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摘 要

长期以来图灵度形成的偏序结构D = (D,≤) 是递归论的一个主要研究对

象，对其子结构R = (R,≤)的研究则是一个重要分支。这里R是所有递归可枚

举度的集合，递归可枚举度是可以由一个递归可枚举集合代表的图灵度，而递

归可枚举集合在哥德尔不完备定理的证明中扮演了重要角色：给定一个递归的

公理系统，如果它蕴含谓词演算，则其所有的定理构成一个非递归的递归可枚

举集合。

R的研究历史上的第一个著名问题是（Post (1944)）：是否存在除了0（递

归集合构成的图灵度））和0′（停机问题代表的图灵度）之外的递归可枚举

度？这个问题的肯定答案由Friedberg (1957) 和Mučnik (1956) 独立地发现，他

们的证明引入了优先方法。接下来的几十年，人们在Friedberg-Muchnik工作的

基础上发展出更复杂的优先方法，并用这些方法发现了(R, <) 的很多重要性

质，比如R是稠密的（Sacks (1964)），即(∀a,b ∈ R)(a < b → (∃c ∈ R)(a <

c < b))；R 是一个上半格，一般来说两个元素的下确界不存在（Lachlan

(1966)，Yates (1966)）。

Sacks稠密性定理的证明导致许多人猜测R是一个简单的结构，比如：Shoenfield

(1965)猜想这个结构是齐次的（即如果一个偏序P可以嵌入R中，而且Q是P的

一个扩张，则在R中也可以把P扩张到Q），而Sacks 猜想R 的一阶理论是递
归的。Shoenfield的猜想被Lachlan (1966)和Yates (1966)独立地反驳。他们在反

驳中构造了称为极小对的递归可枚举度：a ∧ b = 0（这样的a或b的集合记

为M）。Lachlan 和Yates 的工作引起人们对R 局部性质的兴趣，人们期望通
过引入更多的局部性质并且通过对局部性质的研究揭示R 的整体性质，例
如：Sacks的猜想是否成立？

然而Sacks猜想的反驳（Harrington and Shelah (1982)）最终借助于在R中可

i



定义地解释其它数学结构这样的模型论手段，而不是引入简单自然的局部性

质。事实上模型论的方法早就应用在D的研究中。但是由R的局限性带来的
复杂性，意味着应用模型论方法需要更复杂的技巧。这些技巧近年来由Nies,

Shore, Slaman和Woodin等在Harrington and Shelah (1982)的基础上系统地发展起

来。越来越多整体性质的研究都引入了模型论或者集合论的工具，需要其它逻

辑分支的知识和技巧，也需要应用优先方法进行更加复杂的构造。

在本论文中，我们将从格论和模型论的角度出发研究R的一些整体性质：
可定义理想和滤子的存在性，子结构和R的关系，以及同余关系和商结构。为
此我们将借助Nies, Shore和Slaman等发展的在R中解释数论模型(N, +, 0)的工

具。

我们将在第二章中研究R的一个理想。在这方面的一个重要结果是Ambos-

Spies et al. (1984)发现的：R可以分解为一个超滤NC和一个素理想M，并且它

们是可定义的。然而自此以后，人们一直未能找到其它可定义的代数子结构。

这方面的突破一直等到Nies (2003)证明“所有R的可定义子集生成的理想也是
可定义的”。Yu and Yang (2005)应用这一有力的结果找到了的更多的理想，其

中的一个理想是由NB生成的。Li and Yang (2003)注意到NB的构造和PC的

构造接近，因此问它们是否生成同一个理想。我们将证明上述的集合生成不同

的理想，事实上PC生成一个之前未知的理想。另一方面我们证明了：任何非

主理想都是R的Σ1-初等子结构。这一结果从模型论的角度说明非主理想在一定

程度上反映了R的性质。
在本论文的第三章，我们第一次给出定义滤子的一般手段：利用Nies (2003)

的一个定理，我们证明“所有R 的可定义子集生成的滤子也是可定义的”，
这就意味着我们可以通过寻找R 的可定义子集来寻找可定义的滤子。这是上
述Nies关于可定义理想的结果的对偶。应用上述结论，我们找到两个新的可定

义滤子：分别由Cups(M)和NSB生成的滤子。在此之前，NC是唯一已知的可

定义滤子。

另一方面，R的商结构的一些基本性质至今没有被系统地研究，比如稠密
性。Schwarz (1984)证明了(R/M,≤)是向下稠密的。在第四章，我们定义了一

个并非由理想诱导的同余关系，并且证明其诱导的商结构并不稠密；另一方

面，尽管此同余关系和“模NCup”非常相近，我们却能够证明它们并不相

同。

关键词: 递归可枚举度;上半格;理想;滤子;同余关系;子结构;可定义.

ii



南京大学研究生毕业论文英文摘要首页用纸

THESIS: Some Algebraic Properties of Recursively
Enumerable Degrees

SPECIALITY: Pure Mathematics

POSTGRADUATE: WANG Wei

MENTOR: Professor DING Decheng

Abstract

For long time the partial order of Turing degrees D = (D,≤) is a major subject

of recursion theory, and the study of R = (R,≤) is an important branch, where R

denotes the collection of recursively enumerable (r.e. for short) degrees, i.e. Turing

degrees represented by some r.e. sets. R.e. sets played an important role in Gödel’s

proof of his Incompleteness Theorem: given a recursive set of axioms implying first

order logic, its theorems form a non-recursive r.e. set.

The first famous problem in the history of studies on R is the existence of a r.e. de-

gree strictly between 0 and 0′ (Post (1944)). The affirmative answer was given by Fried-

berg (1957) and Mučnik (1956) independently, and they introduced so called priority

arguments. During the following decades people developed much more complicated

priority arguments, and discovered many important properties of R, e.g. the density of

R by Sacks (1964), and the non-existence of infima in general of two elements in R
independently by Lachlan (1966) and Yates (1966).

Sacks’ density theorem led to conjectures implying thatR is simple, e.g. Shoenfield

(1965) conjectured that R is homogenous, and Sacks conjectured that the first order

theory of R is recursive. Shoenfield’s conjecture was later refuted. In their refutations

Lachlan (1966) and Yates (1966) constructed so called minimal pairs, i.e. a ∧ b = 0.

The collection of halves of minimal pairs is denoted by M. Their proofs inspired inter-

ests in local properties ofR, people kept introducing local properties with expectations

to reveal global properties of R, like Sacks’ conjecture.

But the refutation of Sacks’ conjecture by Harrington and Shelah (1982) finally re-

lied on definably interpreting other structures in R rather than natural local properties.
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Actually such model theoretic tools had long appeared in the study of D. But restric-

tions imposed by R imply extra difficulty. However recent years see development of

these techniques in R by people like Nies, Shore, Slaman and Woodin based on the

work of Harrington and Shelah. Model or set theoretic tools are gradually introduced

in study of global properties. And knowledge and skills from other branches of logic

are required, as well as complicated priority constructions.

In this thesis we will investigate some global properties ofR from lattice and model

theoretic viewpoints: the existence of definable ideals and filters, the relation between

substructures and R, congruence relations and quotient structures.

In Chapter 2 we will study an ideal in R. The first important result of this kind is

by Ambos-Spies et al. (1984) that R can be decomposed as a prime ideal M and an

ultra-filter NC. But from then on people found no other definable substructures for

a long time. The breakthrough is a theorem by Nies (2003) that ideals generated by

definable subsets are also definable. Yu and Yang (2005) applied this to find several

definable ideals. Li and Yang (2003) observed that the constructions of NB and PC

are similar, and thus asked whether they generate a same ideal. We will prove that the

ideals generated by NB and PC respectively are different. In fact the ideal generated

by PC was unknown. On the other hand we will also show that every non-principal

ideal is a Σ1 element substructure of R. This result from a model theoretic viewpoint

indicates that non-principal ideals reflect some properties of R.

In Chapter 3 using a theorem in Nies (2003) we will prove a dual to Nies’ result

mentioned that filters generated by definable subsets are definable. This gives a general

method of finding definable filters. Applying this result we will find some new definable

filters: those generated by Cups(M) and NSB respectively. Previously NC was the

only known filter.

Finally in Chapter we will study a congruence relation and prove that the induced

quotient structure is not dense. There were no known similar results so far, though

density is a basic property. (Schwarz (1984) proved the downward density of R/M.)

Despite the analogous between this congruence relation and modulo NCup we will

prove that they are actually different.

Keywords: recursively enumerable degrees; upper semi-lattices; ideals; filters;

congruence relations; substructures; definability.
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Chapter I

Preliminaries

In this chapter we introduce notions and notations for developing the rest of this

thesis. However as limited by time and space we assume that readers have had basic

ideas of lattice theory and mathematical logic, in particular some basic recursion theory.

For readers not familiar with these, we refer to Grätzer (1998), Nerode and Shore (1997)

and Cutland (1980).

I.1 Upper Semi-lattices

A partial order (P,≺) is an upper semi-lattice if and only if for every pair a, b ∈ P

their supreme, denoted as a ∨ b, always exists. When this pair also has infimum, we

denote it by a ∧ b. When the ordering is unambiguous we also denote the partial order

like P .

A subset I of P is an ideal if and only if

1. I is closed downward, i.e. ∀a ∈ I, b ∈ P (b ≺ a → b ∈ I),

2. I is closed by ∨, i.e. ∀a, b ∈ I(a ∨ b ∈ I).

Given A ⊆ P , the ideal generated by A is the least ideal I containing A, denoted by

(A].

Dually, a subset F of P is a filter if and only if

1. F is closed upward, i.e. ∀a ∈ F, b ∈ P (a ≺ b → b ∈ F ),

1



2 Chapter I. Preliminaries

2. F is closed by ∧, ∀a, b ∈ I(a ∧ b exists → a ∧ b ∈ F ).

If in additional ∀a, b ∈ F∃c ∈ F (c ¹ a, b), then we say that F is a strong filter. Given

A ⊆ P , the filter generated by A is the least filter F containing A, denoted by [A).

An ideal I is a prime ideal if and only if

∀a, b(a ∧ b exists and in I → a ∈ I or b ∈ I).

Dually a filter F is ultra if and only if

∀a, b(a ∨ b ∈ I → a ∈ F or b ∈ F ).

I.2 Recursively Enumerable Degrees

In degree theory the objects are subsets of ω and equivalent classes under Turing

reducibility. A set A is Turing reducible to another set B if and only if there is a Turing

machine Φ that using B as an oracle computes the characteristic function of A, denoted

by A ≤T B. We denote A ≡T B if and only if A ≤T B and B ≤T A. ≡T is an

equivalent relation and equivalent classes induced by≡T are called Turing degrees. We

denote degrees by a,b, c, . . . the set of degrees by D. For a,b ∈ D, a ≤ b if and only

if A ≤T B for some A ∈ a and B ∈ b. The structure (D,≤) is denoted by D and

sometimes also by D for short.

There is a natural join operation for sets in degree theory. For A,B ⊆ ω, A⊕ B =

{2n|n ∈ A} ∪ {2n + 1|n ∈ B}. It is trivial that A ⊕ B ≤T C for any C with

A,B ≤T C. Hence the degree represented by A ⊕ B is the supreme of a and b, i.e.

degrees represented by A and B respectively. We denote the degree of A⊕B by a∨b.

However infima of pairs do not always exist.

Theorem I.2.1 (Kleene and Post (1954)). There are a,b ∈ D such that a∧b does not

exist. Hence D is not a lattice.

A recursively enumerable set is the range of some recursive function mapping ω

into ω. A Turing degree containing a recursively enumerable set is called a recursively

enumerable degree. We use r.e. for short of recursively enumerable and denote the set
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of r.e. degrees by R and the structure (R,≤) by R. From now on without explicit

declaration all degrees and sets considered are r.e.

As recursive function is defined in an effective way, there are effective enumerations

of recursive functions. We may fix an arbitrary one and denote by We the range of the

e-th function with respect to this specific enumeration. The best known non-recursive

r.e. set is so called the halting problem, i.e. K = {e|e ∈ We}. The degree of recursive

sets is denoted by 0, and that of K by 0′. It is immediately from the definition that

A ≤T K for every r.e. A. Thus 0′ is also called the complete r.e. degree.

However 0 and 0′ remained the only known r.e. degrees for a long time, and it was

Post’s problem whether there exists another r.e. degree, that led to the development of

the theory of r.e. degrees. By works of Friedberg, Muchnik and Sacks et al. people

learned that there are countably many r.e. degrees. And this non-trivial partial order

(R,≤) is neither a lattice according to the following.

Theorem I.2.2 (Lachlan (1966) and Yates (1966)). There are incomparable r.e. degrees

a and b with no infimum.

On the other hand there do exist pairs of r.e. degrees having infima.

Theorem I.2.3 (Lachlan (1966) and Yates (1966)). There are incomparable r.e. degrees

a and b such that a ∧ b = 0.

Degrees having 0 as infima with other degrees are called cappable degrees. The set

of cappable degrees is denoted by M, and its complement NC = R \M. M and NC

together form an algebraic decomposition of R.

Theorem I.2.4 (Ambos-Spies et al. (1984)). M is a prime ideal and NC is a strong

ultrafilter.

Actually Ambos-Spies et al. (1984) gave more insights about NC. To understand

these insights we need more notions.

Given a set X and an enumeration of X-recursive functions we define KX = {e|e ∈
WX

e } and denote by x′ the degree of KX where x is the degree of X . Then there is

a strictly ascending sequence x < x′ < x′′ < . . ., in particular 0 < 0′ < 0′′ < . . .

when x = 0. Inductively we may also define x(n+1) = (x(n))′. We call KX and x′

Turing jumps or simply jumps of X and x respectively. Sometimes we also denote KX
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by X ′. A degree a is lown if and only if a(n) = 0(n), and it is highn if and only if

a(n) = 0(n+1). The set of lown degrees is denoted by Ln and of highn degrees by Hn.

We write L and H respectively when n = 1.

A degree a is cuppable if and only if there is a b < 0′ with a∨b = 0′. If in addition

b can be chosen to be low, then we say that a is low cuppable. Let NCup denote the

complement of the set of cuppable degrees, and LC the set of low cuppable degrees. It

is easy to see that NCup is also an ideal.

Another notion is related to effective enumeration of r.e. sets. Given an effective

enumeration of a set A, we denote by A[s] the finite set of elements enumerated in

A up to stage s. Now fix an arbitrary simultaneous enumeration of all r.e. sets, say

{We[s]|e, s ∈ ω}, we say that a set A is promptly simple if and only if A is infinite and

co-infinite, and there is a recursive function p and an effective enumeration of A such

that

We is infinite ⇒ ∃x, s(x ∈ (We[s + 1] \We[s]) ∩ A[p(s)])

for all e. We also say that the degree a represented by A is promptly simple if A is so,

and denote by PS the set of promptly simple degrees.

Now we are ready to introduce the following.

Theorem I.2.5 (Ambos-Spies et al. (1984)). NC = PS = LC.

I.3 A Little Model Theory

For basic model theoretic concepts we refer to Marker (2002) or Nerode and Shore

(1997). But we will explain notions which are critical to understand definability results

in degree theory.

Given a language L and L-structures N ⊆ M, N is a Σ1-elementary substructure

of M, denoted by N ¹1 M, if and only if for every Σ1-formula φ(x0, . . . , xn) and

a0, . . . , an ∈ N ,

N |= φ[a0, . . . , an] ⇔M |= φ[a0, . . . , an].

If the above holds for all first order formulae then N is an elementary substructure of

M, or N ¹M for short.

If A ⊆ Mk for some k, φ(p1, . . . , pm, x1, . . . , xk) and a1, . . . , am are such that for
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all b1, . . . bk ∈M,

(b1, . . . , bk) ∈ A ⇔M |= φ[a1, . . . , am, b1, . . . , bk]

then we say that A is definable via φ in a0, . . . , am.

For another language L′ and an L′-structure M′, M′ is interpretable in M if and

only if there is a set of parameters a ∈M such that there are

1. a subset of Mk for some k, say A, definable from a,

2. an equivalent relation E on A definable from a,

3. for each n-ary relation symbol R ∈ L′ an n-ary relation φR on A which is E-

invariant and definable from a,

4. for each n-ary function symbol F ∈ L′ an n-ary relation ψF on A which is

actually an n-ary function on A/E and definable from a, and

5. a bijection f : M′ → A/E which is an isomorphism if we take A/E as an

L′-structure with all symbols interpreted appropriately according to the above.

A, E, φR’s and ψF ’s constitute an interpretation of M′ in M. When L′ consists of

only finitely many non-logical symbols the parameters can be finite, and the formulae

defining A, E etc. form a scheme. We also say that a codes or defines a copy of M′ in

M.

It is easy to see that interpretations are just generalizations of quotient structures in

algebra, except that we require things definable.





Chapter II

Ideals

II.1 Ideals as Substructures

Theorem II.1.1 (Ding et al. (2005)). Every nonprincipal ideal is a Σ1 elementary sub-

structure of R.

Proof. Fix I a nonprincipal ideal of R. Following the analysis in the previous section,

it suffices to prove that for any finite partial order P and an embedding f : P → R,

there exists an embedding g : P → I with g−1 extending f−1 ¹ I.

Let x1, . . . , xn be an enumeration of P− = f−1(I), ai = f(xi) for i(0 < i ≤ n)

and a0 = 0. To extend f , define g(xi) = f(xi) for i ≤ n.

Since I is nonprincipal we can find some c ∈ I such that c >
∨∨

i≤nai. We need a

technical lemma.

Lemma II.1.2. There exist an independent sequence of degrees in [0, c], say 〈bi,k : i ≤
n, k ∈ ω〉, such that ai ≤ bi,k, and for any finite H ⊂ {0, 1, . . . , n} × ω,

ai 6≤
∨∨

j∈H0

aj ⇒ ai 6≤
∨∨

〈j,k〉∈H
bj,k (II.1)

where H0 = {j : ∃k(〈j, k〉 ∈ H)}.

Proof. This lemma is essentially a generalization of Sacks Density Theorem.

7



8 Chapter II. Ideals

Assume Ai ⊆ ω[2i] is a c.e. representative of ai for i ≤ n and C is a c.e. represen-

tative of c. Let A =
⋃

i≤n Ai. We construct pairwise disjoin c.e. sets 〈Bi,k : i ≤ n, k ∈
ω〉 such that Bi,k ≤T C. Let B =

⋃
i≤n,k∈ω Bi,k, we make A ∩B = ∅.

To make the sequence independent, for m ∈ ω, 〈i, k〉 ∈ (n + 1) × ω and finite

H ⊂ (n + 1)× ω, we make

Pe : Bi,k = Φm(
⋃

j∈H0

Aj ∪
⋃

〈j,l〉∈H

Bj,l) ⇒ C ≤T A

where e is an index of the requirement under some effective encoding of all possible

combinations.

To make (II.1), for i and H satisfying the left hand side of (II.1) and m, we make

Ne : Ai = Ψm(
⋃

j∈H0

Aj ∪
⋃

〈j,l〉∈H

Bj,l) ⇒ Ai ≤T

⋃
j∈H0

Aj

where e is again an index under analogues settings. Note that there are only finitely

many such pairs (i,H0).

We employee the trick of true stages computation where true stages are uniformly

defined as true stages of the effective enumeration of A ∪B arisen in the construction.

The strategy for a single Ne is to preserve agreements between Ai and Ψm by im-

posing restraints on B. Strategies serving less prior requirements are required to respect

the restraints.

The strategy for a single Pe is Sacks Coding with a slight modification. To be

precise, at stage s+1, we enumerate 〈x, t, 2e+1〉 in Bi,k iff x ∈ Cs+1, 〈x, t, 2e+1〉 is not

restrained from entering B by prior requirements and (∀v)(t ≤ v ≤ s → x < lΦ(e, v))

where lΦ is the length of agreements defined as usual.

In addition, we impose a restraint on B to protect the computation Φm ¹ lΦ(e, s).

This is the only modification comparing to Sacks Coding strategy. Since C 6≤T A, this

restraint imposed for Pe will drop at true stages.

The verifications go essentially in the same way as those for Sacks Density Theo-

rem.

Finally let bi,k = deg(Ai ∪Bi,k).

Let us return to the proof of Theorem II.1.1. Fix 〈bi,k : i ≤ n, k ∈ ω〉 as in the
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above lemma. Let y1, . . . , ym enumerate P\P−, define

g(yk) =
∨∨

{bi,l : xi <P yk and yl ≤P yk}.

Immediately, if u ≤P yk then g(u) ≤ g(yk).

Assume u 6≤P yk. If u is some xi, then since f is an embedding, ai 6≤
∨∨

j∈H0
aj

where H0 = {j ≤ n : xj < yk}. Hence (II.1) and the definition together imply that

g(u) 6≤ g(yk).

If u is some yl, then the independence of the sequence 〈bi,k : i ≤ n, k ∈ ω〉 implies

that again g(u) 6≤ g(yk).

Hence g is the desired embedding.

Remark 1. Slaman observed that Lemma II.1.2 could be deduced algebraically from

the main result in Slaman and Soare (2001). But it might not yield a shorter proof.

Although no principal ideal could be a Σ1 elementary substructure since the predi-

cate x is not maximal is Σ1 definable inR, the following follows immediately from the

proof above.

Proposition II.1.3. For c r.e., ϕ ∈ Σ1 and −→a ∈ [0, c] such that ∪−→a < c,

R |= ϕ[−→a ] ⇔ [0, c] |= ϕ[−→a ].

On the contrary, Σ2 elementary substructures always contain 0′ since the fact there

exists a greatest element is Σ2 in R (plus the remark before the proposition). Hence no

proper ideal could be a Σ2 elementary substructure.

II.2 The Definable Ideal Generated by Plus-cupping

Degrees

A strong version of plus-cupping degrees were introduced by Harrington, later Fejer

and Soare isolated a technique in Harrington’s construction and introduced a weak

version of plus-cupping degrees. Here we follow Fejer and Soare’s definition.
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Definition II.2.1 (Harrington (1978), Fejer and Soare (1981)). An r.e. degree a is plus-

cupping if and only if for every nonrecursive b ≤ a, there is an incomplete r.e. degree

c such that b ∨ c = 0′. We denote the class of plus-cupping degrees by PC.

As remarked by Li and Li (2003), the typical plus cupping constructions resemble

those of so called nonbounding degrees to some extent.

Definition II.2.2 (Lachlan (1979)). An r.e. degree a is nonbounding if and only if a > 0

and there is no minimal pair below a. We denote the class of nonbounding degrees by

NB.

However these two notions are different.

Theorem II.2.3 (Li and Li (2003)). PC−NB 6= ∅.

In addition A. Li and Y. Zhao proved the following.

Theorem II.2.4 (Li and Zhao (2004)). Plus cupping degrees do not form an ideal.

Based on these facts, A. Li and Yang asked the following question.

Problem II.2.5 (Li and Yang (2003)). Is (PC] different from (NB]?

We answer this question affirmatively. Actually we will prove a stronger result

that (PC] is a proper subideal of M and not contained by (NB ∪ NCup]. For this

sake, in section 3 we will prove that NCup is not a subset of (PC], hence (PC] is a

proper subideal of M; while in section 4, we will prove that (PC] is not contained by

(NB ∪NCup]. 1

II.3 NCup 6⊆ [PC]

Theorem II.3.1. There is a noncuppable c.e. degree a 6∈ [PC].

We prove Theorem II.3.1 by constructing a c.e. set A such that deg(A) ∈ NCup

and deg(A) 6∈ [PC].

1The results in this section is contained in Wang and Ding (2005)
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To make A noncuppable, fix a computable enumeration (Φe,We)e∈ω of c.e. func-

tionals and c.e. sets, we build an additional c.e. set D such that for all e

Me : D = Φe(A,We) ⇒ K ≤T We

To make deg(A) 6∈ [PC], fix a computable coding of
⋃

1<n<ω ωn. For e let ‖e‖ denote

the unique c such that e codes an element, say z, of ωc+1; and let ei denote the i-th ele-

ment of z. Fix (Ψe‖e‖ , Be0 , Be1 , . . . Be‖e‖−1
)e∈ω, we satisfy the followings requirements

for all e

Pe : A = Ψe‖e‖(Be) ⇒ (∃i < ‖e‖)(Bei
is not plus cupping)

where Be is the abbreviation of (Be0 , Be1 , . . . , Be‖e‖−1
).

We arrange the construction on a tree T of strategies growing upward. Every finite

path of the tree is an X -strategy for some requirement X . We will gradually define the

set of outcomes and assign a computable linear ordering to this set. Thus we can order

strategies on T lexicographically. Denote the order by <L, if α <L β or α ⊂ β are

strategies on T then we say α < β. We also say that α is to the left of β or β is to the

right of α if α <L β.

At each stage s we will define a finite approximation TPs to the true path TP of the

construction. TPs will be the union of accessible strategies at s, and only accessible

strategies are allowed to act at each stage.

II.3.1 M-strategies

Suppose α is anMe-strategy. We define lα the length of agreement between D and

Φ(A,W ) and α-expansionary stages as usual.

α has two outcomes ∞ (if there are infinitely many α-expansionary stages) and 0

(if there are at most finitely many).

If there are infinitely many expansionary stages, α builds a functional Θα such that

for all k

N α
k : D = Φe(A,We) ⇒ K(k) = Θα(We; k).
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To satisfy N α
k and define Θα(We; k), we arrange N α

k -strategies above αˆ∞. From

now on in this subsection, we occasionally omit α from superscripts.

Suppose β ⊇ αˆ∞ is an N α
k -strategy. At the beginning, β picks a flip point dβ(k)

of k and keeps it from entering D. We may write d for dβ(k).

If the computation Φe(A,We; d) changes infinitely often, β will have⊥ as outcome

indicating that Φe(A,We; d) diverges. In this case, we arrange no more N α-strategies

above βˆ⊥ since D 6= Φe(A,We).

Otherwise β has > as outcome and defines Θ(We; k) = K(k) with θ(k) > φe(d).

In addition, β expects that A ¹ φe(d) changes no longer.

If k is enumerated in K later, β enumerates d in D, then either β establishes a

disagreement between D and Φe(A,We), or We ¹ φe(d) eventually changes and β can

safely change the definition of Θ(We; k) to 1. So the key to β’s success is the inequality

θ(k) > φe(d).

We say that θ(k) is honest if this inequality holds.

II.3.2 P-strategies

Suppose τ is a Pe-strategy. We define lτ the length of agreement between D and

Φ(A,W ) and τ -expansionary stages as usual.

τ has two outcomes ∞ (if there are infinitely many τ -expansionary stages) and 0

(if there are at most finitely many). If there are infinitely many expansionary stages, τ

builds ‖e‖ many c.e. sets (Cτ
0 , Cτ

1 , . . . , Cτ
‖e‖−1) such that Cτ

i ≤T Bei
for i < ‖e‖,

Qτ
n : (∃i < ‖e‖)(Cτ

i 6= W ni
) for ‖n‖ = ‖e‖ − 1,

and for (i, j) ∈ ‖e‖ × ω

Rτ
i,j : D = Φj(C

τ
i ,Wj) ⇒ K ≤T Wj.

To satisfy Qτ
i,j and Rτ

i,j , we arrange Qτ
i,j- and Rτ

i,j-strategies above τˆ∞. From

now on in this subsection, we may occasionally omit τ from superscripts.
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Suppose α ⊇ τˆ∞ is an Rτ
i,j-strategies, α acts in the same way as an Me-strategy

described in the previous subsection. α has two outcome ∞ (indicating there are in-

finitely many α-expansionary stages) and 0 (indicating there are at most finitely many),

and builds a functional Θα such that for all k

Sα
k : K = Φj(Ci,Wj) ⇒ K0(k) = Θα(Wj; k).

To satisfy Sα
k , we arrange Sα

k -strategies above αˆ∞. Sα
k -strategies act in the same way

as N -strategies above M-strategies.

To make Qn, assume σ ⊇ τˆ∞ is a Qn-strategy, at the beginning σ picks an agi-

tator a so that lτ > a, and keeps a from entering A. If Be ¹ ψe(a) changes infinitely

often, σ has ⊥ as its outcome indicating that Ψe(Be; a) diverges. Otherwise, σ will

eventually fix a witness x. If x is never enumerated in Wni
for some i < ‖e‖, σ has 0

as its outcome. In this case Qn is satisfied since W ni
− Ci is not empty.

Otherwise at some stage x ∈ Wni
for all i < ‖e‖, σ enumerates a in A. If the

assumption A = Ψe(Be) is true, then Bei
changes for some i before A(a) = Ψe(Be; a)

is established again. We enumerate x in Ci for the least such i. In this case, σ has 1 as

its outcome, Qn is also satisfied since Ci −W ni
is not empty.

Note that in the above paragraph we use the trick of permitting to make Ci ≤T

Bei
. But in the presence of other strategies we shall in addition use permitting at τ -

expansionary stages and links. On the one hand τ will build a local version of effective

enumeration of B, i.e., Bτ [s] = B[s0] where s0 ≤ s is the latest stage when τ is ac-

cessible and {B[s]|s ∈ ω} is some standard enumeration. The computation Ψe(Be)

is also localized, i.e., (for τ and its substrategies) it could change only if τ is accessi-

ble. Hence it suffices to capture B changes as above according to these localizations.

From now on we may identify these localizations with the standard ones. On the other

hand when σ enumerates its agitator in A, it additionally setups a link (τ, σ). At the

next τ -expansionary stage the control is passed to σ immediately so that it can catch

permission in time. Then we say that the link (τ, σ) is traveled and cancel this link

immediately.

We will not arrange any Qn′-strategies above σˆ⊥.
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Before proceeding we summarize and order outcomes defined so far,

∞ <Λ 1 <Λ 0 <Λ ⊥ <Λ >.

II.3.3 Coordinating different strategies

Since Q-strategies may enumerate their agitators in A while Ne,k-strategies expect

that A ¹ φ(d(k))’s will never change after Θ(W ; k)’s are defined, conflicts arise. We

say that a threatens the honesty of θ(k) if a ≤ φ(d(k)).

The technique to solve these conflicts is originally developed by Li et al. (nfty)

and then applied by Yu and Yang (2005). However we will give a slightly different

formulation and hope that the behaviors of flip points could be made clearer.

On the one hand, whenever anN -strategy β defines Θ(W ; k), strategies≥ βˆ> are

initialized.

On the other hand, the situation is a little more complicated. Suppose τ is some

Pe′-strategy, σ is a Qτ -strategy and α0 ⊂ α1 ⊂ . . . ⊂ αn−1 are M-strategies with

αiˆ∞ ⊆ σ (i < n). When σ intends to put its agitator a = aσ in A, it first tries to

cancel θαi(k)’s whose honesties are threatened by a. σ will do this in descending order,

i.e. it first tries to cancel θαn−1(k)’s, then θαn−2(k)’s and so on.

Now assume α = αn−1 is some Me-strategy. At stage s0, Θ(W ; k)[s] becomes

defined by some N α
k -strategy β, and at s ≥ s0 σ intends to enumerate a in A.

If β < σ or aσ is chosen after s0 then we can easily make aσ > φe(d
β(k)).

Otherwise, in general σ enumerates dβ(k) in D to force We ¹ φe(d
β(k)) change. If

We ¹ φe(d
β(k)) never changes, then a disagreement between Φe(A,We) and D is es-

tablished; otherwise Θα(We; k) diverges eventually and the enumeration of aσ in A will

not harm the intention to make Θα(We; k) = K(k).

But there is a special case. Assume there is another N α
k -strategy γ ⊂ γˆ> ⊆ σ

(then γ <L β). In this case a might threaten the honesty of θ(k) according to β. For

example, assume γ chooses dγ(k) at t0, at t1 > t0 σ chooses its agitator a and θ(k) is

already defined by β (between t0 and t1, thus dγ(k) < dβ(k)), but at some t2 > t1 we

might have θ(k) redefined by β and φe(d
β(k))[t2] > a but φe(d

γ(k)) never moves. If σ

acts at t > t2 it might find φe(d
γ(k))[t] = φe(d

γ(k))[t0] < a < φe(d
β(k))[t] < θ(k)[t].

If this is the case for infinitely manyQ-strategies above γˆ> and theseQ-strategies
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cancel θ(k) as described, then Θα(We; k) diverges even though γˆ> might be on the

true path.

To overcome this difficulty, first, we will allow σ above γˆ> to change A ¹ φe(d
β(k))

freely. Second, we will make aσ > φe(d
γ(k)). Assume this is achieved. If later some

other strategy wants to cancel Θα(We; k), it can enumerate dγ(k) (instead of dβ(k)) in

D.

To keep track of dγ(k) we introduce a new parameter dα(k), called the official flip

point of α and k, and assign it to α. From now on we measure the honesty of θ(k)

according to this official flip point, instead of dγ(k) or dβ(k). We then call dγ(k) the

personal flip point of γ. Whenever γˆ> is accessible, the official point is defined to

be the personal flip point of γ. Furthermore if later We changes below θα(k) but not

φe(d
α(k)) then θα(k) will not be changed. This guarantees that Θα(We; k) converges.

Note that when trying to cancel θ(k)’s, σ expects no new θ(k′)’s defined, otherwise

it might be trapped in endless loops. To this end σ setups a link (α, σ) when it initials

the above process. At the next α-expansionary stage no θα(k)’s are threatened by a,

(α, σ) will be traveled and canceled, then σ will proceed to M-strategies below α.

However ψe′(a) might become ≥ xσ when σ is waiting for the link (α, σ) to be

traveled. If this happens σ will discard the current xσ. If σ chooses infinitely many wit-

nesses then it might try to cancel θ(k) infinitely often, and that would cause Θα(We; k)

to diverge. But note that then Ψe′(Be′ ; a) also diverges. Moreover, this could not hap-

pen if τ ⊃ α, for τ will be covered by the link (α, σ) (i.e. α ⊂ τ ⊂ σ) when σ is

waiting for the link to be traveled, and thus the local computation at of Ψτ (Be′ ; a
σ) will

not change until τ is accessible again.

Hence we could just arrange a backup strategy α′ for α above σˆ⊥ if τ ⊂ α ⊂ σ.

We will only arrange N α′-strategies but no N α-strategies above σˆ⊥. We also backup

those P-strategies between τ and σ to guarantee that eventually this backup operation

for Me will cease. Moreover strategies above σˆ⊥ will consider α injured by σ.

Note that there are similar conflicts between Sτ -strategies and σ. We apply the

same technique to solve these conflicts, and remark that if eventually σ setups a link

(τ, σ) then Sτ -strategies will not act before this link is traveled and xσ enters some C.

Now we formally describe procedures for N - and Q-strategies.
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Let

s0 = max{s′ < s : dβ[s] = dβ[s′] and β is accessible at s′}

and

s1 = max{s′ < s : θ(k)[s′] is defined }.

Procedure II.3.2. Suppose that β is an Ne,k-strategy and α = top(β). At stage s, β

cancels dβ(k) if dβ(k) ∈ D and then acts step by step as followings.

1. If dβ(k) is undefined, define it to be fresh.

2. If dβ(k) > l, do nothing and stop.

3. If dβ(k) ≤ l, take the following actions

(a) If s0 is defined and the computation Φe(A,We; d
β(k))[s] is different from

that at s0, let ⊥ be the outcome.

(b) From now on assume (a) fails. If Θ(We; k) diverges, define Θ(We; k) =

K(k) with θ(k) = θ(k)[s1] if dα(k) is defined, or θ(k) fresh otherwise.

(c) Let dα(k) = dβ(k) if either dα(k) is undefined or dβ(k) < dα(k).

(d) If Θ(We; k) 6= K(k) then enumerate dα(k) in D, cancel dβ(k) and stop;

otherwise let > be the outcome.

We assign states {1, c, w,⊥, 0} and a parameter state(σ) for σ.

Let s0 = max{s′ < s : aσ[s] = aσ[s0] and σ is accessible at s′}.

Procedure II.3.3. At the beginning of stage s, σ picks a fresh agitator aσ if aσ is

undefined, and takes actions according to the following cases.

1. state(σ) = ⊥. If aσ ≤ lτ , pick xσ fresh, and let state(σ) = 0.

2. state(σ) = 0.

(a) If B ¹ ψ(aσ)[s] 6= B ¹ ψ(aσ)[s0], let state(σ) = ⊥ and cancel xσ.

(b) If B ¹ ψ(aσ)[s] = B ¹ ψ(aσ)[s0] and xσ 6∈ ⋂
i≤‖n‖ Wni

, do nothing.

(c) Both (a) and (c) fail, let state(σ) = w and take the actions in (3) immedi-

ately.

3. state(σ) = w (w for waiting).

(a) If ψ(aσ) ≥ xσ, cancel xσ, let state(σ) = ⊥;
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(b) If (a) fails and there exist α and k such that α is someM- orR-strategy not

injured so far, αˆ∞ ⊆ σ, min{aσ, xσ} < φα(dα(k)) and Θα(Wα; k) = 0,

choose α(σ) as the longest such α and k(σ) as the least such k with respect

to α(σ), enumerate dα(σ)(k(σ)) in D, setup a link (α(σ), σ);

(c) If both (a) and (b) fail, enumerate aσ in A and setup a link (τ, σ) and let

state(σ) = c.

4. state(σ) = c. Let i0 be the least i < ‖e‖ such that Bei
¹ ψ(aσ)[s] = Bei

¹
ψ(aσ)[s0], enumerate xσ in Cτ

i0
and let state(σ) = 1.

5. state(σ) = 1. Do nothing.

If state(σ) ∈ {w, c} or (4) happens, then σ has no outcome; otherwise σ has

state(σ) as outcome.

II.3.4 The tree of strategies

We may consider N α
k as subrequirement Ne,k of Me where α is an Me-strategy,

Qτ
n and Rτ

i,j as subrequirements Qe,n and Re,i,j of Pe where τ is a Pe-strategy, and Sη
k

as subrequirement Se,i,j,k of Re,i,j where η is an Rτ
i,j strategy and τ is as above. Hence

we may regard Θα’s, Cτ
i ’s and Θη’s as local versions of Θe’s, Ce,i’s and Θe,i,j’s.

Fix a computable bijection f mapping ω onto the collection of all requirements such

that

1. f−1(Me) < f−1(Ne,k);

2. f−1(Pe) < f−1(Qe,n), f−1(Re,i,j);

3. f−1(Re,i,j) < f−1(Se,i,j,k).

Let Λ denote the ordered alphabet set {∞ <Λ 1 <Λ 0 <Λ ⊥ <Λ >}.

We define the tree of strategies T ⊂ Λ<ω inductively.

Suppose ξ ∈ T . If ξ is an Ne,k- (Qe,n-, Re,i,j- or Se,i,j,k-) strategy, let top(ξ) be the

longest η ⊂ ξ which is an Me- (Pe-, Pe-, or Ri,j-) strategy. We say η is injured at ξ if

η ⊂ ξ and either

1. η is anMe- or Pe-strategy and there are µ and ν such that µˆ∞ ⊆ η ⊂ νˆ⊥ ⊆ ξ,

ν is some Q-strategy and µ = top(ν); or
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2. top(η) is defined and injured at ξ.

Suppose X is a requirement, let X (ξ) be the longest X -strategy ζ ⊆ ξ not injured

at ξ, or undefined if there is no such strategy. X is finished at ξ if one of the following

cases applies

1. X is an Me or Re,i,j , and either α = X (ξ) is defined and αˆ0 ⊆ ξ, or there is

some Y = Ne,k or Se,i,j,k such that β = Y(ξ) is defined and βˆ⊥ ⊆ ξ;

2. X is a Pe, and either τ = X (ξ) is defined and τˆ0 ⊆ ξ, or there is some Qe,n

such that σ = Qe,n(ξ) is defined and σˆ⊥ ⊆ ξ;

3. X is an Ne,k or Se,i,j,k and Me or Re,i,j is finished at ξ;

4. X is a Qe,n or Re,i,j , and Pe is finished at ξ.

Otherwise X is unfinished at ξ. Furthermore, X is satisfied at ξ if either X (ξ) is defined

or X is finished at ξ. Otherwise X is unsatisfied at ξ.

Label ξ with the X such that f−1(X ) is the least among the unsatisfied ones, and

1. If X is some M, P or R, let ξˆ∞, ξˆ0 ∈ T ;

2. If X is some N or S, let ξˆ⊥ and ξˆ> ∈ T ;

3. If X is some Qe,n, let ξˆ⊥, ξˆ0, ξˆ1 ∈ T .

The following properties of T follow immediately from above.

Lemma II.3.4. Suppose P is an infinite path of T , X an requirement. Then there is a

finite ξ ⊂ P such that X is satisfied at η for any finite η such that ξ ⊆ η ⊂ P .

Let ξ0 be the shortest ξ as in the last lemma. Then either X (ξ0) is defined or X
is finished at ξ0. In the former case, let X (P ) = X (ξ0). Moreover, it is obvious that

Me(P ) and Pe(P ) are always defined for any e and P .

We say that a parameter p (or p[s′]) becomes defined at stage s if p is undefined at

stage s − 1 and is defined at stage s (and is never canceled between s and s′ ≥ s), or

becomes undefined if the reverse happens. And we say that p[s′] becomes defined by ξ

at stage s, if s < s′, ξ is accessible at stage s, p becomes defined at the moment that

ξ acts and does not become undefined between s and s′. Or we say that p[s′] becomes

undefined by ξ at stage s if the reverse happens.
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II.3.5 Parameters and Conventions

We sum up parameters assigned to strategies.

For α an M- or R-strategy, there are

1. The length of agreement lα;

2. A c.e. functional Θα to be built;

3. An official flip point dα(k) for each k.

For β an N α
k - or Sα

k -strategy, there is a personal flip point dβ(k).

For τ a Pe-strategy, there are

1. The length of agreement lτ ;

2. ‖e‖ many c.e. sets to be built, namely Cτ
0 , Cτ

1 , . . . , Cτ
‖e‖−1.

For σ a Qτ -strategy, there are an agitator aσ, a witness xσ and state(σ).

Given an arbitrary strategy ξ, if it is initialized then all of its parameters and links

with one end being ξ are canceled, i.e. become undefined. But there is an exception,

that if ξ is a Q-strategy then state(ξ) is set to be ⊥.

II.3.6 Construction

Stage 0. Let all c.e. sets and functionals to be constructed be empty, all parameters

be undefined and initial states of all Q-strategies are ⊥.

Stage s > 0. Let ∅ be accessible. Suppose ξ is accessible let s0 < s be the latest

stage such that ξ is accessible at s0 and never initialized between s0 and s. We take

actions according to the following cases.

Case 1, ξ is an M- or R-strategy.

Subcase 1.1, s is ξ-expansionary.

For each k such that W ¹ φ(dξ(k))[s] 6= W ¹ φ(dξ(k))[s1] where s1 < s is the last

ξ-expansionary stage, cancel dξ(k).

If there is a link (ξ, σ), let σ be accessible and cancel the link. Otherwise let ξˆ∞
be accessible.

Subcase 1.2, s is not ξ-expansionary. Let ξˆ0 be accessible.
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Case 2, ξ is a Pe-strategy.

Subcase 2.1, s is ξ-expansionary.

For any Q-strategy σ such that top(σ) = ξ, state(σ) = w and xσ ≤ ψe(a
σ), cancel

any link with one end being σ.

If there is a link (ξ, σ), let σ be accessible and cancel the link. Otherwise let ξˆ∞
be accessible.

Subcase 2.1, s is not ξ-expansionary. Let ξˆ0 be accessible.

Case 3, ξ is a Qe,n-strategy. Let τ = top(ξ).

If
⋃

i≤‖n‖ Cτ
i ∩Wni

6= ∅, let sate(ξ) = 1 and ξˆ1 be accessible.

Otherwise run Procedure II.3.3. If ξ has no outcome, let TPs = ξ; otherwise let

ξˆo be accessible where o is the outcome.

Case 4, ξ is an N - or S-strategy. Run Procedure II.3.2. If (2)(a), (2)(d) or (3) of

Procedure II.3.2 happens, let TPs = ξ; otherwise let ξˆo be accessible where o is the

outcome.

If an outcome o is determined and ξˆo = s, let TPs = ξ. If TPs is defined, we end

stage s immediately by taking the following actions.

(I) If TPs is some Q-strategy and state(TPs) = w, then initialize all strategies to

the right of TPs.

(II) Otherwise initialize all strategies > TPs.

II.3.7 Verifications

First of all, we study behaviors of flip points.

Lemma II.3.5. α is an Me–strategy, β is an N α
k –strategy extending αˆ∞.

(i) If Θα(A,We; k)[s] is defined then φe(d
α(k))[s] < θα(k)[s].

(ii) If σ is some Q-strategy extending βˆ>, βˆ> is accessible at s and aσ[s] (or xσ[s])

is defined, then aσ[s] (or xσ[s]) > φe(d
α(k))[s].

(iii) If σ is some Q-strategy extending βˆ⊥, βˆ⊥ is accessible at s, Θα(We; k)[s]

converges and aσ[s] (xσ[s]) is defined, then either aσ[s] (xσ[s]) > φe(d
α(k))[s] or

dα(k)[s] > dβ(k)[s].

(iv) Suppose σ is some Q-strategy > β. If σ enumerates some d in D at s and dβ(k)[s]

is defined, then d > dβ[s].



II.3. NCup 6⊆ [PC] 21

Proof. During the proof, we occasionally omit α and β from the superscripts

(i) Let s0 ≤ s be the earliest stage such that dα(k)[s0] is defined and never canceled

between s0 and s. Then (i) holds at s0 by (3)(b) of Procedure II.3.2.

Let s0 < s1 < . . . < sn(≤ s) be all α-expansionary stages. Assume (i) holds at si

and let ui = φe(d
α(k))[si].

If si + m < si+1 or s and Θ(We; k)[si + m] converges then

(We[si + m]−We[si]) ¹ ui ⊆ (We[si + m]−We[si]) ¹ θ(k)[si] = ∅.

Moreover (A[si + m] − A[si]) ¹ ui = ∅ because elements in A[si + m] − A[si] are

contributed by strategies > αˆ0. Hence φe(d
α(k))[si +m] = ui < θ(k)[si] = θ(k)[si +

m].

Since dα(k) is not canceled at si+1, (We[si + m] − We[si]) ¹ ui = ∅. Moreover,

nothing ≤ ui could be enumerated in A at si+1 and dα(k)[si+1] ≤ dα(k)[si]. Hence (i)

holds.

(ii) Let s0 ≤ s be the earliest stage such that βˆ> is accessible at s0 and never

initialized between s0 and s. Then dβ(k)[s] = dβ(k)[s0] and (We[s] − We[s0]) ¹
φe(d

β(k))[s0] = ∅. Let d0 = dβ(k)[s0].

All elements of A[s] − A[s0] are chosen as agitators of Q-strategies at stages not

earlier than s0 and thus greater than φe(d0)[s0]. Hence φe(d0)[s] = φe(d0)[s0] ≤ s0.

Since aσ[s] (or xσ[s]) is also chosen at some stage not earlier than s0 and dα(k)[s] ≤ d0,

aσ[s] (or xσ[s]) > s0 ≥ φe(d
α(k))[s].

(iii) Let d = dα(k)[s], s0 be the earliest stage such that dα(k)[s0] = d and dα(k) is

never canceled between s0 and s, β0 be anN α
k -strategy such that d = dβ0(k)[s0] and let

u0 = φe(d)[s0].

By the choice of s0 and an argument similar to (i), φe(d)[s] = u0 and (A,We)[s] ¹
u0 = (A,We)[s0] ¹ u0.

If dβ(k)[s] = d then β = β0 and βˆ> is accessible at s. This contradicts the

assumption of (iii).

If dβ(k)[s] > d then dβ[s] becomes defined after s0, and so do aσ[s] (or xσ[s]).

Hence aσ[s] (or xσ[s]) > u0 = φe(d)[s].

(iv) Let s0 ≤ s be the latest stage at which β is accessible, then dβ(k)[s] =
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dβ(k)[s0]. Let α′ be some Me′-strategy and k′ be such that d = dα′(k′)[s]. As-

sume dα′(k′)[s] becomes defined at stage s1 ≤ s by some N α′
k′ -strategy β′ and is

never canceled between s1 and s, then d = dβ′(k′)[s1]. By an argument similar to

(i), φe′(d)[s] = φe′(d)[s1].

Suppose d = dβ′(k′)[s1] ≤ dβ(k)[s] = dβ(k)[s0].

If σ < β′, then β < β′. Thus dβ(k)[s0] and aσ[s] become defined after s1, and

aσ[s] > φe′(d)[s1] = φe′(d)[s]. Hence σ will not enumerate d in D at s, a contradiction.

If β′ <L σ, then we get a contradiction similar to the previous one.

If σ ⊇ β′, then a contradiction follows from (ii) and (iii).

By (i) of Lemma II.3.5, if dα(k) is enumerated in D at s then at s′ > s, the next α-

expansionary stage, either dα(k) is canceled by α or α is initialized before s′. Moreover

the above lemma also holds with R and S replacing M and N respectively.

Lemma II.3.6. Suppose σ is some Qe,n-strategy accessible at s0, and s1 > s0 is the

earliest stage at which σ is accessible again. Let τ = top(σ).

(i) If state(σ)[s0] = w and σ is not initialized between s0 and s1, then either state(σ)[s1] =

⊥, or state(σ)[s1] = w and α(σ)[s1] ⊂ α(σ)[s0], or state(σ)[s1] = c.

(ii) If state(σ)[s0] = c then σ is initialized between s0 and s, or state(σ)[s1] = 1 and
⋃

i≤‖n‖ Cτ
e,i ∩Wni

6= ∅.

Proof. (i) Suppose σ is not initialized between s0 and s1 and state(σ)[s1] 6= ⊥, then

there is a link (α, σ) at stage s0, s0 is α-expansionary and dα(k(σ))[s0] ∈ D[s0] −
D[s0 − 1]. By the construction, s1 > s0 is the earliest α-expansionary stage and α is

not initialized between s0 and s1.

By (i) of Lemma II.3.5 and the remark after Lemma II.3.5, for each k either dα(k)

is canceled by α at s or φe(d
α(k)) does not increase.

Hence (i) holds by (3) of Procedure II.3.3.

(ii) By Procedure II.3.3, lτ [s0] > aσ[s0],

Ψe(Be; a
σ)[s0] = 0 6= 1 = A(aσ)[s0],

and σ setups a link (τ, σ) at stage s0. By CASE 2 of the construction, s1 > s0 is the
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earliest τ -expansionary stage and thus

Ψe(Be; a
σ)[s1] = 1 6= 0 = Ψe(Be; a

σ)[s0].

Hence for some i < ‖e‖, Bei
¹ ψe(a

σ)[s1] 6= Bei
¹ ψe(a

σ)[s0] and (ii) holds.

Let TP = lim infs TPs.

Lemma II.3.7. For each m,

(i) |TP | ≥ m;

(ii) TP ¹ m is accessible infinitely often;

(iii) TP ¹ m is initialized at most finitely often.

Proof. We prove (i)(ii) and (iii) simultaneously by induction of m.

For m = 0, (i)(ii) and (iii) hold trivially.

Suppose (i)(ii) and (iii) hold for m. Let ξ = TP ¹ m and fix s0 > m such that ξ is

never initialized after stage s0. We argue by cases.

Case 1, ξ is some Me- or Re,i,j-strategy.

It suffices to prove that if there are infinitely many ξ-expansionary stages then ξˆ∞
is accessible infinitely often.

Suppose s1 > s0 is ξ-expansionary and ξˆ∞ is inaccessible at stage s1. Then there

exists a link (ξ, σ). Since ξ will no longer be initialized, σ will not be initialized before

next ξ-expansionary stage s2 > s1.

If the link is canceled before s2 (because of subcase 2.1 of the construction), then

ξˆ∞ is accessible at s2.

Otherwise, by Lemma II.3.6, either α(σ)[s2] ⊂ ξ or state(σ)[s2] = c.

By induction hypothesis and Lemma II.3.6, there is s > s2 such that state(σ)[s] =

1. Let s3 be the least such s, then TPs3 = σ and there is no link along TPs3 . Let s4 be

the earliest ξ-expansionary stage after s3, then ξˆ∞ is accessible.

Case 2, ξ is some Pe-strategy.

It suffices to prove that if there are infinitely many ξ-expansionary stages then ξˆ∞
is accessible infinitely often.
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Suppose s1 > s0 is ξ-expansionary and ξˆ∞ is inaccessible at stage s1. Then there

exists a link (ξ, σ) and state(σ) = c. By Lemma II.3.6, the link is canceled at s1 and

ξˆ∞ is accessible at next ξ-expansionary stage.

Case 3, ξ is some Qe,n-strategy.

By induction hypothesis, we may assume that aξ[s] = aξ[s0] for s > s0.

If ξ has ⊥ as outcome for infinitely often, then by CASE 3 of the construction,

Procedure II.3.3 and Lemma II.3.6, state(ξ)[s] 6= 1 for s > s0. The lemma holds

because by (I) of the construction, ξˆ⊥ will not be initialized when TPs = ξ and

state(ξ)[s] = w.

If ξ has 1 as outcome at some stage s > s0, then by CASE 3 of the construction and

(5) of Procedure II.3.3, ξ eventually has 1 as outcome. Otherwise, ξ eventually has 0 as

outcome. In either case the lemma holds obviously.

Case 4, ξ is some Ne,k- or Se,i,j,k-strategy. Let α = top(ξ). We only prove the case

for Ne,k since the other case is similar.

If TPs1 = ξ at s1 > s0, then the first clause of (3)(d) of Procedure II.3.2 happens

at s1. Let s2 > s1 be the next α-expansionary stage, by the remark after Lemma II.3.5

dα(k) is canceled by α at this stage. Let s3 ≥ s2 be the earliest stage at which ξ

is accessible again, then either ξˆ⊥ is accessible or Θα(We; k)[s3] = 1 and ξˆ> is

accessible.

Lemma II.3.8. If β is an Ne,k- or Se,i,j,k-strategy on TP , then dβ is fixed eventually.

Proof. Let α = top(β) and s0 be the stage such that β is never initialized after s0. We

will only prove the case that β is Ne,k-strategy since the other is similar and easier.

By the construction, dβ could be canceled only if it were enumerated in D previ-

ously. Moreover, dβ could be enumerated in D after s0 only if K(k) = 1 6= 0 =

Θα(A,We; k) or by some σ such that αˆ∞ ⊆ σ ⊂ β.

Note that the former situation could happen at most once. For the latter, if σˆ⊥ is

not on TP then σ could enumerate dβ in D at most finitely often.

Assume σˆ⊥ ⊂ TP . If τ ⊂ αˆ∞ ⊆ σ, then by the definition of T , β ⊂ σ. By

Lemma II.3.5 (iv), σ will never enumerate dβ in D.

If αˆ∞ ⊆ τ and σ enumerates dβ in D at s1 > s0, then σ setups a link (α, σ)

at s1. From then on τ is skipped and the enumeration Bτ will never change until
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later state(σ) = c and a link (τ, σ) is setup. By Lemma II.3.6 and the choice of s0,

σˆ1 ⊂ TP . This contradicts the assumption that σˆ⊥ ⊂ TP .

Let α = Me(TP ) and assume α is never initialized after s0, then

Θα =
⋃
s>s0

Θα[s]

is a consistent p.r. functional.

If β is an N α
k -strategy on TP , then by the lemma above, dβ(k) is fixed eventually.

If in addition βˆ> ⊂ TP , then dα(k) is eventually fixed too by (ii) of Lemma II.3.5,

and Θα(We; k) = K(k) by Case 4 in the proof of Lemma II.3.7 and (3)(d) of Procedure

II.3.2.

Thus we get the following.

Lemma II.3.9. Me is satisfied for every e.

Now we turn to Pe.

Let τ = Pe(TP ) and assume it is never initialized after s0, then

Cτ
i =

⋃
s>s0

Cτ
i [s]

is c.e. for i < ‖e‖.

If τˆ0 ⊂ TP then Cτ
i is finite for i < ‖e‖. Otherwise, to determine whether x ∈ Cτ

i

for an arbitrary x and i < ‖e‖, let s > s0 be the earliest τ -expansionary stage such that

Bei
¹ x = Bτ

ei
[s] ¹ x, then x ∈ Cτ

i iff x ∈ Cτ
i [s]. Hence we establish Cτ

i ≤T Bei
for

i < ‖e‖.

Suppose A = Ψe(Be), and let σ be a Qτ
n-strategy on TP . Then the satisfaction of

Qτ
n follows from Lemma II.3.6. The argument for Re,i,j’s is similar to that for Lemma

II.3.9. Hence we get the next lemma and finish the proof of Theorem II.3.1.

Lemma II.3.10. Pe is satisfied for every e.

II.4 [PC] 6⊆ [NB ∪NCup]
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Yu and Yang (2005) showed that I = [NB∪NCup] ⊂ M. In this section, we will

prove the following.

Theorem II.4.1. There is a plus cupping degree a 6∈ I .

We construct a c.e. set A satisfying the plus cupping requirements

Me : We = Φe(A) ⇒ We ≤T ∅ or We is cupping,

and the requirements guaranteeing deg(A) 6∈ [NB ∪NCup]

Pe : A = Ψec(Xe, Yec−1) ⇒ (∃i < c− 1)(Xei
is bounding) or Yec−1 is cupping

where Xe is the abbreviation of the tuple (Xe0 , . . . , Xec−2) and c = ‖e‖.

We will arrange the construction on a tree of strategies as in the previous section,

and will follow conventions described there.

During the construction, we will in addition build a c.e. set D for some diagonal-

ization purposes which will be clear.

II.4.1 M-strategies

We follow the technique originally developed by Harrington (1978) and refined by

Fejer and Soare (1981).

Suppose α is anMe-strategy, let lα the length of agreement between We and Φe(A)

and α-expansionary stages be defined as usual. If there are at most finitely many α-

expansionary stages, α has 0 as outcome; otherwise α has ∞ as outcome.

In the latter case, α will build a c.e. set Cα and a p.r. functional ∆α such that

K = ∆α(We, C
α), and

N α
i : D 6= Γi(C

α) or We ≤T ∅.

From now on we will omit the superscript α in this section.

To define ∆(We, C; k), at the beginning α defines ∆(We, C; k) = K(k) with an

arbitrary use. If later k is enumerated in K, α enumerates δ(k) in C and redefines

∆(We, C; k) = 1 with a fresh use.
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To make N α
i , we arrange N α

i -strategies above αˆ∞. If β is an N α
i -strategy, β

picks a fresh diagonalizer dβ and a lifting point kβ at the beginning and keeps dβ from

entering D. From now on we will omit the superscript β in this section.

β intends to make δ(k) > γi(d). If this is achieved, d will be enumerated in D.

Suppose β has many chances to do this, eventually the inequality D(d) 6= Γi(C; d) will

be established.

To this end, whenever β finds Γi(C; d) = 0 it will open a gap by creating a shortcut

(α, β) (whose purpose will be clear later), having g as outcome and allowing strategies

extending βˆg to contribute anything to A. That is, β hopes that We ¹ δ(k) will be

changed by changes to A.

At the next α-expansionary stage s1 > s0, we will have α close the gap for β.

If α finds that We ¹ δ(k)[s1] 6= We ¹ δ(k)[s0], then ∆(We, C; k) diverges. α will

closes the gap successfully by defining δ(k) > γi(d) and enumerating d in D. In this

case, β’s intention will be achieved.

If α finds that We ¹ δ(k)[s1] = We ¹ δ(k)[s0], it will try to preserve the computation

Φe(A) ¹ δ(k)[s1] by initializing strategies to the right of βˆg. Then α will enumerate

δ(k)[s0] in C and thus canceling ∆(We, C; k′) for k′ ≥ k. We say that α closes the gap

unsuccessfully.

In either cases above, α will cancel (α, β). The purpose of using shortcuts is to

guarantee validity of the argument below.

If there are infinitely many gaps opened and closed (unsuccessfully), let (sm : m ∈
ω) increasingly enumerate the stages at which β opens a gap. For each m let tm be

the earliest α-expansionary stage after sm, then the gap opened at sm is closed by α

at tm. Since δ(k)[sm+1] > δ(k)[sm], We ¹ δ(k)[sm] is fixed between sm and tm while

Φe(A) ¹ δ(k)[sm] is fixed between tm and sm+1, We is computable if We = Φe(A).

Thus we will arrange no N α-strategies above βˆg.

However, to guarantee that ∆(We, C; k) converges, we must arrange the distribution

of lifting points so that there are at most finitely manyN α-strategies having lifting point

less than k′ for each k′.

We formally describe the behavior of α at stage s as below. Let

s0 = max{s′ < s : α is accessible at s′ and not initialized between s′ and s}.
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Procedure II.4.2. There are two cases.

(i) Case 1, s is not α-expansionary. Just have 0 as outcome.

(ii) Case 2, s is α-expansionary. If in additional there is a shortcut (α, β), then the

shortcut is setup at stage s0, let k0 = kβ; otherwise let k0 = s. Let k1 = min{k < k0 :

∆(We, C; k) = 0 6= 1 = K(k)}. Whatever α does, let ∞ be the outcome, and if there

is a shortcut then it will be canceled.

1. If k1 is defined, enumerate δ(k1) in C. Redefine ∆(We, C; k′) = K(k′) for k′ ≥ k

with δ(k′) fresh.

2. From now on assume k1 is undefined. For k′ < k0, if ∆(We, C; k′) ↑, define

∆(We, C; k′) = K(k′) with δ(k′) = δ(k′)[s0] if s0 is defined and ∆(We, C; k′)[s0]

converges, or with δ(k′) fresh.

3. If k0 = kβ and (We[s] − We[s0]) ¹ δ(k0)[s0] 6= ∅, then define ∆(We, C; k′) =

K(k′) with δ(k′) fresh for k′ ≥ k0 and enumerate dβ in D.

4. If k0 = kβ and (We[s] − We[s0]) ¹ δ(k0)[s0] = ∅, enumerate δ(k0)[s0] in C if

δ(k0)[s0] is defined, define ∆(We, C; k′) = K(k′) with δ(k′) fresh for k′ ≥ k0

and initialize strategies ≥ βˆ0.

We formally describe the behavior of β at stage s as below. Once the outcome is

determined, β stops immediately.

Procedure II.4.3. Define k to be fresh if it is undefined. Whenever β finds ∆(We, C; k)

is undefined or δ(k) > l, it simply stops. Otherwise, β acts as below.

1. If Γi(C; d) = 1 = D(d), cancel d.

2. If d is undefined, define it to be fresh.

3. If Γi(C; d) 6= 0, let 0 be the outcome.

4. If Γi(C; d) = 0 6= 1 = D(d), let 1 be the outcome.

5. Otherwise Γi(C; d) = 0 = D(d), setup a shortcut (α, β) and let g be the out-

come.

II.4.2 P-strategies

We follow the proof of Theorem 1.6 in Yu and Yang (2005).
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Suppose τ is aPe-strategy, the length of agreement lτ and the τ -expansionary stages

are defined as usual. If there are at most finitely many τ -expansionary stages, τ has 0

as outcome; otherwise τ has ∞ as outcome.

In the latter case, τ will construct 2c− 1 (c = ‖e‖) c.e. sets

M τ
0,0,M

τ
0,1, . . . , M

τ
c−2,0,M

τ
c−2,1, Z

τ

and one p.r. functional Θτ so that M τ
i,0,M

τ
i,1 ≤T Xei

for i < c− 1, K = Θτ (Yc−1, Z
τ ),

for ‖n‖ = c− 1 and (i, j) ∈ (c− 1)× 2

Qτ
n,j : D 6= Φnc−1(Z

τ ) or (∃i < c− 1)(M τ
i,j 6= W ni

), and

Rτ
i,j : Φj(M

τ
i,0) = Φj(M

τ
i,1) is total ⇒ Φj(M

τ
i,0) ≤T ∅, for (i, j) ∈ ω2.

From now on in this subsection, we will drop the superscript τ and occasionally also

drop the subscripts such as e and ei.

To define Θ(Y, Z; k), at the beginning τ defines Θ(Y, Z; k) = K(k) with an ar-

bitrary use. If k is enumerated in K later, τ enumerates θ(k) in Z and redefines

Θ(Y, Z; k) = 1 with a fresh use.

To satisfy Qτ ’s and Rτ ’s, we arrange ζ’s for Qτ ’s and η’s for Rτ s above τˆ∞.

Suppose ζ is a Qτ
n,0-strategy. At the beginning ζ picks a fresh lifting point k, a

fresh diagonalizer d and a fresh agitator a, and keeps d and a from entering D or A

respectively. ζ makes θ(k) > ψ(a) by lifting θ(k) whenever ψ(a) grows.

If ζ finds that the computation Ψ(X,Y ; a) diverges, then it has ⊥ as outcome indi-

cating that Ψ(X,Y ; a) diverges. We will have neither Q- nor R-strategies above ζˆ⊥.

If Ψ(X,Y ; a) converges eventually, ζ defines a witness x > ψ(a) and waits for

Φ(Z; d) = 0 and x ∈ ⋂
i<c−1 Wni

. If ζ keeps waiting for ever, it will have 0 as outcome.

If at some stage s0, Φ(Z; d) = 0 and x ∈ ⋂
i<c−1 Wni

, ζ will try to make either

θ(k) > φ(d) while preserving the computation Φ(Z; d) = 0 or to enumerate x in some

Mi,0 with permission from Xei
. If the former is achieved, ζ will enumerate d in D and

establish D(d) = 1 6= Φ(Z; d). In both cases, ζ will have a local win.

To this end, ζ will enumerate a in A and setup a link (τ, ζ). At next τ -expansionary

stage s1 > s0, one of Xe0 , . . . , Xec−2 and Y must have been changed below ψ(a)[s0].
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The control will be passed immediately from τ to ζ and the link will be canceled, i.e.,

the link will be traveled.

If Y changes, then ζ will redefine Θ(Y, Z; k) with θ(k) fresh and enumerates d

in D. If some Xei
does, ζ will enumerate x in Mi,0. In both cases ζ will have 1 as

outcome.

The purpose of using links is to either make the lifting of θ(k) in time or make the

enumeration of x in Mi,0 permitted by Xei
.

We formally describe the actions of τ at stage s as below. Let s0 be defined as

before Procedure II.4.2 (with τ in place of α).

Procedure II.4.4. There are two cases.

(i) Case 1, s is not τ -expansionary. Just let 0 be the outcome.

(ii) Case 2, s is τ -expansionary. If there is a link (τ, ζ), then it is setup by ζ at stage

s0, let k0 = kζ; otherwise let k0 = s. Let k1 = min{k < k0 : Θ(Y, Z; k) = 0 6= 1 =

K(k)}.

1. If k1 is defined, enumerate θ(k1) in Z and redefine Θ(Y, Z; k′) = K(k′) with

θ(k′) fresh for k′ ≥ k1; if there is a link (τ, ζ), travel and cancel it.

2. From now on, assume k1 is undefined. For k′ < k0, if Θ(Y, Z; k′) diverges define

Θ(Y, Z; k′) = K(k′) with θ(k′) = θ(k′)[s0] if s0 is defined and Θ(Y, Z; k′)[s0]

converges, or with θ(k′) fresh.

3. If there is no link, let∞ be the outcome and stop. Otherwise assume that there is

a link (τ, ζ), travel and cancel the link.

We formally describe the actions of ζ at stage s as below.

Procedure II.4.5. There are two cases.

(i) Case 1, a link (τ, ζ) is traveled. Suppose the link is setup at stage s0 < s. Take

actions according to the following subcases.

1. If K[s] ¹ k 6= K[s0] ¹ k then cancel a, d and x.

2. If Y [s] ¹ ψ(a)[s0] 6= (Y ¹ ψ(a))[s0], then Θ(Y, Z; k)[s − 1] diverges, define

Θ(Y, Z; k′) = K(k′) with θ(k′) fresh for k′ ≥ k and enumerate d in D.

3. Otherwise, there is some i < c−1 such that Xei
[s] ¹ ψ(a)[s0] 6= (Xei

¹ ψ(a))[s0].

Let i0 be the least such i, enumerate x in Mi0,j .
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(ii) Case 2, otherwise. Check the followings one by one. Once an outcome is deter-

mined, ζ stops immediately.

1. If k is undefined, define it to be fresh.

2. If D(d) = 1 = Φnc−1(Z; d), cancel a, d and x.

3. If D(d) = 1 6= Φnc−1(Z; d), or
⋃

i<c Mi,j ∩Wni
6= ∅, let 1 be the outcome.

4. If a is undefined, define it to be fresh. If lτ < a, stop.

5. Otherwise if ψ(a) ≥ θ(k), enumerate θ(k) in Z and redefine Θ(Y, Z; k′) with

θ(k′) fresh for k′ ≥ k (if Θ(Y, Z; k)[s − 1] is defined), cancel d and x, let ⊥ be

the outcome.

6. If d and x are undefined, define them to be fresh. If D(d) = 0 6= Φnc−1(Z; d) or

x 6∈ ⋂
i<c Wni

, let 0 be the outcome.

7. Otherwise enumerate a in A and setup a link (τ, ζ).

The R-strategies η’s act in the same way as typical minimal pair constructions. We

define lη the length of agreement between Φj(Mi,0) and Φj(Mi,1) and η-expansionary

stages as usual. Each η has two outcomes, namely ∞ indicating there are infinitely

many η-expansionary stages, and 0 indicating there are at most finitely many such

stages. We refer the readers to in (Soare, 1987, XIV.3.2) for details.

II.4.3 Conflicts

DifferentM-strategies do not injure each other, because they never intend to change

A and they build local ∆’s and C’s. Neither do different N α-strategies above a certain

Me-strategy α injure each other, because none of them intend to change Cα.

If β is some N α
i -strategy, then the intention of β to preserve Cα ¹ γi(d

β) may

be injured by the intention of α to define ∆α(We, C
α; k) = K(k) for k < kβ , and

the intention of β to lift δα(kβ) may injure the intention of α to make ∆α(We, C
α; k)

converge. The first conflict is solved by guaranteeing that kβ is eventually fixed, hence it

could happen at most finitely often (this is also the solution of similar conflicts between

P-strategies and Q-strategies). To solve the second conflict, note that β intends to lift

δα(kβ) infinitely often only if it opens infinitely many gaps. In this case we will make

We ≤T ∅ hence will not worry about the definition of ∆α. Otherwise we arrange the

distribution of lifting points so that each k is used as a lifting point by at most one N α-
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strategy. This is achieved by the first sentence of Procedure II.4.3. Hence δα(k) will

not be lifted for ever if every N α-strategy lifts its lifting point at most finitely often.

Now the intention of α to preserve Φe(A; kβ) when unsuccessfully closing a gap

opened by β could be injured by some Qτ -strategy ζ where τ is some P-strategy since

ζ may enumerate its agitator in A. The solution is to initialize ζ if ζ ≥ βˆ0. Hence

α will succeeded in preserving Φe(A; kβ) if Q-strategies < βˆg are never accessible

later, since A can be freely changed above βˆg. This is already incorporated by (ii)(4)

of Procedure II.4.2.

The last kind of conflicts is betweenRτ
i,j-strategies η’s andQτ

n,j′-strategies ζ’s. The

solution is to allow at most one side of Φj(M
τ
i,0) = Φj(M

τ
i,1) be destroyed between

η-expansionary stages. To this end we will run no more strategies at a stage once (i)(3)

of Procedure II.4.5 happens.

II.4.4 Parameters

We sum up parameters associated with strategies.

For α an M-strategy, there are the length of agreement lα, a c.e. set Cα to be built

and a p.r. functional ∆α.

For β an N α-strategy, there are a diagonalizer dβ and a lifting point kβ .

For τ a Pe-strategy, there are

1. The length of agreement lτ ;

2. 2‖e‖ − 1 many c.e. sets M τ
0,0,M

τ
0,1, . . . , M

τ
‖e‖−2,0,M

τ
‖e‖−2,1 and Zτ ;

3. A p.r. functional Θτ .

For ζ aQτ -strategy, there are a lifting point kζ , a diagonalizer dζ , an agitator aζ and

a witness xζ .

For η an Rτ -strategy, there is the length of agreement lη.

Assume ξ is an arbitrary strategy. If it is initialized then all of its parameters, and

shortcuts or links with one end being ξ are canceled.
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II.4.5 The tree of strategies

We may consider N α
i as a subrequirement Ne,i of Me where α is a Me-strategy,

and Qτ
n,j and Rτ

i,j as subrequirements Qe,n,j and Re,i,j of Pe where τ is a Pe-strategy.

Hence Cα, ∆α,M τ
i,j and Zτ , Θτ may be taken as local versions of Ce, ∆e,Me,i,j and

Ze, Θe respectively.

Let Λ be the set of outcomes ∞ <Λ 1 <Λ g <Λ ⊥ <Λ 0.

Fix a computable bijection f mapping ω onto the collection of all requirements and

subrequirements such that f−1(Me) < f−1(Ne,k), and f−1(Pe) < f−1(Qe,n,j), f
−1(Re,i,j).

We inductively define T the tree of strategies as a computable subset of Λ<ω.

Let ∅ ∈ T . If ξ ∈ T , we say that a requirement O is finished at ξ if and only if one

of the followings applies

1. O is Me and either there is an Me-strategy α ⊂ αˆ0 ⊆ ξ or there is an Ne,i-

strategy β ⊂ βˆg ⊆ ξ.

2. O is Pe and either there is a Pe-strategy τ ⊂ τˆ0 ⊆ ξ or there is aQe,n,j-strategy

ζ ⊂ ζˆ⊥ ⊆ ξ.

3. O is Ne,i (Qe,n,j or Re,i,j) and Me (Pe) is finished at ξ.

We say thatO is satisfied at ξ if eitherO is finished at ξ or there is anO-strategy ξ′ ⊂ ξ;

otherwise we say that O is unsatisfied at ξ.

We assign the unique O to ξ such that f−1(O) is the least among the requirements

unsatisfied at ξ.

If ξ is some M-, P- or R-strategy, let ξˆ∞ and ξˆ0 ∈ T ; if ξ is an N -strategy, let

ξˆ1, ξˆg and ξˆ0 ∈ T ; if ξ is a Qe,n,j-strategy, let ξˆ1, ξˆ⊥ and ξˆ0 ∈ T .

Furthermore, if ξ is anNe,i-strategy, let top(ξ) be the uniqueMe-strategy α ⊂ ξ; if

ξ is a Qe,n,j- or Re,i,j-strategy, let top(ξ) be the unique Pe-strategy τ ⊂ ξ.

We will use some terminologies defined in subsection II.3.4.

II.4.6 Construction

Stage 0. Let all parameters associated with all strategies be undefined, and all c.e.

sets and p.r. functionals to be built be empty.
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Stage s > 0. Let ∅ be accessible. If ξ is accessible and |ξ| = s, let TPs = ξ.

Otherwise we take actions according to the following cases.

Case 1, ξ is an Me-strategy. Run Procedure II.4.2. Let ξˆo be accessible where o

is the outcome.

Case 2, ξ is an Ne,i-strategy. Run Procedure II.4.3. If there is no outcome, let

TPs = ξ; otherwise let ξˆo be accessible where o is the outcome.

Case 3, ξ is a Pe-strategy. Run Procedure II.4.4. If there is an outcome o let o be

accessible; otherwise there is a link (ξ, ζ) at the beginning of s and the last clause of

(ii)(3) of Procedure II.4.4 happens, let ζ be accessible.

Case 4, ξ is a Qe,n,j-strategy. Let τ = top(ξ). Run Procedure II.4.5. If there is no

outcome, let TPs = ξ; otherwise let ξˆo be accessible where o is the outcome.

Case 5, ξ is an Re,i,j-strategy. If s is ξ-expansionary, let ξˆ∞ be accessible; other-

wise let ξˆ0 be accessible.

In addition, once TPs is defined, we end stage s immediately by initializing all

strategies > TPs.

II.4.7 Verification

First we study an important behavior of N -strategies.

Lemma II.4.6. If α is anMe-strategy and β is anN α
i -strategy above αˆ∞, then either

β is initialized infinitely often or dβ is eventually fixed.

Proof. During the proof, we occasionally omit α and β from the superscripts.

If β is accessible at most finitely often, then it is trivial that dβ is eventually fixed

(including the possibility that it is canceled at some stage and never becomes defined

from then on).

From now on we assume that β is accessible infinitely often and initialized at most

finitely often. We may assume in addition that every proper initial segment of β being

also some N α-strategy has its diagonalizer eventually fixed. Let s0 be such that

1. β is not initialized after s0 and kβ = kβ[s0];

2. For all k < kβ , ∆(We, C; k)[s0] is defined, and if k ∈ K then ∆(We, C; k)[s0] =

1 = K(k)[s0];
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3. For N α-strategy β′ ⊂ β, dβ′ = dβ′ [s0].

If at stage s > s0, d is canceled by β then Γi(C; d) = 1 = D(d). Let s2 < s be the

stage at which dβ[s2 − 1] is enumerated in D by α. Then there is a shortcut (α, β) at

the beginning of s2, suppose it is setup by β at stage s1 < s2. We may assume s1 > s0

otherwise d could be canceled at most s0 many times.

At stage s1, Γi(C; d) = 0 = D(d). At the beginning of stage s2 the computation

Γi(C; d) is same as that at s1 since C can only be changed by α, and δ(k)[s2] > γi(d)

for k ≥ kβ by (3) of Procedure II.4.2.

Since d is canceled at s > s2, there is some δ(kβ′) enumerated in C with kβ′ < kβ ,

at some stage s′(s2 ≤ s′ < s). Then β′ < β and setups a shortcut (α, β′) at some stage

s′′(s2 ≤ s′′ < s′). Hence β′ˆg ⊆ TPs′′ .

By the definition of the tree, β 6⊇ β′ˆg. Since in addition β is not initialized at s′′,

β′ˆ1 ⊆ β. Hence β′ˆ1 is accessible at s1 and Γi′(C; dβ′)[s1] 6= 1 = D(dβ′ [s1]) (assume

β′ is an N α
i′ -strategy).

But Γi′(C; dβ′)[s′′] = 0 = D(dβ′ [s′′]). Hence dβ′ [s1] 6= dβ′ [s′′]. This contradicts

with the choice of s0.

Next we study some important behaviors of Q-strategies.

Lemma II.4.7. Let τ be a Pe-strategy, c = ‖e‖ and ζ ⊇ τˆ∞ be a Qτ
n,j-strategy.

(i) Either ζ is initialized infinitely often or aζ is eventually fixed;

(ii) If ζ is initialized at most finitely often and accessible infinitely often, then there is a

stage s0 at which both kζ and aζ are defined and fixed for ever, and for no k < kζ and

s > s0, θτ (k)[s− 1] is enumerated in Zτ ;

(iii) Let s0 be as in (ii) and moreover ζ setups a link (τ, ζ) at stage s0. Let s1 > s0

be the earliest τ -expansionary stage. Then (τ, ζ) is traveled at stage s1, dζ = dζ [s0] is

fixed and either

1. Φnc−1(Z
τ ; dζ) = 0 6= 1 = D(dζ) and the computation Φnc−1(Z

τ ; dζ) is exactly

Φnc−1(Z
τ ; dζ)[s0], or

2. M τ
i,j ∩Wni

6= ∅ for some i < c− 1.

Proof. During the proof we occasionally omit τ and ζ from the superscripts, and we

may write X for Xe, etc.. Let c = ‖e‖.

(i) As in the proof of Lemma II.4.6, let s0 be such that



36 Chapter II. Ideals

1. ζ is not initialized after s0 and kζ is defined at s0 and fixed for ever;

2. For all k < kζ , Θ(Y, Z; k)[s0] is defined, and if k ∈ K then Θ(Y, Z; k)[s0] =

1 = K(k)[s0];

3. For Qτ -strategy ζ ′ ⊂ ζ , aζ′ is defined at s0 and fixed for ever.

If a is canceled at s > s0 by ζ , then Φ(Z; d) = 1 = D(d) at s. Suppose d is

enumerated in D by ζ at s2 < s, then there is a link (τ, ζ) at the beginning of s2.

Suppose the link is setup by ζ at s1 < s2. As in the proof of Lemma II.4.6, we assume

s1 > s0.

Then at s1, Φ(Z; d) = 0 = D(d) and θ(kζ) > ψ(a). The computation Φ(Z; d)[s2]

is same as that at s1 by the choice of s0, and θ(kζ)[s2] > φ(d) by (i)(2) of Procedure

II.4.5.

Hence at some stage s′ between s2 and s, some Qτ -strategy ζ ′ < ζ enumerates

θ(kζ′) in Z. Then ζ ′ˆ⊥ ⊆ TPs′ . By the definition of the tree, ζ ′ˆ1 ⊆ ζ . Hence ζ ′ˆ1 is

accessible at s1 and aζ′ is changed after s1. This contradicts with the choice of s0.

(ii) follows immediately from the proof of (i).

(iii) It is obvious that ζ is never initialized after stage s0. Hence the link is traveled

at stage s1.

By Procedure II.4.5, at stage s0

1. Ψ(X,Y ; a) = 0 6= 1 = A(a);

2. Φ(Z; d) = 0 = D(d);

3. x ∈ Wni
for i < c− 1;

4. ψ(a) < θ(kζ).

Since s1 is τ -expansionary, Ψ(X,Y ; a)[s1] = 1 and

((X,Y ) ¹ ψ(a))[s1] 6= ((X,Y ) ¹ ψ(a))[s0].

If (Y ¹ ψ(a))[s1] 6= (Y ¹ ψ(a))[s0], then Θ(Y, Z; kζ)[s1−1] diverges and θ(k′)[s1] >

φ(d)[s0] for k′ ≥ kζ by (i)(2) of Procedure II.4.5. By (ii) the computation Φ(Z; d)[s0]

no longer changes.

If (Xei
¹ ψ(a))[s1] 6= (X ¹ ψ(a))[s0] for some i < c−1 then x ∈ Mi0,j for i0 being

the least such i.
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Let TP = lim infs TPs, the next lemma states that TP is infinite and every strategy

on TP is eligible to win.

Lemma II.4.8. For every m

(i) |TP | ≥ m;

(ii) TP ¹ m is initialized at most finitely often;

(iii) TP ¹ m is accessible infinitely often.

Proof. It is trivial for m = 0.

Assume (i)(ii) and (iii) hold for m. Let ξ = TP ¹ m. Assume ξ is accessible at

s0 > m and never initialized after s0.

Case 1, ξ is some M- or R-strategy. (i)(ii) and (iii) hold trivially.

Case 2, ξ is an N α
i -strategy where α = top(ξ). By Procedure II.4.3, ξ always has

outcome when it is accessible. Let o be the <Λ-least outcome which ξ has infinitely

often, then ξˆo ⊆ TP .

Hence we may assume that either TPs ≥ ξˆo for s > s0. At stage s > s0, if ξˆo

is initialized, then the initialization could only be launched by α and o = 0. If this

happens then ξ setups a shortcut (α, ξ) at some stage s1 < s and ξˆg ⊆ TPs1 . But this

could happen at most finitely often by the choice of o.

Case 3, ξ is a Pe-strategy. If there are at most finitely many ξ-expansionary stages,

then ξˆ0 ⊆ TP . Assume there are infinitely many ξ-expansionary stages.

If s1 > s0 is ξ-expansionary but ξˆ∞ is not accessible at stage s1, then there is a

link (ξ, ζ) at the beginning of stage s1, it is traveled and no new link is setup at stage

s1 by (ii)(3) of Procedure II.4.4 and (i) of Procedure II.4.5. Let s2 > s1 be the next

ξ-expansionary stage, then ξˆ∞ is accessible.

Case 4, ξ is a Qτ
n,j-strategy where τ = top(ξ). Let s0 be as in (ii) of Lemma II.4.7.

If TPs0 = ξ then at stage s0, either ξ setups a link (τ, ξ) or Procedure II.4.5(i)

happens. In either case by (iii) of Lemma II.4.7, there is some s1 > s0 such that either

D 6= Φnc−1(Z
τ ) or M τ

i,j 6= W ni
for some i < c − 1 is established for ever at stage s1.

Hence whenever ξ is accessible after stage s1, ξˆ1 is also accessible.

Now we are ready to prove the satisfactions of plus cupping requirements.

Lemma II.4.9. Let α be the unique Me-strategy on TP , and β be the unique N α
i -

strategy on TP .
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(i) Cα is c.e. and ∆α is consistent;

(ii) If βˆg 6⊂ TP , then ∆α(We, C
α; kβ) converges eventually;

(iii) If βˆg ⊂ TP , then We is computable;

(iv) Me is eventually satisfied.

Proof. During the proof, we occasionally omit α and β from the superscripts.

(i) By Lemma II.4.8, assume α is not initialized after s. Then Cα =
⋃

t>s Cα[t] and

∆α =
⋃

t>s ∆α[t], and (i) follows from the construction.

(ii) Let o = TP (|β|), then o = 1 or 0. By Lemma II.4.6, d = dβ is eventually fixed.

If o = 1 then βˆg ⊆ TPs for at most finitely many stages, otherwise d could not be

fixed. If o = 0, then βˆg ⊆ TPs for at most finitely many stages too by the definition

of TP .

Assume for everyN α-strategy β′ ⊂ β, ∆(We, C; kβ′) eventually converges. By the

assumption above, let s0 be such that

1. kβ = kβ[s0];

2. For k ≤ kβ , ∆(We, C; k)[s0] is defined, and k ∈ K iff ∆(We, C; k)[s0] = 1 and

k ∈ K[s0];

3. For k < kβ , ∆(We, C; k)[s0] is defined and fixed for ever;

4. β is not initialized and opens no gap after s0.

Let s1 > s0 be the earliest α-expansionary stage, then ∆(We, C; kβ)[s1] is defined

and fixed for ever.

(iii) By the definition of the tree, for N α-strategy β′ ⊂ β, β′ˆg 6⊂ TP . By (ii)

above, Lemma II.4.6 and II.4.8, let s0 be such that

1. kβ = kβ[s0] and dβ = dβ[s0] are defined and fixed for ever;

2. For k ≤ kβ , ∆(We, C; k)[s0] is defined, and k ∈ K iff ∆(We, C; k)[s0] = 1 and

k ∈ K[s0];

3. For all k < kβ , ∆(We, C; k)[s0] is defined and fixed for ever;

4. β and βˆg are accessible at s0 and not initialized after s0.

Let (sm : m ∈ ω) increasingly enumerate all stages such that sm ≥ s0, both β and

βˆg are accessible at sm. For each m, let tm be the first α-expansionary stage after sm,

then tm ≤ sm+1. Hence β open a gap at sm while α closes this gap at tm.
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If α closes a gap successfully at tm, by (4) of Procedure II.4.2, D(d)[tm] = 1. By

the choice of s0, d is fixed for ever, and β opens no gap after tm.

Hence α always closes gaps unsuccessfully. Thus

We[tm] ¹ δ(k)[sm] = (We ¹ δ(k))[sm] and δ(k)[sm] < δ(k)[tm] (∗).

We claim that

We[sm+1] ¹ δ(k)[tm] = (We ¹ δ(k))[tm] (∗∗).

If sm+1 = tm then (∗∗) holds trivially.

Assume sm+1 > tm. If there exists some stage t(tm ≤ t < sm+1) at which some ζ

enumerates aζ in A, then ζ > β.

ζ could not be above βˆ1 otherwise βˆg is initialized. If ζ is above βˆg then βˆg is

accessible at t and sm+1 ≤ t by the definition of sm+1. This contradicts with the choice

of t.

Now it could only be the case that ζ ≥ βˆ0. Thus ζ is initialized by α when the gap

opened at sm is closed. Hence

aζ > tm > φe(l
α)[tm] = φe(δ(k))[tm]

and (∗∗) holds since sm+1 is α-expansionary.

(iii) follows from (∗) and (∗∗).
(iv) By (i)(ii) and the construction, K = ∆(We, C) if βˆg 6⊂ TP for every N α-

strategy β. (iv) follows from this and (iii).

Finally we prove the satisfactions of P-strategies.

Lemma II.4.10. τ is the unique Pe-strategy on TP , ζ is the unique Qτ
n,j-strategy on

TP and η is the unique Rτ
i,j-strategy on TP . Let c = ‖e‖.

(i) M τ
i′,0,M

τ
i′,1 and Zτ are c.e. sets (i′ < c− 1), and Θτ is a p.r. functional;

(ii) If ζˆ⊥ 6⊂ TP then Θτ (Yec−1 , Z
τ ; kζ) converges;

(iii) Qτ
n,j is eventually satisfied;

(iv) Rτ
i,j is eventually satisfied;

(v) Pe is eventually satisfied.
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Proof. During the proof, we occasionally omit τ , ζ and η from the superscripts, and

write X for Xe, etc..

(i) follows from an argument similar to that for (i) of Lemma II.4.9.

(ii) Let o = TP (|ζ|). By Lemma II.4.7, we may choose s0 as in the proof for (ii) of

Lemma II.4.9 such that

1. aζ is defined at stage s0 and fixed for ever;

2. For all k ≤ kζ , Θ(Y, Z; k)[s0] is defined, and if k ∈ K then K(k)[s0] = 1 =

Θ(Y, Z; k)[s0];

3. For all k < kζ , Θ(Y, Z; k)[s0] is defined and fixed for ever;

4. ζˆo is accessible at s0 and never initialized after s0.

If o = 0 then Θτ (Y, Z; k) converges since ζˆ⊥ is never accessible after s0.

If o = 1 then Θτ (Y, Z; k) converges by (iii) of Lemma II.4.7 and (i) of Procedure

II.4.5.

(iii) Let o = TP (|ζ|), and a denote the final value of aζ .

If o = ⊥ then Ψ(X,Y ; a) diverges and Qτ
n,j is satisfied trivially.

Otherwise d = dζ and x = xζ are eventually fixed. The satisfaction follows easily

from the definitions of outcomes 0 and 1.

(iv) If there are at most finitely many η-expansionary stages, then Rτ
i,j is satisfied

trivially.

Otherwise, assume η is never initialized after s0 and s0 is η-expansionary. Let

(sm : m ∈ ω) increasingly enumerate all η-expansionary stages ≥ s0.

It suffices to prove that

|{x < φj(l
η)[sm] : x ∈ (Mi,0 ∪Mi,1)[sm+1 − 1]− (Mi,0 ∪Mi,1)[sm]}| ≤ 1.

Assume sm+1 > sm and some ζ enumerate xζ in Mi,0 at some stage t(sm ≤ t <

sm+1).

If t > sm then ζ = ηˆ0 or > ηˆ0. Hence ζ is initialized at sm and xζ > sm ≥
φj(l

η)[sm].

If t = sm then TPsm = ζ and no more strategies act at sm. This is the only case

that a number less than φj(l
η)[sm] enters Mi,0 ∪Mi,1.
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(v) By (ii) and Procedure II.4.4, if A = Ψ(X,Y ) then K = Θ(Y, Z). Now the

satisfaction of Pe follows immediately from (iii) and (iv).

This end the proof of Theorem II.4.1.





Chapter III

Filters

III.1 Filters Generated by Sets

Yu and Yang (2005) and Chapter 2 demonstrate several examples of definable ideals

inR. However NC remains the only definable filter so far. In this chapter we will show

that NC is not the only one. 1

Theorem III.1.1 (Nies (2003)). There is a scheme SM for coding a standard model

of PA− and a scheme Sh for coding functions such that for each d > 0 there are an

M ⊆ R and a map h coded by SM and Sh respectively and h : M → [d,0′] is onto.

Since the meet operation is somehow ill behaved, there are several versions of fil-

ters. For n ≤ ω, an n-filter F is a upward closed set such that if a0, . . . , am ∈ F (m <

n) and a =
∧∧

0≤i≤mai exists then a ∈ F .

First of all, let us formally define filters generated by sets.

Definition III.1.2. Given n ≤ ω and C ⊆ R, let [C)n denote the n-filter gener-

ated by C, i.e., the set of degrees x such that there exists a finite sequence of degrees

a0, . . . , al = x and for each i ≤ l either

(i) ai ∈ C, or

(ii) there are m < n and j0, . . . , jm < i such that
∧∧

0≤m≤kajk
exists and ≤ ai.

1The results in this chapter is contained in Wang and Ding (2006b)

43
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It is obvious that [C)n is the least n-filter containing C. We denote [C)ω by [C).

From now on we assume 0 6∈ [C). An easy observation follows immediately from

the definition.

Proposition III.1.3. If C = {c0, . . . , ck} ⊂ [y,0′] then [C)n ⊆ [y,0′] for n ≤ ω.

Hence
⋂k

i=0[0, ci] ⊆ [0,x] for any x ∈ [C)n.

Proof. The first part follows from an easy induction on length of finite sequences in

Definition III.1.2 and directly implies the second part.

Note that [C)n =
⋃{[F)n : F is a finite subset of C}.

Next we fix some definable (in arithmetic) coding of finite sequences of natural

numbers. Let lth(n) denote the length of the sequence coded by n and (n)i denote the

i-th element of the sequence (i < lth(n)).

Theorem III.1.4. Given C ⊆ R definable, [C)n is also definable.

Proof. Let F = [C). For any x ∈ F and a sequence of degrees a0, . . . , al as in

Definition III.1.2. We may assume that (∀i ≤ p)(ai ∈ C) for some p ≤ l.

Fix d such that d > 0 and aj ∈ [d,0′] for j ≤ l. Let M and h be as in Theorem

III.1.1, and let e code a finite sequence such that lth(e) = l + 1 and h(((e)j)
M) =

aj for j ≤ l. The predicate stating that the conditions of Definition III.1.2 hold for

h(((e)0)
M), h(((e)1)

M), . . . , h(((e)l)
M), can be expressed by a formula in the language

of partial ordering and satisfactions in M . By the fact that M is interpreted in R and

the choice of e, this predicate is definable (say by ϕ(x,d,M, h, eM)) and holds in R.

So we have

R |= (∃d > 0)(∃M)(∃h)(∃eM)ϕ(x,d,M, h, eM).

On the other hand, if we have the satisfaction above then the image under h of the

finite sequence coded by eM is a finite sequence, say −→a , satisfying the conditions of

Definition III.1.2. Hence we have x ∈ [−→a ) ⊆ [C).

III.2 Degrees Cupping Cappables

The following is a well known result.



III.2. Degrees Cupping Cappables 45

Theorem III.2.1 (Ambos-Spies et al. (1984)). The class of capping degrees, M, and

that of non-capping degrees, NC, form an algebraic decomposition of R into a defin-

able prime ideal and a definable strong ultra filter.

In Ambos-Spies et al. (1984), it is also proved that NC, ENC (effectively non-

capping degrees) and PS (promptly simple degrees) are all coincident with LC (low

cuppable degrees).

Let Cups(a) denote the collection of degrees which cup a to 0′ and Cups(C) =
⋃

a∈C Cups(a) where C ⊆ R. It is obvious that Cups(C) is closed upward. Note that

LC = Cups(Ł). Furthermore, let NCups(a) = R − Cups(a) and NCups(C) =

R−Cups(C).

F1 = [Cups(M)) is definable by Theorem III.1.4. We prove an interesting prop-

erty for F1.

Theorem III.2.2 (Low Non-Diamond, Ambos-Spies (1984)). If a0, . . . , an and b0, . . . ,bn

are such that
∨∨

i≤nai = 0′ and
∨∨

i≤nbi ∈ L, then there is some i ≤ n such that

[0, ai] ∩ [0, c] 6⊆ [0,bi] for any c 6≤ bi.

Theorem III.2.3 (Harrington and Soare (1992)). If a∧b = 0 then there is some c > a

such that c ∧ b = 0.

The proof of Theorem III.2.3 in Harrington and Soare (1992) can be easily extended

to yield a little stronger result.

Corollary III.2.4. If a ∧ b = 0 and d < 0′ then there is some c > a such that c 6≤ d

and c ∧ b = 0.

Theorem III.2.5. F1 ∩ L = ∅ and hence ⊂ NC.

Proof. For contradiction, assume in F1 there is a sequence a0, . . . , ap, ap+1, . . . , al =

a ∈ L as in Definition III.1.2 where a0, . . . , ap ∈ Cups(M) and ap+1, . . . , al 6∈
Cups(M). Then

⋂
0≤i≤p[0, ai] ⊆ [0, a].

Let q ≤ p be the least such that
⋂

0≤i≤q[0, ai] ⊆ [0, a], then q > 0 since a0 6∈ L.

Fix b ∈ ⋂
0≤i<q[0, ai] and b 6≤ a, then [0,b] ∩ [0, aq] ⊆

⋂
0≤i≤q[0, ai] ⊆ [0, a].

By Corollary III.2.4, choose x,y ∈ M such that aq ∨x = 0′, x∧y = 0 and y 6≤ a.

Then we get a contradiction to Theorem III.2.2.
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It is obvious that the above argument works for any joint-closed C ⊆ M. Moreover

such [Cups(C))’s are always non-ultra since every c.e. degree could be split into two

low ones.

Proposition III.2.6. For any joint-closed C ⊆ M, [Cups(C)) is non-ultra and disjoint

with L, hence ⊂ NC. In particular, F1 is non-ultra.

A natural question arises that whether F1 is strong. Or more aggressively,

Problem III.2.7. Given ā ∈ Cups(M), is there always a b ∈ ⋂
a∈ā[0, a] which is the

infimum of some c̄ ∈ Cups(M)?

III.3 Non-splitting Bases

In this section we will prove that the so called Lachlan-Harrington’s nonsplitting

bases generate a filter different from NC and F1. Lachlan (1976) introduced the 0′′′

injury argument when constructing a pair of degrees a < b with b non-splittable above

a. Later Harrington improved this monster result by showing that b could be 0′. We call

those a’s in Harrington’s result as Lachlan-Harrington’s nonsplitting bases and denote

them by NSB.

Proposition III.3.1. NSB ⊂ PS. Hence [NSB) ⊂ R.

Proof. To see NSB ⊆ PS, let a ∈ NSB and choose a pair of low c. e. degrees joining

to 0′. Then a cups one of the two to 0′.

On the other hand NSB ∩ L = ∅ while PS ∩ L 6= ∅.

We denote [NSB) by F2 and prove the following.

Theorem III.3.2. F1 −F2 ⊇ Cups(M)−F2 6= ∅.

To prove the above theorem, we construct a c. e. set A such that deg(A) ∈
Cups(M)−F2 using a tree of strategies, say T .
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III.3.1 Making A cupping a cappable

To make deg(A) ∈ Cups(M), we simultaneously build c. e. sets B, C and a c. e.

functional ∆ so that K = ∆(A,B),

Me : f = Γe(B) = Γe(C) is total ⇒ f is computable

and

Pe : C 6= W e

where (Γe : e < ω) is an effectively enumeration of all functionals and (We : e < ω)

sets.

Note that in general we should also make P’s for B. But combining these require-

ments with those in the next subsection automatically guarantees B non-computable.

To make K = ∆(A,B) we have one global strategy which is also identified as

∆. At any stage of the construction ∆ either extends the domain of ∆ or repairs a

∆(A,B; k) disagreeing with K(k) by enumerating δ(k) in A and redefines it.

As classical minimal pair constructions we arrange many strategies on T for an

M. Assume α is a such one. Its length of agreement lα and α-expansionary stages

are defined as usual. α has two possible outcomes, say ∞ indicating infinitely many

expansionary stages and 0 for finite. If ∞ appears true then only one of Γ(B) ¹ lα and

Γ(B) ¹ lα is allowed to be destroyed.

We also arrange many strategies for a P . Let β be one. It chooses a fresh witness,

say cβ , at the beginning, and waits for this witness to enter W . If β keeps waiting then

it has 0 as outcome, or it puts c in C and has 1 as outcome.

The possible outcomes defined so far are ordered reversely, i. e. ∞ < 1 < 0.

III.3.2 Keeping deg(A) away from F2

To make deg(A) 6∈ F2, for each finite tuples of c. e. sets, we should either prove

that one of them is not in NSB, or find a c. e. set computable in every element of the

tuple but not in A. For notational simplifications we do the above only for tuples of two

elements. The general case would be an easy variance.
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Hence for each pair (Xe, Ye) of c. e. sets, we either refute that deg(A) is in the filter

generated by deg(Xe) and deg(Ye), or find at least two pairs (E0, E1) and (F0, F1) of

c. e. sets and two c. e. functionals Θ and Ξ so that one of the pairs witnesses (via Θ or

Ξ) that Xe or Ye is not a non-splitting base.

Thus we should have a strategy, say τ ∈ T building the sets and functionals men-

tioned, and make

Qe : K = Θ(E0, E1) = Ξ(F0, F1).

τ has exactly one outcome denoted by 0. When τ is accessible during the construction,

it either extends the domain of Θ and Ξ, or repairs the definitions on some k by enu-

merating θ(k) and ξ(k) into (E0, E1) and (F0, F1) respectively. However it depends on

τ ’s substrategies whether θ(k) (ξ(k)) should go to E0 or E1 (F0 or F1).

τ has many children extending τˆ0 for all tuples (n, i, j) (where n < ω and i, j < 2)

making

N τ
n,i,j : D = Φn(Ei, X) = Ψn(Fj, Y ) ⇒ ∃G ≤T X,Y (G 6≤T A)

for some effective enumeration of all possible combinations of the form (Φn, Ψn, i, j).

Let π ⊇ τˆ0 be anN τ
n,i,j-strategy and top(π) = τ . During the construction π builds

a c. e. set G ≤T X,Y . It has a parameter lπ to measure the length of agreement

between D, Φ(Ei, X) and Ψ(Fj, X). Thus we may define π-expansionary stages as

usual. In addition, π has two outcomes, say∞ for infinitely many expansionary stages,

and 0 for finitely many. Above πˆ∞, we arrange children of π to make

Oπ
k : G 6= Λk(A), for each functional Λk.

Now assume σ ⊇ πˆ∞ is a child strategy of π, let top(σ) = π and toop(σ) =

top(π). In isolation σ acts as below

1. Pick an agitator dσ and wait for lπ > d. We say d realized if the inequality

realized.

2. Choose a witness gσ > φ(d), ψ(d) and keep it from entering G. If later φ(d) or

ψ(d) grows then cancel g and go back to (1) for waiting.

3. Wait for Λ(A; g) ↓= 0, i. e. g to be realized.
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4. Enumerate d in D, impose restraints rσ(E) = φ(d) and rσ(F ) = ψ(d) on Ei and

Fj respectively, and rσ(A) = λ(g) on A.

5. At next π-expansionary stage, enumerate g in G.

If σ waits at (1) for ever or goes back to (1) infinitely often, then it has∞ as outcome

indicating Φ or Ψ diverges at d and hence a failure of the premise of N . We arrange no

more children for π above σˆ∞. If g is never realized then σ has 0 as its outcome. If σ

eventually reaches (5) then it has 1 as final outcome.

The intuition of the above procedure is that when g is realized, σ diagonalizes

against the premise of π for obtaining permissions from X and Y of enumerating g

in G. As there may exist many strategies between π and σ, σ in addition creates a link

(π, σ) when it finishes (4), for catching permissions in time. At next π-expansionary

stage the construction should jump via this link from π to σ and let σ finish (5) promptly.

The outcomes are ordered as before.

III.3.3 Coordinating strategies

The first kind of conflicts between strategies arises when O-strategies on T try to

protect Λ-computations at their witnesses. They do this by imposing a restraint on A,

but ∆ may need to enumerate some δ(k) in A for repairing ∆(A,B; k).

To solve these conflicts, we assign a new parameter kσ for each O-strategy σ on T .

σ defines k fresh at the beginning. When it is ready to change D(d), besides setting

rσ(A), σ lifts δ(k′) for k′ ≥ k by enumerating δ(k′) in B and redefining all such δ(k′)’s.

Thus ∆ would not violate rσ(A) if it were to repair ∆(A,B; k′) for k′ ≥ k.

But the restraint may still be violated if ∆ needs to repair ∆(A,B; k′) for k′ < k.

If this happens, we let ∆ reset σ by canceling g(σ), rσ(Z) for Z = A,X or Y , and any

link (top(σ), σ). Note that ∆ does not cancel k.

Moreover to make M’s at the same time, when σ lifts δ(k) the stage should be

ended immediately as in typical minimal pair constructions.

There are similar conflicts betweenQ- andO-strategies, but the solution is different.

We apply the trick in the proof of Sacks Splitting Theorem. Suppose an Q-strategy τ

needs to repair some θ(k) and ξ(k). First it finds the most prior grandchild O-strategy,

say σ, having restraints rσ(E) ≥ θ(k) or rσ(F ) ≥ ξ(k). Then τ enumerates θ(k) in

E1−iσ and ξ(k) in F1−jσ . Thus rσ(E) and rσ(F ) are eventually never violated.
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III.3.4 The construction

Stage 0. Initialize all parameters. Let TP0 = ∅.

Stage s > 0. First deal with ∆. Let x be the least number such that either

∆(A,B; x) is undefined or K(x) 6= ∆(A,B; x). If ∆(A,B; x) is undefined, simply

define it to be K(x) with δ(x) = s. Otherwise, let σ ∈ T be the most prior O-strategy

with rσ(A) ≥ δ(x), do the followings to reset σ

1. cancel gσ, rσ(Z) for Z = A,E and F , and

2. cancel any link of the form (top(σ), σ).

Then enumerate δ(x) in A and redefine ∆(A,B; x) = K(x) with δ(x)[s] = s, initialize

all ζ > σ on T .

Then deal with strategies on T . We will define an approximation TPs to the true

path. Once TPs is determined, initialize all strategies > TPs and goto stage s + 1.

Let ∅ be accessible. Assume η ∈ T is accessible.

Case 1. η is an Me-strategy. If s is η-expansionary, let o = ∞. Otherwise let

o = 0.

If |η| = s, then let TPs = η. If |η| < s then let ηˆo be accessible.

The above routine of checking the length of an accessible strategy is also called in

other cases when an outcome is determined. We will take this for granted and mention

no more.

Case 2. η is an Pe-strategy. If C ∩W 6= ∅, let 1 be the current outcome.

Otherwise define cη fresh if it is undefined. If c ∈ W then enumerate c in C, let

TPs = η and goto stage s + 1. If c 6∈ W then let 0 be the current outcome.

Case 3. η is an Qe-strategy. Let x be the least number such that

1. Θ(E0, E1; x) and Ξ(F0, F1; x) are undefined, or

2. K(x) 6= Θ(E0, E1; x) and K(x) 6= Ξ(F0, F1; x).

If (1) applies, define Θ(E0, E1; x) = Ξ(F0, F1; x) = K(x) with θ(x) = ξ(x) = s.

If (2) applies, let σ be the most prior O-strategy on T with toop(σ) = η and

min{θ(x), ξ(x)} ≤ max{rσ(E), rσ(F )}, enumerate θ(x) in E1−iσ and ξ(x) in F1−jσ .

Moreover, initialize ζ > σ on T .
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Either one of the above two happens, let 0 be the current outcome.

Case 4. η is an N -strategy. If s is η-expansionary and there is a link (η, σ) then let

σ be accessible.

If s is expansionary and there is no link of the form (η, σ) then let ∞ be the current

outcome. Otherwise let 0 be the current outcome.

Case 5. η is an O-strategy. Let π = top(η).

Subcase 5.1. There is a link (π, η). Cancel this link, enumerate gη in Gπ and let

TPs = η.

Subcase 5.2. There is no link (π, η). If g is defined and in G, then let 1 be the

current outcome.

If kη (dη) is undefined, let it be fresh. If either d > lπ or g is defined but ≤
max{φ(d), ψ(d)}, then cancel g, rη(Z) (for Z = A,E and F ) and let ∞ be the current

outcome.

Otherwise, let g be fresh if it is undefined. If Λ(A; g) 6= 0 then let 0 be the current

outcome. If Λ(A; g) = 0, put d in D, rη(A) = λ(g), rη(E) = φ(d) and rη(F ) = ψ(d),

enumerate δ(k) in B and redefine ∆(A,B; k) = K(k) with δ(k) = s. Finally create a

link (π, η) and let TPs = η.

III.3.5 The verification

It follows immediately from the construction that all sets and functionals built are

c. e..

Lemma III.3.3 (True Path). Let TP = lim infs TPs, for each n ∈ ω,

1. |TP | ≥ n,

2. TP ¹ n is accessible infinitely often,

3. TP ¹ n is initialized and reset at most finitely many times, and

4. if TP ¹ n is an O-strategy then rTP¹n(Z) converges for Z = A,E and F .

Proof. We prove (1)-(4) simultaneously by induction on n. Let η = TP ¹ n. The cases

where n = 0 or η is an M-, P- or Q-strategy are trivial.

η is an Nn,i,j-strategy. It suffices to prove that ηˆ∞ is accessible infinitely often

if there are infinitely many η-expansionary stages. Let s be an η-expansionary stage
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and assume η is never initialized after s. If ηˆ∞ is not accessible at s, then there is a

link (η, σ) at the beginning of stage s. By Subcase 5.1 in the construction, this link is

canceled and no link is created at s. Hence ηˆ∞ is accessible at next η-expansionary

stage.

η is an Ok-strategy. Let π = top(η) and τ = toop(η). By induction hypothesis,

d = lims dη[s], k = lims kη[s] and

r = lim
s

max{rσ(Z) : σ < η, Z = A,E, F}[s]

exist. Let s0 be a stage when d, k and r reach their final values. In addition we may

assume that

1. η is never initialized after s0,

2. K(x) = ∆(A,B; x)[s0] ↓ for x < k and

3. K(y) = Θ(E0, E1; y)[s0] ↓= Ξ(F0, F1; y)[s0] ↓ if θ(x)[s0] or ξ(x)[s0] ≤ r

where Θ, Ξ, E0, E1, F0 and F1 are c. e. functionals and sets built at τ .

If η changes D(d) at some s1 > s0 then Λ(A; g) ↓= 0 = G(g) and

D(d) = Φ(Ei(η), X; d) ↓= Ψ(Fj(η), Y ; d) ↓

at the beginning of s1. While at the end of s1, we have

1. D(d) 6= Φ(Ei(η), X; d) ↓= Ψ(Fj(η), Y ; d) ↓,

2. δ(k) > λ(g) = r(η, A), and

3. r(η, E), r(η, F ) are defined.

By the choice of s0, the computation Γ(A; g) and g are fixed for ever. Let s2 > s1 be

the next π-expansionary stage, then g ∈ G[s2]. Hence ηˆ1 ⊆ TP .

The lemma follows immediately.

From the second part of the above proof, ∆(A,B) is total and equals K. Moreover

each P is satisfied from (2) and (3) of the Lemma.

Lemma III.3.4 (Minimal Pair). Each Me is satisfied.
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Proof. Let α ⊂ αˆ∞ ⊂ TP be an Me-strategy. By the True Path Lemma we may

assume that α is neither initialized nor reset after s. Let s0 < s1 < . . . < sn < . . .

enumerate all α-expansionary stages after s, and let ln = lα[sn].

If at the end of sn there is no link of the form (π, σ) with π ⊂ α ⊂ σ, then a typical

minimal pair argument shows that f [sn] ¹ ln = f [sn+1] ¹ ln.

If there does exist a link as described then σ changes B but no one changes C at sn.

Moreover no strategy could change C ¹ γ(ln)[sn] before sn+1, by initializations and the

choice of s. Hence we have

f [sn] ¹ ln = Γ(C)[sn] ¹ ln = Γ(C)[sn+1] ¹ ln = f [sn+1] ¹ ln.

So we can compute f .

For each Q-strategy τ ⊂ TP , the equality K = Θτ (E0, E1) = Ξτ (F0, F1) is

automatically guaranteed by the construction. We have the last lemma.

Lemma III.3.5. Let π ⊂ TP be an N τ
n,i,j-strategy and top(π) = τ , then Gπ ≤T

Xτ , Y τ and each Oπ
k is satisfied.

Proof. The lemma holds trivially if there are at most finitely many π-expansionary

stages. So we may assume that πˆ∞ ⊂ TP and π is neither initialized nor reset after

some stage s0.

To compute G(x) from X , find a stage t > s0 at which πˆ∞ is accessible and

X ¹ x = X[t] ¹ x. Then G(x) = G(x)[t]. The algorithm of computing G from Y is

similar.

Now let σ be an Oπ
k -strategy on T with top(σ) = π. By the True Path Lemma we

may assume that d = lims dσ[s] = dσ[s0]. If σˆ∞ ⊂ TP then the premise of N is

obviously false and the lemma holds.

Otherwise we may assume g = lims gσ[s] = gσ[s0]. By the construction, once π

enumerates gσ in G, Λ(A; gσ) could be changed only if some strategy reset π. But

then gσ were canceled. Hence after s0 whenever an inequality G(g) = 1 6= Λ(A; g) is

setup, it lasts for ever. If such an inequality never appears then g is never realized and

Λ(A; g) 6= 0 = G(g).
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III.4 The Supreme of F1 and F2

In this section we prove that the supreme of F1 and F2 is a proper subset of NC.

Theorem III.4.1. [Cups(M) ∪NSB) is a proper definable subfilter of NC.

The definability is obvious. It suffices to construct a promptly simple set A with its

degree not in [Cups(M) ∪NSB).

III.4.1 Making A promptly simple

To make A promptly simple, we will make A coinfinite and

Pe : We is infinite ⇒ ∃x, s(x ∈ We,at s ∩ As).

We will have exactly one strategy for each Pe, denoted by Pe. These P ’s will be

ordered naturally by their indices. If at some stage s, Pe finds that Pe is not satisfied so

far and there is an element greater than 2e showed up in We then Pe puts the least x as

above in A and declares Pe satisfied.

III.4.2 Avoiding the filter

As in the last section, we will only make deg(A) 6∈ [{u,v,x0,x1}) for any tu-

ple (u,v,x0,x1) ∈ NSB2 × Cups(M)2. The theorem should follow from a simple

generalization.

The strategies described in this subsection will be arranged on a tree of strategies,

say T .

Given (Ue, Ve, X
0
e , X1

e , Ye, Ze) a tuple of c. e. sets. We have a τ ∈ T assuming

that (Ue, Ve, X
0
e , X1

e ) is a tuple of representatives of degrees as above, y witnesses

x0,x1 ∈ Cups(M) (i. e. Ye cups both X0
e and X1

e to ∅′) and z witnesses y ∈ M (i.

e. they form a minimal pair). τ builds c. e. sets E0, E1, F0, F1, functionals Γ, Λ and an

additional c. e. set D for diagonalization so that

Qτ : K = Γ(E0, E1) = Λ(F0, F1)
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and

Mτ
m,i,j : D = Φm(Ei, U) = Ψm(Fj, V ) = ∆0

m(X0
e , Ye) = ∆1

m(X1
e , Ye) ⇒

∃B ≤T Ue, Ve, X
0
e , X1

e (B 6≤T A) or ∃C ≤T Ye, Ze(C 6≤T ∅)

where (Φm, Ψm, ∆0
m, ∆1

m, i, j) effectively ranges over all possible combinations of func-

tionals when (m, i, j) effectively ranges over ω × 2× 2.

The only direct responsibility of τ is to meet Q, hence it will be referred as Q-

strategy. τ has exactly one immediate successor on T , denoted by τˆ0. To define Γ, Λ,

τ extends the definitions of the functionals by stage using big uses. Once it finds Γ or

Λ is wrong at some parameter, τ enumerates the corresponding use in E0, E1 or F0, F1

and corrects the definition.

To meet M’s, τ has many substrategies for each M as its successors. Suppose π is

such one, let top(π) = τ . We then define the length of agreement lπ and expansionary

stages for π as usual. π has two possible outcomes, say ∞ indicating that there are

infinitely many expansionary stages, and 0 for finitely many. Now π has lπ to measure

the premise of M. For the consequence of M, π builds B and C subjecting to proper

permissions and has its substrategies above πˆ∞ to make for some proper effective

indexing,

N π
n : B = Θn(A) and C = W n ⇒ Ze is computable

where (Θn,Wn) effectively ranges over all combinations of functional and set.

Let σ be a substrategy of π, top(σ) = π and toop(σ) = top(π). At the beginning,

σ picks a fresh agitator d and waits for the premise of M established at d. Secondly it

picks a fresh witness b, and waits for B(b) = 0 = Θ(A), say realized. Next σ picks a

fresh follower c0 and wait for c0 realized, i. e. c0 ∈ Wn. If b and c are realized then σ

waits for changes of Z ¹ c0 (i. e. permission by Z) and simultaneously picks another

follower c1 and so on.

If Z ¹ ck never changes after ck realized then we can compute Z. Thus we re-

fute the assumption of τ and have a global win for τ . If Z ¹ ck changes for some

ck realized, then σ enumerates d in D immediately (even if σ does not appear to be

on the true path) and creates a link (π, σ) for catching further permissions needed

promptly. At next π-expansionary stage, the flow of control follows the link and jumps



56 Chapter III. Filters

from π to σ (say the link is traveled). Now either U, V, X0 and X1 change below

u(d) = max{φ(d), ψ, δ0(d), δ1(d)} or Y changes below u(d). If the first case happens,

σ enumerates b in B and the second enumerates ck in C. Either one σ obtains a local

win, cancels the link and terminates.

Note that u(d) could move after σ picks b and c0. If this happens b or c0 might be too

small to be permitted, then σ cancels this witness and all defined followers. Similarly,

θ(b) could move after σ picks c0, then σ cancels all defined followers.

σ has four possible outcomes listed below.

∞ - u(d) moves infinitely often;

b - θ(b) moves infinitely often, b is never realized or b ∈ B;

z - There are infinitely many defined followers but none is ever permitted by Z, thus

Z is computable;

c - Some follower is either never realized or enumerated in C.

Both ∞ and z mean global wins for τ = toop(σ), thus we arrange no descendance

of τ above σˆ∞ and σˆz. While b and c indicate local wins for σ, descendance of τ

and π are arranged above to make Mτ ’s and N π’s.

All possible outcomes in this subsection are ordered as ∞ < b < z < c < 0. The

tree of strategies, say T , is defined in a usual way.

III.4.3 Coordinating strategies

Note that once an N -strategy, say σ, puts its agitator in D, it expects no move of

θ(b). Hence it should impose a restraint on A. On the other hand, to force changes

of U ¹ u(d) and V ¹ u(d), it should also restrain Ei and Fj . Hence there are two

kinds of conflicts, the first kind between N -strategies and P ’s and the second between

N -strategies and their grandparents Q-strategies.

To solve the first kind, we have σ choose a fresh killing point, say k, at the very

beginning. When it expects no change of A ¹ θ(b), σ imposes a restraint r(A) = θ(b)

on A. This r(A) will be respected by every Pe with e ≥ k. But the other k many P ’s are

free to violate r(A). If such a violation happens, we cancel all parameters (including

possible links) associated with σ except the killing point, and say that σ is reset. Since

each P needs only one chance for winning, σ can be reset by P ’s at most finitely often.
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On the other hand we will ensure that there are only finitely many strategies having

killing point below one e and their restraints on A are bounded.

The second kind of conflicts is solved in essentially the same way as in the last

section.

III.4.4 The construction

During the construction, the even stages are devoted to P ’s and the odd stages are

devoted to T . At the beginning we have all parameters undefined and all c. e. sets and

functionals to be built empty.

At an even stage s, we say a Pi requiring attention if and only if i < s, Pi is not

satisfied so far and there is an x such that

x ∈ Wi,at s − A and x > 2i, max{rσ(A) : σ ∈ T, kσ < i}

If there is no P requiring attention, proceed to stage s + 1. Otherwise let i be the least

index with Pi requiring attention, x be the corresponding least element and σ be the

most prior strategy on T with rσ(A) > x, put x in A, reset σ and initialize all strategies

on T and less prior than σ. Finally declare Pi satisfied and proceed to next stage.

At an odd stage s, we will define a finite sequence of accessible strategies on T and

an approximation of the true path, say TPs. A strategy, say η, acts immediately after

it becomes accessible. When it finishes its jobs, there are three possible cases, i. e. an

outcome o is determined, TPs is defined, or the next accessible strategy is determined.

If the first case happens and |η| ≥ s then define TPs = η. If the first case happens but

|η| < s then let ηˆo be accessible. In whichever case, if TPs is determined, initialize

strategies less prior than TPs and proceed to next stage. Initially let ∅ be accessible.

Given η accessible, the jobs of η are defined by cases.

Case 1. η is a Qe-strategy. Let x be the least number such that

Γ(E0, E1; x) ↑ and Λ(F0, F1; x) ↑ or K(x) 6= Γ(E0, E1; x) = Λ(F0, F1; x).

If Γ(E0, E1; x) ↑ and Λ(F0, F1; x) ↑, let Γ(E0, E1; x) = Λ(F0, F1; x) = K(x) with

γ(x) and λ(x) fresh.
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Otherwise, let σ ∈ T be the most prior N -strategy such that toop(σ) = η and

max{rσ(E), rσ(F )} > min{γ(x), λ(x)}. Put γ(x) in E1−iσ and λ(x) in F1−jσ , rede-

fine Γ(E0, E1; x) = Λ(F0, F1; x) = K(x) with γ(x) and λ(x) fresh, initialize strategies

less prior than σ.

In both cases, let 0 be the outcome.

Case 2. η is an Mτ
m,i,j-strategy where τ = top(η).

If s is not η-expansionary, let 0 be the outcome.

If s is expansionary and there is a link of the form (η, σ), let σ be accessible and

cancel this link.

Otherwise, let s0 < s be the last η-expansionary stage. Say an N η-strategy σ ⊇
ηˆ∞ requiring attention if and only if

1. dσ, bσ are defined and bσ > u(d) = min{φ(d), ψ(d), δ0(d), δ1(d)},

2. Θ(A; bσ) ↓= 0 = B(bσ),

3. C ∩Wnσ = ∅,

4. cσ
k is realized at s0 and Z[s0] ¹ cσ

k 6= Z ¹ cσ
k for some k.

If s0 is undefined or there is no N -strategies requiring attention, let ∞ be the out-

come. Otherwise let the most prior one requiring attention, say σ, be accessible.

Case 3. η is an N π
n -strategy where π = top(η). If b is defined and in B, let b be

the outcome. If C ∩ Wn 6= ∅, let c be the outcome. Otherwise act according to the

applicable subcase below.

Subcase 3.1. η becomes accessible because a link (π, η) is just traveled. Let s0 < s

be the stage when this link was created. If Y ¹ u(d)[s0] 6= (Y ¹ u(d))[s0] then put the

greatest defined follower in C. Otherwise put b in B. Let TPs = η.

Subcase 3.2. η becomes accessible because π finds it requiring attention. Put d in

D, let r(E) = r(F ) = u(d) and r(A) = θ(b), create a link (π, η) and let TPs = η.

Subcase 3.3. None of the above subcases applicable. Define k and d fresh if they

are undefined. If d > lπ then let TPs = η and stop.

Let u(d) be as in Case 2. If b is defined and less than u(d) then cancel b and all

defined followers, let ∞ be the outcome.

Otherwise define b fresh if it is not defined. If b is not realized, let b be the outcome.

If b is realized and c0 is defined, let s0 be the stage when c0 became defined. If (A ¹
θ(b))[s0] 6= A ¹ θ(b), then cancel all followers and let b be the outcome.
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Otherwise let k be the least number such that ck is undefined. If k = 0 or ck−1 is

realized, define ck fresh and let z be the outcome. If k > 0 and ck−1 is not realized then

let c be the outcome.

III.4.5 The verification

It is obvious from the construction that all sets and functionals constructed are c. e..

Lemma III.4.2 (True Path). Let TP = lim infs TPs. For each n we have the following.

1. |TP | ≥ n,

2. TP ¹ n is accessible infinitely often,

3. TP ¹ n is initialized at most finitely often,

4. If TP ¹ n is an N -strategy then the limits of rTP¹n(A), rTP¹n(E) and rTP¹n(F )

exist, and TP ¹ n is reset at most finitely often.

Proof. We prove (1)-(4) simultaneously by induction. It is obvious for n = 0. Assume

the lemma holds for n and η = TP ¹ n.

Case 1. η is a Qe-strategy. (1)-(3) hold trivially as η has only one immediate

successor on T . (4) is included in Case 3.

Case 2. η is a Mτ
n,i,j-strategy. Firstly we prove (1)-(3) for n + 1. To this end it

suffices to prove that |TP | ≥ n + 1.

The situation that there are at most finitely many η-expansionary stages is trivial.

Now assume there are infinitely many η-expansionary stage. Let s0 > n be a stage

from when on η is never initialized. Assume s > s0 is η-expansionary but ηˆ∞ is not

accessible at stage s. Then either there is a N η-strategy requiring attention or there is a

link (η, σ).

In the first case, a link like (η, σ) is created at stage s. Thus this case is reduced to

the second one.

In the second case this link is canceled and no new link is created. Note that only

thoseN η-strategies prior than σ could require attention before ηˆ∞ becomes accessible

again. Hence ηˆ∞ is eventually accessible again.

(4) for this case is included in Case 3.
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Case 3. η is an N π
n -strategy where π = top(η). By induction hypothesis, let s0

be a stage from when on kη is fixed. Hence η is neither initialized nor reset after s0.

Suppose rη(A), rη(E) and rη(F ) become defined at some stage s > s0. Then at stage

s, we have for d = dη,

D(d)[s] = 1 6= 0 = D(d)[s− 1] = Ξ(H; d)[s]

where Ξ(H) = Φ(Ei, U), Ψ(Fj, V ), ∆0(X0, Y ) or ∆1(X1, Y ).

Let s′ > s be the next π-expansionary stage, then

D(d)[s′] = Ξ(H; d)[s′] = 1 6= 0 = Ξ(H; d)[s]

where Ξ(H) is as above. As by induction hypothesis the restraints are never initialized

after s0, either U, V, X0 and X1 change below u(d) or Y ¹ u(d) changes, and either

bη ∈ B[s′] or C[s′] ∩W is not empty. By the construction, the restraints are fixed for

ever.

(1) and (2) are obvious. For (3), since the restraints imposed by η are eventually

fixed, toop(η) could initialized TP ¹ n + 1 for correcting Γ and Λ at most finitely

often.

The next lemma follows immediately from (4) of the True Path Lemma and the

construction.

Lemma III.4.3. All P’s and Q’s are satisfied.

Finally let π ⊂ TP be anMτ
m,i,j-strategy where τ = top(π) ⊂ TP is aQe-strategy,

we prove the satisfaction of this M and end the proof of the theorem.

Lemma III.4.4. Mτ
m,i,j is eventually satisfied.

Proof. If πˆ0 ⊂ TP , then the lemma holds trivially. Assume πˆ∞ ⊂ TP , then there

are infinitely many π-expansionary stages. Let σ be an N π
n -strategy on TP .

By the True Path Lemma, d = lims dσ[s] exists. Thus if σˆ∞ ⊂ TP then some

Ξ(H; d) diverges for Ξ(H) = Φ(Ei, U), Ψ(Fj, V ), ∆0(X0, Y ) or ∆1(X1, Y ) andM is

satisfied since its premise is refuted.
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If σˆ∞ 6⊂ TP then b = lims bσ[s] exists. Suppose σˆb ⊂ TP , then either Θ(A; b)

changes infinitely often, b is never realized or b ∈ B. The first two cases imply B(b) =

0 6= Θ(A; b). For the last case, assume b is enumerated in B at stage s then B(b) =

1 6= 0 = Θ(A; b)[s] and (rσ(A) = θ(b))[s] and is never violated. Hence B(b) = 1 6=
0 = Θ(A; b).

Next assume σˆz ⊂ TP , then σ has infinitely many realized permanent followers.

By the True Path Lemma and Case 2 in the construction, Z ¹ cσ
k = Z[sk] ¹ cσ

k where cσ
k

is a permanent follower, sk is a stage when cσ
k has been realized and πˆ∞ is accessible.

Finally assume σˆc ⊂ TP , then either σ has finitely many permanent followers and

the greatest one is never realized, or C ∩Wn 6= ∅. In the first case W n − C 6= ∅.

The satisfaction of M follows from the above argument.

III.5 Conclusions

III.5.1 A counter example

People might expect that diamond bases, i. e. infima of splittings of 0′, also generate

a proper filter. However by Ambos-Spies et al. (1994), the distributive lattice shown in

Figure 1 can be embedded in R preserving 0 and 1 (where a0 ∧ a1 is joint-irreducible

and noncappable). Thus there are two diamond bases, namely c0 and c1 (the images of

c0 and c1), forming a minimal pair.

Proposition III.5.1. [DB) is not a proper filter.

III.5.2 Remarks

Firstly, observe that the proof of Theorem III.4.1 could be improved to made deg(A) ∈
H. Hence by the Jump Interpolation Theorem in Robinson (1971), we have a clear pic-

ture of the relation between F1 and jump hierarchy.

Proposition III.5.2. NC−F1 meets every jump classes.

Secondly we raise a natural question about F1 and F2.
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0

a1

b0

c0c1

b1

a0

1

Figure III.1 Two diamond bases forming a minimal pair

Problem III.5.3. Is F2 a subset of F1? Or even NSB ⊆ Cups(M)?

Thirdly, if there exist no n-sequence of degrees pairwise cupping to 0′ above a

then we call a n-nonsplitting. Let NSBn denote the class of n-nonsplitting degrees.

Obviously NSB = NSB2 and NSBn = {0′} if n < 2. Leonhardi in Leonhardi

(1997) proved that NSBn+1 − NSBn 6= ∅ for n > 0. Let NSB≤n =
⋃

i≤n NSBi.

Then we have the question.

Problem III.5.4. Does [NSB≤n+1)− [NSB≤n) 6= ∅ for each n > 0?

Finally, let NSBω =
⋃

i<ω NSBi.

Proposition III.5.5. NSBω is definable.

Proof. It is easy to see that NSBω ∩ (M ∪ L) = ∅. Now let d > 0 be an element

of NSBω, then we could have a standard model M and a surjection h : M → [d,0′]

as in Theorem III.1.1. The predicate that h(((e)0)
M), . . . , h(((e)l−1)

M) do not form

an l-splitting sequence above d where (e)i and l = lth(e) are as before, is obviously

definable and uniform in eM .

It is then natural to ask the following.

Problem III.5.6. Does NSBω form a (strong) filter?



Chapter IV

A Congruence Relation

IV.1 Introduction

Ambos-Spies et al. (1984) suggested that the quotient structure R/M might give

insights on R. Schwarz (1984) contained a systematic study and found a major prop-

erty ofR/M analogousR, namelyR/M is downward dense. But the density ofR/M

remains open. Another important result onR/M is that Shoenfield’s homogenous con-

jecture fails, by Yi (1996). Recently Li et al. (2006) studied another quotient structure

R/NCup and built a minimal pair in it.

1 In this chapter we will introduce a new congruence relation, denoted by ∼, and

deduce from known results that R/ ∼ is not dense. This shows that quotient structures

of R could behave very differently from R.

We will also show that ∼ is a relation strictly coarser than modulo NCup in the

last section. This again suggests great complexity of R.

IV.2 A congruence relation on upper semilattices

We introduce some notions.

Definition IV.2.1. Fix (L,≤,∨, 1) an upper semilattice with a greatest element 1.

1The results in this chapter is contained in Wang and Ding (2006a)

63
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1. For a ∈ L let Cups(a) = {b ∈ L|a ∨ b = 1} and Cups(X) =
⋃

a∈X Cups(a)

for X ⊆ L. We call elements of Cups(a) cupping partners of a.

2. Let NCup(L) = {a ∈ L|Cups(a) = {1}}. Obviously NCup(L) is an ideal and

we call it the ideal of noncuppables and its elements noncuppables.

3. a ∼ b if and only if Cups(a) = Cups(b), for a, b ∈ L.

Fix L be as in the above definition. It is immediate that ∼ is an equivalent relation

on L. In fact, ∼ is a congruence relation.

Proposition IV.2.2. For a, b, c and d elements of L, a ∼ b and c ∼ d imply a∨c ∼ b∨d.

Proof. If a ∨ c ∨ x = 1 then b ∨ c ∨ x = 1 as a ∼ b. Similarly b ∨ d ∨ x = 1 as c ∼ d.

By symmetry a ∨ c ∼ b ∨ d.

We denote ã the congruence class represented by a and L̃ = L/ ∼.

Proposition IV.2.3. ã ≤ b̃ if and only if Cups(a) ⊆ Cups(b).

Proof. (⇒) Trivial.

(⇐) Assume Cups(a) ⊆ Cups(b). If x ∨ a ∨ b = 1 then x ∨ b ∨ b = x ∨ b = 1.

Thus Cups(b) = Cups(a ∨ b) and b ∼ a ∨ b ≥ a.

Moreover Cups(ã) = {b̃|b ∈ Cups(a)} as ∼ is commutative with ∨ and 1̃ = {1}.

Corollary IV.2.4. ã ≤ b̃ ⇔ Cups(a) ⊆ Cups(b) ⇔ Cups(ã) ⊆ Cups(b̃). Hence

ã 7→ Cups(ã) is a partial order monomorphism from L̃ into the powerset of L ordered

by inclusion.

Proof. Immediately from the last proposition and the above remarks.

If NCup(L) is not empty, then we could define another congruence relation modulo

NCup(L) as NCup(L) is an ideal . If moreover L has a least element 0, then from the

definitions, elements in NCup(L) represent the least element in L/NCup(L) as well

as in L̃. Thus some local properties of L/NCup(L) might also hold for L/ ∼. The

following is an example for L = R.

Proposition IV.2.5. There is at least a minimal pair in R/ ∼.
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Proof. (Li et al., 2006, Theorem 6) proved that there is a minimal pair in R/NCup

by constructing a and b such that Cups(a) ∩ Cups(b) = {0′}. It is easy to see

ã ∧ b̃ = 0̃.

However the two relationships could be different. A simple example of this is the

natural restriction of the least non-modular lattice N5. Later we will prove that these

two congruence relations are different for L = R.

We introduce another notion motivated by degree theory.

Definition IV.2.6. Call a pair x, y a nontrivial splitting of z if x ∨ y = z, x < z and

y < z. u ∈ L is a nonsplitting base if and only if there are no nontrivial splittings of 1

above u. Let NSB(L) = {u ∈ L|u is a nonsplitting base}.

Proposition IV.2.7. The interval (ũ, 1̃) is empty if and only if u ∈ NSB(L).

Proof. (⇒) Assume ã ∈ (ũ, 1̃) then a < 1 and there is an x ∈ Cups(a) − Cups(u).

Thus x ∨ u < 1. Hence a ∨ u and x ∨ u form a nontrivial splitting of 1.

(⇐) If there are a, b ≥ u forming a nontrivial splitting of 1 then we will have ã > ũ

as b ∈ Cups(a)− Cups(u). Hence (ũ, 1̃) is not empty.

We call ũ maximal if ũ < 1̃ and (ũ, 1̃) is empty.

Corollary IV.2.8. If ũ is maximal then ũ = {v ∈ NSB(L)|u ∨ v < 1}.

Proof. ũ ⊆ {v ∈ NSB(L)|u ∨ v < 1} by the last proposition.

On the other hand, if v ∈ NSB(L) and u ∨ v < 1 then ṽ = (u ∨ v)∼ = ũ where

the first equality is by the maximality of ṽ and the second by that of ũ.

Corollary IV.2.9. R/ ∼ is not dense.

Proof. Lachlan (1976) proved that there are a,b ∈ R such that a < b and there

are no nontrivial splittings of b above a. Harrington in an unpublished manuscript (a

published and modern presentation can be found in Leonhardi (1997)) improved this

by showing that b could be 0′ (i. e. the greatest element of R). Hence NSB(R) is not

empty and R/ ∼ is not dense by the above proposition.
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IV.3 Comparing ∼ and modulo NCup

In this section we prove that∼ and modulo NCup are different congruence relations

in R. Let NCup = NCup(R) and â be the element in R/NCup represented by

a ∈ R.

Theorem IV.3.1. There are c. e. degrees a and b such that b̂ 6≤ â but b̃ ≤ ã.

We construct two c. e. sets A and B representing a and b mentioned above. To

make b̂ 6≤ â it suffices to make

Me : B = Φe(A,Xe) ⇒ Xe is cuppable

for each e, where e is an index of some effective enumeration of pairs of functional and

set. To make b̃ ≤ ã we build an additional set D and make

Pe : D = Ψe(B, Ye) ⇒ K ≤T A⊕ Ye

for each e, where e is again an appropriate index.

We arrange strategies for meeting requirements on a tree, say T .

IV.3.1 Meeting M’s

Let τ ∈ T be an Me-strategy, lτ and τ -expansionary stages are defined as usual. τ

has two possible outcomes, say ∞ indicating that there are infinitely many expansion-

ary stages and 0 indicating finitely many.

If ∞ appears to be true, τ builds a set Cτ and a functional ∆τ such that K =

∆(C, X) and

N τ
i : D 6= Γi(C)

where Γi effectively ranges over all functionals when i ranges over ω.

To make K = ∆(C, X), at an expansionary stage τ either extends dom(∆) or

repairs a disagreement between K and ∆ by putting an appropriate use in C. The uses

of ∆ obey the prescribed conventions and an additional rule,
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(δ-rule) If τ acts at stage s then δ(n)[s− 1] ↓∈ C implies δ(n)[s] > s.

To make Ni, τ has children above τˆ∞ assigned to Ni. Let σ be such one, define

top(σ) = τ . σ acts as below.

1. Pick a killing point kσ, an agitator bσ and a witness dσ fresh, keep b from entering

B and d from D.

2. Wait for b ≤ lτ .

3. If later φ(b) moves, return to (2).

4. Wait for D(d) = 0 = Γ(C; d) ↓.

5. If δ(k) < φ(b), put δ(k) in C and return to (4).

6. Put b in B, impose a restraint r = φ(b) on A and wait for the next τ -expansionary

stage.

7. Put d in D and redefine δ(n) fresh for n ≥ k.

If σ returns from (3) to (2), it will have outcome ∞. If this happens infinitely often

then we will have φ(b) diverging and Φ partial. Hence σˆ∞ indicates a global win of

τ and we arrange no children of τ above it.

If σ keeps waiting at (4) confinitely often then Γ(d) 6= 0 = D(d), σ has outcome w

indicating a local win of itself.

Note that by (δ-rule), σ will not return from (5) to (4) infinitely often unless σˆ∞
is true. Thus we assign no additional outcome for this case.

If σ finally reaches (7) we will have

D(d) = 1 6= 0 = Γ(C; d). (∗)

In this case σ has s as its outcome. Moreover, (∗) will not be destroyed by δ(n)(n ≥ k).

If (∗) is destroyed by some δ(n)(n < k) then we let σ pick a fresh agitator and a fresh

witness and restart from (2). As k is fixed σ can reach (7) at most k + 1 times and σˆs

indicates a finite local win of σ.

The possible outcome defined so far are ordered in reverse lexicographic, i.e. ∞ <

w < s < 0.
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IV.3.2 Meeting P ’s

Let α ∈ T be aPe-strategy, lα and α-expansionary stages are defined as usual. α has

two possible outcomes, say∞ and 0, with meanings similar to those ofM-strategies. α

acts like strategies building nontrivial noncuppable degrees (e.g. see (Wang and Ding,

2005, Theorem 2.1)).

If ∞ appears to be true α builds a functional Θα such that K = Θ(A, Y ). To

this end α manages an agitator dα(k) for each k so that θ(k) ≥ ψ(d(k)) whenever

Θ(A, Y ; k) converges (say k is honest for α), and has its children above αˆ∞ to make

Qα
k : K(k) = Θ(A, Y ; k).

Let β ⊇ αˆ∞ be a Qα
k -strategy and top(β) = α. β acts as below.

1. Pick a guard gβ fresh.

2. Wait for g ≤ lα.

3. If later ψ(g) moves, return to (2).

4. If Θ(A, Y ; k) diverges, d(k) is undefined or d(k) > g, let d(k) = g.

5. If Θ(A, Y ; k) diverges then let Θ(A, Y ; k) = K(k) with θ(k) = ψ(d(k)).

6. If Θ(A, Y ; k) ↓6= K(k) then put d(k) in D and cancel d(k).

If β returns from (3) to (2) it has ∞ as outcome. Otherwise β has 0 as outcome.

It depends on two assumptions for β to win.

(β1) g = lims gβ[s] exists, and

(β2) If θ(k) is defined, then either B ¹ ψ(d(k)) never changes or θ(k) could be put in

A for the honesty of k.

If these are achieved then βˆ∞ indicates Ψ partial and a global win of α. Hence we

arrange no children of α above βˆ∞. On the other hand, if βˆ0 is true, then either (6)

never happens and K(k) = 0 = Θ(A, Y ; k), or k is always honest and the enumeration

of d(k) in D would cause Θ(A, Y ; k) to diverge. Thus eventually Θ(A, Y ; k) ↓= K(k)

and β achieves a local win.

Let us remark on the intuition behind the above procedure. β picks a guard in order

to test the premise of α, i.e. whether Ψ(B, Y ) is total. On the other hand all Qα
k -

strategies share a same agitator and manage the honesty of k according to this agitator.
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The purpose of agitators is for strategies to force Θα diverge on appropriate parameters.

To manage the honesty of k, β should prevent numbers below ψ(d(k)) from entering

B. However β can not always control ψ(d(k)) as d(k) might be defined by other Qα
k -

strategies. But to some extent β can control ψ(gβ) and gβ would also fit the purpose of

agitators under certain circumstances. This explains Step (4) of the above procedure.

In the proof of (Wang and Ding, 2005, Theorem 2.1) we call guards personal flip

points and agitators official flip points.

IV.3.3 Coordinating strategies

AnM-strategy τ never interferes with other strategies except its children as it builds

its own Cτ and changes nothing other than Cτ . Moreover τ could injure its children on

the true path at most finitely often as argued.

A P-strategy changes nothing and imposes no restraints and thus never interferes

with other strategies.

The only conflicts lie between N -strategies and Q-strategies. Recall that an N -

strategy might need to put its agitator in B and then hope A ¹ r not changed while a

Q-strategy assumes (β2).

Let σ be an N τ
i -strategy and β a Qα

k -strategy where τ = top(σ) is an Me-strategy

and α = top(β) is some P-strategy. To solve the described conflict between σ and

β, we would have σ destroy Θα(k) by putting dα(k) in D before it could put bσ in

B. However to respect α’s expectation on totality of Θ, we will forbid σ to do this if

βˆ0 ⊆ σ. Moreover under this situation we will make bσ > ψ(d(k)) by initialization

thus bσ would not threat the honesty of k for α.

If σ ⊇ βˆ∞ then either d(k) < gβ and θ(k) converges or Θ(A, Y ; k) diverge when

σ acts. By initialization again we will either have b > θ(k) ↓ or never worry the honesty

of k when σ acts.

If σ 6⊃ β then σ might need to worry the honesty of k when it wants to put b in

B. As described σ then delays the enumeration of b in B and puts d(k) in D first.

Moreover σ brings forward the defining of r and defines it right now. Before σ could

act again, an α-expansionary stage should be seen and Θ(A, Y ; k) would diverge by the

assumed honesty of k.

Moreover as there might be many P-strategies, say α0 ⊂ α1 ⊂ . . . ⊂ αn, below σ,
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we make σ destroy θαj in decreasing order. When σ puts some dαj(kj) in D, it setups

a link (αj, σ). At the next αj-expansionary stage this link is traveled, i.e. the control

passes from αj directly to σ, and σ will attempt to destroy some θαj−1 if j > 0 or put

bσ in B.

We could still make θ(k) converge if eachN -strategy only attempts to destroy θ(k)

finitely often. However σ might want to put its agitator in B infinitely often and thus

destroy θ(k) constantly. For example, assume that σ put dα(k) in D at stage s0 which

is both τ - and α-expansionary, but τ at the next τ -expansionary stage s1 > s0 finds a

disagreement between K and ∆τ , and repairs it by putting a use less than γi(d
σ) in C.

If this happens infinitely often then σ might want to put its agitator in B infinitely often.

To solve this new problem, we build local enumerations for Φe and Xe, i.e.

Xτ [s] = Xe[r] and Φτ (A,Xτ )[s] = Φτ (A,Xτ )[r]

for each s, where r ≤ s is the latest stage when τ acted. Provided τ acts infinitely

often, we will have

Xτ =
⋃
s

Xτ [s] = Xe and Φτ (A,Xτ ) =
⋃
s

Φτ (A,Xτ )[s] = Φe(A,Xe).

Intuitively, we will freeze the computation Φe(A,Xe) whenever τ does not act. Chil-

dren of τ will also deal with these enumerations instead of the standard enumera-

tions. In particular, when the computation is frozen an N τ -strategy will not detect

any changes of uses. During the construction below we will not mention the above

again but just take it as granted.

Under this setting the above paragraph will not happen if α ⊂ τ as then τ will be

covered by a link (α, σ).

Assume τ ⊂ α ⊂ σ and s2 ≥ s1 is the earliest α-expansionary stage. We in addition

assume that φτ (bσ) had reached its final value at s0 (called b-correct assumption). Then

we will have

θ(k)[s2] > rσ[s0] ≥ rρ[s0] (k-safe)

if Θ(A, Y ; k)[s2] ↓ and rρ[s0] is defined for some N -strategy ρ prior to σ.

This observation might not be critical for ρ = σ, for after σ makes δ(kσ) diverge it is
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safe for σ to honestify k for α by putting θ(k) in A. But it is critical for ρ 6= σ. ρ might

have attempted to destroy some θµ(n) before s0 and was waiting for a µ-expansionary

stage at s0. Hence before a µ-expansionary stage were seen the restraint rρ should be

respected. Our observation guarantees that the restraint would be respected even if θ(k)

were put in A.

Thus σ simply accepts θ(k) at s2. If later σ will put b in B and hurt the honesty of

k for α, we will make σ simultaneously put θ(k) in A to repair it.

Finally if the b-correct assumption fails infinitely often, then σ might cause θ(k) →
∞. But we will have a global win for τ since Φ(A,X; b) then diverges. As in typical

0′′′-arguments we arrange backup strategies for α and its children above σˆ∞. We

consider such arrangement as α injured by τ . Furthermore we will have a final strategy

free of injuries for each P along every infinite path of T .

IV.3.4 Final behaviors of N - and Q-strategies

In this subsection we summarize behaviors of N - and Q-strategies subjecting to

adjustments in the last subsection, so as to help readers building a clear mind picture.

Let σ be an N τ
i -strategy where τ = top(σ). σ has four parameters: kσ, bσ, dσ and

rσ. Assume σ is initialized only finitely often then k = lims kσ[s] exists. We may

assume k = kσ[s0]. If σ waits for Γi(C; d) ↓= 0 cofinitely often then it wins.

If σ finds that φ(b) moves infinitely often then it will never attempt to destroy any

θα(x) for α ⊂ τ , otherwise τ would be covered by a link and the computation of Φ

would be frozen. σ will cancel r before σˆ∞ will act. In this case b = lims bσ[s] exists

and a global win of τ is achieved. Moreover totality of Θα for α ⊂ τ is not hurt and

those P-strategies between τ and σ will be backup.

If φ(b) converges, and d is realized but Γi(C; d) is destroyed infinitely often, then σ

achieves a win of itself and will stop attempting to destroy θα’s for α ⊂ σ.

Otherwise σ will attempt to destroy some θα(k) with α ⊂ τ at some stage. We could

assume that r and thus the computation Φ(A,X; b) would be respected before σ would

put d in D. This assumption could be verified by induction and (k-safe). Provided σ

acts infinitely often it will eventually make D(d) = 1 6= 0 = Γi(C; d). Though such

disagreement might be destroyed by enumerations of δ(n) in C for n < k, σ needs at

most k + 1 times to establish a final one.
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In all cases b = lims bσ[s] and d = lims dσ[s] exist. And either rσ is canceled

infinitely often or lims rσ[s] exists.

Next consider a Qα
k -strategy β with α = top(β). β has one parameter gβ . Assume

β is not initialized after stage s0 then gβ[s] (s > s0) could be canceled only if it enters

D, and gβ[s] could enter D only if β at some stage set dα(k) = gβ . dα(k) could enter D

for two reasons: some Qα
k -strategy needs to repair a disagreement between K and Θ,

or some N -strategy attempts to destroy θ(k). The first case happens at most once and

so might be assumed never do after s0. To argue that g = lims gβ[s] exists we examine

N -strategies according to their positions on T . Let σ be as above.

1. σ is to the left of β. Then σ never acts after s0 by the choice of s0.

2. σˆ∞ ⊆ β. As in classical nonbounding constructions we will have α ⊇ σˆ∞.

But σ would never attempt to destroy any θα(x).

3. σˆw or σˆs ⊆ β. As argued b = lims bσ[s] exists and either φτ (b) converges

or σ eventually stops checking φτ (b). Hence σ could put at most finitely many

dα(k)’s in D.

4. Otherwise, by initialization we may assume that Θ(A, Y ; k) diverges or bσ >

ψ(d(k)) whenever σ acts. Then σ never puts d(k) in D as bσ would not threat the

honesty of k for α.

If βˆ0 is on the true path we will also have d(k) = lims dα(k)[s] exist and Θ(A, Y ; k)

converge.

IV.3.5 Defining the tree of strategies

Firstly, we may restate all requirements in the following forms:

Me : B = Φe(A,Xe) ⇒ ∃Ce, ∆e(Ce is incomplete ∧K = ∆e(Ce, Xe)),

Ne,i : D 6= Γi(Ce),

Pe : D = Ψe(B, Ye) ⇒ ∃Θe(K = Θe(A, Ye),

Qe,k : K(k) = Θe(A, Ye; k).

Moreover we may consider N τ ’s and Qα’s as local variances of Ne,i’s and Qe,k’s, as

well as Cτ ’s, ∆τ ’s and Θα’s.
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Secondly fix a computable bijection f from the set of requirements to ω such that

f(Me) < f(Ne,i) and f(Pe) < f(Qe,i) for any pair (e, i).

Finally we define T , a partial function top : T → T and for each requirement X , a

partial function also denoted as X : T → T .

At the beginning we put ∅ in T and assign it to f−1(0). Assume ξ is enumerated in

T and assigned to Z , we say that ξ is a Z-strategy. We define the immediate successors

of ξ:

1. If ξ is some M-, P- or Q-strategy then put ξˆ∞ and ξˆ0 in T .

2. If ξ is an N -strategy then put ξˆ∞, ξˆw and ξˆs in T .

To define the partial functions we need some notions. For ρ ⊂ ξ, ρ is injured at

ξ if and only if it is assigned to some M, N or P , and there are τ and σ such that

τˆ∞ ⊆ ρ ⊂ σˆ∞ ⊆ ξ, τ is some M-strategy and top(σ) = τ .

For each requirement X , let X (ξ) be the longest ρ ⊆ ξ assigned to X . X is satisfied

at ξ if and only if

1. either X (ξ) is defined and not injured at ξ, or

2. X is some Nn,j or Qm,l, µ = Mn(ξ) or Pm(ξ) is defined and not injured at ξ,

and there is some Y = Nn,p or Qm,q such that ν = Y(ξ) is defined, top(ν) = µ

and νˆ∞ ⊆ ξ.

If ξ is some Ne,i or Qe,k-strategy then let top(ξ) = Me(ξ) or Pe(ξ), otherwise

top(ξ) is undefined.

If ζ is an immediate successor of ξ in T then assign ζ to the unique X such that

f(X ) = µx(f−1(x) is not satisfied at ξ).

This completes the definition of T .

Some useful notions can be derived. For any infinite path P ⊂ T and a requirement

X , let X (P ) =
⋃

ξ⊂P X (P ) given the righthand side is finitely defined; X is satisfied

on P if and only if there is a finite ξ ⊂ P and X is satisfied at any ζ on P extending ξ.

The facts below are not difficult.

Lemma IV.3.2. For each requirement X and each infinite path P of T ,
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1. if X is some Me or Pe then X (P ) is defined;

2. if X is some Me or Pe and for some Ne,i or Qe,k, ρ = Ne,i(P ) or Qe,k(P ) is

defined and ρˆ∞ ⊂ P , then there is no Y = Ne,j or Qe,l with Y(P ) defined and

extending ρ;

3. again X is some Me or Pe but the assumption above fails then ρ = Y(P ) is

defined and ρˆ∞ 6⊂ P for any Y = Ne,i or Qe,k;

4. X is satisfied on P .

IV.3.6 The construction

At the beginning let all sets and functionals empty and other parameters undefined.

At stage s we will define a finite approximation to the true path, denoted by TP [s],

and probably an indicator η[s] ∈ T . As soon as TP [s] is determined, we will initialize

strategies less prior than TP [s] except those extending η[s] given η[s] defined, then

proceed to stage s + 1.

To define TP [s] we will define a finite sequence of accessible strategies. Initially ∅
will be accessible. If a strategy ξ becomes accessible, it will acts immediately. When

ξ acting it might defined its outcome o = o(ξ)[s], or the next accessible strategy, or

TP [s]. If one of these happens we end ξ immediately. On defining of o, if |ξ| < s we

will declare ξˆo accessible, otherwise let TP [s] = ξ and η[s] undefined.

The actions of ξ depend on which requirement ξ is serving.

Case 1. ξ is an Me-strategy.

If s is not ξ-expansionary then let o(ξ) = 0 and end.

If s is ξ-expansionary and there is no link of the form (ξ, σ) then let n be the least

number such that either ∆(C, X; n) diverges or K(n) 6= ∆(C, X; n).

If ∆(C, X; n) diverges then let ∆(C, X; n) = K(n) with δ(n) fresh if δ(n)[s − 1]

is undefined or is in C, or δ(n) = δ(n)[s− 1] otherwise.

If K(n) 6= ∆(C, X; n) then put δ(n)[s− 1] in C and redefine ∆(C, X; n) = K(n)

with δ(n)[s] fresh.

In both situations let o(ξ) = ∞.

If s is ξ-expansionary and there exists a link of the form (ξ, σ) then let σ be acces-

sible.
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Case 2. ξ is an N τ
i -strategy where τ = top(ξ). Let s0 < s be the last stage when ξ

was accessible.

Subcase 2.1. dξ is defined and D(dξ) = 1 6= Γi(C
τ ; dξ). Let o(ξ) = s.

Subcase 2.2. ξ becomes accessible because a link (α, ξ) was traveled where α ⊂ ξ

is some P-strategy. Then bξ and s0 are defined.

If φτ (b)[s] > φτ (b)[s0] or C[s] ¹ γi(d)[s0] 6= (C ¹ γi(d))[s0] then cancel r, let

TP [s] = ξ and η[s] = ξˆ∞.

Otherwise check whether there exists P-strategy µ ⊂ σ such that

∃x[Θµ(A, Y µ; x)[s] ↓ ∧b ≤ ψµ(dµ(x))[s] ∧ (µ ⊂ τ ∨ θµ(x)[s] ↓≤ r)].

If there exists such P-strategies, let µ be the longest one and x be the least number

where the matrix of the above holds, put dµ(x) in D and setup a link (µ, ξ).

If there does not exist P-strategies as above, put b in B and setup a link (τ, ξ).

In both situation let TP [s] = η[s] = ξ.

Subcase 2.3. ξ becomes accessible because a link of the form (τ, ξ) was traveled.

1. Put d in D, redefine ∆(C, X; k) = K(k) with δ(k) fresh.

2. For each P-strategy α ⊂ ξ with θα(x) defined and ψα(dα(x)) ≥ b for some x,

put θα(x) in A for the least such x.

3. Let TP [s] = ξ and η[s] undefined.

Subcase 2.4. The above subcases do not apply. Cancel rξ if it is defined. Let s1 < s

be the last stage when ξ was accessible and this subcase applied, act as below.

1. If kξ is undefined then define it fresh. If bξ is undefined or in B then define or

redefine it fresh. If dξ is undefined or in D then define or redefine it fresh.

2. If b > lτ let TP [s] = ξ and η[s] undefined.

3. If b ≤ lτ but φτ (b)[s] > φτ (b)[s1], let o(ξ) = ∞.

4. If b ≤ lτ , φτ (b)[s] = φτ (b)[s1] and Γi(C; d) 6= 0 then let o(ξ) = w.

5. If b ≤ lτ , φτ (b)[s] = φτ (b)[s1], Γi(C; d) 6= 0 but δ(k) < φ(b), then put δ(k) in C

and let o(ξ) = w.

6. Otherwise all the above tests fail, let

r = max({φ(b)} ∪ {rρ|ρ is prior to ξ})
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and go to subcase 2.2.

Case 3. ξ is a Pe-strategy.

If s is ξ-expansionary and there exists a link (ξ, σ), cancel this link and let σ be

accessible.

If s is ξ-expansionary and there is no link as above then let o(ξ) = ∞.

Otherwise let o(ξ) = 0.

Case 4. ξ is a Qα
k -strategy where α = top(ξ). Let s0 < s be the last stage when ξ

was accessible, act as below.

1. If gξ is undefined or in D, define or redefine it fresh.

2. If g > lα then let TP [s] = ξ and η[s] undefined.

3. If g ≤ l but ψα(g)[s] > ψα(g)[s0] then let o(ξ) = ∞.

4. Otherwise. If Θα(A, Y α; k) ↑, dα(k) ↑ or dα(k) > g then let d(k) = g.

5. If Θ(A, Y ; k) ↑, let Θ(A, Y ; k) = K(k) with θ(k) fresh if θ(k)[s − 1] ↑ or

θ(k)[s− 1] ∈ A, or θ(k) = max{θ(k)[s− 1], ψ(d(k))} otherwise.

6. If Θ(A, Y ; k) ↓6= K(k) then put d(k) in D, cancel d(k) and let TP [s] = ξ and

η[s] = ξˆ∞; otherwise let o(ξ) = 0.

IV.3.7 The verification

Let TP = lim infs TP [s]. We have the following facts immediately from the con-

struction.

1. A, B and D are enumerable.

2. If η[s] is defined then η[s] ⊇ TP [s].

3. For any P-strategy α, no one above αˆ∞ could ever put any dα(x) in D or θα(x)

in A.

Lemma IV.3.3 (Honesty). Let α be a Pe-strategy. For any k and at any stage s if

dα(k)[s] is defined and Θα(A, Ye; k)[s] converges then k is honest for α.

Proof. By Case 4 in the construction when Θα(A, Ye; k) becomes defined k is always

honest. And k keeps honest if nothing enters B ¹ θα(k).
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But the only case where B is changed is Subcase 2.3 in the construction. If that

happens then either θα(k) is put in A or α is initialized. This would cause Θα(A, Ye; k)

to be redefined unless α is later initialized.

Lemma IV.3.4 (N -behaviors). Let τ be an Me-strategy, σ ⊇ τˆ∞ be an N τ
i -strategy

and α ⊂ σ be a Pn-strategy. If σ is prior to or on TP , we have the followings:

1. There is a stage s0 such that k = lims kσ[s] = kσ[s0] exists. (The other assertions

will assume this s0)

2. At any stage s > s0 if rσ[s] is defined then nothing enters A ¹ rσ[s].

3. If σ created a link (α, σ) at s1 > s0 and is accessible at s2 > s1, then at the end

of s2, exactly one of the followings happens:

(a) φτ (bσ)[s2] > φτ (bσ)[s1],

(b) a δ(x) ≤ γi(d) is enumerated in C and α ⊃ τ ,

(c) a link (µ, σ) is created where µ ⊂ α is another P-strategy,

(d) a link (τ, σ) is created.

4. If σ created a link (τ, σ) at s3 > s0 and acts at s4 > s3, then dσ is put in D,

Γi(C; d) = 0 and δ(k) > γi(d) at the end of s4.

5. If σ never has ∞ as its outcome after s0 or α ⊂ τ then σ will put no agitators of

α in D after some stage. Moreover even without the assumption σ will eventually

stop putting anything in A.

Proof. (1) By the construction we choose s0 be a stage such that σ is never initialized

after s0. Then either kσ is undefined cofinitely often or becomes defined at some point

and fixes for ever. We may consider the first case a special situation of our assertion.

While in the latter case we may assume that k becomes defined at s0.

(2) Assume some strategy puts something in A at some s1 > s0. From the con-

struction we have that this strategy, say ρ, is an N π
j -strategy where π = top(ρ), and

those enumerated in A are uses of functionals built by P-strategies. Fix an arbitrary

one which is θµ(x) of some P-strategy µ. Moreover by the assumption of s0, we have

ρ = σ or less prior than σ.

We may in addition assume that rσ[s1] is defined and became defined at stage s >

s0. By Case 2 of the construction we have that rρ[s1] became defined at some s′ ≥ s

and thus rρ[s1] ≥ rσ[s1]. By Subcase 2.2 of the construction, we have θµ(x)[s1] >

rρ[s1] ≥ rσ[s1]. This establishes (2).
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(3) Assume neither (a) nor (b) happens then r = rσ[s2] = rσ[s1]. Recall that at s1

some dα(x)[s1] was put in D and note that s2 is α-expansionary and no children of α

acts. By the Honesty Lemma (and induction decreasingly on the length of α) we have

∀x(Θε(A, Y ε; x) ↓→ θε(x) > r)

at s2, for any P-strategy ε such that α ⊆ ε ⊂ σ. Hence we have (3).

(4) D(dσ) = 1 and Γi(C; d) = 0 are immediately from Subcase 2.3 in the construc-

tion. By (2) and Subcase 2.2 in the construction we have

Φτ (A,Xτ ; bσ)[s4] = 1 6= 0 = Φτ (A,Xτ ; bσ)[s3]

and (A ¹ φ(b))[s4] = (A ¹ φ(b))[s3]. Hence Step (1) of Subcase 2.3 in the construction

is feasible and δ(k) > γi(d).

(5) By (1) we may assume that no δ(x) for x < k enters C after stage s0. By

Subcase 2.1 in the construction, Subcase 2.3 could happen at most finitely often and

may be assumed never do after some stage s0.

If α ⊂ τ then no link of the form (α, σ) could be created after s0, otherwise by (3)

and (4) Subcase 2.3 eventually happened. Hence σ never puts any agitators of α in D

after s0.

If τ ⊂ α ⊂ σ and σ never has ∞ as its outcome after s0 then either Subcase 2.1 in

the construction happens whenever σ acts after s0, or we may assume φ(b) = φ(b)[s0].

The former case is trivial. In the latter case we may assume rσ[s] = rσ[s0] whenever

s > s0 and rσ[s] is defined. Hence σ will put at most finitely many agitators of α in D

after s0.

Now we have established the first half of (5). For the remaining, note that σ could

put uses in A only if Subcase 2.3 in the construction happens. But by (4) it could not

happen infinitely often.

Lemma IV.3.5 (True Path). For each n we have that |TP | ≥ n, TP ¹ n is accessible

infinitely often and initialized for finitely many times.

Proof. We prove by induction on n. The case for n = 0 is trivial. Let ξ = TP ¹ n and

s0 be a stage such that ξ is never initialized after s0.
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Case 1: ξ is an Me-strategy. If there are finitely many ξ-expansionary stages then

the lemma holds for TP ¹ (n + 1) = ξˆ0.

Assume there are infinitely many ξ-expansionary stages, and s > s0 is one when

ξˆ∞ is not accessible. Then there is a link (ξ, σ) where σ is a child of ξ. But this

link will be canceled and no new links are created at the end of s. Thus ξˆ∞ will be

accessible at the next ξ-expansionary stage and the lemma holds for TP ¹ (n + 1) =

ξˆ∞.

Case 2: ξ is an N τ
i -strategy where τ = top(ξ). By the N -behaviors Lemma we

may assume that

1. k = lims kξ[s], b = lims bξ[s] and d = lims dξ[s] exist and reached their final

values before s0,

2. no δτ (n) (n < k) enters C after s0, and

3. d 6∈ D (otherwise the lemma holds for TP ¹ (n + 1) = ξˆs).

Then either infinitely often ξ finds that φτ (b) moves or Γi(C; d) 6= 0. In the former case

TP ¹ (n + 1) = ξˆ∞ and in the latter TP ¹ (n + 1) = ξˆw. The remaining part is

obvious.

Case 3: ξ is a Pe-strategy. By (3) of the N -behaviors Lemma, our assertion holds

for TP ¹ (n + 1) = ξˆ∞ if there are infinitely many ξ-expansionary stages, or for

TP ¹ (n + 1) = ξˆ0 if there are only finitely many.

Case 4: ξ is a Qα
k -strategy where α = top(ξ). Note that Step (6) of Case 4 in the

construction is the only one which could stop the process at ξ, at enough large stages.

Fortunately this happens at most once by the Honesty Lemma.

For each ξ ⊂ TP , let sξ be an arbitrary stage such that ξ is never initialized after sξ.

Lemma IV.3.6 (P-behaviors). Let α = Pe(TP ).

1. Θ =
⋃

s>sα Θα[s] is consistent.

2. If αˆ∞ ⊂ TP and β = Qe,k(TP ) is defined then g = lims gβ[s] exists.

3. If β is as in (2) and βˆ0 ⊂ TP then d(k) = lims dα(k)[s] and θ(k) = lims θα(k)[s]

exist, and Θ(A, Ye; k) ↓= K(k).

Hence Θ(A, Ye) is total and equals K if Qe,n(TP ) is defined and Qe,n(TP )ˆ0 ⊂ TP

for every n.
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Proof. (1) The consistency of Θ is obvious from the construction.

(2) By the definition of T and the N -behaviors Lemma, we may assume that no

N -strategies below β put any agitator of α in D after sβ . In addition assume that no

Qα
k -strategies put dα(k) in D after sβ , as this could happen at most once.

Suppose gβ became defined or was redefined at stage s0 > sβ . Then at this stage, β

acted, strategies less prior than β were initialized.

Assume some strategy σ put gβ = gβ[s0] in D at s1 > s0. Then by the construction

there was a stage s between s0 and s1 at which β set dα(k) = gβ . Let s ≤ s1 be the

latest such stage and u = ψ(gβ)[s].

Claim 1. (B, Y )[s] ¹ u = (B, Y )[s1] ¹ u, hence ψ(gβ)[s1] = u.

Proof. For contradiction suppose s′ is the least stage between s and s1 when B ¹ u

or Y ¹ u changed. But B ¹ u could not change at s′ otherwise dα(k)[s] = gβ were

enumerated in D before s′ by Subcase 2.2 in the construction. If Y ¹ u changed at s′

then as θ(k)[s] ≥ u, we have Θ(A, Y ; k)[s′] diverged and dα(k) redefined at some stage

after s′ ≥ s. Thus we get a contradiction with the choice of s.

By Claim 1 we have σ ⊇ βˆ0 and θ(k)[s1] = θ(k)[s].

Claim 2. bσ[s1] > u.

Proof. Assume bσ[s1] became defined at t < s1. If t ≥ s, we have bσ[t] > θ(k)[s] ≥ u.

If t < s then bσ[t] > t > ψ(gβ)[t]. As bσ[t] > t ≥ lτ [t] where τ = top(σ),

σ did nothing more at t hence TP [t] = σ and no link existed along TP [t]. Then if

ψ(gβ)[t] < ψ(gβ)[s], βˆ∞ would have been accessible before s and σ initialized and

bσ canceled. Hence we have ψ(d(k))[t] = u and again bσ[s1] > u.

Claim 2 refutes our assumption that σ put dα(k) in D at s1 and establishes (2).

(3) The existence of the limits follows from (2) and its proof, and the equality

follows from the existence and the construction.

The final assertion follows from (3).

Lemma IV.3.7 (P-satisfaction). Every Pe is satisfied.
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Proof. Let α = Pe(TP ). If there is a child of α, say β, such that βˆ∞ ⊂ TP , then by

(2) of the P-behaviors Lemma and Case 4 in the construction, Ψe(B, Ye; g
β) diverges

and Ψe(B, Ye) is partial.

Otherwise by the definition of T , α has a child, say βk, for each Qα
k , and βkˆ0 ⊂

TP . By the final assertion of the P-behaviors Lemma we can compute K from A and

Ye.

Lemma IV.3.8 (M-satisfaction). Every Me is satisfied.

Proof. Let τ = Me(TP ). Immediately from the construction, ∆ =
⋃

s>sτ ∆τ [s] is

consistent and C =
⋃

s>sτ Cτ [s] is enumerable. If τˆ∞ ⊂ TP then Me is satisfied

trivially. Assume otherwise.

By induction on i, assume σ = Ne,i(TP ) is defined. We may assume sσ > s4

where s4 is as in (4) of the N -behaviors Lemma. By (3) and (4) of the N -behaviors

Lemma k = lims kσ[s], b = lims bσ[s] and d = lims dσ[s] exist.

Thus if σˆ∞ ⊂ TP then Φe(A,Xe; b) diverges. If σˆw ⊂ TP then Γi(C
τ ; d) 6=

0 = D(d). Otherwise Γi(C
τ ; d) = 0 6= 1 = D(d). This establishes the satisfaction of

N τ
i .

For Me we may assume that each σi = Ne,i(TP ) is defined and σiˆ∞ 6⊂ TP .

Then by (4) of the N -behaviors Lemma each σi will eventually stop changing δ(ki)

(ki = lims kσi [s]. As τ could put each δ(k) in D at most once, we have ∆(C, Xe) total.

∆(C, Xe) = K then follows directly from Case 1 of the construction.

Theorem IV.3.1 follows immediately from the P-satisfaction Lemma and the M-

satisfaction Lemma.
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