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Abstract. The reliable estimation of the seismic performance of structures requires 
quantifying the aleatory and epistemic uncertainties of the system parameters. This is 
efficiently achieved for a case study of a four-story steel moment-resisting frame through 
several important advances. First, a state-of-the-art numerical model is formed with full 
spatial parameterization of its strength and plastic deformation properties. Empirical 
relationships derived from experimental data are used to model the cyclic behavior of steel 
sections using probabilistically distributed parameters that include intra- and inter-
component correlation. Finally, incremental dynamic analysis and Monte Carlo simulation 
are employed to accurately assess the seismic performance of the model under the influence 
of uncertainties. Of interest is the extent to which model parameter uncertainties may trigger 
negative demand-capacity correlation in structural fragility evaluation, where, for example, a 
lower ductility capacity for a component may decrease the threshold for local failure while at 
the same time raising the local demand estimate from an uncertainty-aware model. With 
respect to the examined steel moment-resisting frame and considering three construction 
quality levels (i.e. very good, average, low) as per FEMA P-58, it is shown that, despite the 
good agreement of the evaluated structural demands obtained with and without consideration 
of the model parameter uncertainties for well-designed modern buildings, the potential 
demand-capacity correlation is likely to give rise to unconservative estimates of fragility for 
local damage-states, especially in cases where substandard quality control is exercised 
during construction.  

1 INTRODUCTION 

Several uncertainty sources come into play whenever an engineer attempts to assess the 
seismic performance of a structural system. They may be broadly organized into two main 
categories, these being the aleatory and the epistemic [1]. Aleatory uncertainties are 
associated with inherently random factors, such as the earthquake loading, and hence cannot 
be controlled. By contrast, epistemic uncertainty sources are related to our incomplete 
knowledge and can be potentially reduced, e.g., by employing testing to determine material 
properties or using more sophisticated numerical models and methods of analysis.  

Up until now, several recent studies (e.g. [2; 3]) have concluded that the earthquake 
“signature” is the dominant uncertainty source. However, current research has, so far, only 
partially addressed the issue of the uncertainties related to the parameters of the structural 
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model in seismic performance assessment (e.g. [4; 5; 6; 7; 8; 9; 10; 11]). For instance, Ibarra 
& Krawinkler [10] have shown that the model parameter uncertainties can have a significant 
impact on the predicted collapse performance when considering deteriorating hysteretic 
models. Nevertheless, the study is limited to single-degree-of-freedom (SDOF) systems and 
hence the validity of the outcomes to multi-degree-of-freedom (MDOF) systems is 
questionable. By contrast, Liel et al [6] investigated the model uncertainty significance for a 
set of reinforced concrete structures that were efficiently modeled to account for cyclic 
deterioration in flexural strength. This study concluded that neglecting the modeling 
uncertainties reduces the dispersion in the response fragility and also shifts the median 
predictions. Despite the revealing findings of this study, these are bounded to errors 
associated with the approximate nature of the response surface methodology. The latter was 
adopted for predicting the median collapse capacity as a function of the model random 
variables. On a different track, Vamvatsikos & Fragiadakis [9] investigated the model 
uncertainty effects on a steel moment-resisting frame (SMRF) by means of Monte Carlo 
simulation paired with Latin Hypercube Sampling. The study concluded that the model 
parameter uncertainties can have an important contribution to the overall response dispersion. 
Yet, generalization of the findings is limited due to the fact that the probabilistic modeling of 
the uncertain parameters was not founded on experimental data. 

In fact, with respect to the deterioration modeling of steel frames, only limited research 
(e.g. [9; 12; 13; 14]) has been focused explicitly on the model parameter uncertainty in the 
structural component capacity. However, even in these studies, deterioration modeling was 
based either on expert opinion or on empirical expressions derived from small experimental 
databases, using simplified assumptions to employ the best possible capacity estimates given 
the limited available data. To this end, the dependence of the models proposed by e.g. FEMA 
355D [15], Mele [16] and Kazantzi et al [14] for estimating the steel component capacities on 
a single structural property (i.e. the beam depth), may be considered a step forward. 
Nevertheless, they have left ample space for more elaborate research towards enhanced steel 
structural modeling and capacity uncertainty consideration. On account of the above, 
relatively recently, Lignos & Krawinkler [17] provided detailed relationships for modeling the 
cyclic deterioration in flexural strength and stiffness of structural steel components [18]. The 
proposed multi-variable empirical equations allow the prediction of several modeling 
parameters on the basis of more than 300 steel wide flange beam experiments.  

Furthermore, all pertinent studies have been confined so far to a full spatial correlation 
assumption, meaning that parameter changes are effected uniformly throughout a building, 
vastly reducing the dimensionality of the problem but at the same time exaggerating its 
sensitivity to model parameters. Thus, it can be inferred that the holistic quantification of the 
model parameter uncertainties and how these propagate into the analysis and performance 
predictions remains an open issue. 

Aiming to provide such an outlook this research attempts to quantify the model parameter 
uncertainty for a case study of a well-designed contemporary four-story SMRF, considering 
three levels of construction quality (i.e. very good, average and low). To efficiently reduce the 
complexity of the problem, following the findings of Fragiadakis et al [19], mass and stiffness 
parameters are considered deterministic (as they contribute the least to structural performance 
variability) while the strength and ductility properties of the components are fully 
parameterized. The empirical relationships derived from experimental data and recently 
proposed by Lignos & Krawinkler [17] are used to model the cyclic behavior of steel 
components via parameters that determine the pre- and post-capping plastic rotation, the 
cyclic deterioration in flexural strength and stiffness, the effective yield strength and the post-
yield strength ratio of steel components subjected to cyclic loading. Such variables are 
completely described at the local level by probabilistic distributions that incorporate intra-
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component and inter-component correlation information throughout the entire structure. The 
magnitude of component uncertainties, are calibrated to correspond to three construction 
quality levels considering the dispersion estimates proposed by Lignos & Krawinkler [17] and 
the recommendations of FEMA P-58-1 [20] to account for differing levels of quality control. 
Incremental dynamic analysis [21] is employed to accurately assess the seismic performance 
of the model, for any combination of the parameters in tandem with an efficient Monte Carlo 
simulation algorithm based on record-wise incremental Latin Hypercube Sampling (LHS) to 
propagate the uncertainties from the model parameters to the actual system demand and 
capacity [22]. 

 Our aim is twofold. First, we seek to quantify the effect of realistic parameter 
uncertainties on structural response and extract default dispersion values to be used for 
performance assessment of regular low-rise capacity-designed SMRFs at different levels of 
construction quality control. Second, we shall investigate the effect of the demand-capacity 
(DC) correlation on the fragility estimation. The DC correlation accounts for the intuitive fact 
that component properties tie together the model response and the component fragility, in the 
sense that for instance, lower component capacities in a structural model may result to higher 
demands and consequently lead to a left-shifted fragility function. While its existence has 
been suggested by Cornell et al [23], given that this potential source of bias is typically 
ignored even in the most advanced seismic performance assessment guidelines (e.g. FEMA P-
58-1 [20]) it becomes important to map its effect and potential consequences for loss 
calculations.  
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Figure 1. 2D model idealization with leaning column of the analyzed East-West MRF. 

 

2 ANALYTICAL MODELING 

2.1 Structural model 

The effect of the model parameter uncertainties on the seismic performance will be 
quantified by means of a case study steel moment-resisting frame building. The building 
consists of four stories, the first being 4.6m (15ft) high and the ones above 3.7m (12ft). It was 
designed as an office building to 2003 IBC [24] and AISC [25] for the Los Angeles area and 
it has a rectangular floor plan consisting of 3 bays at 9.1m (30ft) in the North-South direction 
and 4 bays at 9.1m (30ft) in the East-West direction. Our focus will be the East-West framing, 
in which only the two middle bays are moment-resisting. The columns of the moment-
resisting bays were assumed to be fixed at their bases, whereas they are also spliced at the 
mid-height of the third story. The beams were designed as reduced sections (RBS) with their 
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‘dogbone’ geometries detailed according to FEMA 350 [26]. The moment-resisting frames 
(MRFs) are also capacity-designed, implying that the final steel section sizes satisfy the AISC 
strong column-weak beam requirement.  

The building’s seismic performance was evaluated using a 2D analytical model with 
elastic elements in OpenSees [27] were plastic hinge formation (point plasticity) was allowed 
at column ends as well as at the ‘dogbone’ location for beams. The stiffness of the rotational 
springs used to represent the point hinges was set to be 10 times larger than that of the 
associated element as shown in Ibarra and Krawinkler [10]. P-Δ effects were included using a 
first-order treatment of geometric nonlinearity. In addition, a leaning column was added to 
account for the destabilizing effect of the gravity frame loads without axially stressing the 
lateral load resisting columns. Furthermore, the mathematical idealization of the frame 
includes shear deformation due to panel zones by means of a model proposed by Krawinkler 
(see [28] for a detailed description), which uses a set of rigid links to form a parallelogram. 
The shear strength and stiffness of the panel zone is depicted by a trilinear rotational spring, 
which for the case at hand is located at the upper right corner of the parallelogram (see Figure 
1). In addition, due to limitations related to the adopted analytical model, the interaction 
between moment and axial force was disregarded at column elements. This however, is 
anticipated to have only minor effect on the column strengths of the considered capacity-
designed steel MRF, given that plastic hinging at low to moderate drift levels in such 
buildings is concentrated mainly at beam ends. Hence, local damage levels are unlikely to be 
affected by such simplification. The first three vibration periods of the analyzed frame were 
found to be 1.33, 0.40 and 0.19sec, whereas 2% Rayleigh damping was assumed at the first 
and third mode of vibration. Figure 1 depicts the 2-D model used for the East-West MRF 
along with the beam and column section sizes. Additional details regarding the frame 
configuration, design and idealization can be found in Lignos et al [29].  

2.2 Probabilistic model 

As discussed, the probabilistic model of the four-story structure contains a full spatial 
description of member strength and ductility properties, while assuming deterministic mass, 
stiffness and damping, due to documented expectations for their lower significance [e.g. 19]. 
For a moment-resisting frame modeled using lumped plasticity elements, this effort 
essentially culminates to the description of each of the beam and column plastic hinge 
properties. The rotational springs at the member ends (or ‘dogbone’ location for beams) are 
idealized by the Ibarra-Medina-Krawinkler (IMK) model [30] as this was modified by Lignos 
and Krawinkler [31] to incorporate asymmetric component hysteretic behavior as well as 
ultimate deformation rotation. This model was implemented in the OpenSees open-source 
analysis platform [27]. As shown in Figure 2, it entails five parameters per hinge that 
completely account for the nonlinearity in the model, namely (a) the pre-capping (i.e., pre-
maximum moment) plastic rotation θp,  (b) the post-capping (i.e. from maximum moment to 
fracture) plastic rotation θpc, (c) the cumulative rotation capacity Λ that determines the 
reference energy dissipation capacity of a structural component, (d) the ratio of effective 
(actual) to estimated yield-strength My/My,p and (e) the post-yield (maximum) strength ratio 
Mc/My. In total, for 20 members times two plastic hinges each, the four-story SMRF becomes 
a 200 random variable model. It should be pointed out that Figure 2 is meant to represent two 
potential instances of a generic moment-rotation relationship. The actual member moment-
rotation curve either follows the solid line exclusively or deviates onto the dotted one, 
depending on the end point. Whichever endpoint (zero-strength rotation) is reached first 
determines the branch that the moment-rotation relationship will follow. 

To determine their properties, Lignos & Krawinkler [17] have fitted a comprehensive 
database of structural tests using regression equations that incorporate the effect of material, 
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section geometry and member dimensions. This database is available from the following link: 
http://dimitrios-lignos.research.mcgill.ca/databases/. Results are offered separately for beams 
with RBS ends and beams other-than-RBS. The former will be employed for beams and the 
latter, for lack of better data, to model the columns. For the first three parameters, i.e., θp, θpc, 
Λ the lognormal distribution was found to fit the experimental data satisfactorily, while for 
My/My,p and Mc/My a normal distribution is recommended. 
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Figure 2. Monotonic moment-rotation relationship for the modified IMK deterioration model (adopted from 
[17]). 

 
Along with the proposed median values, evaluated using an expected yield strength 

fy=379MPa (55ksi), Lignos & Krawinkler [17] also provided the dispersion of the 
lognormally (i.e. θp, θpc, Λ) and the normally (i.e. My/My,p  and Mc/My) distributed data. These 
dispersion estimates are summarized in Table 2 and can be considered to reflect ‘good’ 
construction practices, since all the tested specimens used for regression were prepared in 
controlled laboratory conditions. It is worth pointing out that a direct comparison of these 
values to those reported elsewhere should be undertaken with caution since, for example, 
neither the reference energy dissipation capacity Λ nor the post-capping plastic rotation θpc 

can be strictly paired with a distinct limit state, such as those provided by FEMA P-58-1 [20]. 
In particular, FEMA P-58 decomposes the total dispersion β of a damage-state engineering 

demand parameter (EDP)-value of capacity, to three main ingredients, these being the 
uncertainty in the design/prediction equation for the parameters βD, the material uncertainty 
βM and the construction quality uncertainty βC. On account of the above, the total uncertainty 
β can be computed as, 

 max
2
min

222 ββββββ ≤+++= CMD   (1) 

with βmin = 0 and βmax = 0.5 for strength-limited states versus βmin = 0.4 and βmax = 0.6 for 
ductility-limited ones. No adjustment to the central value (mean or median) of the 
fragility/parameter distributions is employed, implicitly assuming that even lower quality 
control standards do not generate a consistent bias in the quality of the connections. Simply 
put, when considering all the potential realizations of the SMRF, connections are assumed to 
be equally likely to be better or worse than their “central value”, rather than, say, consistently 
badly executed. Of course, some possible SMRF realizations will come off with all 
connections on the minus side (e.g., performed by a single sloppy crew), but they will be 
balanced in the overall ensemble by other SMRF realizations that are on the plus side. Thus, 
lower quality standards will only introduce noise, rather than consistently worse-than-
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expected behavior. The effects of the latter are not too difficult to imagine and they are not the 
subject of this study. 

Since FEMA P-58-1 [20] recommendations are linked to component damage-states rather 
than component parameters per se, each of the five hinge parameters was assigned to one of 
three generic damage-state (or failure mode) types as per FEMA P-58: 

a) Ductile, simple behavior: This refers to damage-states that are well-predicted by 
classical mechanics and have a low sensitivity to construction quality, essentially, any 
parameter related to yielding and to the maximum (capping) strength of steel sections 
(but not their ductility). It concerns parameters My/My,p  and Mc/My, both considered to 
be strength-limited parameters, i.e. using the lower values of βmin and βmax in Eq. (1).  

b) Ductile, complex behavior: Damage-states where ductility still provides a margin of 
safety but predictive equations are not readily available, are inherently indicative of 
complex nonlinear behavior and higher uncertainty. This is suitable for both Λ and θp. 
For the former, this classification was made in view of the fact that the rate of cyclic 
deterioration is indicative of the actual ductility: Higher rates (lower Λ) mean less 
ductile steel sections. 

c) Brittle, ductility-based: This is the case for the ultimate rotation of the member hinges 
that corresponds to fracture. Fracture due to low-cycle fatigue is strongly linked to θpc 

in the sense that the latter controls how fast a structural component buckles locally and 
consequently affects its failure rate. 

Table 1 summarizes the values suggested by FEMA P-58-1 [20] for the description of the 
three different failure mode types. 
 

Table 1. Dispersion values proposed by FEMA P-58-1 [20] for the uncertainty components. The material is 
assumed to be any steel grade other than ASTM A36. 

 
Damage-State type Design equation 

βD 
Material 
βM 

Construction quality, βC 
Good Average Low 

ductile, simple 0.05  0.1  0 0 0 
ductile, complex 0.10 0.1  0 0.15 0.25 

brittle, ductility-based 0.25 0.1 0 0.15 0.25 

 

Table 2.  Dispersion values for the hinge properties of the steel frame as per Lignos & Krawinkler [17] and 
FEMA P-58 [20]. The reported parameter is the coefficient of variation for normal variables and the (closely 

related) standard deviation of the log data for lognormal distributions. 

Quality Member type θp
1 θpc

1 Λ
1 My/My,p

2 Mc/My
2 

good 
Beam 0.24 0.26 0.35 0.12 0.03 

Column 0.35 0.24 0.34 0.21 0.05 

average 
Beam 0.28 0.30 0.38 0.12 0.03 

Column 0.38 0.28 0.37 0.21 0.05 

low 
Beam 0.35 0.36 0.43 0.12 0.03 

Column 0.43 0.35 0.42 0.21 0.05 
1 lognormal     2 normal     

 

Since the FEMA P-58 recommendations are only a generic process to be applied 
whenever sufficient data is not available, we have chosen to use it instead only to extend the 
usefulness of the Lignos & Krawinkler [17] dataset. Thus, as their findings mostly correspond 
to laboratory-quality specimens, rather than actual connections from the field, they are 



7 

considered to correspond to the top quality rating, i.e., “very good” (henceforth referred to as 
simply “good”). Hence, in terms of Eq. (1), the reported dispersions are taken to fully account 

for the effect of the βD, βM and βmin (i.e. 2
min

22
& ββββ ++= MDKrawinklerLignos ). Then, the effect 

of lesser construction qualities was added by also including the βC term (i.e. 

max
22

& ββββ ≤+= CKrawinklerLignos ) and disregarding any potential cutoff by the (only 

suggested after all) value of βmax (Table 2). 
 

Table 3.  Random variables correlation coefficients for beams and columns. 

Beams θp θpc Λ My/My,p Mc/My 
 1 0.54 0.65 0 0 
 0.54 1 0.63 0 0 
 0.65 0.63 1 0 0 
 0 0 0 1 0 
 0 0 0 0 1 

Columns θp θpc Λ My/My,p Mc/My 
 1 0.60 0.56 0 0 
 0.60 1 0.58 0 0 
 0.56 0.58 1 0 0 
 0 0 0 1 0 
 0 0 0 0 1 

 
For a spatial probabilistic model, two types of variable correlation need to be accounted 

for, namely intra- and inter-component. Intra-component correlation connects the probabilistic 
properties of parameters within the same hinge, and it can be derived from the statistical 
treatment of connection test results. Each property (θp, θpc etc) of the hinge shares the same 
spatial correlation structure, regardless of its distribution type. In the particular case of 
rotational capacities, the marginal distributions are lognormal, therefore the overall 
distribution becomes a multivariable joint lognormal. Corresponding correlation values for 
each of the five hinge parameters are reported in Table 3 [17; 31]. Inter-component 
correlation essentially reflects the spatial distribution of the parameters throughout the 
structure, being dependent on the consistency in workmanship and material quality among 
different members, sections and connections. Its assessment is quite difficult, as it requires 
extensive data from actual structures, which are obviously scarce. In our opinion, the best, if 
not the only, data so far have been provided by Idota et al [32] who actually tested coupons 
from each production lot of steel members and then tracked them to their actual positions in a 
six-story six-bay steel frame. They suggested a correlation coefficient of 0.65 for the yield 
strength of beams or columns belonging to the same production lot. Due to the small size of 
our four-story two-bay frame, this value was taken to characterize all plastic hinges in 
members of the same section. Thus, relatively high inter-component correlations exist among 
beams at stories 1-2 and 3-4 (see Fig. 1). Similarly for the columns, US construction practice 
dictates that a single member typically crosses two stories until a splice occurrence at mid-
story to change to a new section. Thus, as each column line of ~15.5m height is essentially 
composed of two members of different section spliced at the middle of the 3rd floor, column 
plastic hinges are well correlated above and then below the splice (Fig. 1). Generally 
speaking, it is not a trivial task to assess a priori what would have been the effect of adopting 
a higher or a lower inter-component correlation coefficient on the building’s seismic 
performance. Idota et al [32] for a single mid-rise frame, reported for lower correlation 
coefficients slightly lower ultimate frame strengths as well as a reduced variation, but this 
might not to be a general trend. To this end, inter-component correlation coefficient is 
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anticipated to have a small impact in relatively small buildings but more caution should be 
exercised when selecting such a property for larger buildings, where the likelihood of the 
same sections belonging to different production lots is much higher. Obviously, the 
aforementioned observations are founded on the assumption that the steel manufacturer 
operates under internationally accepted quality control standards. 

3 PERFORMANCE ASSESSMENT 

3.1 Methodology 

Incremental Dynamic Analysis (IDA) is employed to determine the seismic response of 
the model structure for various combinations of the uncertain parameters. IDA [21] is a 
powerful analysis method that involves performing a series of nonlinear response history 
analyses for a suite of ground motion records scaled at increasing intensity levels. To define 
IDA curves of seismic intensity versus response, two scalars are needed, these being an 
intensity measure (IM) to represent the seismic intensity and an engineering demand 
parameter (EDP) to record the structural response. For the present study the 5% damped first-
mode spectral acceleration Sa(T1,5%) is used as the IM whereas, the peak story drifts for the 
individual i-stories θi, the maximum interstory drift θmax and the peak roof drift θroof are used 
as EDPs.  

To account for the uncertainties induced by the random parameters to the structural 
system, IDA is paired with Monte Carlo simulation that employs efficient incremental record-
wise Latin Hypercube Sampling (LHS) [22] to propagate the uncertainties from the numerous 
parameters to the actual system demand and capacity. Whereas usually a full record suite is 
used to analyze each model sample, this approach undertakes LHS simultaneously on the 
structural properties and the seismic input to achieve considerable savings. Hence, instead of 
maintaining the same model realization and analyzing it over the entire suite of ground 
motions, the latter also becomes a random variable in the sense that each model realization (or 
each set of structural properties) is paired to a single different ground motion that is also 
randomly selected from a bin of records. Furthermore, the adopted LHS conducts an 
incremental convergence process whereby only ten SMRF realizations (each one analyzed for 
one record) are used in the first iteration and then, for each subsequent cycle, sample size is 
doubled by adding first 10 and then 20, 40, 80, 160 new observations to reach a total of 320. 
Such new SMRF realizations are defined in such a way that they form a proper latin 
hypercube together with the already analyzed sample, thus minimizing waste [22]. A typical 
LHS application in such a setting would necessitate a far larger number of analyses, simply 
because of not knowing a priori what size to choose.  

The analyses for each construction quality level involved a total of 200 random variables 
and 60 “ordinary” ground motion records (i.e. without any soft soil or directivity issues). The 
records were recorded on firm soil sites and selected from a relatively narrow magnitude and 
distance band. Hence, their moment magnitude ranges from 6.5-6.7 whereas their closest 
distance to the fault rapture varies within 13.3-31.7km [33]. Furthermore, high scale factors 
were involved. It should be mentioned though, that record selection and scaling and any 
sufficiency issues that might be raised by such choices are not important in the present study, 
since we are not convolving the results with the seismic hazard. Hence, any potential bias 
induced to the final product of a probabilistic analysis (i.e. mean annual frequency of 
exceeding a limit state) by such choices is irrelevant to this study and won’t affect the 
comparative results presented. For the abovementioned reason our discussion is not focused 
on the record selection as well as on issues relative to sufficiency. As previously discussed, 
the record-wise LHS design was applied with a starting size of 10 that was incrementally 
increased over 6 generations to a maximum sample of 320. Actually, only 4 to 5 generations 
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at 80 to 160 samples respectively, are sufficient in order to achieve fairly stable response 
estimates, regardless of the level of dispersion (i.e. construction quality) assumed. After the 
fourth generation, the relative errors in the median and dispersion in Sa differ only slightly, 
irrespectively of the considered EDPs and the limit (or damage) states.  

3.2 Global damage-states: Deformation-based 

Figure 3a illustrates the IDA curves for ‘good’ construction quality. It is apparent that the 
record-to-record variability is fairly large especially at high interstory drift demands where the 
building is approaching collapse. These results can be further summarized into 16,50,84% 
fractile IDA curves, that are presented in Figure 3b. As illustrated, given for instance a 
Sa(T1,5%) of 1.0g, 16% of the samples produce approximately a θmax ≤ 3%, 50% of the 
samples a θmax ≤ 4.5% and 84% of the samples a θmax ≤ 10%. 
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Figure 3. (a) 320 IDA curves and (b) 16, 50, 84% fractile values (‘good’ construction quality). 

 
The extent to which the model parameters affect the seismic performance of the analyzed 

building can be revealed via comparison studies of the median IDAs and dispersions obtained 
considering the uncertainty in the structural parameters of the modeled structure (generation 6 
with N=320) and a deterministic mean-parameter model. The term “mean-parameter” refers 
to the typical engineering approach where parameter uncertainty is disregarded by setting all 
properties to their mean value. In that case, only the record-to-record variability is considered 
by using the 60 ground motion records. As illustrated in Figure 4, for the ‘good’ construction 
quality, the evaluated medians and dispersions of Sa capacities given the maximum interstory 
drift ratio θmax are almost identical (Fig. 4a and 4b). In other words, any bias and variance 
introduced by the parameter uncertainty appear to be very limited. Furthermore, the results 
were found to differ only marginally for other EDPs, i.e. the individual story drifts θi, the peak 
roof drift θroof or any of the lesser quality levels. 
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Figure 4. Record wise vs. mean model median IDAs and Sa capacity dispersions for ‘good’ construction quality 
level. 

 
Hence, given the remarkable agreement between the mean-parameter and the 

computationally expensive uncertain model it can be said that, at least for the case of a low-
rise capacity-designed SMRF, the model parameter uncertainty effect may be safely ignored. 
These observations further support findings in previous studies (e.g. [11; 14]), which 
suggested that the uncertainty associated to the acceleration “signature” is so significant that it 
dominates over any variability associated to the structural properties, at least for capacity-
designed buildings away from their global collapse state. By contrast, for a regular nine-story 
SMRF studied by Vamvatsikos & Fragiadakis [9] the median collapse capacity was found to 
be moderately lowered by the uncertainty associated with the ultimate ductility. In the present 
study though, this was not observed since any significant influence of the ultimate ductility 
was cancelled out by the cyclic degradation, a hysteretic property that was disregarded before 
by Vamvatsikos & Fragiadakis [9]. Hence, at least for the case considered, cyclic degradation 
was found to have a more symmetric effect, meaning that lowering or increasing the 
parameter Λ does influence similarly the structural response. However, this finding remains to 
be further verified for other structural configurations. In general though, it can be said that, a 
global damage state assessment via a deformation-based global demand parameter won’t be 
affected much by the model parameter uncertainties. Instead, when performing loss 
assessment, seemingly identical components (same floor, same demand, same size), are 
anticipated to sustain different levels of damage due to uncertainty. 

3.3 Local damage-states: Demand-capacity correlation 

Whereas story-level responses, e.g. θmax, were utilized so far to define building damage-
states, we shall now look at seismic fragility in finer detail by moving to the component-level 
to consider local damage-states. Fragility is defined as the probability function of the limit-
state capacity C being exceeded by the demand D for a given intensity level (i.e. IM-value), s. 
If demand and capacity are expressed in terms of intensity levels, then we get the simplest 
representation of fragility: 

 ( ) ( ) ( )ssFsssPsDCPsP ccLS |||)( =<=<=  (2) 

where, sc is the (random) IM-value of capacity that when exceeded signals violation of the 
limit-state and F[·] is the cumulative distribution function (CDF) of its arguments. Essentially, 
the fragility curve is the CDF of sc evaluated at the intensity level s. Under the typical 
lognormal distribution assumption for sc the following well-known expression appears: 



11 

 






 −
Φ=

Sc

c
LS

ss
sP

β
ˆlnln

)(  (3) 

where, cŝ is the median IM-value of capacity and βSc the corresponding dispersion (i.e. 

standard deviation of the log data).  
An equivalent, yet more intuitive, basis for defining fragility appears if both C and D from 

Eq. (2) are expressed in terms of EDPs: D is the local seismic demand for the component (e.g. 
plastic hinge rotation) while C is the corresponding capacity or threshold of component 
response whose exceedance defines the damage-state. Then, in the region away from global 
collapse where such a formulation is possible (see e.g., [34]) Eq. (2) becomes: 
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where βΤθ is the overall dispersion in EDP terms due to demand and capacity variability, cθ̂  is 

the median EDP capacity while the constants a and b are used to fit the median EDP response 

given s via a power law, or bsas ⋅≈)(θ̂ . Note that such building-level fragilities (which will 
be our focus) are entirely different from component-level fragility functions, typically used 
for detailed loss assessment (e.g., FEMA P-58). These are used to define component damage 
states given values of the EDP, rather than the IM, thus reverting to the simpler form of Eq. 
(3) but parameterized in terms of θ rather than s. 

In either case, as both C and D are inherently random (typically lognormal) when 
expressed in terms of EDP, their potential correlation becomes an issue affecting both 
formulations (although not as apparent in the case of Eq. (3)). Formally, 

 cdcdT θθθθθ βρββββ 2222 −+=  (5) 

where ρ is the correlation coefficient and βθd, βθc the dispersion of D and C, respectively. 
Current literature typically adopts the hypothesis that the EDP demand and capacity are 
uncorrelated, or ρ = 0. This is a rational choice for a structural model with deterministic 
properties, but not necessarily so for an ‘uncertain’ structure. In the latter case DC correlation 
manifests itself in the sense that lower member capacities lead to higher structural demands 
and vice versa, thus factually linking local demands and capacities. Then, as suggested by 
Cornell et al [23] and adopted by the SAC/FEMA guidelines, a perfect negative correlation of 
ρ = −1 (at least for the epistemic component of dispersion) may make more sense. Still, its 
effect on the seismic risk assessment studies and whether it is significant for performance 
assessment has not been thoroughly examined. To the authors’ knowledge, only two studies 
that address the DC correlation issue have appeared, considering only reinforced concrete 
buildings. The first is by Jalayer et al [35], in which the critical DC ratio, associated to the 
component that leads the system close to failure, was adopted as an EDP. For the considered 
generic 8-story reinforced concrete building, the DC correlation was found to inflate the 
fragility dispersion.  The second is the work of Dolsek [36] who evaluated the seismic risk of 
a 4-story concrete building considering limit states that were paired to the modeled plastic 
hinge properties. The risk for ‘near collapse’ was found to be more than twice as high when 
considering DC correlation. 

On account of the above, the importance of DC correlation will be evaluated for the 4-
story SMRF for the three considered construction quality levels on three different premises:  

a) Case 0, Mean model, no uncertainty and no DC correlation: Deterministic mean-
parameter model analyzed by considering only record-to-record variability (60 
records) where the exceedance of the limit state is checked by comparing the local 
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demands for each record sample to the mean rotational capacity of each individual 
hinge. This is the typical assessment case. 

b) Case 1, Uncertainty and no DC correlation: 320 random building-record pairs where 
the exceedance of the limit state is checked in each building-record sample by 
comparing the local demands to the mean rotational capacity of each individual hinge. 

c) Case 2, Uncertainty and full DC correlation: 320 random building-record pairs where 
the exceedance of the limit state is checked in each building-record sample by 
comparing the local demands to the actual random rotational capacity of each 
individual hinge.  

For all three cases, two damage/limit states are considered. The first is Local Damage, 
associated to the first exceedance of the capping rotation capacity (i.e. initiation of negative 
stiffness) at the end of any structural element (beam or column), θp. This is considered 
sufficient to undermine the life safety of the building’ occupants and hence may be assumed 
to be roughly analogue to the Life Safety (LS) performance objective as per FEMA 350 [26]. 
The second is Local Failure, linked to a near-fracture of a plastic hinge and determined by the 
first exceedance of an adjusted ultimate plastic hinge rotation. Originally, the backbone of 
Figure 2 would suggest a local failure rotation of min(θu , θp +  θpc). Still, this would disregard 
the influence of cyclic degradation that may rapidly lower the moment strength of the hinge 
through the uncertain parameter Λ. Optimally one would keep track of both rotation and 
moment at the hinge and use both to determine a significant permanent loss of capacity. The 
reason is that hinge fracture depends on the loading history that the component is subjected as 
part of a structure (e.g. near fault versus long duration earthquake) [37]. In lieu of this we 
propose a simple rotation-only criterion that approximately checks for a 50% loss in moment 
capacity assuming that previous inelastic cycles have already accounted for a 5θpΜy hysteretic 
energy (in the order of a full cycle of deformation within +θp and −θp). For our purposes, the 
exact level of previously dissipated energy is not important as long as it is large enough to 
allow the manifestation of deterioration. Experimental data would help with finding a 
consensus value for wider application. In the case at hand, using the appropriate degradation 
rule [17] the limiting rotation value becomes θlim = θp + max(0.5 − 5θp/Λ , 0)∙θpc. 

The effect of each modeling choice is shown in Table 4, which contains the statistics of 
the median and dispersion of the spectral acceleration capacity, sc, while Figure 5 illustrates 
the fragility curves themselves. Evidently, the two damage-states are affected in a similar but 
not identical way. For Local Damage in particular, the introduction of uncertainty and DC 
correlation reduces the median capacity and also increases the dispersion by as much as 15%. 
The reduction associated with the median is shown in Figures 5a,b as a characteristic left-shift 
of the fragility curves, which for the low construction quality level is approximately 17%. 
This is actually in spite of the relatively high values of correlation used and the small number 
of elements in each story. Larger buildings and less correlated elements would easily see 
larger changes, simply due to the higher chance of one of the many uncertain elements hitting 
exceedance first (as befitting a series system in reliability terms). Notably, the observed 
results clearly violate the first-order assumption (e.g., Cornell et al [23]) that uncertainty does 
not impact the median but only the dispersion. Even when uncertainty is modeled as non-
biasing at the parameter level (as done herein), its effect can affect the mean/median when 
propagated to the system response. 
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Table 4.  Median and dispersion of the spectral acceleration capacity for three levels of construction quality and 
two damage-states, local damage and local failure, corresponding to exceedance of θp and θlim, respectively. For 

comparison, the mean model fragility values are also shown.  
 

 
Construction quality 

 
Cases 

 Local Damage  Local Failure 
 

cŝ  Scβ   
cŝ  Scβ  

mean model Case 0  0.65 0.31  1.25 0.38 

good 
Case 1  0.65 0.32  1.29 0.42 

Case 2  0.58 0.34  1.22 0.44 

average 
Case 1  0.64 0.31  1.23 0.39 

Case 2  0.57 0.36  1.17 0.38 

low 
Case 1  0.63 0.31  1.29 0.39 

Case 2  0.54 0.35  1.15 0.41 
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(b) local damage, low quality 
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(c) local failure, good quality 
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(d) local failure, low quality 

Figure 5. The effect of uncertainty and DC correlation on fragility curves for different damage-states and 
construction qualities. It mainly appears as decrease (bias) of the median Sa required to exceed θp (local damage) 

and θlim (local failure). 

 
For encountering Local Failure, the introduction of uncertainty along with the DC 

correlation (i.e. Case 2) also reduces the median, but to a lesser extent compared to the Local 
Damage state whereas, the dispersion is generally increased. The lower changes in the median 
can be attributed to the relative proximity of this limit-state to global collapse for this small-
size structure. There is not enough margin of seismic intensity between the first and the last 
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hinge failure. Thus, the appearance of the flatline in terms of IDA (which we have shown to 
be quasi-insensitive to such local issues for this building) tends to dampen the effects of an 
early failure.  This becomes apparent when one considers the model parameter uncertainties 
but disregards DC correlation (i.e. Case 1). Then the median capacity sc even seems to be 
slightly higher for the good and the low construction qualities compared to that evaluated on a 
mean model basis (i.e. Case 0). The aforementioned findings appear in Figures 5c,d as a right-
shift of Case 1 fragilities compared to the expected left-shift of Case 2 fragilities. The former 
is not a statistically significant difference: It that should be interpreted as Case 1 not being 
appreciably different from Case 0 for Local Failure. Hence, it can be generally said that the 
bias induced to the capacity estimates, when considering limit state exceedance at a local 
level, either via disregarding the model parameter uncertainties or by not considering the DC 
correlation, could well lead to non conservative fragility estimates. Furthermore, for the sole 
building investigated in this research study, the induced bias in the median capacity estimates 
was found to increase for lower construction quality control levels. 

Eq. (5) can help us understand the observed synergy between uncertainty and DC 
correlation: When ρ is close to -1 [23] the total dispersion is increased by 2βθcβθd. If the effect 
of uncertainty, mainly expressed by βθc (although βθd is also influenced but to a smaller 
degree), is sizeable enough, then the DC correlation term will immediately become significant 
as well. Otherwise, its effect disappears together with the low effect of the parameter 
uncertainty.  

4 CONCLUDING DISCUSSION 

An accurate quantification of the model parameter uncertainty effects on the seismic 
performance has been presented for a 4-story steel moment-resisting frame designed for 
Western USA. The comparison of the interstory drifts obtained with and without the 
consideration of model parameter uncertainties revealed that their effect can be safely ignored 
for the examined case, i.e., for regular low-rise capacity-designed steel frame buildings, as 
long as one is interested in the global behavior. This conclusion actually stands regardless of 
the construction quality control that is exercised during construction (assuming no gross 
errors occur of course). Nevertheless, when it comes to local component damage, or loss 
assessment, the negative correlation of the uncertain local structural demands and member 
capacities (where higher demands generally correspond to weakened members) is likely to 
give rise to unconservative estimates: While the dispersion of the associated fragility is not 
much influenced, the median intensity required to cause local exceedance of a damage-state is 
reduced compared to that evaluated on the basis of the mean model. This reduction was found 
to be more severe for damage-states away from the global collapse state and for low 
construction quality levels. Nevertheless, it is suspected that such effects may rise in 
importance for buildings vulnerable to localized modes of failure, such as a story-mechanism. 
This is the case of, e.g. older non-capacity-designed structures, or even modern steel buildings 
with braced frames as their primary lateral load resisting system. Still, further research is 
needed before a proper assessment can be made.  
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