Combined Torsional-Bending-
Axial Dynamics of a Twisted
Rotating Cantilever Timoshenko
Beam With Contact-Impact Loads
at the Free End

In this paper, consideration is given to the dynamic response of a rotating cantilever
twisted and inclined airfoil blade subjected to contact loads at the free end. Starting with
the basic geometrical relations and energy formulation for a rotating Timoshenko beam
constrained at the hub in a centrifugal force field, a system of coupled partial differential
equations are derived for the combined axial, lateral and twisting motions which includes
the transverse shear, rotary inertia, and Coriolis effects, as well. In the mathematical
formulation, the torsion of the thin airfoil also considers a very general case of shear
center not being coincident with the CG (center of gravity) of the cross section, which
allows the equations to be used also for analyzing eccentric tip-rub loading of the blade.
Equations are presented in terms of axial load along the longitudinal direction of the
beam which enables us to solve the dynamic pulse buckling due to the tip being loaded in
the longitudinal as well as transverse directions of the beam column. The Rayleigh—Ritz
method is used to convert the set of four coupled-partial differential equations into
equivalent classical mass, stiffness, damping, and gyroscopic matrices. Natural frequen-
cies are computed for beams with varying “slenderness ratio” and “aspect ratio” as well
as “twist angles.” Dynamical equations account for the full coupling effect of the trans-
verse flexural motion of the beam with the torsional and axial motions due to pretwist in
the airfoil. Some transient dynamic responses of a rotating beam repeatedly rubbing
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against the outer casing is shown for a typical airfoil with and without a pretwist.
[DOI: 10.1115/1.2423035]

1 Introduction

Rotating beams, which have importance due to numerous prac-
tical usage such as jet engine blades, helicopter rotor blades, air-
plane propellers, satellite antennas, cutting-tool dynamics, and
other turbomachinery applications, have been investigated for a
long time. In order to analyze the dynamic characteristics of tur-
bine and compressor blades, it is a common practice to consider it
as a rotating radial cantilever beam. At the same time turbine and
compressor blade designers have long felt that this characteriza-
tion ignores some vital geometrical details of a real blade such as
lean and twist in the blade; which limits the applicability of such
simplified analytical models especially in the area of aerodynamic
flutter and rub-induced dynamic instabilities in the blade. One
such aspect with direct applications to turbine and compressor
blades is the vibration of pretwisted beams, which is commonly
referred as “twist-bend coupling characteristics of airfoils.” Dur-
ing a typical rub-induced vibration event, the blade-tip moving
with a tangential velocity of about 400—500 m/s makes a sudden
glancing contact (impacting at a very shallow incidence angle) on
the casing inner surface; which becomes the excitation mechanism
for initiating free vibration in the blade. This process is repeated
hundreds of times usually with one rub event every revolution.
The typical radial interference between the blade tip and the cas-
ing inner surface responsible for generating the periodic contact
rub load usually does not exceed 0.10—0.15 mm. After the earlier
works [1-4] done about 30 years ago on free vibration character-
istics of pretwisted beams simulating the airfoil, there is a consid-
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erable current interest in applying the methods of nonlinear vibra-
tion to the dynamic stability of asymmetric airfoils cross sections,
especially rotating blades with aerodynamic excitations [5,6]. Dy-
namic stability of cantilever beams with varying levels of com-
plexity and different types of loading conditions has been inves-
tigated by Chen and Peng [7], Hodges [8], Sinha [9], Chen and Ho
[10], etc.

After the importance of transverse shear and rotary inertia in
the beam formulation was shown by Timoshenko [11], many dif-
ferent aspects of his beam theory have been studied by several
authors over the past 40 years. Leissa and Jacob [12] were the first
ones to investigate the free vibration characteristics of cantile-
vered twisted beams and plates as a three-dimensional vibration
problem. Rosen [13] has presented a comprehensive review of
structural and dynamic aspects of pretwisted beams. Lin and his
coworkers [14] have performed dynamic analysis of nonuniform
pretwisted Timoshenko beam with elastic boundary conditions.
Petrov and Geraldin [15] have developed the finite-element theory
for a curved and twisted beams based upon a geometrically non-
linear formulation. Among the newer contributions, Tang and Yu
[16] have presented a generalized variational principle on the non-
linear theory of a pretwisted curved beam. Other recent contribu-
tions in this field [17-22] primarily deal with the free vibration
characteristics of the twisted rotating beams; which also include
the effect of transverse shear and rotary inertia. Different param-
eters of dynamic stability of twisted rotating beams under external
axial loads have been investigated by Chen and Keer [23], Lee
[24], Liao and Huang [25], and Sakar and Sabuncu [26]. Yang and
Tsao [27] studied the dynamic stability of pretwisted blade due to
changing rotational speed. Temel [28,29] was the first one to ana-
lyze the transient response of a curved beam in the form of a helix
and subjected to time-dependent loads. Turhan and Bulut [30]
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Fig. 1 A pretwisted Timoshenko beam and the local coordinate system

focused on the dynamic stability of a rotating blade due to fluc-
tuations in the speed of the shaft. In the current work, our main
focus is on developing the governing dynamical equations to ana-
lyze the effect of rub-induced contact-impact forces at the free end
of the rotating blade modeled as a cantilever Timoshenko beam
with a pretwist (see Fig. 1).

Starting from the basic deformation and velocity equations

such small values of «, one can assume that the normal to any
beam cross-section surface makes a constant angle with the local
radial direction (¢é,) passing through the centroid of that cross
section. In this analysis we further assume that due to twist in the
beam, the “stagger angle B(s)” changes linearly as we move along
the blade longitudinal axis from the root to the tip, such that

along with the rotary inertia and gyroscopic effect terms, a com- B(s) =B, +sp (1)
plete set of coupled dynamic equations has been derived for this 4 o o0 oF twict
problem. The eigenvalue problem of these equations in a matrix
form is solved to determine the fundamental natural frequencies
for a combination of varying geometrical parameters to character-
ize the Timoshenko beam. We have also solved the corresponding Componems af Seam Peformation:
transient dynamics problem due to time-dependent contact-impact e EEEH5R RElaGR e,
loading at the free end for twisted and untwisted blades. B ——— —amp K
Longtantinal deflection = gisy
2 Rotating Cantilever Timoshenko Beam Formulation Twist about Longitudinal axls = @s.g | Moh-radial

for a Pretwisted Blade With Lean

For mathematical derivation, we consider that elastically de-
formable blades of outer radius “R” with the stagger angle “S,,”
which the blade root-chord makes with the engine axis, are
mounted on a rigid disk of hub radius “r” (see Fig. 2(a) and the
Nomenclature for a full list of notations). We introduce two dif-

ferent local coordinate frames of reference attached to the rotating Cklygint af tire W il

- . C ey . . rofatig eotdinare M !
blade called “axial-tangential-radial” with unit vectors as Systoms: Yo rd
(é,,6,,¢,) and, “chord-normal-span” with unit vectors as (e, En, Es Sl e

(é.,é,,¢,), respectively (see Fig. 2(b)) such that the longitudinal
axis of the equivalent Timoshenko beam passes through the center
of gravity (CG) of the beam cross section. The blade twist angle 8
is defined such that the airfoil center of curvature in a fan or
compressor blade is towards the direction of rotation or spin-
velocity ) whereas in a turbine blade it is in the opposite direc-
tion of ). It should be noted that in general due to lean in the
blade, the blade longitudinal axis in the span direction may not
necessarily coincide with the local radial direction. Thus, the ef-
fect of the sweep angle « in a blade with a lean about the local
radial direction is as follows:

a>0: forward-swept blade

a=0: radial blade

a<0: backward-swept blade

In actual applications, the typical magnitude of the sweep-angle
«a is relatively small which ranges from —15 to about 15 deg. For
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Fig. 2 (a) Schematic representation of an inclined rotating
beam with respect to the fixed global frame of reference as
viewed along the spin axis. (b) Airfoil cross section and its
equivalent Timoshenko beam representation as viewed from
the free end of the blade.
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The individual blades behave like a cantilever beam column of
span length “L” and are subjected to a centrifugal force field F ¢
generated due to the rotor spin velocity “(),” which for the deri-
vation purposes can be treated as an external force on the system.
Thus, the free end of the cantilever beam at s=L is subjected to a
generalized external force vector & and moment vector M such
that

F=Fcé.+Fyé,+ Fgé,

3)
M=Mcé.+Myé,+ Msé,

The span direction component “Fg (+ sign: tension and — sign:
compression)” of the external blade tip rub load vector JF acting
along the longitudinal axis of the beam, henceforth is represented
by F,. The tip rub force F, is a dynamic contact load, which is
nonzero only during the tip travel through the rub zone on the
stator and will always have a (—) sign due to the contact load
being compressive in nature. The chord and normal (thickness
direction) components F and Fy are generated when friction at
the contact surfaces is also considered in the analysis. In the most
general case, the tip-rub force F, may be acting eccentrically at a
point with its coordinate location as (e.,&,) with respect to the
CG of the beam cross section at the tip. For thick blades, the value
of €, can be in the range of [(—-d/2) =g, =(d/2)] depending upon
whether the blade is rubbing at the concave side or the convex
side of the airfoil. For thin blades, €,~0, and in the extreme case
of tip rub at the edge of the beam cross section, we will have,
e.=%(c/2). In addition, the blade is deformed in bending by ap-
plying bending moment about its chord in such a way that a typi-
cal cross section of the deformed blade produces the cross-section
rotation “i,” the lateral deflection “#”” at the neutral axis, the axial
deflection “{” and the angle of twist as “¢.” It is assumed that all
four components of deformation are functions of spatial coordi-
nate “s,” measured along the beam axis and the temporal param-
eter time “¢.” It is also assumed that the minor principal moment
of inertia of the blade cross-section “I”” coincides with the chord
direction so that under pure bending moment the blade lateral
deflection 7(s,t) takes place in the direction normal to the chord
with the neutral surface passing through the radial-chord plane.
For the analytical derivation, we will use the usual notations
such as, elastic Young’s modulus “E.,” Poisson’s ratio “»,” shear
modulus “G=E/2(1+v),” material mass density “p,” and cross-
sectional area “A.” With respect to the stationary global cartesian

unit vectors (f ,]A',Ig), the local unit vectors attached to the beam

(é.,é,,¢,), rotating at a constant angular velocity ) such that
0=, are related to each other as

~

é. —sin Bcos(f+a) cosB sinBsin(f+ a)
é, (=|—cos Bcos(f+a) —sinB cosBsin(f+a) |\ ]
é, sin(0+ ) 0 cos(0+ a) i

(4)

It is assumed that any warping of the airfoil cross section
caused by the torque varying along the span of the beam will be
negligibly small. A typical airfoil cross section is not symmetrical
about any of the principal axes and as such, in general, its “shear
center” may not necessarily coincide with the centroid (CG) of the
beam cross section. As a result, under the combined twisting and
bending deformation of the airfoil, it is assumed that the shear
center in the local coordinate system (chord-normal-span) is lo-
cated at (a,b,s) in such a way that its position vector is described
as

[ale.+[bé, + [s]é, ©)
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Then, with (a,b) as the shear center of the cross section and J
as the centroidal polar moment of inertia of the cross section, the
effective polar moment of inertia for the twist motion can be
written as

Jo+A(d®+b?) (6)
Here, we neglect the warping of the beam cross section and the
slope 7,,(s, 1) of the transverse deformation of the beam is the sum
of the rotation #(s,f) and the rotation of the cross section due to
shear force Q(s,?) expressed as —(Q/xAG), i.e.
0(s,1)

74(s,0) = (s,1) — “AG (7)

The angular velocity vector of the beam column due to spin
velocity () is
[Q cos Blé, +[- Q sin Blé, +[0]é, (8)

Under the small rotation assumptions, the rotation of the beam
cross section after the deformation can be expressed as a rotation
vector R such that

R =[yle.+[ple, )
Due to pretwist in the beam about the span axis (s-direction)

with the twist rate of B’, the derivative of the cross-section rota-
tion vector term *R is derived using the chain rule as

R {a% aéc] id
— = — + e

= é.+
ds Js ds ds

ie.

dR
— =l e+ [B v, + (6,06, (10)
In the above equation, ¢ and B’ represent the changes in the
curvature of the beam about the chord and normal axes of the
cross section due to bending about the two principal directions. In
the derivative of the rotation vector 2R the contribution of the term
containing unit vector component é,, is only due to pretwist in the
beam. For example, in an untwisted beam with 8'=0, a bending
moment about é. will not produce any curvature change about é,,.
The deformation vector of any point on the Timoshenko beam
located at (x,y,s) in the local chord-normal-span coordinate sys-
tem caused by the four components of deformation (i, 7,¢, @) is
obtained as

[ =b)gle.+[n+(x-a)dlé,+[{-yyle (11)

The position vector in the local chord-normal-span coordinate

system after deformation of any typical point at (x,y,s) can be
written as

[x=y@p+bple . +[y+(n-ad)+x¢lé,+[s+{-yylé
(12)
The time-dependent position vector of the rotating beam clamp-
ing point at the hub radius=r in the global fixed frame of refer-
ence is (r sin 6i+r cos 012), After some lengthy algebraic manipu-
lation, the position vector of the clamping point in the local
(é.,é,,é,) system is expressed as

(13)

Thus, the corresponding global position vector in the chord-
normal-span coordinate system after deformation of a typical
point at (x,y,s) on the beam can be written as

[rsin Bsin alé, +[r cos Bsin alé, + [r cos alé,

[rsin Bsin a+x—yp+beplé. +[rcos Bsina+y+(n—ad)
(14)

The time derivatives of the unit vectors (é..,é,,é,) are obtained
as

+xplé, +[rcosa+s+{—yiplé,
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é.=Q sin B(s)é,
é,=Q cos B(s)é, (15)
é,=—Q sin B(s)é, — Q cos B(s)é,

Hence, the corresponding velocity vector V in a fixed global
frame of reference, for any typical point on a rotating beam lo-
cated at (x,y,s) with respect to the local (é.,é,,é,) system, is
derived as

[g“y,—yc//,ﬁ(rcosﬁsin a+y+n—ap+xd)Q) cosﬁ] o
+ (rsin Bsina+x—y¢p+bp))sin B - R

V=
(s+rcosa+{-yh)Q-n, cosf
" [— (xcos B—acos B—ysin B+bsin B¢,
~[(xsin B—asin B+y cos B~ b cos B) ¢, + n,sin B]. ]

L
]cosﬂ

(16)

[gt—yt//,,+(rcos,8sina+y+n—aq§+x¢>)Qcos,B} p
+ (rsin Bsin a+x—y¢+bep)Q sin B €08 A

" [(s+rcosa+§—y¢)ﬂ—n,tcos,B
|- (xcos B—acosB-ysinB+bsinB) ¢,

In a typical twisted beam formulation, it is a common practice
to characterize the bending mode deformation about the two prin-
cipal axes of the beam cross section (see the Appendix for details)
as a coupled deflection in (x—x) and (y—y) directions, separately.
In the present approach, we have introduced twist ¢ of the beam
cross section about the longitudinal axis as an independent
degree-of-freedom. Recalling that in a typical beam formulation
inherent assumption of /,,> I, along with (a,b) being the shear
center of a nonsymmetric cross section and J its polar moment of
inertia, we have I,,+1,,=Jo+A(a’+b?) such that for shear center
coincident with CG

Imszyszzl, 1),y=fo2dAz ®© and

Area Area

Jo= f f (x? +y?)dA

Area

(17)

The above relationship assumes that in an equivalent symmetri-
cal cross section under combined twist and bending, the shear
center would coincide with its centroid such that, a=0 and 5=0. It

pA

1 (*
r=r-v=g|
2J,

The Lagrangian equation is

508 / Vol. 74, MAY 2007

[gt—yd/’ﬁ(rcos Bsina+y+ n-ad+xp)Q cosﬁ]2
+ (rsin Bsina+x—yd+bd)Qsin B

2
+) (s+rcosa+{-yh)Q—n,cos B- [—(y—b)Siﬂﬁ]d)’t}

{[(x = a)sin B+ (y = b)cos Bl + n, sin B}
EI(y) + (2GJ - ED(B'Y)* + GJ(¢ )* + AE({ )
— |+ KAG(7,= ) + KAG(B' m)* + 2kAGB' (y = b) (7, — 1)
+2Q2GI-ENB ¢ [+ (y—b)i,]
-Fll(n+x-a)¢) P +[B 7 +[(y-b) ¢ T
- Feeos af[(n+ (x=a)@) T+ [(y = b) I} + 2uF jcos Brifl
+2F [(a—g)cos B'(s—L)+(b—g,)sin B'(s — L)
| —2Fl(b—g,)cos B'(s = L) = (a=s)sin B'(s = L)]B' (7= b)

k
]sin&

is obvious that when the shear center is not coincident with the
CG of the cross section, the contact forces will always generate a
moment at the free end. We will recall that with the shear modulus
G=E/2(1+v), the torsional rigidity for a thin cross section can be
written as “GJ” in which according to Timoshenko and Goodier
[31] for rectangular cross sections, the torsion constant J
=(1/3)cd’. Since, the flexural bending in a pretwisted beam
would inherently result in a twist-bend-coupling caused by the
components of the beam deformation in the two principal direc-
tions of the cross section, it is convenient to represent the flexural
rigidity term “El,,” as a function of its torsional rigidity term GJ.
In addition, in such beams with thin cross sections the effect of
Poisson’s ratio v is negligible and as such the flexural rigidity
about the major principal axis El,, in terms of its torsional rigidity
GJ can be approximated as

El,,~ (2GJ - EI) (18)

Thus, combining the kinetic energy “7” and the potential en-
ergy “U” due to bending, transverse shear, twisting and centrifu-
gal loads “F;” as well as the axial force due to contact “F,” yields
the simplified form of Lagrangian “A” for the rotating Timoshen-
ko’s beam column as

(x—a)cos B

ds (19)
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dt (9)(”

d(aA) A d(aA)
= )-=+=|—]=R (20)
(9)(,-

ds \ 0x;

Using the Lagrangian A in the Lagrange’s equation yields the following 4 coupled partial differential equations of motion for #, 7, ¢,
and ¢, respectively, in a local frame of reference attached to the rotating beam-column with angular velocity () as

(a) Bending moment balance due to rotation of the beam cross section about its minor principal axis (chord)

- Elrs; - kAG(n,— ) + QGI —EDB'(B'y+ ¢+ bop ) + KAGB'b b

— pIQ* 4+ pI€Y sin B+ plifr, + 2pIQ sin Bep, =T (5,1)

(b) Shear force balance in the normal direction through the cross section of the beam

- I<AG[7],S.Y - lr//,s] + KAG:B’b(ﬁ\ + KAG(B’)ZU_ Fu[n,s.r - (,3")271— a¢,ss]

— pAQ) cos BE — pAQ2cos Blcos B(5— ad) + bsin Bep]

= 2pAQ cos B, + pAn, — pAad = O,(s.1)

(c) Axial force balance due to membrane stretching along the neutral surface of the beam

(d) Torque balance due to twist in the beam (neglecting the warping of the cross section)

~ GJ s+ plQY sin B+ pIQ? sin® B — kAGB'b(7, — )
- (2GJ— EI)B,(‘//,S - bw,ss) - [Fa + FCfCOS a][(JO/A)¢,.fs - an,ss]

—F[(a=g.)cos B'(s— L) + (b= 2,)sin B'(s = L)1 — puF 10 Brls (21a)
+F[(b=2,)c0s B'(s L) = (a-z)sin B'(s = L)]B' ¢, — Fercos al 5, — acb,,] 1)
- EA{  — pAQ?{ + pAQcos B(n—ag) + b sin Be] + uF cos Brif (210)

+ AL+ 29 cos B, — 2Q(a cos B— b sin B) ¢, ] = O,(s,1)
(21d)

+F[(a~e)cos B'(s = L)+ (b~e,)sin B'(s = DB+ ¢,]

—F[(b-¢g,)cos B'(s = L)~ (a—e.)sin B'(s = L)]B' (9, ~ )
+pJod — pAan,,+ pA(a® + b*) ¢, — 2pI€) sin B, + 2pAQ(a cos B— bsin B){,

=T,(s,1)

In the above equations, Q,(s,7) and Q(s,r) account for the
distributed lateral loads on the beam column in the thickness (nor-
mal) and in the longitudinal (span) directions, respectively. Simi-
larly, T,(s,t) and T,(s,t) account for the distributed bending and
twist moments on the beam column about the neutral (chord) axis
and longitudinal (span) directions, respectively. These distributed
external force and moments are caused due to centrifugal loads,
nonconstant spin-velocity and gas loads due to fluid flow over the
surface of the blade. For example, due to radial lean in the blade
by an angle «a the centrifugal load acting at the CG of the beam
cross section generates distributed transverse forces and twist mo-
ments given by

0,(s,1) = pAQ*(s + r cos a)sin a cos(B, + B's) (22)

T(s,1) = pAQ>(s + r cos a)sin a[b cos(B, + B's) — a sin(B, + B's)]
(23)

Obviously, in a free-vibration problem, all nonhomogeneous
terms on the right-hand side of the above set of equations are set
to zero. The presence of the axial-force term F, acting on the free
end of the beam in these equations contributes to the lateral as
well as torsional buckling of the Timoshenko beam. In the above
equations, it should be noted that in a rotating beam; its lateral
motion 7(s,?) is coupled with the longitudinal motion {(s,7) and
its cross section rotation ¢(s,r) is coupled with the twist in the
beam ¢(s,7). These couplings are due to Coriolis effects in the
dynamical system, which introduce velocity-dependent skew-
symmetric terms in the equations of motion. In a dynamics prob-
lem, F, would become a function of time ¢ and can be expressed

Journal of Applied Mechanics

as F,=F(t). If F(z) is an oscillating force with a pulse frequency
of f,—Hz, it develops a parametric excitation in the system which
in a sinusoidal form is written as

F,=F(t) = F,,,xc0s(27f ) (24)

The set of four partial differential equations outlined in Egs.
(21a)-(21d) describe the fully coupled dynamical characteristics
of a twisted rotating cantilever Timoshenko beam with axial load-
ing at the free end, which also includes the effects of nonconstant
rotational speed as well as the Coriolis forces. This is the first
attempt in any published literature to formulate the complex set of
equations in its entirety. The simpler forms of these equations
used by other researchers can easily be derived by setting certain

parameters equal to zero, such as by making =0, these equa-
tions represent the dynamics of a beam rotating at a constant
speed. Previous derivations for the cantilever airfoil vibration in
coupled torsional-bending mode reported in the literature [1-4]

are simplified using Euler-Bernoulli beam formulation with Q
=0, a=0, b=0, and F,=0. Furthermore, by setting the sweep or
the radial lean angle @=0, one obtains the equations for a radial
rotating beam. Similarly, by setting the axial loading term F,=0,
the corresponding equations for the free vibrations of a beam are
obtained. The contributions of axial motion can be disregarded by
dropping the terms containing ¢ due to additional degree-of-
freedom in the longitudinal direction of the beam. In addition, by
setting the twist parameter 8’ =0, one can simplify the equations
similar to one used by Lin [19] for a beam with a constant stagger
angle. Similarly, by setting the hub radius term r=0, one can
derive the equations similar to one used by Oguamanam and Hep-
pler [18]. These equations can be further simplified to represent
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the coupled flexural and torsional vibrations of classical Euler—
Bernoulli’s beam as shown by Timoshenko et al. [11]. It has been
verified that the coupled flexural and torsional elastic buckling
equation due to axial forces and end moments also reduce to the
form similar to one derived by Timoshenko and Gere [32]. On
replacing the torsional rigidity term GJ by the relations expressed
in Eq. (18) one obtains a set of equations similar to that used by
Banerjee [21].

3 Boundary Conditions and External Forces

The geometric boundary conditions for the Timoshenko’s beam
under consideration with four components of deformation

(W 7, g? ¢) are as follows:
#0,6)=0, 70,)=0, 20,5)=0 ¢0,0=0  (25)

The corresponding four natural boundary conditions at the free
end of the cantilever beam for (s=L) are expressed in terms of the

contact force vector F and moment vector M components (see
Eq. (3)) as

Fe=0, My=0 (26)
(bending moment), -y = M= Ely | ;= F e, + & sin(8'L)]
27

(Shear fOI'CB)m s=L = FN == KAG[ /N ‘p]s:L == ,U,FHCOS IBR

(28)

(axial force)y o = Fg= EAL |-, = F, (29)
(torque)ut s=L = MS = GJ¢,S|S:L

= uF,[(e.— a)cos B — (e, — b)sin Bg] ~ (30)

In a contact-dynamics problem, the tip load F, along the lon-
gitudinal axis and its point of application on the beam cross sec-
tion (e,,€,) will be time dependent. If the outer case radial tip-
clearance y and its radial stiffness K, need to be included in the
analysis then

F,=0 for {cos al+ cos Bgsin o[ n+ (g.— a) p} ;= < v
(31)

and Fa == Kcase{cos Ctg +cos IBRSin a’[ﬂ"’ (8(- - (1) ¢] - ’y}|s=L

for {cos af+cos Bgsina[ p+ (e, —a)pl},o =y (32)

In order to account for the torsional deformation in the blade in
Eq. (31), the positive sign on the chord is used, if the tip leading
edge of the blade is rubbing and a negative sign is used if the tip
trailing edge is in contact. It should be obvious that for the contact
load at the mid-point of the tip cross section, the contribution from
the twist parameter ¢ would be zero. The external tip forces &
and moments M at the free-end of the beam act like point loads
at s=L, and as such mathematically with the use of Dirac’s Delta
function &(s—L) can be treated like a continuous or distributed
external force, which are written as

T.(s,0)=F,[e,+esin(B'L)]8(s — L) (33a)
Q,(s,1) = = puF ,cos Brd(s — L) (33b)
O,(s,t) =F,8(s — L) (33¢)

T(s,1) = pF [(e. = a)cos B — (&, — b)sin Br] (s — L)
(33d)
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4 Rayleigh-Ritz Method and Ordinary Differential
Equations of Motion in Matrix Form

One can use several different methods such Galerkin’s or other
weighted-residual techniques to convert the set of partial differen-
tial Egs. (21a)—(21d) in a set of ordinary differential equations.
Each technique imposes certain necessary boundary condition re-
quirements on the approximating functions. Here, we have em-
ployed the classical Rayleigh—Ritz method for this purpose, which
requires that as a necessary condition, the approximating function
must satisfy the geometric constraints arbitrarily but the force-
dependent natural boundary conditions may be relaxed. In the
ideal situation, they may satisfy all the geometric as well as force
boundary conditions of the present problem, however, it is not
necessary in general. If the approximating functions do not satisfy
all the force boundary conditions as well, then the integrated sum
of the unbalanced weighted-residual force and moment terms
must be set to zero at the free end. Thus, under these conditions,
the solution of the above set of equations can be assumed as

Bls,0) = 2 Uy(s)W;(1) = X, [sin ¢,s]W,(1) (34)
j=0 j=1
Ws.t) = 2 Uf)X,(0) = 2 [sin @s1X,(0) (35)
Jj=0 Jj=1
s =S Vo= LTl ()
j=0 j=1 J
(5.0)= > S(5)Z(0) = >, [M]z,(r) (37)
j=0 Jj=1 J
where
B 2j-1)m
®ji= oL

Hence, in order to apply the Rayleigh—-Ritz’s method, we sub-
stitute the assumed deflection shape functions in such a way that
the shape function terms have proper dimensions of either length
or slope (radians) as necessary. In the above sets of equations, the
spatial derivative terms can be written as a function of a set of
differential operators. In addition, the discretized form of Eqgs.
(21a)—(21d) is complete only when all the terms in the infinite
series for the displacement functions S;(s), U,(s), and V(s) are
considered, however, in a numerical technique they must be trun-
cated after a certain number of terms in the sequence. On applying
the Rayleigh—Ritz’s method with the assumed displacement func-
tions, one obtains a set of ordinary differential equations in terms
of time-dependent variables. The complete equations with the ho-
mogeneous as well as external force terms of these equations in a
matrix form can be written as

M{f(0} + C{f(0)} + K{f(0)} = {P(1)}

Here M is the coefficient matrix for the acceleration-dependent
force terms generally known as inertia or the mass matrix, C is the
coefficient matrix for the velocity-dependent force terms which
can be due to damping or due to gyroscopic effects in the dynami-
cal system, and K is the coefficient matrix for the displacement-
dependent force terms generally known as the stiffness matrix. It
can be seen that in Eq. (38) the terms containing generalized
coordinates in the column-vector {f(¢)} are X, Y, Z, and W's,
which are dimensionless. Suppose, we consider “N” number of
terms for each of the four basic deformation trial functions out-
lined in Egs. (33)—(36), then for brevity we can introduce follow-
ing notations in lieu of the generalized coordinates {f(r)}

(38)
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Xy Xy

X}y
M {¥}y c {Y}y K {Y}y
+ +
{Z}y (Z}y {Z}y
(W (Why Wiy
_ P(1) (39)
4N

It is obvious that with the N number of terms used to represent
each of the four displacement functions viz. (i, 7, {, @), the total
number of degrees of freedom in the numerical scheme will be “
4N.” In the above equation, the right-hand side column-vector
{P(¢)} representing all the external forces due to contact load F,
acting along the beam-axis eccentrically at (e.,g,) in the chord-
normal-plane at the free end of the cantilever beam column can be
expressed as

{PUD)}y
P70}y
{PA()}y
{P(1)}y
{Fu[e,+esin(B'L)]U(L)}
{= mF cos BrV(L)}

{P(n)}=

L
- [pAsz (s + rcos a)Sds + F,S(L)
0 N
{uF [(e.—a)cos Bg = (&, = b)sin Br]U(L)}
(40)

Furthermore, the matrix terms used in Eq. (38) can be broken
into following separate matrices

M{f(0)} +[Cp+ CoHf(0} + [Ks + Kp+ KoK f(0)} = {P(1)}
(41)

where M is the mass matrix (symmetric), a function of density p
and I, K is the elastic stiffness matrix (symmetric), a function of
E, G, I, etc., K, is the centrifugal stress-related stiffness-matrix as
a result of spin-velocity () (symmetric), K is the in-plane force-
dependent circulatory matrix due to contact force F, acting along
the longitudinal axis at (&.,¢,,L) of the beam-column (nonsym-
metric), Cp is the damping matrix due to the material internal
damping =(2x/Q)K, C;(Q) is the gyroscopic matrix (skew sym-
metric), causes coupling of axial and lateral motions in the beam,
and {P(z)} is the column vector containing external forces on the
dynamical system.

Thus, the individual nonzero terms in the equivalent mass M,
damping C and stiffness K matrices are as follows:

L L
[Ki,j]=-EI f UU}ds + kKAG f UUds
0 0
L L
+(2GJ - EN(B')? f U,Ujds — pI€)* f U,U;ds
0 0
(42)
L
0

Journal of Applied Mechanics

L
[K; jon]=— KAGf UiV;ds (44)
0
L
[Ki,j+2N] =— uF,cos By J UiS,{dS (45)
0

L
[Ki,j+3N] =(Q2GJ-EDB’ |:f Uinfds - Ui(L)Uj(L)]

0
L

L
UUds + (2GJ—E1),8’b|: J U,-U}’ds]

0

+ KAG,B’bJ

0

L L
+ pIQf sin BU,U,ds — Fa|:j [(a—-e.)cos B'(s—L)
0 0

+(b-¢,)sin B'(s — L)]Uin'-ds —(a- sC)Ui(L)Uj(L)]

(46)

L

[Ci,j+3N] = Zplﬂf sin ,BU,Ujds
0

(47)

L
[Kin,]= KAG|:f ViU}ds - V(L) U,-(L)] (48)

0

L
(K, jon) == KAG{ f ViVids = VL)V (L)]

0

L
- pAsz cos’ BVVds
0
AQ>2 ‘
_ p cos a/f (R2 - s%cos? a—r?
2 0
L
- 2srcos a)V;Vids + (ﬁ')zKAGJ ViVids
0
L L
a 1 "2
-F, f ViVids = V(L)V}(L) - (B') f ViVids
0 0
(49)
L
(M jn] = pA J ViVids (50)
0
L
[Ki+N,j+2N] =- pAQJ cos BV;S;ds (51)
0
L
[Cionjsan]=- 2pAQf cos BV.S;ds (52)
0
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0 0 2

L
- a[ f V.U(ds - V{L)U; (L)}
0

L L L
AQ?
[Kiinjs3n] = (KAGB'D) |:f Vl-U_;ds - Vi(L)Uj(L)] - pAQZJ cos B(b sin B—a cos B)V,U,ds + a cos ap f (R*- s cos® a—1*
0

—2srcos a)V;Ujds - F, . (53)
- B’f [(b-g,)cos B'(s=L)—(a—g,)sin B'(s — L)]V,U/fds + B (b-g,)V(L)U,L)
0
[
L L L
[(Misy jran] = = pAa f ViUjds (54)  [Kiuowjson]=—EA f SiSids = SAL)S](L) | - pAQ? f S$:S;ds
0 0 0
(58)
L
[Ki+2N,j] = pFcos :3R|:f SiU;d{| (55) L
0 (M i+2N,j+2N] =pA S;S jds (59)
0
L L
[Kivonjan] = pAQL cos BS;Vds (56) [Kivonjean] == pAQf (acos B—bsin B)S;Uds  (60)
0
L L
[Ci+2N,j+N] = 2PAQJ cos ,BSthdS (57) [Ci+2N,j+3N] == 2PAQf (acos B—bsin ,B)SindS (61)
0 0

0 0 0 0

L L L L
[Ki+3N’j]=—(2GJ—EI)[3’|: J U,-U/fds} + (2GJ—EI),8’b|: f U,U;’ds:| + KAGB'b f UUds + plQ f sin BU,U ds

L
- J [(a—e)cos B'(s = L)+ (b—g,)sin B'(s — L)]U,-U]fds +(a—-e)U(L)UKL)
_Fa ’ L (62)
+ B’f [(b—eg,)cos B'(s = L) = (a—e.)sin B'(s = L)]U,U,ds
0

L
[Ciranjl=— 2pIQf sin BU,U ds (63)

0
L

[Ki+3N,j+N] =- KAGB’bf Ule/dS + COos
0

paAQ?
2

L
f (R? = s%cos? a— r* = 2sr cos a) UVids
0

L
,B'f [(b~e,)cos B'(s— L)~ (a—eg)sin B'(s = L)]U;V}ds - B' (b~ &,) U(L)V{L)
F . (64)
- (B')ZJ [(a—g)cos B'(s— L)+ (b—g,)sin B'(s - L)|U;V;ds - aJ U;Vids
0 (

)

L L L
My jen] =— pAaf UVids (65)  [Kiayjsanl=- GJJ UUjds + plﬂzf sin® BU,U;ds
0 0 0
TopQ? ("
—Cos a oP f (R? = s*cos> a— 17
2 0
L L
[Ci+3N,j+2N] = szQf (a Ccos B — b sin B) UIS]dS (66) —2sr cos CY) UiU}’ds_ Fa(JO/A)f UiU},dS (67)
0 0
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L

M35 j43n) = PJo f

L
U,Ujds + pA(a® + b%) f UUids (68)
0 0

All the terms of the matrices M, C, and K for a given beam
dimension and the assumed displacement functions outlined in
Eq. (38) can easily be determined by routine numerical integration
method such as Simpson’s rule. It should be noted that due to
pretwist in the beam, we have kept all sine and cosine functions of
the twist angle 8 inside the integration sign. During the spanwise
integration of terms in the matrices, we determine the local value
of B(s) by the relationship described in Eq. (1) as

B(s) =B, +sB' (69)
Additionally, it can be seen that the rate of angular acceleration

Q enters into the equations as the stiffness term. The above non-
zero terms in the velocity-dependent coefficient matrix [C; ;] are
all due to spin velocity () and represent the gyroscopic effect in
the system by being skew symmetric in nature, which in the gov-
erning equations are shown as Cg. The material internal damping
can be taken into account as a function of the nondimensional
factor y of the critical damping of the beam material and the spin
angular velocity (). In this situation, the typical terms in the
damping matrix [C;, j]D due to the material internal damping are
computed as functions of stiffness matrix terms [K; ;]s containing
material parameters Young’s modulus E and shear modulus G as
well as shear coefficient k of the beam, which are written as

2
[Ci,j]D = EX[Ki,j]S (70)

5 Sample Results of Fundamental Frequencies

The corresponding M and K matrices have been used for deter-
mining the nondimensional natural frequency term & by solving
the following eigenvalue problem:

M{f(1)} + [Ks+ KoJ{f(1)} = {0} (71)

where nondimensional frequency parameter ¢ is defined such that

¢ |EI
Natural frequency wy=—5\/— rad/s
L pA

The eigenvalue solution of Eq. (71) yields natural frequencies
both for rotating as well as nonrotating (1=0,K,=0) conditions
of the beam. It should be recognized that there is a scarcity of
published data with all the parameters considered in the current
analytical model, such as a blade rotating with an angular velocity
Q, radial lean a, initial twist (8g—f3,), coefficient of friction wu,
longitudinal load F, and its eccentricity (e.,g,), etc. Thus, in
order to demonstrate the accuracy of the present method, we have
compared the finite-element results and other limited amount of
published data with the natural frequency values yielded by the
much simplified versions of the current model.

(72)

5.1 Current Model Validation With Finite-Element
Results. In an attempt to validate the present model for its fre-
quency response, the analytically predicted frequencies are com-
pared with the finite-element results for a typical low-pressure
compressor blade with the following parameters:

L = span length of the airfoil (beam) =15.8 cm

c/L =aspect ratio =0.43

M = mass of the airfoil (pAL) =120 gm

a = angle of lean with respect to radius =0

1 = moment of inertia of the cross section =0.04213 cm*
(airfoil)

E = elastic Young’s modulus of the beam =117 G Pa
material

Journal of Applied Mechanics

p = beam mass material density =4.466 gm/cm’
(Br = total twist in the blade =-25°

-B)

Q = angular velocity of rotation (40 Hz) =251.327 rad/s

Here, the finite-element (FE) model (shown in Fig. 3) was ana-
lyzed using a commonly used commercial code called ANSYS. In
the FE model in order to ensure that the shear deformation effect
is included, we have used three brick elements through the airfoil
thickness.

For this particular blade, the first five vibrational mode finite-
element computed frequencies have been compared with those
determined by the current model and are shown in Table 1 for the
stationary condition and blades rotating at 2400 rpm, respectively.
As one can see that the correlation for the first five modes with the
FE model is very good with the maximum error limited to 3.32%.

5.2 Comparison of Current Model With Other Published
Data. We have also verified the current analytical model with the
results reported in published literature by other researchers as
well. Using the pretwisted Timoshenko beam finite-element ap-
proach Yardimoglu and Yildirim [20] have computed the frequen-
cies for the first four modes for a blade with the span-length L
=15.24 cm, chord ¢=2.54 cm, depth d=0.17272 cm, and a total
twist of (Bgr—B,)=45 deg. The material properties for this blade
such as, Young’s modulus of elasticity and the mass density are
E=206.85 GPa and p=7.8576 gm/cm?, respectively. The fre-
quencies reported by Yardimoglu and Yildirim for this blade and

PSR
-

¥
e

~

T
I TTLEAT 7S

-

¥
3

Fig. 3 Finite-element model of the blade (L=15.8 cm) with a
total twist of (Bz—-B,)=-25 deg
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Table 1 Comparison of natural frequency results computed using present analytical method
versus finite-element results (L=15.8 cm,a=0,(Bz- B, =-25 deg, c/L=0.430)

Vibrational mode

Current analytical model

FE model with eight-
noded brick
elements

Mode Nondimensional Frequency

number Mode shape & (Hz) Frequency (Hz) % difference
Stationary frequency (0 rpm)

1 First flexural 3.6533 187.14 182 2.82
2 First torsion 13.8916 711.62 715 —0.47
3 Second flexural 22.8508 1170.57 1154 1.44
4 Second torsion 46.5902 2386.65 2310 3.32
5 Third flexural 61.2276 3136.47 3226 —2.78
Rotating frequency (2400 rpm)

1 First flexural 4.1945 214.87 213 0.88
2 First torsion 13.9608 715.16 735 -2.70
3 Second flexural 23.3270 1194.96 1182 1.10
4 Second torsion 46.6035 2387.33 2350 1.59
5 Third flexural 61.7840 3164.97 3263 ~3.00

the corresponding results computed by the current analytical
model are shown in Table 2. It can be seen that their twisted beam
FE model fails to capture the first torsional mode frequency
completely.

Similarly, using the pretwisted Timoshenko beam bending
equation in two directions, Banerjee [21] reports the frequencies
only for the first three modes of vibration in his paper. In the
sample problem to validate the results of his twisted Timoshenko
beam model, Banerjee has computed these frequencies for a blade
with the span-length L=304.8 cm, cross-sectional area A
=127.667 cm?, aspect ratio (c/L)=0.667, flexural rigidity EI
=14.3485x 10" N cm?, and a total twist of (Bz—/8,)=40 deg.
The material properties for this blade such as, Young’s modulus of
elasticity and the mass density are E=70 GPa and p
=2.7 gm/cm?, respectively. The frequencies reported by Banerjee
[21] for this blade and the corresponding results computed by the
current analytical model are shown in Table 2. Again, the analyti-
cal results from the current model for this particular case are in
very good agreement with the maximum error limited to 3.6%.

5.3 Sample Numerical Results. For the presentation of nu-
merical results from the current analytical model, the natural fre-
quencies of the beam are computed in terms of nondimensional

frequency parameter & for a very wide range of varying input
parameters such as aspect ratio (¢/L), total twist angle (Bz—8,),

slenderness ratio d, etc. These nondimensional results are shown
in Figs. 4 and 5, for the untwisted and twisted beams, respectively.
Figure 4 illustrates the drop in the values of nondimensional fre-
quency parameter ¢ with the increase in the aspect ratio from 0.1
(long beam) to 1.0 (square plate) for a typical value of total twist
angle equal to zero (untwisted or flat beam). These values for the
first two modes (first and second Flexural modes) match very well
with the previous cantilever flat plate results reported by Harris
and Crede [33], shown here with dotted line. The two torsion
modes are also in reasonable agreement with the published data.
Due to inherent limitation of the current beam model, the two-
stripe vibrational mode for the flat plate shown by Harris and
Crede is not picked up by the eigenvalue solution.

Figure 5 illustrates the effect of aspect ratio (¢/L) variation on
the changes in the values of the nondimensional frequency param-
eter ¢ for a particular case of total twist angle of (Bz-pS,)
=45 deg. In order to compare the results on side-by-side basis
with those shown in Fig. 4, the values of the nondimensional
frequency parameter £ has been plotted for an identical range of
increasing aspect ratio of (c/L) as the untwisted beam.

Table 2 Comparison of natural frequency results computed using present analytical method
versus other published results for nonrotating (2=0) twisted Timoshenko beam (Yardimoglu
and Yildirim (see Ref. [20]), Banerjee (see Ref. [22]))

Vibrational mode

Current analytical model

Results from
published literature

Mode Nondimensional  Frequency Frequency

number Mode shape I3 (Hz) (Hz) % difference
Yardimoglu and Yildirim" (L=15.24 cm,@=0,(Bz-B,)=45 deg,c/L=0.167)

1 First flexural 3.6206 62.61 61.8 1.31
2 Second flexural 17.8910 309.38 304.8 1.50
3 First torsion 44.5846 770.98 Not shown -

4 Twist-bend combination 55.0548 952.31 944.5 0.83
5 Third flexural 69.3112 1198.91 1193.0 0.50
Banerjee” (L=304.8 cm, a=0, (B;x—B3,) =40 deg,c/L=0.667)

1 First flexural 3.8123 39.42 38.05 3.60
2 First torsion 11.5461 119.39 122.51 ~2.55
3 Second flexural 22.7070 234.79 226.87 3.49

See Ref. [20].
bSee Ref. [21].
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Fig. 4 Change in cantilever beam frequencies with no-twist as a function of aspect ratio (slen-

derness ratio=0.01)

The changes in the cantilever beam frequencies as a function of
total twist angle for both stationary and rotating conditions are
shown in Figs. 6-9 for aspect ratios=0.125, 0.25, 0.5, and 0.667,
respectively. In these figures, we have plotted the value of nondi-
mensional frequency parameter £ for the first six modes. However,
as the twist angle B or the aspect ratio (¢/L) changes, some of the
mode shapes also change as these lines cross each other. Due to
these mode-crossing conditions, for example mode 2 may be first
torsional mode for one twist angle, but it may become second

p L)

flexural mode for some other twist angle or aspect ratio. It is
observed that there is a small increase in the computed frequen-
cies for the flexural modes as the angle of twist increases, how-
ever, the fundamental frequencies for the modes associated with
the torsion about the span direction decreases rapidly with the
increasing twist. In addition, the presence of centrifugal force field
always tends to increase the frequencies with respect to its values
in stationary condition due to stress stiffening. This trend is simi-
lar to the one observed by Hu and his co-workers [22].

Non-dimensional Fregoency Perameter (2]

L 8| 1 -4 4 a4 oa L8] 1 % B3 - 3] 1
Aspect Ratio [ChordiSpant

Fig. 5 Change in cantilever beam frequencies twisted at 45 deg as a function of aspect ratio

(slenderness ratio=0.01)
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(chord/span)=0.125 as a function of the total twist angle (slenderness ratio=0.01,
angular velocity 2 =0.0 (stationary)—, angular velocity =300 rad/s (rotating)- - -)

It should be noted that the present derivation for a pretwisted
beam is completely different than other researchers’ formulation
[20,21,23] of using product moment of inertia terms such as,
I,.1,.1,,, etc. instead of torsional constant term J and shear cen-
ter term (a,b). For a general asymmetric cross section such as a
typical airfoil or hollow blades and turbine blades with cooling
holes, the numerical computation of terms like /,,/,, about the
CG of the cross section is extremely cumbersome. The current
approach is very convenient to analyze the dynamics of pretwisted
asymmetric thin cross section such as typical airfoil blades. In
addition, all the earlier researchers’ derivation disregards the cou-
pling effect of axial motion of the beam. Until now, all the axial-
bending coupling investigations have been limited to axial force

being treated as a buckling load on a column [23-26] rather axial
motion being considered as a separate degree of freedom. The
natural frequencies associated with the axial mode of vibrations
(¢ degree of freedom) for the rotating Timoshenko beam have
been determined and reported by the author in his previous work

[9].

6 Transient Analysis Results With Contact Impact at
the Free End

The transient motions caused by the periodic tip-impact load
along the longitudinal axis of the beam column initiates the high-
frequency axial mode of vibrations, which interacts with the low-
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Fig. 7 Change in the twisted cantilever beam frequencies with aspect ratio (chord/span)=0.25
as a function of the total twist angle (slenderness ratio=0.01, angular velocity 2=0.0
(stationary)—, angular velocity =300 rad/s (rotating)- - -)
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frequency flexural-bending mode oscillations of the beam and
changes its dynamic response considerably during spin. The dy-
namic coupling of axial motion with the lateral deflection in a
spinning beam introduces the Coriolis forces, which have very
significant effect on the rub-induced vibration in a rotating ma-
chinery.

6.1 Analytically Predicted Transient Response Versus
Strain Gage Data. In order to establish the accuracy of the cur-
rent analytical model for its time-domain results, the numerically
computed transient dynamic response of a typical high-pressure
compressor blade is compared with the measured strain-gage data
from a rig test [34]. In this especially developed experimental rig,

it was observed that during a controlled periodic rub scenario each
rub-impact produced a somewhat different transient dynamic
characteristics than the one preceding rub event until the rub-
induced vibration of the blade reached to a limit-cycle response
under repeated rubs. For this part of the analysis using the sixth
order Runge—Kutta scheme, a direct-time integration of the equa-
tions of motion outlined in Eq. (39) is performed. The aspect ratio
(c/L) of the test blade is 0.659 with the span length L equal to
4 cm, and it is rotating at 16,500 rpm with the tip tangential ve-
locity of 400 m/s. The radial lean angle is =0 for this blade and
the stagger angle is B,=Br=—45 deg. The bade tip rubs against a
72 deg circumferential rub zone with the contact-impact tip load-
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Fig. 10 Comparison of measured airfoil root strain gage data (...... ) versus results from the present ana-
lytical model (—) during repeated radial incursion of 0.1 mm at the blade tip with 72 deg circumferential rub

zone for the first four rubs

ing applied at the rate of one pulse per revolution with 0.1 mm
radial interference. In the rig test, the 72 deg forced rub zone is
created by inserting a partial sector of a circumferential shoe in
the path of the moving blade tip. The transient analysis has been
carried out for four repeated impacts. The measured dynamic data
from a spanwise strain gage at the fillet of the airfoil root is
compared with the numerically computed strain time history near
the clamped end of the corresponding Timoshenko beam model
using the current analytical technique. From the two sets ofplotted
data illustrated in Fig. 10, it can be seen that the transient analyti-
cal results predicts the dynamic characteristics and the resulting
strain time history in the rubbing blade very well.

Numerically computed response shows highly nonlinear behav-
ior of the airfoil root strains. However, in terms of frequency
response, the analytical model responds at a slightly lower fre-
quency than the test data. This can be attributed to the nonlinearity
in the boundary conditions at the tip during the actual rub event.
In the rig test the tip is partially constrained during the rub,
whereas in the analytical model it is considered free with rub-
related forces as external loads on the system. In addition, both
the analytical and the test data illustrate as to how the magnitude
of the response builds up after the first rub, until it stabilizes after
about third rub. On this plot, the dynamic response of the blade as
it passes through the 72 deg circumferential rub zone, is shown by
rectangular shaded areas with legends as the first, second, third,
and fourth rubs. As the spinning blade tip comes out of the forced-
rub zone, the extensional wave in the blade travels up-and-down
its longitudinal axis with very high velocity, giving rise to large
Coriolis forces, which are oscillatory in nature. Mathematically,
this Coriolis force is a distributed load; which is represented by
the term such as —2pAQ) cos B, shown in Eq. (21b), and its value
at the blade root is computed as the integrated sum over the span
length of the blade given by
L

Coriolis force at the airfoil root = — 2 pA f cos(B,+ B's){ ds

0
(73)

The transient characteristics of this Coriolis force is shown in
Fig. 11, the magnitude of which at the airfoil root could be as high
as 3200 G. For this test blade, whereas the first-flex bending mode

frequency is 1600 Hz, the longitudinal wave frequency is about
33,400 Hz. These longitudinal stress waves, frequency of which is
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more than 20 times higher than the flexural bending waves, can
generate intense heat at the mating surface of the blade root
(dovetail) with the disk, which has been observed to result into
local welding and fretting of the mating surfaces as well as severe
bearing damage even after short-duration heavy rubs. It should be
noted that the decay in the magnitude of the Coriolis force, out-
side the imposed rub zone during the free vibration of the blade, is
not due to damping in the system rather it is caused by the transfer
of kinetic energy associated with the longitudinal motion into the
lowest vibrational mode frequency, which invariably corresponds
to its first flexural bending mode motion. The transient vibratory
dynamic stresses in a rubbing airfoil is due to the interaction of
longitudinal motion (hyperbolic wave) with the lateral motion
(dispersive wave) of the beam, which in the case of rub-induced
dynamic instability results into fatigue-type damage to the blade.
Depending upon the eccentricity (e,,g,) of the rub location at the
blade-tip cross section, these rub-related damages can range from
local tip curl due to plasticity to complete separation of the airfoil
at the blade root.

6.2 Effect of Pre-twist on Transient Response During
Tip-Rub. In this section, we will apply the current analytical
model to investigate the transient response of a twisted blade as
opposed to a similar blade but without any pretwist. For this in-
vestigation, we will use the blade parameters same as outlined in
Sec. 6.1 with two different values of the total twist, that is (Bg
—B,)=0 deg and (Bz—B,)=—45 deg. Here, we have compared the
dynamic responses of these two blades, subjected to the same
contact-impact loads during a typical rub event of one pulse per
revolution, in terms of their nondimensional lateral tip-deflection
(7/L). The main difference of external load application between
the results shown in the previous section to the current section is
that the previous section results were generated for the rig-test
conditions with displacement-controlled radial incursion of
0.1 mm, whereas in this section the results are for outer casing-
imposed radial force of F,,,,=0.1 times of the Euler critical buck-
ling load applied at the free end of the beam. The numerical tech-
nique to implement the controlled radial incursion or, longitudinal
pulse of controlled magnitude in a transient simulation has been
discussed in detail in the author’s previous work [9] on the related
topic. The respective results of the lateral tip-deflection (#/L) are
plotted in Fig. 12.

These time-history plots up to 2.5 ms clearly show that for a
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Fig. 11 Analytically computed Coriolis forces at the blade root during repeated radial incursion of 0.1 mm
at the blade tip with 72 deg circumferential rub zone for the first four rubs

periodic contact-impact load of the same magnitude, the response  response until the fourth contact-impact pulse is almost identical.

of an untwisted blade is monotonically increasing, whereas for
blade twisted at 45 deg the dynamic response shows a beating
pattern. The beating pattern of a quasi-periodic nature indicates
that this dynamic system is responding simultaneously at two dif-
ferent frequencies, which are very close to each other. It is ob-
served that for both twisted and untwisted blades, the dynamic

In addition, after each pulse loading the twisted blade responds at
a slightly higher frequency than an untwisted blade.

7 Concluding Remark

The present analytical model captures the full dynamics of
pretwisted cantilever Timoshenko beam with combined torsional-
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Fig. 12 Comparison of analytically computed transient lateral tip displacements
for an untwisted beam (—) versus a 45 deg twisted beam (.....) during repeated
rubs (one pulse per revolution) at the blade tip with a periodic contact force of
magnitude F,,,=0.1X (Euler critical buckling load)
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bending-axial motion subjected to contact load F, including Cou-
lomb friction u at the tip. The axial force F, accounts for dynamic
buckling effect in the event of contact-impact load at the free end.
In the contact-impact scenario, the axial force F, is a transient
load represented by time-dependent function F(z). As shown in
the author’s previous work [9] on periodic tip-pulse-loading, the
general wave form of the dynamic force F(r) with a frequency of
fp—Hz along the longitudinal axis of the Timoshenko beam can
have many different time-dependent distributions, such as half-
sine wave, triangular pulse, rectangular pulse, full-cosine wave
with an offset, sawtooth profile, etc. The dynamic characteristics
of the twisted beam are expressed by a set of four partial differ-
ential equations. These equations contain not only terms due to
displacement-dependent forces rather they also include important,
but very rarely derived velocity-dependent forces as well. By in-
troducing four assumed displacement functions, the terms contain-
ing spatial coordinates s are eliminated from the equations by
using Rayleigh—Ritz technique. We have formulated every term
including forces due to Coriolis effect in the form of conventional
M., C, and K matrices. The main limitation of the current beam
model is its inability to obtain the classical two-stripe mode of the
rotating blade. In the airfoil blade dynamics, it is well known that
two-stripe mode is an important mode of vibration to be con-
cerned, especially for short airfoils with (¢/L)— 1. In order to
predict the two-stripe mode correctly, one must consider the
coupled beam bending formulation in two planes. It is worth not-
ing that the Timoshenko beam model developed here can be easily
expanded to the more general case of coupled bending deforma-
tion in two principal planes (x—x and y—y) as outlined in the
Appendix. We would like to point out that in the coupled two-
plane-bending formulation of the beam with contact-impact load-
ing, the number of independent degrees-of-freedom in the dy-
namical system suddenly jumps from 4 to 6; which makes it more
challenging to solve due to added complexity.

The equations of motion given in Eq. (39) are also integrated by
the Runge—Kutta method to obtain the transient dynamic response
in the time domain under different types of contact-impact loading
at the blade tip. For accurate computing of the beam dynamic
deformations associated with very high strain rates and other non-
linearities, the direct integration of equations of motion is a much
preferred technique, which is also used for determining the rub-
induced dynamic instability of rotating twisted blades. Using the
current analytical model, we are able to predict the transient re-
sponse of a rotating blade subjected to repeated rub impacts;
which depending upon the contribution of various parameters
such as rotational speed (), coefficient of friction w, longitudinal
contact load at the blade-tip F,, load eccentricity (e,,€,), etc., can
make a typical rub either unstable by showing a growth in the
amplitude of lateral oscillations or turn into a stable rub as a
limit-cycle response.

Nomenclature

(a,b) = x-coordinate and y-coordinate of the shear
center, respectively

A = cross-sectional area of the beam or blade
¢ = chord length of the blade airfoil cross
section

C = general coefficient matrix for velocity-
dependent forces

Cp = damping matrix (symmetric)

C; = gyroscopic matrix (skew symmetric, causes
forward and backward frequency shift in
the blade)

[c; j] = typical ith row and jth column term in the
velocity-dependent matrix
d = depth of the blade airfoil cross section
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El,

GJ

1

xxadyy

Kcase

Mc My, Mg

{P(n}

0(s,1)
Qn?QS

slenderness ratio of the blade airfoil cross
section =\I/AL?

unit vectors in the local axial-tangential-
radial system

unit vectors in the local chord-normal-span
system

Young’s modulus of elasticity of the blade
or beam material

flexural rigidity of the blade cross section
about local x-axis (minor principal
direction)

flexural rigidity of the blade cross section
about local y-axis (major principal
direction)

pulse frequency of the blade tip contact-
load in Hz

generalized external force vector at the
blade tip

axial load on the blade (along the span di-
rection of the blade)

centrifugal force at the blade airfoil CG
components of external force vector at
blade-tip F due to contact

column vector containing generalized time-
dependent displacement coordinates of the
dynamical system

time-dependent axial load on the blade due
to contact impact (along the span direction
of the blade)

shear modulus of the blade or beam
material

torsional rigidity of the thin blade cross
section

principal moment of inertias of the blade
cross section

polar moment of inertia of the blade cross
section =(I,,+1y,)

radial stiffness of the outer case filler mate-
rial during rub

general coefficient matrix for displacement-
dependent forces

in-plane force-dependent circulatory matrix
due to contact force F,

elastic stiffness matrix (symmetric)
stress-stiffening or softening matrix due to
spin velocity

a typical ith row and jth column term in
the stiffness matrix

span length of the cantilever blade

general coefficient matrix for acceleration-
dependent forces (symmetric)

typical ith row and jth column term in the
mass matrix

mass of the airfoil or, cantilever beam
(pAL)

generalized external moment vector at the
blade tip

components of external moment vector at
blade-tip M due to contact

column vector containing external forces on
the dynamical system (components of this
vector: PY, P, P¢, P%)

shear force at span location s and time ¢
distributed lateral loads on the beam in the
transverse and longitudinal directions (per
unit length)

blade tip radius
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r = blade root radius or disk outer radius
s = blade local coordinates in the span direction
time (s)
distributed moments on the beam about the
chord and longitudinal directions (per unit
length)

T = total kinetic energy of the blade

U = total potential energy of the blade
S(s),Uj(s),V(s) = sinusoidal shape functions for blade defor-
mation (j=1,2,3,...,N)
velocity vector of any typical point on the
airfoil or beam

T.T, =

c*rs

vV =

Wj(t) X(1),Y (1),
Zj(t) = time-dependent generalized coordinates for
dynamic deflection of the blade

(j=1,2,3,...,N)
Greek Symbols

« = sweep or blade lean angle with respect to
the radial direction

B = blade twist or stagger angle (rad), i.e., angle
between the blade chord and the engine
axis (axis of rotation) at the blade tip

twist angle of the blade cross section at
radii » and R

(Br—B,) = total twist in the blade over the span length

IBraBR =

L
B’ = rate of pretwist of the blade in the span
direction
d(s—L) = dirac delta unit impulse function for values
at s=L

v = radial clearance at the blade tip with respect

to the case inner radius

contact load eccentricity in the local chord

and normal direction

blade deformation due to twist, cross-

section rotation, lateral deflection, and lon-

gitudinal deflections, respectively.

angle of the rigid body rotation of the shaft

about the spin axis at time 7 from time 0 (6

=t for constant angular velocity ())

shear coefficient in the Timoshenko beam

formulation

Lagrangian parameter

= coefficient of friction between the blade tip
and the outer case

= Poisson’s ratio of the blade material (d6/dr)

= nondimensional beam frequency parameter

rotation vector for small rotations of the

airfoil cross section

critical damping parameter of the blade ma-

terial (nondimensional)

wy = natural frequency (rad/s)

Q) = blade spin velocity (rad/s)=(d6/dt)

¢; = (2j-1)7/2L

EcnEy =

¢’l/f’ 7]74 =

X
Il

T >~
Il

RBom <
I

Appendix: Effect of Beam Bending in Two Principal Di-
rections

In the current formulation, we have considered that I,,>1,,,
which inherently assumes that the lateral deformation in the beam
will be dominated by (y-y) direction displacements. If one wants
to explicitly include the deformations in the other principal direc-
tion (x-x) as well, it would result into two additional degrees-of-
freedom for # and . For example, in addition to twist ¢ and
extension ¢ of the cross section, we will have to deal with (7, ;)
due to bending about the principal (x-x) direction and (7, ;) due

to bending about the principal (y-y) direction. The resulting equa-
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tions for the Timoshenko beam formulation due to fully coupled
two-directional bending alone are too cumbersome to derive here
and are shown in the following for reference purposes as:

(a) Bending moment balance about local (x-x) axis
- Elxx( lvzfx,sx) - KAG( Mys— lﬁx) + B’EIyy(B’ l//x) + ﬂ’ ’<AG7]X
- ﬂ,EJOLﬂy,s - plxxﬂz ¢x + plxx( (px,tr) = TC(S,Z‘)
(A1)
(b) Shear force balance in the local (y-y) direction
- KAG( ny,ss - lvb:x,s) + 2KAGB, Mx.s + ﬂrzKAG”]y
+ B, KAGlﬂy - FCfCOS any ss + pA Myt = Qn(s’t)
(A2)

(c) Bending moment balance about local (y-y) axis

= El, (¢, ) — kKAG(1 s+ ) + B'EL(B' ) + B kAG 7,
+ B EJoi s = ply QP + plyy(4,) = T (s,1)
(A3)
(d) Shear force balance in the local (x-x) direction
— KAG(7, s + ¥h,,) - 2kAGB' 7, .+ B kAG 7,
+ B KAG Y — F jcos an, i+ pAT), = Q(s.1)
(A4)

The corresponding new geometric boundary conditions are as
follows:

$0,0=0, n,(0,)=0, ¢,0,0)=0, 7(0,)=0 (AS5)

The additional four natural boundary conditions at the free end

of the cantilever beam for (s=L) are expressed in terms of the

contact-impact force vector F and moment vector M components
(see Eq. (3)) as

(Bending momentxx)at s=L = MC = Ell/jx,s|s=L = Fa[sn + SCSil’l(ﬂ’L)]
(A6)

(Shear forceyy)al s=L=Fy=- KAG[ My,s— l/’x]x:L =— uF,cos BR
(A7)

(Bending momentyy ), 1. = My=El, |,

=-F[e.+e,co8(B'L)] (AB)

(Shear forcexx)m s=L = FC == KAG[ Mxs — lpy]s:L == ,U,FaSil‘l BR
(A9)

It should be noted that additional coupling terms will appear for
the partial differential equations governing the beam motion for
extension ¢ and twist ¢. Using the above equations, the interested
researchers can easily expand Egs. (21a)—(21d) to take into ac-
count of coupled bending effect about (y-y) axis.
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