t−x
t if x > t

1 else
(11)
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Another possibility of error weighting is based on the fact that most veins in
our finger vein image are horizontal, which is caused by the architecture of the
sensor. Hence, the portability of being a noise artifacts is assumed to be higher,
the more a chain code value differs from horizontal orientation. As the local chain
codes for the veins have already been assigned, this information can additionally
be used for applying a weighting factor based on the local orientation of a line,
namely the local chain code value. As mentioned above, chain code values already
indicate the local orientation of a skeleton line, hence the local error can also
be weighted using the chain code values. ω2 calculates a weighting factor for
each error depending on the chain code value C in the comparison image. The
constant h represents the chain code value assigned to a line with horizontal
orientation. For our chain code extraction scheme, h is set to 5.

ω2(C) =

{
1− (C − h)2 if C 6= h
1 else

(12)

5 Experimental Setup

All experiments were conducted on the basis of a modular vein verification sys-
tem implemented in MATLAB. The benchmark system allows for arbitrary com-
binations of different segmentation, feature extraction and comparison modules.
The main quality measure used for benchmarking different pipeline configura-
tions is the equal error rate (EER). We conducted two different experiments, one
covering aspects of preprocessing in connection with chain code comparison and
the second one dealing with the comparison of selected feature extraction, error
weighting and comparison approaches. Information about both experiments and
the databases which were used during the evaluation is provided in this section.

5.1 Vein Databases

In the experiments two different vein databases were used. Their main properties
are summarized in Table 1. In both cases the images were captured with a
CCD-camera and illuminated with NIR light at a wavelength of 850nm. The
GUC45 dataset contains finger vein images from 45 data subjects collected at
Gjøvik University College in Norway over a long period of time. Each finger,
including the thumbs, was captured two times during each of the 12 sessions,
which results in 10800 unique vein images in total. The images from GUC45
suffer from low contrast and high noise, which makes it hard for any algorithm
to extract stable skeletons and hence to achieve a low error rate on this data.
However this fact makes them particularly interesting for research purposes as
it allows for exploring the limitations of algorithms for feature extraction and
comparison.

The second database, called UC3M, consists of wrist vein images, which were
collected as described in [23]. The focus of this experiment was to evaluate the
effect of different illumination intensities on the visibility of veins. For each of the
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29 users, 6 images were taken for each hand under three different illumination
settings. This results into 348 images in total.

Database GUC45 UC3M?

Frequency Band NIR (850nm)
Sensor non-commercial
Modality Finger (10) Wrist (2)
Data Subjects 45 29
Sessions 12 1
Images per Session 10 × 2 2 × 6
Images 10800 348

Resolution (px) 512 × 240† 640 × 480
Depth 8 Bit gray-scale

Table 1. Properties of the biometric vein datasets used in the experimental section.
†For the experiment the images are cropped to size 468 × 122 to eliminate most non-
finger area. ?Details published in [23].

5.2 Preprocessing

The preprocessing stage consists of three steps, namely image enhancement,
segmentation and skeletonization. During image enhancement, noise should be
removed and at the same time image contrast should be enhanced. In order
to meet both criteria, different methods are combined. In a first step, the vein
images are enhanced with adaptive non-local means as proposed by Struc and
Pavesic [26] followed by non-linear diffusion for noise suppressing and edge en-
hancement [1].

The image enhancement step is followed by a segmentation step. In order
to see, if there is an image segmentation method, which is particularly suitable
for segmenting vein images, three different segmentation methods have been
benchmarked. The first of these methods is Otsu’s histogram-based segmentation
[22]. Additionally the active contours algorithm proposed by Chan and Vese [3]
and the multi-scale filter method by Frangi et. al. [9] have been tested on the
vein images.

Preprocessing is concluded by the skeletonization approach proposed by Telea
and van Wijk [27]. For determining the influence of skeleton pruning on the EER,
we compared the biometric performance of different pipelines using chain code
comparison and Otsu’s segmentation algorithm with different thresholds during
the skeletonization step.
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5.3 Feature Extraction Evaluation

For comparing the biometric performance of chain code comparison to other
feature extraction methods, we evaluated chain code comparison on GUC45
and UC3M. We compared the performance to the evaluation results of spectral
minutiae (SML and SMLFR) as proposed in [12], Similarity-based Mix-Matching
(SMM) [4] and the performance of chain code comparison on single references
and fused skeletons. In all experiments using fused skeletons, the fused skeleton
served as the reference image and a skeleton extracted from one vein image was
used as the probe image.

We investigate the influence of the maximum search distance on the error rate
of chain code comparison and evaluated the discriminating potential of spatial
and chain code distance. Furthermore evaluate the influence of the previously
introduced error weighting schemes on the EER. For doing this we configured
a pipeline using Otsu’s segmentation algorithm, fast marching skeletonization
with a threshold of 35 and chain code comparison for feature extraction.

6 Results

In our experiments, the segmentation algorithms came to slightly different re-
sults, but had a minor effect on the overall system’s performance. The measured
performance difference between the different segmentation algorithms on GUC45
is less than 2% points in terms of the EER. The main difference between the
evaluated segmentation approaches was in terms of computation time, however
the approach by Frangi and Niessen performed slightly better on the UC3M
dataset.

In contrast to the preprocessing step, the impact of the feature extraction and
comparison method is significant. Table 2 summarizes the performance measures
for each of the datasets. The results for GUC45 were obtained using Otsu’s seg-
mentation algorithm, whereas the EER measures on UC3M are based on Frangi
and Niessen’s filter-based approach. For each of the evaluated configurations
we measured the EER and the operating point for 0.1% FAR. Furthermore we
provide the 90% confidence intervals for each of the measured performance in-
dicators.

The images in GUC45 have a particularly low contrast and therefore cannot
be expected to give good biometric performance. However, GUC45 is a challenge
for all tested algorithms. In addition, it also contains multiple samples per sub-
ject. The results of the different feature extraction and comparison approaches
on GUC45 are summarized in Figure 7. The best performance could be achieved
with chain code comparison using unified skeletons as reference samples and
skeletons derived from only one image as probes. This configuration was named
Fused Union. With an EER of 24.67% Fused Union outperformed all other con-
figurations including SMM, but also single reference chain code comparison. This
shows that already a simple skeleton fusing approach like the proposed one, en-
hances the quality of image skeletons and improves the system performance.
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None of the error weighting schemes has an effect on the performance of chain
code comparison. On average, ω2 had a slightly better performance than ω1, but
the confidence value indicate that there is no statistically significant difference
between these two configurations.

Further investigations on the performance of Fused Union for each finger on
GUC45 showed, that the fingers of the left hand appear to be more suited for vein
recognition than the right hand fingers (see Figure 7(b)). In our experiments, the
highest error rate was measured with images from the thumbs (Fingers indices 5
and 6). The EER of configurations using intersected skeletons increases the more
input skeletons are used. A reason for this could be that unstable skeletons have
only few intersecting parts, which results in fused skeletons with low details. Less
details however mean less discriminative power and results in increasing error
rates.

For the UC3M dataset an excellent biometric performance could be mea-
sured without the skeleton fusion techniques proposed. SMM and the chain code
algorithm perform at the same level (EER around 1% EER). Skeleton fusion
could reduce the EER to 0.63%, whereas skeleton intersection with n = 3 and
t = 2 yielded an EER of 0.67%.

Whereas the segmentation did not have any effect on the EER, the level
of detail in the skeletons had a measurable effect on the performance of chain
code comparison. Figure 7(c) shows, that a careful selection of the threshold
during fast marching skeletonization can deliver a considerable improvement
of the overall performance. The lowest EER could be achieved when using a
threshold of 35. The performance obtained from other thresholds is similar and
moves around approximately 31% EER. The only outlier is the threshold 5. The
reason for this are artifacts, introduces by fast marching skeletoization during
the assignment of indices. These artifacts are removed when applying thresholds
above 15, but are sill part of the skeleton for low thresholds.

Experiments on the behaviour of chain code comparison using different search
depths showed, that the careful choice of this parameter is crucial, as the spatial
distance between two skeleton points appeared to have a larger impact on the
biometric performance than the difference between two adjacent chain codes.
The reason for this is that there the possible variance between two chain code
values is small compared to the variance of the spatial distance. The maximum
search depth should be chosen according to the resolution of the input vein
images and the expected density of the vein patterns. For GUC and UC3M a
maximum search depth of 9 pixels delivered the best performance.

7 Conclusion and Future Work

The proposed chain code algorithm as well as the state of the art SMM [4]
algorithm perform very similar on the chosen datasets, it seems the quality
of the images is a limiting factor here. Only a multi-reference approach could
further improve the results.
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(a) (b)

(c) (d)

Fig. 7. ROC curves for (a) selection of feature extraction algorithms and (b) Fused
Union configuration, different finger samples from GUC45 dataset. Finger indices are
assigned according to the ISO-standard [2] with indices 1 until 5 for the right hand
fingers in indices 6 until 10 for the left hand fingers, where counting always starts
from the thumbs. (c) shows ROC curves for a selection of different thresholds in fast
marching skeletonization using chain code comparison. (d) shows ROC curves for chain
code pipelines and SMM on the UC3M dataset
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Comparison Algorithm GUC45 UC3M
EER OP EER OP

Chain Codes 29.06 (±0.73) 77.97 (±0.67) 1.38 (±1.27) 3.10 (±1.68)
Chain Codes with ω1 29.42 (±0.89) 78.65 (±0.66) 1.38 (±1.13) 1.72 (±1.26)
Chain Codes with ω2 28.44 (±0.72) 77.041 (±0.68) 2.07 (±1.37) 4.48 (±1.99)
Fused Union 25.21 (±0.71) 84.15 (±0.62) 0.63 (±0.87) 1.72 (±1.62)
Fused Intersect t=2, n=3 34.49 (±0.89) 95.60 (±0.34) 0.67 (±1.10) 1.15 (±1.33)
Fused Intersect t=3, n=5 32.87 (±0.92) 93.71 (±0.43) NA NA
Fused Intersect t=5, n=7 32.20 (±0.97) 97.27 (±0.31) NA NA

SMM 27.84 (±0.71) 78.40 (±1.13) 1.38 (±0.67) 1.38 (±1.13)
SML 39.089 NA 6.13 NA
SMLFR 40.25 NA 5.90 NA

Table 2. Benchmark results (EER in % and OP) for finger vein (GUC45) and wrist
images (U3CM). The numbers in brackets after each result are the 90% confidence
interval for the results. NA: not measured in the experiments.

Even though the proposed comparison on Fused Union skeletons showed
promising results, the algorithm’s time wise performance is not impressive com-
pared to other feature extraction and comparison algorithms. Future work fo-
cuses on reducing the required computing time by replacing the pixel-based chain
code extraction with a convolution-based approach and by selecting less refer-
ence points for skeleton registration and comparison in order to further decrease
the size of the feature vector.

Further improvements could also be made by extending the error calculation
to complete line segments in order to make chain code comparison less sensitive
to single outliers and more sensitive to mismatching line segments. Moreover,
additional simulations on different vein datasets will also show the feasibility of
the approach for different vein modalities.
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