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Abstract

One of the deficiencies of previous fuzzy linear regression models is that with the increase of the magnitudes of independent
variables, the spreads of estimated fuzzy dependent variables are increasing, even though the spreads of observed dependent variables
actually decrease or remain unchanged. Some solutions have been proposed to solve this spreads increasing problem. However,
those solutions still cannot model a decreasing trend in the spreads of the observed dependent variables as the magnitudes of the
independent variables increase. In this paper we propose an enhanced fuzzy linear regression model (model FLRFS), in which the
spreads of the estimated dependent variables are able to fit the spreads of the observed dependent variables, no matter the spreads of
the observed dependent variables are increased, decreased or unchanged as the magnitudes and spreads of the independent variables
change. Four numerical examples are used to demonstrate the effectiveness of model FLRFS .
© 2009 Elsevier B.V. All rights reserved.
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1. Introduction

Fuzzy linear regression (FLR) was first proposed by Tanaka et al. [25] as an extension of the classical regression
analysis, which is becoming a powerful tool to explore the vague relationship between dependent and independent
variables [3]. In fuzzy regression, some elements of the regression models are represented by imprecise data.
General FLRmodels for crisp input–fuzzy output data [25] and fuzzy input–fuzzy output data [21] can be represented

as follows, respectively:

ˆ̃Y i = Ã0 + Ã1xi1 + · · · + Ã j xi j + · · · + Ãmxim (FLRCF)

ˆ̃Y i = Ã0 + Ã1 X̃i1 + · · · + Ã j X̃i j + · · · + Ãm X̃im (FLRFF)

where Ã j is the j th fuzzy regression coefficients, xi j or X̃i j is the j th independent variable of the i th instance, xi0(X̃i0)

is 1, ˆ̃Y i is the i th estimated dependent variable, i = 1, 2, . . . , n, j = 0, 1, . . . ,m. A tilde character (∼) is placed above
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the name of a fuzzy variable to distinguish a fuzzy variable from a crisp variable. As crisp numbers are special fuzzy
numbers, model FLRCF can be treated as a special case of model FLRFF .

Themethods to estimate the fuzzy regression coefficients can be roughly categorized into two groups.One is the linear
programming (LP) methods [18,23,25]; the other is the least-squares (LS) methods [1,4–6,16,27]. The LP methods
minimize the total spread of the estimated dependent variables or that of the fuzzy regression coefficients, subject to
the constraint that the estimated dependent variables include the observed dependent variables within a certain h-level.
The advantage of the LP methods is low computational complexity. However, the LP methods have been criticized by
Redden and Woodall [20] as (i) they are extremely sensitive to outliers [10]; (ii) they do not allow all observations to
contribute to the estimation; and (iii) the estimated intervals become wider as more data are collected. Multi-objective
fuzzy regression techniques are developed to overcome these deficiencies of the LP methods [18,19,22,26]. The LS
methodsminimize the total difference between the estimated dependent variables and their observed counterparts. Thus,
compared with the estimations of the LP methods, the estimations of the LS methods have relatively small differences
between the estimated dependent variables and the observed ones. However, the LS methods have relatively higher
computational complexity. A comprehensive literature review of fuzzy regression can be found in [14].
As indicated in [2,11–13,17], a problem of model FLRFF is that with the increase of the magnitudes of independent

variables, the spreads of estimated dependent variables are increasing (refer to Section 2.3), even though the spreads
of observed dependent variables are roughly constant or decreasing. We call it spreads increasing problem (refer to
Section 2.3) in this paper. Some models [2,5,8,11–13,17], which address this problem, and their deficiencies are briefly
discussed below. More details are given in Section 3.
FLR models presented in [2,5,8] can avoid the spreads increasing problem by modelling centres and spreads of

dependent variables separately.However, the number of parameters to be estimated inmodel FLRCD08 [2] proportionally
increases with the increase of the number of instances. Although more parameters involved in a regression model
increase the model fitness, these also decrease the model generality [13]. Therefore, model FLRCD08 is unsuitable for
large dataset regression (refer to Section 3.4). In models FLRD’Urso03 [8] and FLRCoppi06 [5], the spreads of estimated
dependent variables are only determined by the centres of the estimated dependent variables. This limits the ability of
FLRD’Urso03and FLRCoppi06 to model the spreads of the dependent variables by independent variable (refer to Section
3.3).
Although solutions proposed in [11,12,17] also alleviate the spreads increasing problem, these solutions still cannot

model a decreasing trend in the spreads of the observed dependent variables, as the magnitudes of the independent
variables increase. For example, in these models [11,12,17], if the independent variables are crisp, the spreads of the
estimated dependent variables can only be a constant (refer to Section 3), even though the spreads of the observed
dependent variables are decreasing with the increase of the magnitudes of the independent variables, as shown in
Example 1.

Example 1. In Table 1, the independent variable is the height of the male candidates; and the fuzzy dependent variable
measures how a candidate’s height belongs to the concept high. L-type fuzzy numbers in the form of (my, �y) are
used to describe high (for a detailed description of L-type fuzzy number, refer to Section 2). my is the centre of a
fuzzy number, which measures the possibility of a given candidate’s height belonging to high. In this example, my is
not greater than 1. �y is the spread of a fuzzy number, which describes the vagueness of my . The taller a candidate’s
height is, closer the possibility of the candidate’s height is to 1, and lessens the vagueness of the candidate’s height
belonging to high. However, it is difficult to model this relationship between the candidates’ heights and high by model
FLRFF , because of the spreads increasing problem in model FLRFF , which is that the estimated dependent variables
can only increase with the magnitudes of the independent variables. Moreover, neither the models proposed in [11,12]
nor the model proposed in [17] can capture the relationship between height and high, because in these models, when
the independent variables are crisp, the spread of the estimated dependent variable can only be a constant (refer to
Section 3), which is not true for dataset1 in Table 1.

Note that another problem of modelling the relationship between the candidates’ heights and high by FLRFF is that
the estimated spreads of high maybe negative, since the relationship between the candidates’ heights and high is not
strictly linear. When the heights are greater than 2.1, the spreads of observed high stop decreasing and the spreads of
estimated high are negative. Following the arguments in D’Urso [8] and Coppi et al. [5], negative predicted spreads
can be interpreted as a lack of uncertainty and set to 0.
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Table 1
Dataset1.

i Height High(my , �y )L

1 1.7 (0.60, 0.30)L
2 1.8 (0.70, 0.25)L
3 1.9 (0.80, 0.10)L
4 2.0 (0.90, 0.05)L
5 2.1 (1.00, 0.00)L

From the above, we can see that in the previous FLR models the increasing trend in the spreads of the estimated
dependent variable limits the ability of FLR tomodel the relationship between the dependent and independent variables.
To alleviate this problem, in this paper, we propose a flexible spreads FLR model (FLRFS). In our model FLRFS , the
spreads of estimated dependent variables are able to fit the spreads of observed dependent variables, no matter if the
spreads of the observed dependent variables are increased, decreased or unchanged, as the magnitudes and the spreads
of the independent variables change.
This paper is organized as follows. In Section 2, we provide a brief introduction to fuzzy numbers and FLR, then

describe the spreads increasing problem in more detail. Related literatures to solve the spreads increasing problem are
reviewed in Section 3. In Section 4, a new FLRmodel, FLRFS , is proposed, which is able tomodel the linear relationship
between the dependent and independent variables better than the previous models. Four numerical experiments are
used to demonstrate the effectiveness of model FLRFS in Section 5. Section 6 gives our conclusions and future work.

2. Fuzzy number and FLR

In this section, we briefly introduce fuzzy numbers and the arithmetic rules of fuzzy numbers; then describe the
spreads increasing problem.

2.1. Fuzzy number

The definition of fuzzy numbers given by Dubois and Prade [7] is as follows.

Definition 2.1. A fuzzy number Ã is a convex normalized fuzzy set of the real line R; its membership function � Ã(x)
satisfies the following criteria:

(i) �-cut set of Ã, �� = {x |� Ã(x)��}, is a closed interval;
(ii) �1 = {x |� Ã(x) = 1} is non-empty;
(iii) convexity: for � ∈ [0, 1], � Ã(�x1 + (1 − �)x2)� min(� Ã(x1), � Ã(x2)).

Definition 2.2. As defined in [5,8,29], an LR-type fuzzy number Ã is

� Ã(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

L

(
ma − x

�a

)
for x�ma

R

(
x − ma

�a

)
for x > ma

where ma is called centre or mean value, and �a and �a are called left and right spreads, respectively, �a, �a > 0. L(z)
and R(z) are reference functions that map �+ → [0, 1], and strictly decreasing for z�0. Also, L (or R) satisfies the
following conditions: if L(0) = 1, L(x) < 1 for ∀x > 0; L(x) > 0 for ∀x < 1; L(1) = 0, or [L(x) > 0, ∀x and
L(+∞) = 0]. Ã can be denoted as Ã = (ma, �a, �a)LR . If �a = �a , then Ã is symmetric, Ã = (ma, �a)L , which is
called L-type fuzzy number.
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Definition 2.3. If L(x) = R(x) = 1 − x , Ã is a triangular fuzzy number. 1 Furthermore, if �a = �a , then Ã is a
symmetric triangular fuzzy number.

2.2. Arithmetic operations on fuzzy numbers

By applyingZadeh’s extension principle [28], the arithmetic operations of fuzzy numbers can be expressed as follows:

( Ã + B̃)(z) = sup
x+y=z

T ( Ã(x) + B̃(y))

( Ã ∗ B̃)(z) = sup
x∗y=z

T ( Ã(x) + B̃(y))

where T (·) is a triangular norm. The T -norm based LR-type fuzzy number addition preserves the shape. However,
multiplication is not shape preserving, namely, the product of two LR-type fuzzy numbers may not be LR-type.

Dubois and Prade [7] provided an approximation form for LR-type fuzzy number multiplication. According to their
approximation formulas, the multiplication of two LR-type fuzzy numbers can be presented as follows:

(i) if Ã > 0 and B̃ > 0,

(ma, �a, �a)LR · (mb, �b, �b)LR ≈ (mamb,ma�b + mb�a,ma�b + mb�a)LR

(ii) if Ã < 0 and B̃ > 0,

(ma, �a, �a)LR · (mb, �b, �b)LR ≈ (mamb, −ma�b + mb�a, −ma�b + mb�a)LR

(iii) if Ã < 0 and B̃ < 0,

(ma, �a, �a)LR · (mb, �b, �b)LR ≈ (mamb, −ma�b − mb�a, −ma�b − mb�a)LR

2.3. Spreads increasing problem

For simplicity, most research considers Ã j , X̃i j and
ˆ̃Y i in model FLRFF as LR-type fuzzy numbers or triangular

fuzzy numbers. By using the approximation formulas of Dubois and Prade [7], Yang and Lin [27] described model
FLRFF as

ˆ̃Y i = Ã0 + Ã1 X̃i1 + · · · + Ãm X̃im ≈ (mŷi , �ŷi , �ŷi )LR

mŷi = ma0 +
m∑
j=1

majmxi j

�ŷi = �a0 +
m∑

Ã j>0, j=1

[si j (maj �xi j + mxi j �a j ) + (1 − si j )(maj �xi j − mxi j �a j
)]

+
m∑

Ã j<0, j=1

[si j (−maj �xi j + mxi j �a j ) + (1 − si j )(−maj �xi j − mxi j �a j
)] (1)

�ŷi = �a0 +
m∑

Ã j>0, j=1

[si j (maj �xi j + mxi j �a j
) + (1 − si j )(maj �xi j − mxi j �a j )]

+
m∑

Ã j<0, j=1

[si j (−maj �xi j + mxi j �a j
) + (1 − si j )(−maj �xi j − mxi j �a j )] (2)

si j = 1 if X̃i j �0; si j = 0 if X̃i j < 0

1 For easy explanation, we assume that all LR-type fuzzy numbers in this paper are triangular fuzzy numbers.
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From Eqs. (1) and (2), we can see that as the magnitude of the independent variable (i.e., |mxi j |) increase, the spreads
of the estimated dependent variable (i.e., �ŷi and �ŷi ) increases. For example, when Ã j > 0 and X̃i j > 0, the left and

right spreads of ˆ̃Y i are

�ŷi = �a0 +
m∑

Ã j>0, j=1

(maj �xi j + mxi j �a j ), �ŷi = �a0 +
m∑

Ã j>0, j=1

[si j (maj �xi j + mxi j�a j
)]

which increase with the increase of |mxi j |. Similarly, we can deduce that the spreads of ˆ̃Y i increase as |mxi j | increase,
when Ã j > 0 and X̃i j < 0 ( Ã j < 0 and X̃i j < 0; or Ã j < 0 and X̃i j > 0).

It is the inherent property of model FLRFF that determines the spreads of ˆ̃Y i increasing with the increase of |mxi j |.
This property will affect the regression performance of model FLRFF , when the spreads of the observed dependent
variable are not increasing as the magnitude of X̃i j increase. We name this property as spreads increasing problem of
model FLRFF in this paper.

3. Review on related literatures

The spreads increasing problem has been addressed in several papers [2,5,8,11,12,17], and some solutions have been
proposed. However, the previous solutions still have some deficiencies.

3.1. Models FLRKC02 and FLRKC03

Kao and Chyu [11] proposed a crisp coefficients FLR model (FLRKC02) to tackle the spreads increasing problem,
which can be expressed as follows:

ˆ̃Y i = a0 + a1 X̃i1 + · · · + a j X̃i j + · · · + am X̃im + �̃ (FLRKC02)

�̃ = (0, l, r )LR

where each coefficient a j is a crisp number, j = 0, 1, . . . ,m; �̃ is a triangular fuzzy error term; X̃i j=(mxi j , �xi j , �xi j )LR .
A two-stage methodology is proposed to obtain the crisp coefficients and the fuzzy error term. The first stage is to
estimate crisp coefficients a j by applying the classical LSmethod to the defuzzified (such as centroids) independent and
dependent variables. In the second stage, fuzzy error term �̃ is determined by minimizing the total difference between
the membership values of the estimated dependent variables and those of the observed dependent variables. Totally,
there are m + 3 parameters to be estimated in model FLRKC02, which are l, r , and a j ’s.
For crisp independent variables, a deficiency of model FLRKC02 is that the spreads of each estimated response

variable are the spreads of �̃, which are always constants. An example of model FLRKC02 for a single crisp independent
variable is as follows:

ˆ̃Y i = 4.95 + 1.71xi + (0, 3.01, 1.80)LR (3)

In the above model, the left and right spreads of all the estimated response variables are the spreads of �̃, which is 3.01
and 1.80, respectively, even though the spreads of the observed response variables change as the independent variables
change.
For fuzzy independent variables, a deficiency ofmodel FLRKC02 is that the spread of each estimated response variable

cannot be less than a constant. For instance, the left spread of the i th instance cannot be less than a1�xi1 +· · ·+am�xm .
However, a1�xi1+· · ·+am�xm has no relationshipwith the left spread of the i th observed response variable. A numerical
example of model FLRKC02 for a single fuzzy independent variable is as follows:

ˆ̃Y i = 3.5724 + 0.5193X̃i + (0, 0.24, 0.24)LR (4)

The left spreads of the estimated responses are 0.5193�xi + 0.24. However, crisp coefficient 3.5724 and 0.5193 are
determined by applying the classical LS method to the centroids of the independent and dependent variables, which
have no relationship with the spreads of the observed dependent variables.
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The model proposed in [12] (FLRKC03) has a similar form with model FLRKC02. Except in FLRKC03, as shown in
the following, centre c of error term �̃ can be any crisp number, not only the origin:

ˆ̃Y i = a0 + a1 X̃i1 + · · · + a j X̃i j + · · · + am X̃im + �̃ (FLRKC03)

�̃ = (c, l, r )LR

Model FLRKC03 is not able to avoid the deficiencies of model FLRKC02 either, which are described above.

3.2. Model FLRNN04

The spreads increasing problem in model FLRFF is caused by the fuzzy arithmetic rules. To avoid the spreads
increasing problem, Nasrabadi and Nasrabadi [17] defined new arithmetic operations for symmetric fuzzy numbers
and used these operations in fuzzy regression analysis. The arithmetic operations defined in [17] are as follows:

For any L-type fuzzy numbers Ã = (ma, �a)L , B̃ = (mb, �b)L , and an algebraic operation × on �, ⊗ is the
corresponding algebraic operation of× on L-type fuzzy numbers.⊗ is defined as: Ã⊗ B̃ = (ma ×mb, �a ×�b)L .

Based on the above definition of the arithmetic operations, FLRFF can be written as follows:
ˆ̃Y i = Ã0 + Ã1 X̃i1 + · · · + Ãm X̃im

=
⎛
⎝ma0 +

m∑
p=1

mapmxip , �a0 +
m∑
p=1

�ap�xip

⎞
⎠

L

(FLRNN04)

To some extent, model FLRNN04 can avoid the spreads increasing problem, because in model FLRNN04, the spreads of
estimated dependent variables have no relationshipwith themagnitudes of independent variables. However, a deficiency
of model FLRNN04 is that the spreads of the estimated dependent variables can only depend on the spreads of the
independent variables, because the spreads of the observed dependent variables may also depend on the magnitudes of
the independent variables, such as the example shown in Example 1.

3.3. Models FLRD’Urso03 and FLRCoppi06

The models proposed by D’Urso [8] and Coppi et al. [5] are able to circumvent the spreads increasing problem by
modelling the centres of dependent variables by classical regression methods, and meanwhile modelling the spreads
of the dependent variables on their estimated centres.
For multiple independent variables Xi = (X̃i1, . . . , X̃i j , . . . , X̃im) and single dependent variable Ỹi = (myi , �yi ,

�yi )LR , estimated response ˆ̃Y i = (mŷi , �ŷi , �ŷi )LR obtained by the regression model proposed in [8] is as follows, in

which X̃i j = (mxi j , �xi j , �xi j )LR :

myi = mŷi + �i , mŷi = Mxia + Axir + Bxi s (5) (FLRD’Urso03)
�yi = �ŷi + �i , �ŷi = mŷi b + d (6)
�yi = �ŷi + �i , �ŷi = mŷi g + h (7)

where �i , �i and �i are residuals; Mxi = (1,mxi1, . . . ,mxi j , . . . ,mxim ), Axi = (1, �xi1 , . . . , �xi j , . . . , �xim ), Bxi =
(1, �xi1, . . . , �xi j , . . . , �xim ); (m + 1) dimension vectors a, r and s are the regression parameters for centres myi , a =
(a0, a1, . . . , am)T, r = (r0, r1, . . . , rm)T, s = (s0, s1, . . . , sm)T; i = 1, 2, . . . , n; and j = 1, 2, . . . ,m; b and d (g and h)
are the regression parameters to estimate left (right) spreads �yi (�yi ). Model FLRD’Urso03 is based on three sub-models.
The first one as shown in Eq. (5) estimates the centres of the dependent variables. The other two sub-models in Eqs.
(6) and (7) model the left and right spreads of the dependent variables based on the estimated centres that are obtained
in Eq. (5).
Model FLRD’Urso03 is able to avoid the spreads increasing problem, because of Eqs. (6) and (7), in which �ŷi and

�ŷi only depend on mŷi that can increase or decrease with the increase of �xi j ’s and �xi j ’s. For instance, assume that
regression parameter rk is negative and b is positive. Then, mŷi decreases with the increase of �xik (the left spread of
the kth independent variable), and �ŷi increase with the increase of mŷi . This makes �ŷi decrease with the increase of
�xik .
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However, in model FLRD’Urso03, �ŷi (�ŷi ) is determined by mŷi . That limits the ability of FLRD’Urso03 to model
�yi (�yi ) by independent variable Xi . For single independent variable, the three sub-models of FLRD’Urso03 can be
rewritten as follows:

mŷi = (1,mxi ) ∗ (a0, a1)T + (1, �xi ) ∗ (r0, r1)T + (1, �xi ) ∗ (s0, s1)T

= a1mxi + r1�xi + s1�xi + k (8)

�ŷi = ((1,mxi ) ∗ (a0, a1)T + (1, �xi ) ∗ (r0, r1)T + (1, �xi ) ∗ (s0, s1)T)b + d

= a1bmxi + r1b�xi + s1b�xi + kb + d (9)

�ŷi = ((1,mxi ) ∗ (a0, a1)T + (1, �xi ) ∗ (r0, r1)T + (1, �xi ) ∗ (s0, s1)T)g + h

= a1bmxi + r1b�xi + s1b�xi + kg + h (10)

where k = a0 + r0 + s0. Assume that in a single independent variable dataset, myi ’s (the centres of the dependent
variables) increase with the increase of �xi ’s and �xi ’s (the spreads of the independent variables); and �yi ’s (the spreads
of the dependent variables) increase with the increase of �xi ’s, but decrease when �xi ’s increase. According to Eq. (8),

mŷi is able to describe the relationship betweenmŷi and X̃i (i.e.,mŷi increases when �xi and �xi increase. This requires

r1 and s1 to be positive.). However, �ŷi is not able to describe the relationship between �yi and X̃i properly because
when �yi increases with the increase of �xi , b needs to be positive, and meanwhile �yi decreases with the increase of
�xi that requires b to be negative. Thus, in this case, model FLRD’Urso03 is not able to properly describe the relationship

between X̃i and Ỹi .
Similarly, the model proposed by Coppi et al. [5] is also composed of three sub-models. For crisp inputs xi =

(xi1, . . . , xim) and LR-type fuzzy outputs Ỹi = (myi , �yi , �yi )LR , estimated responses ˆ̃Y i = (mŷi , �ŷi , �ŷi )LR obtained
by the regression model proposed in [5] is

myi = mŷi + �i , mŷi = F(xi )a (11) (FLRCoppi06)
�yi = �ŷi + �i , �ŷi = mŷi b + d (12)
�yi = �ŷi + �i , �ŷi = mŷi g + h (13)

whereF(xi ) = [ f1(xi ), . . . , fk xi ), . . . , f p)(xi )], fk’s are suitably chosen functions. For crisp input–fuzzy output, model
FLRD’Urso03 is a specification of model FLRCoppi06, in which F(xi ) = [1, xi1, . . . , xim]. Similar to model FLRD’Urso03,
the sub-models of FLRCoppi06 shown in Eqs. (12) and (13) also depend on the sub-model given in Eq. (11). Thus,
FLRCoppi06 has the same problem as FLRD’Urso03, which is that �yi (�yi ) cannot be linearly modelled by Xi freely.

3.4. Model FLRCD08

To address the spreads increasing problem, a variable spread FLR model FLRCD08 is proposed by Chen and Dang
in [2], which is a three-phase method.

In the first phase, regression coefficients are treated as fuzzy numbers and the membership functions of the LS
estimates of the regression coefficients are constructed, since Chen and Dang argue that the membership functions
of fuzzy sets are more capable of capturing the relationship between independent variables and dependent variables
than crisp numbers [2]. To avoid the spreads increasing problem, in the second phase, the fuzzy regression coefficients
are defuzzified by the centre of gravity method to crisp regression coefficients. In the third phase, for each instance,
fuzzy error term Ẽi is determined by a mathematical programming method. The objective function of the mathematical
programming method is to minimize the total difference between the estimated and observed membership values of
response variables, EKC (refer Section 4.2), subject to the constraints that the spreads of each estimated response
variable are equal to those of the observed response variable. For predicting the response of an unseen instance, a
Mamdani fuzzy inference system [29] is applied to the derived regression model.
A generic model of FLRCD08 is

ˆ̃Y i = (b0)c + (b1)c X̃i1 + · · · + (b j )c X̃i j + · · · + (bm)c X̃im + Ẽi (14) (FLRCD08)
Ẽi = (0, �i ,�i )LR (15)
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where (b j )c’s are the defuzzified crisp regression coefficients; Ẽi is the estimated error term of the i th instance;
i = 1, 2, . . . , n; j = 0, 1, . . . ,m.

The parameters to be estimated in FLRCD08 are regression coefficients, (b j )c’s, and left and right spreads of error
terms, �i ’s and �i ’s, respectively. Totally, there are m + 2n + 1 parameters in FLRCD08, which are proportional to
the number of instances, n, and the dimension of the dataset, m. For large datasets, n is usually significantly greater
than m. More parameters involved in a regression model increase the model fitness, but these also decrease the model
generality [13]. Thus, FLRCD08 is unsuitable to large dataset regression, whose number of instances is large.

4. Flexible spreads FLR model FLRFS

From the above sections, we have seen the shortcomings of the previous FLR models. In this section, we describe
our flexible spreads FLR model (FLRFS) that is able to overcome the problems mentioned above of the previous FLR
models.

4.1. Description of model FLRFS

We first describe model FLRFS for single regression, then extend it to multiple regression.
In fuzzy regression analysis, the spreads and magnitudes of independent variables are all the information that can be

obtained. A general case is that the spreads of dependent variables may depend on both the spreads and magnitudes of
the independent variables. Thus, a general FLR model should be able to allow: (i) the spreads of estimated dependent
variables depend on both the spreads and magnitudes of the independent variables; (ii) the spreads of the estimated
dependent variables can change freely (increase, decrease or fixed) as the spreads and magnitudes of the independent
variables change. FLRFS is a model that possesses these properties.

Also, considering the relationship between fuzzy numbers and crisp numbers, in FLRFS the centres of estimated
dependent variables are modelled by the centres of independent variables, and the spreads of the estimated dependent
variables are modelled by both the centres and spreads of the independent variables. Since the centre of a fuzzy number
is the element belonging to a fuzzy concept with 100%, it can be treated as a crisp number. Thus, in FLRFS the estimation
of the centres of dependent variables is based on classical linear regression. The spreads of fuzzy numbers can be treated
as the vagueness of the fuzzy numbers. The vagueness of dependent variables depends not only on the vagueness of
independent variables but also on the centres of the independent variables, such as the dataset1 given in Table 1. To
capture this relationship between the spreads of the dependent variables and the independent variables, in FLRFS the
spreads of the dependent variables are estimated by both the centres and spreads of the independent variables.
Model FLRFS for single independent variable X̃i = (mxi , �xi , �xi )LR , can be described as follows:

ˆ̃Y i = k0 + k1mxi + S̃i (FLRFS single)

S̃i = (0, �si , �si )LR

�si = kll�xi + klmmxi + klr�xi + cl

�si = krl�xi + krmmxi + krr�xi + cr

�si �0, �si �0, i = 1, 2, . . . , n

where k0 and k1 are crisp regression coefficients; S̃i is a fuzzy spread term for i th instance; kll , klm , klr , krl , krm , krr ,
cl and cr are crisp spread coefficients. To achieve the fuzzy regression model, the parameters (i.e., k0, k1, kll , klm , klr ,
krl , krm , krr , cl and cr ) need to be determined, subject to the constraints that the spread of S̃i should be non-negative.
Parameters kll and krl reflect the influence of the left spreads of the independent variables on the left and right spreads of
the dependent variables, respectively. Similarly, parameters klr and krr show how the right spreads of the independent
variables affect the left and right spreads of the dependent variables. Parameters klm and krm give the information of
how the spreads of the dependent variables depend on the centres of the independent variables.
All parameters, k0, k1, kll , klm , klr , krl , krm , krr , cl and cr , can be positive or negative. Thus, the spreads of the

estimated dependent variables can increase or decrease freely as the spreads andmagnitudes of the independent variables
change. Thus, the model FLRFS is able to avoid the spreads increasing problem.
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For L-type independent variable X̃i = (mxi , �xi )L and dependent variable Ỹi = (myi , �yi )L , a simplified FLRFS

model can be expressed as

ˆ̃Y i = k0 + k1mxi + S̃i

S̃i = (0, �si )L , �si = kll�xi + klmmxi + c

�si �0, i = 1, 2, . . . , n

A generalized model FLRFS for multiple independent variables Xi = (X̃i1, . . . , X̃i j , . . . , X̃im), can be described as
follows:

ˆ̃Y i = k0 + k1mxi1 + · · · + k jmxi j + · · · + kmmxim + S̃i (FLRFS multiple)

S̃i = (0, �si , �si )LR

�si =
m∑
t=1

kllt�xit +
m∑
t=1

klmtmxit +
m∑
t=1

klrt�xit + cl

�si =
m∑
t=1

krlt�xit +
m∑
t=1

krmtmxit +
m∑
t=1

krrt�xit + cr

�si �0, �si �0, i = 1, 2, . . . , n, j = 0, 1, . . . ,m

where X̃i j = (mxi j , �xi j , �xi j )LR , k j ’s are crisp regression coefficients; S̃i is a fuzzy spread term for i th instance;
kllt ’s, klmt ’s, klrt ’s, krlt ’s, krmt ’s, krrt ’s, cl and cr are crisp spread coefficients. Model FLRFS for multiple regression is
a generalization of model FLRFS for single regression.
The parameters to be estimated in model FLRFS are k j ’s, kllt ’s, klmt ’s, klrt ’s, krlt ’s, krmt ’s, krrt ’s, cl and cr . The

number of the parameters is 7m+3, which is only proportional to the dimension of the dataset. Considering that
more parameters in a model decrease the model generality, FLRFS is thus more suitable to low-dimensional dataset
regression.
As we can see from above, model FLRFS can be easily extended from single regression to multiple regression.

However, the computational complexity of model FLRFS will increase significantly with the increase of data size and
the dimension of the independent variables. A gradient-descent optimization strategy proposed in [1] deals with the
high-dimensional data linear regression.
Model FLRFS can be used for descriptive purposes to study the fuzzy relationship between dependent and independent

variables. Also, it can be used for prediction purposes. Based on the arguments of D’Urso [8] and Coppi et al. [5], if
non-positive predicted spreads are interpreted as a lack of uncertainty and can be set to 0 for practical purposes, model
FLRFS can then be used for prediction purposes.

Although models FLRFS and FLRKC02 have a similar form, they have several significant differences. (i) In model
FLRFS , fuzzy spread variable S̃i is different for each instance, which is determined by the centres and spreads of
independent variables X̃i . In model FLRKC02, �̃ is an error term, which is fixed for all instances. (ii) In model FLRFS ,
regression coefficients, k1 and k2, describe the relationship between myi (the centres of the dependent variables)
and mxi (the centres of the independent variables). In model FLRKC02, the regression coefficients are obtained from
modelling the relationship between the centroids of Ỹi and X̃i ; but they are used to describe the relationship between Ỹi
and X̃i .
The similarity between models FLRD’Urso03, FLRCoppi06 and FLRFS is that all of themmodel the centres and spreads

of dependent variables separately. There are also two differences betweenmodels FLRD’Urso03, FLRCoppi06 and FLRFS .
(i) In FLRD’Urso03 and FLRCoppi06, the centres of dependent variables are modelled by both the centres and spreads of
independent variables. As mentioned above, the centre of a fuzzy number can be treated as a crisp number. Therefore,
in FLRFS the centres of dependent variables are determined by classical linear regression. (ii) In FLRD’Urso03 and
FLRCoppi06, the spreads of dependent variables are modelled by their corresponding estimated centres. In FLRFS , the
spreads of estimated responses variable are able to depend on both the centres and spreads of independent variables
linearly.
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4.2. Property of model FLRFS

Property of FLRFS . The feasible region of model FLRFS contains the feasible regions of models FLRKC02, FLRKC03
and FLRNN04. Thus, models FLRKC02, FLRKC03 and FLRNN04 can be seen as special cases of model FLRFS .

Proof. For simplicity, we only proof the above property of FLRFS for single regression. For multiple regression, the
property can be proved in a similar way.
Model FLRFS for single regression can be rewritten as

ˆ̃Y i = (k0 + k1mxi , kll�xi + klmmxi + klr�xi + cl , krl�xi + krmmxi + krr�xi + cr )LR (16)

(a) For single regression, both model FLRKC02 and model FLRKC03 can be written as

ˆ̃Y i = a0 + a1 X̃i + �̃ = a0 + a1(mxi , �xi , �xi )LR + (m�, ��, ��)LR

=
{
(a0 + a1mxi + m�, a1�xi + ��, a1�xi + ��)LR if a1�0 (17)
(a0 + a1mxi + m�, a1�xi + ��, a1�xi + ��)LR if a1 < 0 (18)

The feasible region of model FLRFS contains the feasible regions of models FLRKC02, FLRKC03, since for any solution
of model FLRKC02 or FLRKC03 (a0, a1,m�, ��, ��), we can always find an equivalent solution in model FLRFS by
comparing the coefficients of Eq. (16) with those of Eq. (17), and the coefficients of Eq. (16) and those of Eq. (18):

for a1�0 :

k0 = a0 + m�, k1 = kll = krr = a1
klm = klr = krm = krl = 0, cl = ��, cr = �� (19)

for a1 < 0 :

k0 = a0 + m�, k1 = klr = krl = a1
klm = kll = krm = krr = 0, cl = ��, cr = �� (20)

(b) In [17], model FLRNN04 is only considered with L-type fuzzy numbers. For a single independent variable, X̃i =
(mxi , �xi )L , model FLRNN04 can be expressed as

ˆ̃Y i = Ã0 + Ã1 X̃i = (ma0 , �a0 )L + (ma1 , �a1 )L (mxi , �xi )L
= (ma0 + ma1mxi , �a0 + �a1�xi )L (21)

When all fuzzy numbers are L-type, model FLRFS can be simplified as

ˆ̃Y i = (k0 + k1mxi , kll�xi + klmmxi + c)L (22)

The feasible region of model FLRFS contains the feasible region of model FLRNN04, since for any solution of model
FLRNN04 (ma0 , �a0 ,ma1, �a1 ), we can always find an equivalent solution inmodel FLRFS by comparing the coefficients
of Eq. (21) and those of Eq. (22):

k0 = ma0 , k1 = ma1 , kll = �a1 , klm = 0, c = �a0 (23)

However, not all solutions ofmodel FLRFS can have an equivalent solution inmodels FLRKC02, FLRKC03 or FLRNN04.
For instance, no solutions of models FLRKC02, FLRKC03 or FLRNN04 are equivalent to the solutions of model FLRFS ,
when the spreads of the dependent variables are determined or partially determined by the centres of the independent
variables.
Thus, for single regression, the feasible region of model FLRFS contains the feasible region of models FLRKC02,

FLRKC03 and FLRNN04. Also, the conversion formulas from the parameters of solutions ofmodels FLRKC02, FLRKC03
and FLRNN04 to the parameters of solutions of model FLRFS are given in Eqs. (19), (20) and (23). For single regression,
models FLRKC02, FLRKC03 and FLRNN04 can be seen as the special cases of model FLRFS . �
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4.3. Parameters estimation

When model FLRFS is adopted, the following task is to estimate the parameters. Minimizing the total difference
between estimated and observed response variables is a common criterion of parameters estimation. Various distance
measurements havebeenproposed tomeasure the total difference between the estimated andobserved response variables
in fuzzy regression.
In [15], the error of estimation, EKB, is defined as the ratio of the total difference between the estimated and observed

membership values of response variables to the total observed membership values of the response variables, which is
the shaded areas over the left triangle area, in Fig. 1. A formularized definition of EKB is given by

EKB =
∫
SỸ∪S ˆ̃Y

|�Ỹ (x) − � ˆ̃Y (x)| dx∫
SỸ

�Ỹ (x) dx
(24)

where �Ỹ (x) and � ˆ̃Y (x) are the estimated and observed membership functions of the response variables, SỸ and S ˆ̃Y are
the supports of �Ỹ (x) and � ˆ̃Y (x).

EKC , a variation of EKB, was used in [11,12]. EKC measures the total difference between the estimated and observed
membership values of response variables, which include all the shaded areas in Fig. 1:

EKC =
∫
SỸ∪S ˆ̃Y

|�Ỹ (x) − � ˆ̃Y (x)| dx (25)

In [9], the similarity of fuzzy numbers is used as a measurement to evaluate the effectiveness of regression, which is
defined as follows:

SH =
∫
min(�Ỹ (x), � ˆ̃Y (x)) dx∫
max(�Ỹ (x), � ˆ̃Y (x)) dx

(26)

In [8], the squared Euclidean distance between two fuzzy numbers Ã1 = (m1, �1, �1)LR and Ã2 = (m2, �2, �2)LR is
defined as

d2( Ã1, Ã2) = ‖m1 − m2‖2�c + ‖(m1 − �1) − (m2 − �2)‖2�� + ‖(m1 + �1) − (m2 + �2)‖2��

where �c, �� and �� are arbitrary positive weights.
In [5], a generalized squared Euclidean distance is used, which can be described as

	2( Ã1, Ã2) = ‖m1 − m2‖2 + ‖(m1 − ��1) − (m2 − ��2)‖2 + ‖(m1 + ��1) − (m2 + ��2)‖2
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where � = ∫ 1
0 L−1(
) d
, � = ∫ 1

0 R−1(
) d
. From the definition of 	2, we can see that 	2 weights the centres and
spreads differently by means of � and �.

EKB, EKC , d2 and 	2 range from zero to positive infinity, while SH ranges from 0 to 1. Thus, compared with EKB,
EKC , d2 and 	2, SH can better describe the total difference between the estimated and observed response variables.
Therefore, to estimate the parameters of model FLRFS , our objective function is set to maximize the average similarity
between the estimated and observed response variables. This is referred to as MaxSim solution for FLRFS , which can
be described as

Max
1

n

n∑
i=1

SHi

s.t. SHi =
∫
min(�Ỹi (x), � ˆ̃Y i

(x)) dx∫
max(�Ỹi (x), � ˆ̃Y i

(x)) dx

ˆ̃Y i = k0 + k1mxi1 + · · · + k jmxi j + · · · + kmmxim + S̃i

S̃i = (0, �si , �si )LR

�si =
m∑
t=1

kllt�xit +
m∑
t=1

klmtmxit +
m∑
t=1

klrt�xit + cl

�si =
m∑
t=1

krlt�xit +
m∑
t=1

krmtmxit +
m∑
t=1

krrt�xit + cr

�si �0, �si �0, i = 1, 2, . . . , n, j = 0, 1, . . . ,m (27)

5. Numerical examples

Note that the solution of the optimization problemMaxSim for model FLRFS depends on the initial values, since the
feasible region of solutions may not be continuous. In this section, we first provide a strategy of setting initial values,
which is adopted in our experiments. Then, the effectiveness of model FLRFS will be demonstrated on four datasets:
dataset1 that has been shown in Table 1 in Section 1, and other three commonly used datasets (one is a single crisp
input–fuzzy output dataset (dataset2) from [24]; another is a single fuzzy input–fuzzy output dataset (dataset3) from
[22], and the other is a multiple fuzzy inputs–fuzzy output real world dataset (dataset4) from [8]).

5.1. Initial value setting

For practical reasons, in this section we provide an initial value setting strategy. The experimental results in Section
5.2 are based on this strategy. The purpose to provide this initial value setting strategy here is neither to demonstrate it
is the best strategy to set initial values nor to claim that it guarantees to achieve the global optimization.
For simplicity, in this section we only introduce the initial value setting strategy for single regression FLRFS . For

model FLRFS dealing with multiple regression, the initial values can be set in a similar way.
Given observations (X̃i , Ỹi ), where X̃i = (mxi , �xi , �xi )LR , Ỹi = (myi , �yi , �yi )LR , i = 1, 2, . . . , n, the task of fuzzy

regression is to find the parameters of model FLRFS , which maximizes Eq. (27), subject to its constraints.
In model FLRFS , line k0 + k1mxi describes the relationship between mxi (the centre of independent variable) and

myi (the centre of dependent variable). Thus, we apply the conventional LS estimation to get the linear relationship
between mxi and myi , i.e., myi = b0 + b1mxi . b0 and b1 can be set as the initial values of k0 and k1.

In model FLRFS , there are three factors that can affect the spreads of response variables: �xi , �xi and mxi . kll
describes how �yi (the left spread of dependent variable) depends on �xi (the left spread of independent variable). Then,
the conventional LS estimation is applied to �yi and �xi to get their linear relationship: �yi = pll + bll�xi . If equal
weights is set to the three factors, �xi , �xi and mxi , bll/3 can be set as the initial value of kll . Similarly, klr describes
how �yi depends on �xi . The LS estimation is applied to �yi and �xi to get their relationship: �yi = plr + blr�xi .
blr/3 can be set as the initial value of klr . Parameter klm describes how �yi depends on mxi . By applying the LS



J. Lu, R. Wang / Fuzzy Sets and Systems 160 (2009) 2505–2523 2517

Table 2
Dataset2.

i xi Ỹi = (myi , �yi )L
ˆ̃Y i = (mŷi , �ŷi )L SH EKC

1 1 (8.0, 1.8)L (6.00, 2.80)L 0.19 3.13
2 2 (6.4, 2.2)L (7.75, 2.70)L 0.36 2.33
3 3 (9.5, 2.6)L (9.50, 2.60)L 1.00 0.00
4 4 (13.5, 2.6)L (11.25, 2.50)L 0.19 3.51
5 5 (13.0, 2.4)L (13.00, 2.40)L 1.00 0.00

Average 0.5462 1.7932

estimation to �yi and mxi , their relationship �yi = plm + blmmxi is obtained. The initial value of klm can be set as
blm/3. (pll/3 + plr/3 + plm/3) can be set as the initial value of cl . Unequal weights can also be assigned to the three
factors �xi , �xi and mxi . For example, if the effect of mxi is significantly greater than the effects of both �xi and �xi
(i.e., blm?bll and blr ), the initial spreads of the estimated response variables can be set only based on mxi .

Similarly, we can set the initial values of krl , krm , krr and cr in the same way.

5.2. Examples

The following experimental results are based on the initial value setting strategy described in Section 5.1.

Example 1 (Continue). As it is shown in Section 1, the dataset1 cannot be modelled by FLRFF , FLRKC02, FLRKC03
and FLRNN04 properly, because the spreads of the observed response variables tend to decrease as the magnitudes of
the independent variable increase. This decreasing trend in the spreads of the observed response variables can be fitted
by model FLRFS . Applying L-type fuzzy numbers based FLRFS model and the initial value setting strategy given in
Section 5.1, the following regression model is obtained:

ˆ̃Y i = −1.10 + mxi + (0, −0.5mxi + 1.05)L (28)

It can be seen fromEq. (28) that the spreads of the estimated response variables are decreasingwith the increase ofmxi ’s.
The estimated response variables for the five instances are (0.60, 0.20)L , (0.70, 0.15)L , (0.80, 0.10)L , (0.90, 0.05)L
and (1.00, 0.00)L , respectively.

Note that when mx is greater than 2.10, the centre of the estimated dependent variable is greater than 1.00 and the
spreads of the estimated dependent variable are less than 0, which can be interpreted as the height belongs to the concept
high with full confidence and a lack of uncertainty. For practical reasons, the estimated centres that are greater than
1.00 can be set to 1.00, and the estimated spreads that are less than 0 can be set to 0.

Example 2. In this example, we consider the crisp input–fuzzy output dataset given by Tanaka et al. [24], which
is shown in the left half of Table 2. xi is the observed independent variable, Ỹi is the observed dependent variable,
i = 1, 2, . . . , 5.

As the observed dependent variables in dataset2 are symmetric, L-type fuzzy numbers based FLRFS model is adopted.
According to the initial value setting strategy given in Section 5.1, the initial values are set as

Initial values (a) : k0 = 4.95; k1 = 1.71; kll = 0; klm = 0.08; c = 2.08

Then, the following regression model is obtained:

ˆ̃Y i = (4.25 + 1.75mxi , −0.10mxi + 2.90)L (29)

Estimated response variable ˆ̃Y i , SH and EKC for each instance of dataset2 are listed in the right half of Table 2.

Since model FLRFS is proposed to solve the spreads increasing problem, in this example model FLRFS is compared
with models FLRKC02 [11], FLRKC03 [12], FLRNN04 [17] and FLRCD08 [2], which are able to avoid the spreads
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Table 3
Fuzzy regression models of dataset2.

FLRFS(MaxSim) (given initial values (a)) ˆ̃Y i = (4.25 + 1.75mxi , −0.10mxi + 2.90)L

FLRKC02 [11]
ˆ̃Y i = (4.95 + 1.71mxi , 3.01, 1.80)LR

FLRKC03 [12]
ˆ̃Y i = (4.926 + 1.718mxi , 2.320)L

FLRNN04 [17]
ˆ̃Y i = (4.6812 + 1.73306mxi , 2.3221)L

FLRCD08 [2]
ˆ̃Y i = 4.95 + 1.71mxi + Ẽi

Table 4
Comparison of the performance of difference methods on Dataset2.

Models AveSH TotEKC

FLRFS(MaxSim) (given the initial values (a)) 0.5462 8.9659
FLRKC02 [11] 0.4663 9.679
FLRKC03 [12] 0.4095 10.089
FLRNN04 [17] 0.4388 9.771
FLRCD08 [2] 0.5198 7.857

increasing problem and also are provided experimental results on dataset2 by their authors. These five models are
listed in Table 3, 2 where Ẽi ’s in model FLRCD08, are Ẽ1 = (−1.8, 0, 1.8), Ẽ2 = (−2.6, 0, 1.8), Ẽ3 = (−3.4, 0, 1.8),
Ẽ4 = (−1.8, 0, 3.4) and Ẽ5 = (−3, 0, 1.8).
It is worth to note that the solution of a model also depends on the objective function to be optimized. Thus, it is not

easy to compare the solutions of different models that optimize different objective functions.
However, if the evaluation results of model MA are better than these of model MB when both objective functions

of MA and MB are used as the evaluation measurements, we can then say MA outperforms MB in terms of these two
evaluation measurements.
In this experiment, in order to compare model FLRFS with models FLRKC02, FLRKC03 and FLRNN04, both average

similarity AveSH and total error TotEKC are used as the evaluation measurements, which are defined as follows:

AveSH = 1

n

n∑
i=1

SHi , TotEKC =
n∑

i=1

EKCi

because: (i) the objective function of model FLRFS is to maximize AveSH between observed response variables Ỹ and

their estimated counterparts ˆ̃Y and (ii) the objective function of models FLRKC02, FLRKC03, FLRNN04 and FLRCD08

is to minimize TotEKC between Ỹ and ˆ̃Y .
According to the definitions of AveSH and TotEKC , a better method in terms of these two measurements should have

a higher AveSH value and a lower TotEKC value.
Table 4 shows the performances of model FLRFS , and models FLRKC02, FLRKC03, FLRNN04 and FLRCD08 on

AveSH and TotEKC . From Table 4, we can see that the MaxSim solution of model FLRFS outperforms all other four
models in terms of AveSH , and outperforms the other three models in terms of TotEKC except model FLRCD08.

Although model FLRFS achieves better performances than other three models (FLRKC02, FLRKC03 and FLRNN04)
in terms of AveSH and TotEKC , and a better performance than FLRCD08 in terms of AveSH , it cannot guarantee that
the solution of model FLRFS given in Eq. (29) is the global optimization. The FLR model given by Hojati et al. [9] is
shown as follows:

ˆ̃Y i = (6.75 + 1.25mxi , 1.65 + 0.15mxi )L

2 In some papers, a fuzzy number is expressed by its lower bound, centre and upper bound. To keep the notation consistency in this paper, we
express a fuzzy number by its centre, left and right spreads.
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Table 5
Dataset3.

i X̃i = (mxi , �xi )L Ỹi = (myi , �yi )L
ˆ̃Y i = (mŷi , �ŷi )L SH EKC

1 (2.0, 0.5)L (4.0, 0.5)L (4.0, 0.5)L 1.0000 0.0000
2 (3.5, 0.5)L (5.5, 0.5)L (4.7857, 0.5)L 0.0426 0.9184
3 (5.5, 1.0)L (7.5, 1.0)L (5.833, 1.6758)L 0.0766 2.2952
4 (7.0, 0.5)L (6.5, 0.5)L (6.619, 0.5)L 0.6341 0.2239
5 (8.5, 0.5)L (8.5, 1.0)L (7.4048, 0.5)L 0.0000 1.0000
6 (10.5, 1.0)L (8.0, 1.0)L (8.4524, 1.6758)L 0.4957 0.9021
7 (11.0.0.5)L (10.5, 0.5)L (8.7143, 0.5)L 0.0000 1.0000
8 (12.5, 0.5)L (9.5, 0.5)L (9.5, 0.5)L 1.0000 0.0000

Average 0.4061 0.7925

Their model obtains a higher AveSH value (0.5515) and a lower TotEKC value (8.3986) than model FLRFS given in
Eq. (29). This is because theMaxSim solution of model FLRFS obtained in this experiment is a local maximum, not a
global one. Given appropriate initial values, model FLRFS can also find the solution obtained in [9]. This is because
the solution given in [9] can be expressed by model FLRFS as follows:

K0 = 6.75; k1 = 1.25; kll = 0; klm = 0.15; c = 1.65

Although the solution given in [9] outperforms the solution of model FLRFS given in Eq. (29) in terms of AveSH and
TotEKC , the model proposed in [9] has the spreads increasing problem.

From this example, we can see that initial values are important for finding theMaxSim solution of FLRFS . In Section
6, we will give a potential solution on how to set initial values in order to find the global optimization.

Example 3. In this example, we compare model FLRFS with other models using the fuzzy input–fuzzy output dataset
given by Sakawa and Yano in [22], which is shown in the left half of Table 5. X̃i ’s are the observed independent
variables. Ỹi ’s are the observed dependent variables.

The independent variables and the observed dependent variables in dataset3 are L-type. Thus, L-type fuzzy number
based FLRFS model is adopted. According to the initial value setting strategy given in Section 5.1, the initial values
can be set as 3 :

Initial values (b): k0 = 3.5724; k1 = 0.5193; kll = 1; klm = 0; c = 0

Then, the following regression model is obtained:

ˆ̃Y i = (2.9524 + 0.5238mxi , 2.3516�xi − 0.6758)L (30)

Estimated response ˆ̃Y i , SH and EKC for each instance of dataset3 are listed in the right half of Table 5.
TheMaxSim solution of model FLRFS is compared with the other four models: FLRKC02, FLRKC03, FLRNN04 and

FLRCD08, which are listed in Table 6. Ẽi ’s in model FLRCD08, are Ẽ1 = (−0.234, 0, 0.234), Ẽ2 = (−0.234, 0, 0.234),
Ẽ3 = (0, 0, 0.935), Ẽ4 = (−0.234, 0, 0.234), Ẽ5 = (−0.234, 0, 0.234), Ẽ6 = (−0.935, 0, 0), Ẽ7 = (−0.234, 0,
0.234) and Ẽ8 = (−0.234, 0, 0.234).

To compare the performances of model FLRFS , and models FLRKC02 [11], FLRKC03 [12], FLRNN04 [17] and
FLRCD08 [2], AveSH and TotEKC are also used as evaluation measurements in this example.

The comparison of the performances of different methods on AveSH and TotEKC is given in Table 7. From Table 7,
we can see that the average similarity of FLRFS is significantly higher than that of the other methods. Also, the total

3 By applying the LS estimation to �yi and �xi , and �yi and mxi , we get �yi = 1.0 ∗ �xi and �yi = 0.5911 + 0.0045mxi . Since 0.0045>1, we
set the initial spreads of estimated response only depend on �xi .
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Table 6
Fuzzy regression models of dataset3.

FLRFS(MaxSim) (given initial values (b)) ˆ̃Y i = (2.9524 + 0.5238mxi , 2.3516�xi − 0.6758)L

FLRKC02 [11]
ˆ̃Y i = (3.5724 + 0.5193mxi , 0.5193�xi + 0.24)L

FLRKC03 [12]
ˆ̃Y i = (3.554 + 0.522mxi , 0.522�xi + 0.951, 0.522�xi + 0.949)LR

FLRNN04 [17]
ˆ̃Y i = (3.5767 + 0.5467mxi , �xi )L

FLRCD08 [2]
ˆ̃Y i = 3.5284 + 0.5298mxi + Ẽi

Table 7
Comparison of the performance of difference methods on Dataset3.

Models AveSH TotEKC

FLRFS(MaxSim) (given the initial values (b)) 0.4061 6.3396
FLRKC02 [11] 0.1499 7.470
FLRKC03 [12] 0.2351 9.363
FLRNN04 [17] 0.2026 7.541
FLRCD08 [2] 0.1854 7.000

error of FLRFS is significantly lower than that of the other methods. Thus, model FLRFS outperforms all four models
(FLRKC02, FLRKC03, FLRNN04 and FLRCD08) in terms of both AveSH and TotEKC on dataset3.

Example 4. In this example, we investigate the effectiveness of model FLRFS for multiple regression on the restaurants
data given by D’Urso [8]. The restaurants data listed in Table 8 are drawn from an Italian specialized book, which
concerns the performances of the 30 good-quality Roman restaurants, where fuzzy inputs X̃i1’s and X̃i2’s are decision
on cooking and decision on cellar, respectively, and Ỹ is decision on service.

The independent variables are two dimensional. Thus, model FLRFS for multiple regression is adopted. According
to the initial value setting strategy given in Section 5.1, the following parameters of model FLRFS are obtained:

k0 = −1.66; k1 = 1.33; k2 = 0.00

kll1 = −0.91; klr1 = 0.00; klm1 = 0.63; kll2 = −0.65; klr2 = −1.48; klm2 = −0.28; cl = 0.80

krl1 = 0.37; krr1 = 1.00; krm1 = −0.12; krl2 = 0.09; krr2 = 0.20; krm2 = 0.03; cr = 0.08 (31)

The regression parameters of model FLRD’Urso03 on dataset4 are estimated by minimizing the total squared Euclidean
distance d2 between the estimated and observed response variables, which are listed as follows [8]:

a = (0.6498399, 0.4542534, 0.4924441)T

r = (−1.868527, 2.3604004, 0.7392849)T

s = (−0233325,−0.13392, 0.1271022)T

b = 0.1173197, d = −0.401173, g = 0.2306911, h = −0.650102 (32)

In order to compare model FLRFS with model FLRD’Urso0, both AveSH and sum of d2 are used as the evaluation

measurements, because: (i) the objective function of model FLRFS is to maximize AveSH between Ỹ and ˆ̃Y and (ii) the

objective function of FLRD’Urso03 is to minimize total squared Euclidean distance d2 between Ỹ and ˆ̃Y .
The comparison of the performances of FLRFS and FLRD’Urso03 on both AveSH and total d2 is given in Table 9.

From Table 9, we can see that model FLRFS outperforms model FLRD’Urso03 in terms of both AveSH and sum of d2.
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Table 8
Dataset4: restaurants data.

i X̃i1 = (mxi1 , �xi1 ,�xi1 )LR X̃i2 = (mxi2 , �xi2 ,�xi2 )LR Ỹi = (myi , �yi ,�yi )LR

1 (7, 0.5, 1.25)LR (8, 0.75, 1)LR (8, 0.75, 1)LR
2 (7, 0.5, 1.25)LR (7, 0.5, 1.25)LR (6, 0.25, 0.5)LR
3 (6, 0.25, 0.5)LR (7, 0.5, 1.25)LR (6, 0.25, 0.5)LR
4 (8, 0.75, 1)LR (9, 0, 1)LR (9, 0, 1)LR
5 (8, 0.75, 1)LR (8, 0.75, 1)LR (8, 0.75, 1)LR
6 (6, 0.25, 0.5)LR (7, 0.5, 1.25)LR (5, 0, 1)LR
7 (7, 0.5, 1.25)LR (8, 0.75, 1)LR (7, 0.5, 1.25)LR
8 (7, 0.5, 1.25)LR (7, 0.5, 1.25)LR (5, 0, 1)LR
9 (7, 0.5, 1.25)LR (8, 0.75, 1)LR (7, 0.5, 1.25)LR

10 (6, 0.25, 0.5)LR (7, 0.5, 1.25)LR (6, 0.25, 0.5)LR
11 (7, 0.5, 1.25)LR (8, 0.75, 1)LR (8, 0.75, 1)LR
12 (7, 0.5, 1.25)LR (6, 0.25, 0.5)LR (6, 0.25, 0.5)LR
13 (7, 0.5, 1.25)LR (8, 0.75, 1)LR (9, 0, 1)LR
14 (7, 0.5, 1.25)LR (8, 0.75, 1)LR (8, 0.75, 1)LR
15 (7, 0.5, 1.25)LR (7, 0.5, 1.25)LR (7, 0.5, 1.25)LR
16 (7, 0.5, 1.25)LR (7, 0.5, 1.25)LR (7, 0.5, 1.25)LR
17 (6, 0.25, 0.5)LR (7, 0.5, 1.25)LR (6, 0.25, 0.5)LR
18 (7, 0.5, 1.25)LR (8, 0.75, 1)LR (7, 0.5, 1.25)LR
19 (7, 0.5, 1.25)LR (7, 0.5, 1.25)LR (8, 0.75, 1)LR
20 (7, 0.5, 1.25)LR (9, 0, 1)LR (7, 0.5, 1.25)LR
21 (7, 0.5, 1.25)LR (8, 0.75, 1)LR (7, 0.5, 1.25)LR
22 (7, 0.5, 1.25)LR (8, 0.75, 1)LR (6, 0.25, 0.5)LR
23 (7, 0.5, 1.25)LR (9, 0, 1)LR (7, 0.5, 1.25)LR
24 (7, 0.5, 1.25)LR (7, 0.5, 1.25)LR (8, 0.75, 1)LR
25 (7, 0.5, 1.25)LR (7, 0.5, 1.25)LR (6, 0.25, 0.5)LR
26 (7, 0.5, 1.25)LR (7, 0.5, 1.25)LR (6, 0.25, 0.5)LR
27 (7, 0.5, 1.25)LR (7, 0.5, 1.25)LR (7, 0.5, 1.25)LR
28 (7, 0.5, 1.25)LR (8, 0.75, 1)LR (7, 0.5, 1.25)LR
29 (7, 0.5, 1.25)LR (7, 0.5, 1.25)LR (7, 0.5, 1.25)LR
30 (6, 0.25, 0.5)LR (7, 0.5, 1.25)LR (6, 0.25, 0.5)LR

Table 9
Comparison of the performance of difference methods on Dataset4.

Models AveSH Sum of d2

FLRFS(MaxSim) 0.5675 64.5683
FLRD’Urso03 0.2263 73.6945

6. Conclusions and future work

In this paper, we proposed model FLRFS that has more flexible spreads compared with previous FLR models. A
property of model FLRFS is that the spreads of estimated response variables are able to fit the spreads of observed
response variables, no matter if the spreads of the observed response variables are increased, decreased or unchanged
when the spreads and magnitudes of the independent variables change. This property makes model FLRFS be able to
avoid the spreads increasing problem that exists in model FLRFF and overcome the deficiencies of models FLRKC02,
FLRKC03, FLRNN04, and FLRD’Urso03, which are mentioned in Section 3. The number of parameters in model FLRFS

only proportionally increases with the increase of the dimension of independent variables, while the number of param-
eters in model FLRCD08 increases with the increase of both the dimension and the number of independent variables.
This makes FLRFS more suitable to dataset with large instance number than FLRCD08.
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The parameters of model FLRFS are estimated by maximizing the average similarity between the estimated and
observed response variables. The experimental results show that model FLRFS has a better performance than previous
models in terms of AveSH , TotEKC and sum d2. Also, the experimental results show that initial value setting is important
for parameter estimation of FLRFS when the objective function is set as maximizing the average similarity between
the estimated and observed response variables. Although we have given a strategy for the initial value setting, it cannot
guarantee that the generated regression model is the global optimization. Our future work is to find a more sophisticated
initial value setting strategy to achieve better solutions of model FLRFS . Genetic algorithms may be potential solutions
for the initial value setting problem of model FLRFS .
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