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ABSTRACT

Bayesian mathematics provides a tool for combining 14C dating results on findings from an

archaeological context with independent archaeological information such as the chronological

order, which may be inferred from stratigraphy. The goal is to arrive at both a more precise

and a more accurate date. However, by means of simulated measurements we will show that

specific assumptions about prior probabilities - implemented in calibration programs and

hidden to the user - may create artifacts. This may result in dates with higher precision but

lower accuracy, which are no longer in agreement with the true ages of the findings.

INTRODUCTION

In many cases the 14C age is not the only information available on archaeological samples.

Additional information may originate from typology, stratigraphy or dendrochronology.

Whereas 14C measurements directly provide probability distributions (due to the inherent

Poisson statistics of the counting process), typology and stratigraphy do not. In a

mathematical sense, they rather give non-probabilistic logical statements such as “event A is

earlier than event B” or “object A typologically matches object B”. The classical statistical

approach tends to reduce the 14C distributions also to logical statements like “the age of the

sample lies between 3360 BC and 3100 BC” using 95% confidence intervals. This is then

combined with the additional archaeological evidence by means of scientific reasoning (see

Reece 1994).

As an alternative, the additional archaeological information may also be transformed into

probability distributions. All the information may then be integrated by using Bayesian

mathematics (for an overview see Litton and Buck 1995; Buck et al. 1996; for applications
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see Buck et al. 1991, 1992, 1994; Bayliss et al. 1997). The additional archaeological

information investigated in this paper is the chronological order of the samples. For this case,

the intention behind applying the Bayesian method is to improve the date obtained from the
14C measurement alone. Since the knowledge of the chronological sequence adds independent

information, this appears feasible. However, we will show through computer-simulated

measurements that assumptions used to transform the additional archaeological information

into probability distributions may create results with higher precision (i.e. reduced

uncertainties) of dates but lower accuracy (i.e. reduced agreement with the true ages of the

samples).

THE BAYES ALGORITHM (BAYES’ THEOREM)

In evaluating experimental data the so called Bayes’ theorem (Bayes 1763) plays a

fundamental role. Bayes’ theorem allows to combine measured data from a sample with our

knowledge on the corresponding sample before (prior to) the measurement. Both the

measured data and the prior information must be formulated mathematically as probability

distributions. After feeding them into Bayes’ theorem we get the so-called posterior

probability distribution which incorporates both measured and prior information. Since the

main features in applying Bayes’ theorem already show up in the radiocarbon dating of single

samples, we will discuss this case first. It will provide useful results needed for the subsequent

investigation of the multiple sample case, and it shall also serve as an illustration of Bayes’

theorem.

Calibration of a single sample

The data collected in a 14C measurement are reduced to the radiocarbon age 14Ct  and its

uncertainty σ. We neglect the asymmetry of the uncertainty which is induced by the

exponential shape of the decay curve and is only significant for very old samples. From the

radiocarbon age we want to derive the true age of the sample on the calendar age scale. For a

single sample the procedure is the usual 14C calibration process. We try to look up the age
calt , i.e. the calibrated or calendar age, where the radiocarbon age from the tree ring

calibration curve ( )tC  matches the radiocarbon age 14Ct  of the sample:
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( )141 Ccal tCt −= (1)

with 1−C  being the mathematical inversion of the calibration curve. Unfortunately, in the

general case the calibration curve is not an invertible mathematical function. Due to its

“wiggles” one can get more than one match, and its uncertainty also complicates the situation.

Bayes’ theorem is the mathematical tool suited to invert the calibration function in a

probabilistic sense. We use it to get the probability that the sample has a certain calendar age t

with respect to the measured radiocarbon age 14Ct . Let us denote this probability as ( )tPcal .

( )tPcal  is the posterior probability for the 14C calibration of a single sample.

A statistical model of the underlying measurement and calibration process allows to

determine the probability of how likely an (assumed) calendar age t for the sample of interest

is going to yield the data 14Ct  observed in the actual measurement. Bayesian mathematics

calls this probability distribution the likelihood function ( )ttP Clikelihood |14 . The likelihood

function for the calibration of a single 14C date is
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where

[ ] ( )[ ]tCt C 21422 σσσ +=  with

[ ]142 Ctσ ..............uncertainty of the radiocarbon age 14Ct  from the measurement

( )[ ]tC2σ .............uncertainty of the calibration curve at the assumed true age t

U ........................a normalization constant to achieve ( ) 1|14 =∫∞
∞− dtttP Clikelihood .

Since both ( )tC  and ( )[ ]tC2σ  heavily depend on t, the likelihood function is not Gaussian in

shape unless the assumed calibration curve is strictly linear with constant uncertainty.



4

The difference between ( )tPcal  and ( )ttP Clikelihood |14  is essential, since one needs Bayes’

theorem to derive the latter probability from the former. The formulation of Bayes’ theorem to

calibrate a single 14C date is:

( ) ( ) ( )tPttP
U

tP priorClikelihoodcal ⋅
′

= |
1 14 (3)

U´ is a constant needed to normalize ( )∫∞
∞− dttPcal to unity.

The only unknown in formula (3) is ( )tP prior , the probability distribution of the true age prior

to the measurement. Bayes’ theorem is (implicitly) used for a variety of problems. In most

cases, the prior probability is not known exactly. This also holds for the tree-ring calibration

of a single 14C date. However, in this case the likelihood function (2) disappears sufficiently

fast outside a relatively small region (we neglect cases where the radiocarbon age is consistent

with infinity). The assumption that the prior probability ( )tP prior  is approximately constant

and different from zero in this region is sufficient to apply Bayes’ theorem and we obtain

( ) ( )ttPtP Clikelihoodcal |14≡ . (4)

Since ( )ttP Clikelihood |14  is already normalized to unity the constant U is no longer needed and

the posterior probability is identical to the likelihood function in this easy case. ( )tPcal  is the

function usually plotted on the calendar age scale of the calibration diagrams (see Figure 5).

For every “wiggle” of the calibration curve that crosses or touches the radiocarbon age 14Ct  of

the sample we get a local maximum in ( )tPcal .

The posterior probability distribution ( )tPcal  is usually reduced to 95% confidence intervals

(highest posterior probability density regions): after tabulating calendar ages and their

corresponding probabilities the most probable years are collected until a total probability of

95% is reached.

Multiple samples

In a more general formulation of Bayes’ theorem, the true values of a set of parameters and

the corresponding measured values shall be denoted as true values and measured data,

respectively. Formula (3) then reads as
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( ) =datameasuredvaluestrueP posterior |

( ) ( )valuestruePvaluestruedatameasuredP
U

priorlikelihood ⋅
′

= |
1

(5)

If the prior probability ( )valuestrueP prior  is sufficiently constant where the likelihood

function is not zero, then the posterior probability distribution posteriorP  is identical with
likelihoodP .

Compared to the calibration of a single date, the situation is more complicated for the

combination of the 14C dating results of N independently measured samples. Every sample has

an (unknown) calendar age and a measured radiocarbon age denoted by kt  and 14C
kt ,

respectively, for the sample with index Nk ...,,1= . The additional information included in

the statement “the chronological order of the samples is 1, 2, 3, ...” can be transformed into

the following common N-dimensional prior probability:

( )




=
)"("0

)"(",...,
,...,, 1

21 caseforbiddenotherwise
caseallowedorderinttforconst

tttP N
N

prior (6)

The 14C measurement yields N probability distributions for the calibrated 14C ages, ( )k
cal

k tP ,

which are the posterior probabilities of the single-sample calibration. They are now combined

to a N-dimensional likelihood function for a second application of Bayes’ theorem:

( ) ( ) ( )N
cal

N
cal

N
C
N

Clikelihood tPtP
U

ttttP ⋅⋅= ...
1

,...,|,..., 111
1414

1 . (7)

This fulfils the definition of likelihoodP  in the general case of Bayes’ theorem in (5) because of

(4) and the independence of the single sample likelihood functions in a probabilistic sense.

We neglect the complex correlations induced by the uncertainty of the calibration curve (see

Buck 1996, p 235-7).

Next, all the information is combined to get the posterior probability distribution
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The so called marginal posterior probability distribution for the single samples are obtained

by integrating over all possible dates kt  of the respective other samples. Using the definitions

given above we get
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where the kU ′  denote constants needed to normalize ( )∫∞
∞− kk

posterior
k dttP  to unity.

In this paper we will call the method of combining sample ordering information and 14C data

the “sequence algorithm”. Our analytical formulation using a multidimensional integration is

equivalent to the Monte Carlo method (“Gibbs sampling”) presented in Buck et al.

As we will show, problems in the sequence algorithm arise from the assumption that

( )N
prior tttP ,...,, 21  is constant in the “allowed case” (see the common prior (6)). The resulting

marginal posterior probabilities ( )k
posterior

k tP  are highly dependent on this assumption in

regions where the 14C likelihood functions )|( 14
k

C
k

prior
k ttP  do not disappear (see e.g. Roe

1992; Buck 1996, p 170-1; Blobel and Lohrmann 1998). By means of simulated

measurements we investigated the consequences of applying this algorithm.

THE SEQUENCE ALGORITHM APPLIED TO COMPUTER-SIMULATED 14C

MEASUREMENTS

The most persuasive test for the sequence algorithm would be a set of real samples with

known true ages from the same archaeological context. The algorithm should then be applied

to the 14C data, and the resulting dates could be compared with the true ages. Although

measurements on such data sets may have been performed in the past (we know of none), a

large number is required for a thorough check of the algorithm. Therefore we used artificial

data sets on which we performed computer-simulated measurements.
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In the mathematical analysis given above we incorporated the calibration process into the

likelihood function, using calendar ages for the true values but radiocarbon ages as the

measured data (see (5)). For our further investigations the details of the single-sample

calibration are not essential. Therefore we consider the resulting probability densities ( )k
cal

k tP

on the calibrated age axis as the measured data. We apply the sequence algorithm to

simplified sets of ( )k
cal

k tP  suitable to study the separate influence of various parameters on the

posterior results. If not otherwise mentioned, we will use Gaussian-shaped calibrated age

distributions ( )k
cal

k tP  since this allows to solve (9) analytically. For non-Gaussian

distributions we use the computer program OxCal v2.18 (Bronk Ramsey 1995a, 1995b) which

implements the “Gibbs sampling” method mentioned above.

Due to the different features of different parts of the calibration curve there are two extreme

cases:

The “linear” case: In some regions the calibration curve can be approximated by a strictly

linear function without any wiggles. Since we assumed the probability distribution for the

radiocarbon age to be Gaussian-shaped, in this case the calibrated probability densities

( )k
cal

k tP  will be roughly Gaussian-shaped also. In addition we assume that the uncertainty of

the calibration curve is negligible compared to the uncertainty of the 14C data. If several

samples with the same true age are independently 14C-dated, then the scatter of the centers of

the ( )k
cal

k tP  should match their width in this case.

The “flat” case: In other regions the calibration curve is flat and largely dominated by

wiggles. The ( )k
cal

k tP  are not Gaussian-shaped, and they span from the first to the last

crossing (or proximity) of the calibration curve and the measured radiocarbon age. Since this

is due to the features of the calibration curve and not due to the 14C measurement uncertainty,

the 95% confidence intervals are essentially the same for all samples. Large uncertainties in

the calibration curve have a similar effect.

The real 14C calibration curve is somewhere in between these two extreme cases.

Modeling without statistical scatter is much easier since for every simulation only one set of

input data exists. If scatter is included the simulation has to be performed with a sufficiently

large number of randomly generated data sets to get a significant result. Therefore in most

simulations the scatter is ignored. In this case we check for selected points whether the

qualitative result is influenced by scatter. However, the “flat” case shows that simulations

without scatter have a value on their own.
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Computer experiment A

In this computer experiment we investigate six 14C samples within a chronological sequence.

The calibrated 14C data were modeled by Gaussian probability distributions with a standard

deviation σ of 100 yr. Every data set consisted of six samples with constant time spacing ∆t.

We used sets with ∆t of 0, 1, 2, 5, 10, 20, 25, 50, 75, 100, 125, 150, 175, 200, 300, 400, 500,

750, and 1000 yr. We model the calibrated 14C probability distributions with their centers

exactly at the true ages true
kt , so we ignore any statistical scatter (see Figure 1):

t
N

t true ∆
−

−=
2

1
BC10001 ; ( ) Nktktt truetrue

k ,...,2with11 =∆−+= (10)

( )
( )2

22
22

1 σ

πσ

true
kk tt

k
cal

k etP
−

−
= (11)

The influence on the data for sets with different ∆t is shown in Figure 2, where we focus on

the youngest (latest) sample (#6). We compare the artificial 14C data and the posterior data

resulting from the sequence algorithm.

It turns out that for ∆t considerably larger than 1 σ (100 yr) the data and the corresponding

uncertainties are not modified significantly. For short ∆t the algorithm shifts the probability

distributions apart to cover the whole interval compatible with the 14C measurement

uncertainty. In this region the posterior uncertainty is reduced, i.e. precision increased. This is

the case for which the sequence algorithm was developed in the first place.

From Figure 2 one can see that the algorithm shifts the age of the latest sample (#6) towards

the assumed measurement uncertainty. Near ∆t = 0 yr the result is independent of the true

ages, but is determined by the measurement error! The probability distributions are no longer

in agreement with the assumed true ages, so in our opinion the increased precision is an

artifact.

We want to complement our investigation and verify that the kind of statistical scatter which

shows up in the previously mentioned “linear” case does not influence the qualitative result.

We choose the case with ∆t = 0 yr (all samples exactly from 1000 BC). The calibrated 14C

data are modeled as above, but now we allow random shifts of the centers of the probability

distributions:
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( )
( )2

22
22

1 σ

ξ

πσ

k
true
kk tt

k
cal

k etP
−−

−
= (12)

The random shifts ξk are obtained from a Gaussian probability distribution with a standard

deviation equal to the assumed measurement uncertainty σ (100 yr). Around the shifted

centers Gaussian-shaped probability distributions with the very same standard deviation of

100 yr were created (see Figure 3). 20 such sets were generated and fed into the sequence

algorithm. The resulting ages and uncertainties are shown in Figure 4. The strong shift of the

age of the latest sample is further enlarged by the statistical scatter.

To check whether realistic calibrated age distributions ( )k
cal

k tP , which are not Gaussian-

shaped, influence the main features of the computer experiment we study a set of data typical

for the “flat” case. For the whole Hallstatt period (750-400 BC, i.e. the Early Iron Age in

Europe) the 14C calibration curve is flat. Every sample yields a wide calendar age distribution

with some wiggles, but the 95% confidence interval is very likely to span the whole period.

We check the computer experiment for ∆t = 5 yr. Figure 5 shows what happens when

simulated radiocarbon ages of six Hallstatt samples (with typical measurement scatter) are

used as input for the calibration program OxCal (Bronk Ramsey 1995b). The result is

qualitatively the same as for the analytical investigation of Gaussian-shaped distributions. The

centers of the distributions are shifted apart to cover the whole period, and the 95%

confidence intervals are reduced so that the latest of the six samples is no longer compatible

with the first half of the Hallstatt period.

In the Hallstatt period the posterior probability distributions will be essentially the same for

any sequence independent of the (assumed) true ages. If the number of samples is sufficiently

large, the latest sample is always shifted to 420 BC with a pretended small uncertainty.

Computer experiment B

Next we study a growing number of samples N within a sequence. All samples are assumed to

have the same true age (∆t = 0 yr) without measurement scatter. As can be seen in Figure 6

the sequence algorithm shifts the distributions more and more apart. The calibrated age range

allowed by the 14C measurement uncertainties is evenly partitioned between the posterior
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distributions. By increasing the number of samples the latest sample shifts to values deviating

far from the assumed true ages (Figure 7).

Computer experiment C

It can be seen from computer experiment B that the influence of the sequence algorithm

grows with an increasing number of samples N in the sequence. For a small number of

ordered samples there exist no obvious artifacts, but even in the case of two samples the

uncertainties are significantly reduced. Is this increased precision accompanied by an

increased accuracy?

To answer this question we focus on ordered pairs of samples. When we repeat computer

experiment A with just two samples in every set the influence is not as strong as the influence

on multiple ordered samples (compare Figure 8 to Figure 2), but the ages are shifted apart

also.

In computer experiment C we model statistical scatter. We simulate 1000 ordered pairs of

samples for every assumed true age difference ∆t. The true ages of the paired samples are

symmetric around 1000 BC (see (10) with N = 2). The ( )k
cal

k tP  are modeled by using (12)

with scatter and measurement uncertainty σ of 100 yr (see Figure 9). The artificial calibrated
14C data together with the chronological ordering of the true ages is fed into the sequence

algorithm.

If the algorithm really improves the dates, then the assumed true ages should be compatible

with the posterior 95% confidence intervals in about 1900 of the 2000 cases (there are two

samples for each of the 1000 pairs). The uncertainties shown in Figure 10 are induced by the

binomial statistics of the experiment:

( ) 





 −⋅=

M
m

mmu 1  (13)

where M is the total number of trials (2000) and m is the number of successful trials (number

of 95% confidence intervals compatible with the assumed true age).

The number of simulated samples which miss their true ages before the sequence algorithm is

applied shows no significant deviation from the theoretical 5% line. After applying the

sequence algorithm the situation is changed drastically for true age differences smaller than
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the assumed measurement uncertainty. The posterior 95% confidence intervals miss the true

ages in up to 12% of all cases, so the increased precision is an artifact. The fraction of

incompatible intervals approaches the 5% line only if the difference t∆  is larger than 1 σ

(100 yr), but in this case the sequence algorithm has essentially no influence on the posterior

probability distributions.

We want to emphasize that all the results in the computer experiments above scale with σ
t∆

and in fact were calculated using only this parameter. For the figures shown they were scaled

to values typical for 14C dating.

“PRIOR” CONSIDERATIONS

We think the failure of the sequence algorithm as demonstrated by computer-simulated

measurements is due to the prior probability assumed for the age difference of samples with

known chronological order. Unfortunately the results of the sequence algorithm are highly

sensitive to the assumed prior. The strong influence of the prior is demonstrated by choosing

the probability as inversely proportional to the age difference (it is plausible that for samples

from the same archaeological context smaller age differences are more probable). For two

samples one gets

( )






 −<
−=

otherwise

ttfor
ttttP prior

0

1
, 21

1221

ε
(14)

where 1<ε  is a small lower limit for the age difference to maintain integrability. This is

equivalent to the assumption that there will be the same number of samples within 1 to 10, 10

to 100, and 100 to 1000 years of age difference. This principle of “scale invariance” (May

1996) holds for many positive numbers in nature. So this prior probability distribution may

also be called “natural”, but contrary to the constant probability the samples are drawn

together instead of being shifted apart. For 0lim →ε  all 14C data are shifted to the same age.



12

A constant probability may appear a neutral assumption, but every probability distribution

gets constant by a suitable transformation of the variables. For example, (14) is constant if t1

and t2 are replaced by log t1 and log t2.

The sequence information restricts the age difference of consecutive samples to positive

numbers and as pointed out by other authors, for positive numbers there is no reason to select

a constant prior probability for the number itself and not for the logarithm or the square root

of the number (see Blobel and Lohrmann 1998).

In the common prior (6) the ages kt  are selected as the “natural” parameters for which a

constant probability is assumed. Another probably even more “natural” set of parameters

would be the start time 1t  of the sequence and its total “span” ( )1,1 ttt NN −=∆  together with

the age differences ( )1,1 ttt kk −=∆  of sample number k from the first. The common constant

prior (6) is no longer constant for the kt ,1∆ . By integrating over all combinations of

Nkk tttt ,...,,,..., 111 +−  and substituting ktt ,11 ∆+  for kt  we obtain:

( ) ( )

2
,1

2
,11121
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1,11111121,1
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constdtdtdtdtdt
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k k

k

k k

k k N (15)

The common prior (6) considered “neutral” has a strong bias towards larger age differences if

the number of samples exceeds 2. This problem strongly influences the calculation of the span

Nt ,1∆ , i.e. the duration of the whole sequence. According to (14) this has a marginal prior of

( ) 2
,1,1

−∆∝∆ N
NN

prior ttP . Only recently, Bronk Ramsey (1999) suggested to overcome this bias

by modifying the common prior (6):

( ) ( )









−=

−

)"("0

)"(",...,
1

,...,,
12

1
21

caseforbiddenotherwise

caseallowedorderinttfor
tttttP

NN
N

N
prior (16)
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This can be achieved in the program OxCal by using the “BOUND” condition (C Bronk

Ramsey, personal communication 1999). This condition is usually used to estimate the

boundary (i.e. start and end time) of the sequence. A general use of the modified prior (16)

may lead to an appreciable change of any posterior probability distribution calculated with

prior (6), including already published dating results.

We do not consider the modified prior (16) more generally valid than the common prior (6).

Moreover, since for two samples the two priors (6) and (16) are identical, the failure in

computer experiment C persists. Summing up we see no convincing way to select a certain

prior for general use in the sequence algorithm.

There exist applications where the prior information is known in full detail, and therefore this

information can be transformed into a mathematical form without vague assumptions. Here

our critics concerning the sequence algorithm does not apply. For example, there is no reason

to hesitate to use Bayesian mathematics in 14C “wiggle matching” (Goslar and Wieslaw 1998;

Bronk Ramsey 1999): In this case, the age differences for a set of samples, e.g. for N different

tree rings from the same log, are known exactly. Each piece is 14C-dated independently. The

additional tree-ring information can be written as a prior probability distribution:

( ) ( ) ( ) ( )[ ]NNN
prior ttttttttt

N
tttP ,113,1132,11221 ...

1
1

,...,, ∆−−⋅⋅∆−−⋅∆−−
−

= δδδ (17)

where time offset kt ,1∆  can be obtained from the number of tree rings in between. No vague

assumptions like the constant probability in the common prior (6) have to be made.

SUMMARY

Bayesian mathematics is a powerful tool to combine probability distributions from different

sources, if these distributions are well defined. In this paper we discussed the combination of

a well-defined distribution derived from 14C measurements of archaeological samples with

additional information on their chronological order. This information can only be transformed

into complete probability distributions by using “vague” assumptions. The prior commonly
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used is a constant probability density for the calendar ages, as long as the given order is

respected (otherwise it is zero).

If the samples are already clearly separated in time by the 14C measurement alone, the

Bayesian sequence algorithm does not change the data. For samples which cannot be

separated by the 14C measurement we demonstrated by means of computer-simulated

measurements that the common prior creates results with spurious high precision. The

algorithm spreads the ages of the samples in a sequence over the whole range allowed by the
14C uncertainty (which may be large for flat regions of the calibration curve), and small

uncertainties are obtained. These results are no longer in agreement with the (assumed) true

ages of the samples and therefore the reduced uncertainties are an artifact of the algorithm.

Generally speaking, the algorithm improves the precision but reduces the accuracy! We

demonstrated that these problems show up in any region of the calibration curve. The artifacts

are more obvious for a larger sequence of samples but even persist for only two samples.

We came to the conclusion that the commonly used prior is no “neutral” assumption. The

decision which prior probability distribution is suited for the individual archaeological context

should be made in close co-operation with archaeologists well-experienced in quantitative

methods.
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FIGURE CAPTIONS

Figure 1 (Computer experiment A): The Bayesian sequence algorithm is applied to sets of six

ordered samples. Each set is constructed symmetrically around 1000 BC with constant time

spacing t∆ between the true ages true
kt . The individually calibrated probability distributions

before applying the sequence algorithm are assumed to be Gaussian-shaped with their centers

exactly at true
kt  and with σ = 100 yr.
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Figure 2 (Computer experiment A): Maxima and 95% confidence intervals for the probability

distributions of the latest sample #6 before (solid and dashed lines) and after the sequence

algorithm (points and error bars) are shown. Only if σ2≤∆t  (i.e. truet6  older than 750 BC) the

data are changed significantly. The maximum of the posterior probability distribution is

shifted away from truet6  towards younger ages and the 95% confidence intervals are

diminished. For yr0=∆t  (all six samples dating from the same year) the 95% confidence

interval is incompatible with the assumed true age BC10006 =truet .
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Figure 3 (Computer experiment A): Modeling statistical scatter would not change the

qualitative result shown in Figure 2. We check this for yr0=∆t  by simulating sets with a

randomly generated Gaussian scatter of σ = 100 yr. The probability distributions for the
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calibrated ages before (see upper part of the Figure) and after applying the sequence algorithm

(see lower part of the Figure) are plotted.

Figure 4 (Computer experiment A): We compare the posterior centroids and 95% confidence

intervals for 20 computer simulations including scatter constructed as in Figure 3 (filled

diamonds) to the posterior data without scatter constructed as in Figure 1 (filled circles). The

95% confidence interval of sample #6 is not compatible with the assumed true age

BC10006 =truet  in 14 of the 20 cases. By averaging the centroids and the positive and

negative interval widths we see an additional spread induced by the random scatter (hollow

diamonds).



21

Figure 5: For an assumed set of six samples #1 to #6 from the Hallstatt period (750–400 BC)

with ages of 750 BC (#1), 745 BC (#2), 740 BC (#3), 735 BC (#4), 730 BC (#5), and 725 BC

(#6) indicated by vertical thin lines the corresponding radiocarbon ages were looked up in the

calibration curve. Due to the flatness of the calibration curve we get the same radiocarbon age

of 2455 BP for all six samples. After adding a random scatter of ±40 yr we obtain the

following radiocarbon ages: 2546 BP, 2490 BP, 2402 BP, 2446 BP, 2386 BP and 2491 BP.



22

By individual calibration the samples can no more be assigned to distinct regions. The

resulting probability distributions (gray curves) rather cover the whole Hallstatt period. These

probability distributions correspond to our simulated 14C measurement data. After the

Bayesian sequence algorithm is applied one can see its tendency to divide the period into six

parts of equal size (black curves). Due to the flatness of the calibration curve the general

shape of the individually calibrated and of the “sequenced” probability distributions is the

same which true ages ever are assumed. In our example the posterior 95% confidence

intervals of samples #4, #5, and #6 are not in agreement with their assumed true ages. All the

calculations (single calibration and sequencing) were performed with OxCal v2.18 (Ramsey

1995b) using the INTCAL98 14C calibration curve (Stuiver et al. 1998). The program

normalizes the individual and the “sequenced” probability distributions to the same maximum

value.

Figure 6 (Computer experiment B): By increasing the number of samples N in a sequence

they are more and more shifted apart by the Bayesian sequence algorithm. The individually

calibrated probability distributions are all constructed Gaussian-shaped with centers at

1000 BC ( yr0=∆t ) and with σ = 100 yr. No scatter is modeled. The probability distributions

after applying the sequence algorithm are plotted for N = 1 to N = 6 samples in a sequence.
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Figure 7 (Computer experiment B): Maxima and 95% confidence intervals after applying the

sequence algorithm are plotted for sets constructed as in Figure 6. The shift of the latest

sample #6 grows with the number of samples N in a sequence (up to Ns too large to be

realistic).
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Figure 8 (Computer experiment C): Whereas the artifacts in the results of the sequence

algorithm are obvious for N = 6 or larger they are harder to detect for a smaller number of

samples N in a sequence. The figure shows data analogous to Figure 2, but for N = 2.

Figure 9 (Computer experiment C): Pairs of samples are constructed symmetrically around

1000 BC with a time difference t∆ between the true ages truet1  and truet2 . The individually

calibrated probability distributions before applying the sequence algorithm are constructed

Gaussian-shaped with σ = 100 yr. Measurement scatter is modeled by applying random shifts

ξ1 and ξ2, which are taken from a Gaussian distribution also with σ = 100 yr.
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Figure 10 (Computer experiment C): For each assumed true age difference t∆  1000 pairs of

samples are constructed as in Figure 9, and the Bayesian sequence algorithm is applied. The

95% confidence intervals are checked for compatibility with the assumed true ages truet1  and

truet 2 . Whereas indeed only 5% of the single-sample calibration intervals are incompatible,

after applying the sequence algorithm for σ<∆t  up to 12% of the intervals do not contain

the corresponding true age.


