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Abstract

For long time the partial order of Turing degrees D = (D, <) is a major subject
of recursion theory, and the study of R = (R, <) is an important branch, where R
denotes the collection of recursively enumerable (r.e. for short) degrees, i.e. Turing
degrees represented by some r.e. sets. R.e. sets played an important role in Godel’s
proof of his Incompleteness Theorem: given a recursive set of axioms implying first

order logic, its theorems form a non-recursive r.e. set.

The first famous problem in the history of studies on R is the existence of a r.e. de-
gree strictly between 0 and 0’ (Post (1944)). The affirmative answer was given by Fried-
berg (1957) and Mucnik (1956) independently, and they introduced so called priority
arguments. During the following decades people developed much more complicated
priority arguments, and discovered many important properties of 'R, e.g. the density of
‘R by Sacks (1964), and the non-existence of infima in general of two elements in R
independently by Lachlan (1966) and Yates (1966).

Sacks’ density theorem led to conjectures implying that R is simple, e.g. Shoenfield
(1965) conjectured that ‘R is homogenous, and Sacks conjectured that the first order
theory of R is recursive. Shoenfield’s conjecture was later refuted. In their refutations
Lachlan (1966) and Yates (1966) constructed so called minimal pairs, i.e. a Ab = 0.
The collection of halves of minimal pairs is denoted by M. Their proofs inspired inter-
ests in local properties of 'R, people kept introducing local properties with expectations

to reveal global properties of ‘R, like Sacks’ conjecture.

But the refutation of Sacks’ conjecture by Harrington and Shelah (1982) finally re-

lied on definably interpreting other structures in R rather than natural local properties.
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Actually such model theoretic tools had long appeared in the study of D. But restric-
tions imposed by R imply extra difficulty. However recent years see development of
these techniques in R by people like Nies, Shore, Slaman and Woodin based on the
work of Harrington and Shelah. Model or set theoretic tools are gradually introduced
in study of global properties. And knowledge and skills from other branches of logic

are required, as well as complicated priority constructions.

In this thesis we will investigate some global properties of R from lattice and model
theoretic viewpoints: the existence of definable ideals and filters, the relation between

substructures and R, congruence relations and quotient structures.

In Chapter 2 we will study an ideal in R. The first important result of this kind is
by Ambos-Spies et al. (1984) that R can be decomposed as a prime ideal M and an
ultra-filter NC. But from then on people found no other definable substructures for
a long time. The breakthrough is a theorem by Nies (2003) that ideals generated by
definable subsets are also definable. Yu and Yang (2005) applied this to find several
definable ideals. Li and Yang (2003) observed that the constructions of NB and PC
are similar, and thus asked whether they generate a same ideal. We will prove that the
ideals generated by NB and PC respectively are different. In fact the ideal generated
by PC was unknown. On the other hand we will also show that every non-principal
ideal is a >J; element substructure of R. This result from a model theoretic viewpoint

indicates that non-principal ideals reflect some properties of R.

In Chapter 3 using a theorem in Nies (2003) we will prove a dual to Nies’ result
mentioned that filters generated by definable subsets are definable. This gives a general
method of finding definable filters. Applying this result we will find some new definable
filters: those generated by Cups(M) and NSB respectively. Previously NC was the

only known filter.

Finally in Chapter we will study a congruence relation and prove that the induced
quotient structure is not dense. There were no known similar results so far, though
density is a basic property. (Schwarz (1984) proved the downward density of R /M.)
Despite the analogous between this congruence relation and modulo NCup we will

prove that they are actually different.

Keywords: recursively enumerable degrees; upper semi-lattices; ideals; filters;

congruence relations; substructures; definability.
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Chapter |

Preliminaries

In this chapter we introduce notions and notations for developing the rest of this
thesis. However as limited by time and space we assume that readers have had basic
ideas of lattice theory and mathematical logic, in particular some basic recursion theory.
For readers not familiar with these, we refer to Gritzer (1998), Nerode and Shore (1997)
and Cutland (1980).

l.1 Upper Semi-lattices

A partial order (P, <) is an upper semi-lattice if and only if for every pair a,b € P
their supreme, denoted as a V b, always exists. When this pair also has infimum, we
denote it by a A b. When the ordering is unambiguous we also denote the partial order

like P.
A subset I of P is an ideal if and only if

1. Iisclosed downward, i.e. Va € I,b€ P(b<a —be ),
2. lisclosed by V,i.e. VYa,b € I(aVbeI).

Given A C P, the ideal generated by A is the least ideal [ containing A, denoted by
(A4].
Dually, a subset F' of P is a filter if and only if

1. Fisclosed upward, i.e. Va € F,b € P(a <b—be F),

1



2 Chapter I. Preliminaries

2. Fisclosedby A,Va,b € I(a ANbexists — aAbeEF).

If in additional Va,b € F3c € F(c < a,b), then we say that F' is a strong filter. Given
A C P, the filter generated by A is the least filter F' containing A, denoted by [A).

Anideal [ is a prime ideal if and only if
Va,b(a ANbexistsandin ] —a € Torbel).

Dually a filter F' is ultra if and only if

Va,blavbel —a€ Forbe F).

|.2 Recursively Enumerable Degrees

In degree theory the objects are subsets of w and equivalent classes under Turing
reducibility. A set A is Turing reducible to another set B if and only if there is a Turing
machine ¢ that using B as an oracle computes the characteristic function of A, denoted
by A <t B. We denote A =r Bifandonly if A <t Band B <t A. =t is an
equivalent relation and equivalent classes induced by = are called Turing degrees. We
denote degrees by a, b, c, ... the set of degrees by D. For a,b € D, a < b if and only
if A <t B forsome A € aand B € b. The structure (D, <) is denoted by D and

sometimes also by D for short.

There is a natural join operation for sets in degree theory. For A, B C w, A& B =
{2n|n € A} U {2n + 1|n € B}. Ttis trivial that A @ B <p C for any C' with
A, B <1 C. Hence the degree represented by A & B is the supreme of a and b, i.e.
degrees represented by A and B respectively. We denote the degree of A® B by aV b.

However infima of pairs do not always exist.

Theorem 1.2.1 (Kleene and Post (1954)). There are a,b € D such that a \ b does not

exist. Hence D is not a lattice.

A recursively enumerable set is the range of some recursive function mapping w
into w. A Turing degree containing a recursively enumerable set is called a recursively

enumerable degree. We use r.e. for short of recursively enumerable and denote the set



[.2. Recursively Enumerable Degrees 3

of re. degrees by R and the structure (R, <) by R. From now on without explicit

declaration all degrees and sets considered are r.e.

As recursive function is defined in an effective way, there are effective enumerations
of recursive functions. We may fix an arbitrary one and denote by W, the range of the
e-th function with respect to this specific enumeration. The best known non-recursive
r.e. set is so called the halting problem, i.e. K = {e|e € W,}. The degree of recursive
sets is denoted by 0, and that of K by 0’. It is immediately from the definition that
A <t K forevery r.e. A. Thus 0’ is also called the complete r.e. degree.

However 0 and 0’ remained the only known r.e. degrees for a long time, and it was
Post’s problem whether there exists another r.e. degree, that led to the development of
the theory of r.e. degrees. By works of Friedberg, Muchnik and Sacks et al. people
learned that there are countably many r.e. degrees. And this non-trivial partial order

(R, <) is neither a lattice according to the following.

Theorem L.2.2 (Lachlan (1966) and Yates (1966)). There are incomparable r.e. degrees

a and b with no infimum.

On the other hand there do exist pairs of r.e. degrees having infima.

Theorem I.2.3 (Lachlan (1966) and Yates (1966)). There are incomparable r.e. degrees
aandb such thata AN b = 0.

Degrees having O as infima with other degrees are called cappable degrees. The set
of cappable degrees is denoted by M, and its complement NC = R \ M. M and NC

together form an algebraic decomposition of R.

Theorem 1.2.4 (Ambos-Spies et al. (1984)). M is a prime ideal and NC is a strong
ultrafilter.

Actually Ambos-Spies et al. (1984) gave more insights about NC. To understand

these insights we need more notions.

Given a set X and an enumeration of X -recursive functions we define K = {¢|e €
WX} and denote by x’ the degree of KX where x is the degree of X. Then there is
a strictly ascending sequence x < X’ < x” < ..., in particular 0 < 0’ < 0" < ...
when x = 0. Inductively we may also define x"*Y = (x(™)". We call KX and x’'

Turing jumps or simply jumps of X and x respectively. Sometimes we also denote K~
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by X’. A degree a is low, if and only if a®™ = 0™, and it is high,, if and only if
a(® = 0+ The set of low,, degrees is denoted by L,, and of high,, degrees by H,,.

We write L and H respectively when n = 1.

A degree a is cuppable if and only if there isab < 0’ with aVb = 0’. If in addition
b can be chosen to be low, then we say that a is low cuppable. Let NCup denote the
complement of the set of cuppable degrees, and LC the set of low cuppable degrees. It

is easy to see that NCup is also an ideal.

Another notion is related to effective enumeration of r.e. sets. Given an effective
enumeration of a set A, we denote by A[s| the finite set of elements enumerated in
A up to stage s. Now fix an arbitrary simultaneous enumeration of all r.e. sets, say
{W.]s]le, s € w}, we say that a set A is promptly simple if and only if A is infinite and
co-infinite, and there is a recursive function p and an effective enumeration of A such
that

W, is infinite = 3z, s(x € (We[s + 1] \ We[s]) N A[p(s)])

for all e. We also say that the degree a represented by A is promptly simple if A is so,
and denote by PS the set of promptly simple degrees.

Now we are ready to introduce the following.

Theorem 1.2.5 (Ambos-Spies et al. (1984)). NC = PS = LC.

1.3 A Little Model Theory

For basic model theoretic concepts we refer to Marker (2002) or Nerode and Shore
(1997). But we will explain notions which are critical to understand definability results

in degree theory.

Given a language £ and L-structures N C M, N is a X -elementary substructure
of M, denoted by N' <; M, if and only if for every ¥;-formula ¢(z,...,z,) and
ag,...,a, €N,

N E ¢lag, ... an) & M = dlag, . .., ay].

If the above holds for all first order formulae then N is an elementary substructure of

M, or N' < M for short.

If A C MF* for some k, ¢(p1,...,Pm,Z1,-..,2) and ay, . . ., a,, are such that for
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allbl,...kaM,
(bl,...,bk)eA@M ):gb[al,...,am,bl,...,bk]

then we say that A is definable via ¢ in ag, . . . , Qy,.

For another language £’ and an £'-structure M', M’ is interpretable in M if and

only if there is a set of parameters @ € M such that there are

1. a subset of MF for some k, say A, definable from @,

2. an equivalent relation £ on A definable from @,

3. for each n-ary relation symbol R € L’ an n-ary relation ¢ on A which is F-
invariant and definable from @,

4. for each n-ary function symbol F' € L’ an n-ary relation ¢» on A which is
actually an n-ary function on A/E and definable from @, and

5. a bijection f : M’ — A/FE which is an isomorphism if we take A/FE as an

L'-structure with all symbols interpreted appropriately according to the above.

A, E, ¢or’s and ¢ r’s constitute an interpretation of M’ in M. When L’ consists of
only finitely many non-logical symbols the parameters can be finite, and the formulae
defining A, E etc. form a scheme. We also say that @ codes or defines a copy of M’ in

M.

It is easy to see that interpretations are just generalizations of quotient structures in

algebra, except that we require things definable.
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|deals

1.1 Ideals as Substructures

Theorem II.1.1 (Ding et al. (2005)). Every nonprincipal ideal is a 3.1 elementary sub-

structure of 'R.

Proof. Fix I a nonprincipal ideal of R. Following the analysis in the previous section,
it suffices to prove that for any finite partial order P and an embedding f : P — R,
there exists an embedding g : P — I with g~! extending f~! | L.

Let z1,...,x, be an enumeration of P~ = f~1(I), a; = f(x;) fori(0 < i < n)
and ag = 0. To extend f, define g(z;) = f(z;) fori < n.

Since I is nonprincipal we can find some ¢ € I such that c > \}/.. a;. We need a

1<n

technical lemma.

Lemma I1.1.2. There exist an independent sequence of degrees in [0, c|, say (b;j : i <

n,k € w), such that a; < b, y, and for any finite H C {0,1,...,n} X w,
a2 \W _a=a 2 \W . b (IL1)
where Hy = {j : 3k((j, k) € H)}.

Proof. This lemma is essentially a generalization of Sacks Density Theorem.

7



8 Chapter II. Ideals

Assume A; C w2 isac.e. representative of a; for © < n and C'is a c.e. represen-
tative of c. Let A = Uign A;. We construct pairwise disjoin c.e. sets (B, : i <n,k €
w) such that B; ;, <7 C. Let B = J, -, e, Bik» we make AN B = ().

To make the sequence independent, for m € w, (i,k) € (n + 1) X w and finite

H C (n+1) X w, we make

Pe:Bi,k:q)m(U AjU U Ble):>C§TA

JEHy G,l)eH

where e is an index of the requirement under some effective encoding of all possible

combinations.

To make (II.1), for < and H satisfying the left hand side of (II.1) and m, we make

Ne:Ai:‘Ijm(U AJU U Bj,l>:>Ai§T UAJ

jEHy (J,lyeH J€Ho

where e is again an index under analogues settings. Note that there are only finitely
many such pairs (i, Hy).

We employee the trick of true stages computation where true stages are uniformly
defined as true stages of the effective enumeration of A U B arisen in the construction.

The strategy for a single )V, is to preserve agreements between A; and ¥,, by im-
posing restraints on 5. Strategies serving less prior requirements are required to respect
the restraints.

The strategy for a single P, is Sacks Coding with a slight modification. To be
precise, at stage s+1, we enumerate (z, ¢, 2e+1) in B; ; iff v € Cy1q, (x,t,2e+1) is not
restrained from entering B by prior requirements and (Vv)(t < v < s — x < [%(e, v))
where [? is the length of agreements defined as usual.

In addition, we impose a restraint on B to protect the computation ®,,, | [®(e, s).
This is the only modification comparing to Sacks Coding strategy. Since C' L1 A, this

restraint imposed for P, will drop at true stages.

The verifications go essentially in the same way as those for Sacks Density Theo-

rem.

Finally let b, , = deg(A; U B; x). H

Let us return to the proof of Theorem II.1.1. Fix (b;; : i < n,k € w) as in the
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above lemma. Let y1, . . ., y,,, enumerate P\ P, define
9(yx) = W{bi,l rx; <p yrand Yy, <p Yx}.

Immediately, if u <p y; then g(u) < g(y)-

Assume u £Lp yi. If u is some x;, then since f is an embedding, a; £ \X/jeHOaj

where Hy = {j < n: xz; < y;}. Hence (Il.1) and the definition together imply that
9(u) £ 9(yr)-

If u is some y;, then the independence of the sequence (b, ;. : i < n,k € w) implies
that again g(u) £ g(y).
Hence g is the desired embedding. [

Remark 1. Slaman observed that Lemma 11.1.2 could be deduced algebraically from

the main result in Slaman and Soare (2001). But it might not yield a shorter proof.

Although no principal ideal could be a 3., elementary substructure since the predi-
cate z is not maximal is Y, definable in R, the following follows immediately from the

proof above.

Proposition I1.1.3. Forc re., p € ¥ and @ € [0, c] such that UA < c,
R = ¢[@] < [0,c] = ¢[a].

On the contrary, >5 elementary substructures always contain 0’ since the fact there
exists a greatest element is Y5 in R (plus the remark before the proposition). Hence no

proper ideal could be a >, elementary substructure.

II.2 The Definable Ideal Generated by Plus-cupping

Degrees

A strong version of plus-cupping degrees were introduced by Harrington, later Fejer
and Soare isolated a technique in Harrington’s construction and introduced a weak

version of plus-cupping degrees. Here we follow Fejer and Soare’s definition.
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Definition II.2.1 (Harrington (1978), Fejer and Soare (1981)). An re. degree a is plus-
cupping if and only if for every nonrecursive b < a, there is an incomplete r.e. degree

c such that bV ¢ = 0'. We denote the class of plus-cupping degrees by PC.

As remarked by Li and Li (2003), the typical plus cupping constructions resemble

those of so called nonbounding degrees to some extent.

Definition I1.2.2 (Lachlan (1979)). An r.e. degree a is nonbounding if and only ifa > 0
and there is no minimal pair below a. We denote the class of nonbounding degrees by
NB.

However these two notions are different.

Theorem I1.2.3 (Li and Li (2003)). PC — NB # (.

In addition A. Li and Y. Zhao proved the following.

Theorem I1.2.4 (Li and Zhao (2004)). Plus cupping degrees do not form an ideal.

Based on these facts, A. Li and Yang asked the following question.

Problem IL.2.5 (Li and Yang (2003)). Is (PC] different from (NB]?

We answer this question affirmatively. Actually we will prove a stronger result
that (PC] is a proper subideal of M and not contained by (NB U NCup]|. For this
sake, in section 3 we will prove that NCup is not a subset of (PC], hence (PC] is a
proper subideal of M; while in section 4, we will prove that (PC] is not contained by
(NBUNCup]. !

1.3 NCup ¢ [PC]

Theorem I1.3.1. There is a noncuppable c.e. degree a ¢ [PC].

We prove Theorem I1.3.1 by constructing a c.e. set A such that deg(A) € NCup
and deg(A) ¢ [PC].

I'The results in this section is contained in Wang and Ding (2005)
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To make A noncuppable, fix a computable enumeration (P, W, ).e, of c.e. func-

tionals and c.e. sets, we build an additional c.e. set D such that for all e
M.: D=0, (AW,) = K <t W,

To make deg(A) ¢ [PC], fix a computable coding of | J,_,,, w". For e let | ¢/ denote
the unique c such that e codes an element, say z, of w"!; and let e; denote the i-th ele-
ment of z. Fix (‘Deneu y Beyy Beys - - BeHerl)eew, we satisfy the followings requirements

foralle
Pe: A=V, (B.) = (3i < |[le|])(Be, is not plus cupping)
where B, is the abbreviation of (B, Be,, ..., Be,,_,)-

We arrange the construction on a tree 7" of strategies growing upward. Every finite
path of the tree is an X-strategy for some requirement X'. We will gradually define the
set of outcomes and assign a computable linear ordering to this set. Thus we can order
strategies on 7' lexicographically. Denote the order by <, if « < S or o C [ are

strategies on 7' then we say o < (3. We also say that « is to the left of 3 or (3 is to the
right of aif e <, 3.

At each stage s we will define a finite approximation 7' P; to the true path T'P of the
construction. 7'P; will be the union of accessible strategies at s, and only accessible

strategies are allowed to act at each stage.

[1.3.1 M-strategies

Suppose « is an M,-strategy. We define [ the length of agreement between D and

®(A, W) and a-expansionary stages as usual.

« has two outcomes oo (if there are infinitely many a-expansionary stages) and 0

(if there are at most finitely many).

If there are infinitely many expansionary stages, « builds a functional ©* such that
forall &

N& D =d,(AW,) = K(k) = 0°(W,; k).
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To satisfy N and define ©*(W,; k), we arrange N*-strategies above o”oo. From

now on in this subsection, we occasionally omit o from superscripts.

Suppose 3 2 oo is an N*-strategy. At the beginning, 3 picks a flip point d° (k)
of k and keeps it from entering D. We may write d for d°(k).

If the computation ®.( A, W,; d) changes infinitely often, § will have | as outcome
indicating that ®.(A, W,; d) diverges. In this case, we arrange no more N ®-strategies
above 3" L since D # O (A, We).

Otherwise [ has T as outcome and defines O(W,; k) = K (k) with (k) > ¢.(d).
In addition, (3 expects that A | ¢.(d) changes no longer.

If k is enumerated in K later, 5 enumerates d in D, then either ( establishes a
disagreement between D and ®.(A, W,), or W, | ¢.(d) eventually changes and [ can
safely change the definition of ©(WW,; k) to 1. So the key to 3’s success is the inequality

(k) > ¢e(d).

We say that 6(k) is honest if this inequality holds.

11.3.2 P-strategies

Suppose 7 is a P,-strategy. We define [ the length of agreement between D and

®(A, W) and T-expansionary stages as usual.

7 has two outcomes oo (if there are infinitely many 7-expansionary stages) and 0
(if there are at most finitely many). If there are infinitely many expansionary stages, 7

builds |[e|| many c.e. sets (C7, CT,...,C ;) such that CT <t B, fori < |lel|,
07 (@i < [lel)(C] # T, for ] = el - 1,

and for (7,7) € |le|| X w
Ry, : D =®,(C[,W;) = K <1 W,

To satisfy Q7. and R’

; 1 ;» we arrange Q7 ;- and R7 ;-strategies above 7 oco. From

now on in this subsection, we may occasionally omit 7 from superscripts.
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Suppose o 2 7700 is an R ;-strategies, « acts in the same way as an M.-strategy
described in the previous subsection. « has two outcome oo (indicating there are in-
finitely many a-expansionary stages) and O (indicating there are at most finitely many),

and builds a functional ©¢ such that for all k&
S]? K = (I)j<Ci7 WJ) = K()(k?) = @a(Wj; ]C)

To satisfy S, we arrange S -strategies above " co. Sp-strategies act in the same way

as \V-strategies above M-strategies.

To make Q,,, assume o O 7 o0 is a Q,,-strategy, at the beginning ¢ picks an agi-
tator a so that [” > a, and keeps a from entering A. If B, | ¥.(a) changes infinitely
often, o has L as its outcome indicating that V.(B,;a) diverges. Otherwise, o will

eventually fix a witness x. If x is never enumerated in W,,, for some ¢ < ||e||, o has 0

as its outcome. In this case Q,, is satisfied since Wni — (; is not empty.

Otherwise at some stage x € W, for all i < ||¢||, o enumerates a in A. If the
assumption A = W (B,) is true, then B, changes for some i before A(a) = V.(B,; a)
is established again. We enumerate z in C; for the least such 7. In this case, o has 1 as

its outcome, Q,, is also satisfied since C; — Wm. 1s not empty.

Note that in the above paragraph we use the trick of permitting to make C; <t
B.,. But in the presence of other strategies we shall in addition use permitting at 7-
expansionary stages and links. On the one hand 7 will build a local version of effective
enumeration of B, i.e., B7[s| = B[sg] where sy < s is the latest stage when 7 is ac-
cessible and {B[s]||s € w} is some standard enumeration. The computation V. (B,)
is also localized, i.e., (for 7 and its substrategies) it could change only if 7 is accessi-
ble. Hence it suffices to capture B changes as above according to these localizations.
From now on we may identify these localizations with the standard ones. On the other
hand when ¢ enumerates its agitator in A, it additionally setups a link (7,0). At the
next T-expansionary stage the control is passed to o immediately so that it can catch
permission in time. Then we say that the link (7, 0) is traveled and cancel this link

immediately.

We will not arrange any Q,,/-strategies above o~ L.
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Before proceeding we summarize and order outcomes defined so far,

00 <Al <pa0<py Ly T,

11.3.3 Coordinating different strategies

Since Q-strategies may enumerate their agitators in A while )N, ,-strategies expect
that A [ ¢(d(k))’s will never change after ©(V; k)’s are defined, conflicts arise. We
say that a threatens the honesty of 0(k) if a < ¢(d(k)).

The technique to solve these conflicts is originally developed by Li et al. (nfty)
and then applied by Yu and Yang (2005). However we will give a slightly different

formulation and hope that the behaviors of flip points could be made clearer.

On the one hand, whenever an N -strategy (3 defines ©(W; k), strategies > 3" T are
initialized.

On the other hand, the situation is a little more complicated. Suppose 7 is some
P.r-strategy, o is a Q7-strategy and oy C a3 C ... C «,_1 are M-strategies with
a;"00 C o (1 < n). When o intends to put its agitator ¢ = a” in A, it first tries to
cancel 0% (k)’s whose honesties are threatened by a. o will do this in descending order,

i.e. it first tries to cancel %"~ (k)’s, then 6“2 (k)’s and so on.

Now assume o = a,,_; is some M. -strategy. At stage so, O(W; k)[s] becomes

defined by some N-strategy (3, and at s > s, o intends to enumerate a in A.

If 3 < o or a’ is chosen after s, then we can easily make a® > ¢.(d°(k)).
Otherwise, in general o enumerates d’(k) in D to force W, | ¢.(d’(k)) change. If
W, | ¢.(d?(k)) never changes, then a disagreement between ®,(A, W,) and D is es-
tablished; otherwise ©*(1V,; k) diverges eventually and the enumeration of a” in A will

not harm the intention to make ©*(W,; k) = K (k).

But there is a special case. Assume there is another N*-strategy v C 7" T C o
(then v <y (). In this case a might threaten the honesty of §(k) according to /3. For
example, assume y chooses d” (k) at ty, at t; > to o chooses its agitator a and 6(k) is
already defined by 3 (between t, and ¢,, thus d”(k) < d°(k)), but at some t5 > t; we
might have 0(k) redefined by 3 and ¢.(d°(k))[ts] > a but ¢.(d"(k)) never moves. If o
acts at t > ty it might find ¢ (d” (k))[t] = ¢e(d”(k))[to] < a < ¢o(d°(k))[t] < O(k)[t].

If this is the case for infinitely many Q-strategies above v~ T and these Q-strategies
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cancel 0(k) as described, then ©*(W,; k) diverges even though ~" T might be on the
true path.

To overcome this difficulty, first, we will allow o above 7" T to change A | ¢.(d’(k))
freely. Second, we will make a” > ¢.(d”(k)). Assume this is achieved. If later some
other strategy wants to cancel ©%(W,; k), it can enumerate d” (k) (instead of d°(k)) in
D.

To keep track of d”(k) we introduce a new parameter d(k), called the official flip
point of o and k, and assign it to «. From now on we measure the honesty of 6(k)
according to this official flip point, instead of d(k) or d’(k). We then call d"(k) the
personal flip point of v. Whenever v~ T is accessible, the official point is defined to
be the personal flip point of . Furthermore if later 1V, changes below 6*(k) but not
¢e(d*(k)) then 0%(k) will not be changed. This guarantees that ©* (1, ; k) converges.

Note that when trying to cancel §(k)’s, o expects no new 6(k’)’s defined, otherwise
it might be trapped in endless loops. To this end o setups a link («, o) when it initials
the above process. At the next a-expansionary stage no 6%(k)’s are threatened by a,

(o, o) will be traveled and canceled, then o will proceed to M-strategies below «.

However 1./(a) might become > 27 when o is waiting for the link («, o) to be
traveled. If this happens o will discard the current z7. If o chooses infinitely many wit-
nesses then it might try to cancel §(k) infinitely often, and that would cause ©(W.; k)
to diverge. But note that then W, (B,; a) also diverges. Moreover, this could not hap-
pen if 7 D a, for 7 will be covered by the link (a,0) (i.e. « C 7 C o) when o is
waiting for the link to be traveled, and thus the local computation at of ¥ (B,; a”) will

not change until 7 is accessible again.

Hence we could just arrange a backup strategy o/ for o above 0" L if 7 C o C 0.
We will only arrange N -strategies but no A/*-strategies above o~ L. We also backup
those P-strategies between 7 and o to guarantee that eventually this backup operation

for M. will cease. Moreover strategies above ¢~ L will consider « injured by o.

Note that there are similar conflicts between S™-strategies and 0. We apply the
same technique to solve these conflicts, and remark that if eventually o setups a link

(7, 0) then S7-strategies will not act before this link is traveled and 7 enters some C'.

Now we formally describe procedures for NV- and Q-strategies.
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Let

so = max{s’ < s:d"’[s] = d°[s'] and 3 is accessible at s}

and
s = max{s’ < s:0(k)[s] is defined }.

Procedure I1.3.2. Suppose that (3 is an N, -strategy and o = top(). At stage s, 3
cancels d°(k) if d°(k) € D and then acts step by step as followings.

1. If d°(k) is undefined, define it to be fresh.
2. If d°(k) > 1, do nothing and stop.
3. If d°(k) < I, take the following actions
(a) If sq is defined and the computation ®.(A, W,;d°(k))|[s] is different from
that at sq, let L be the outcome.
(b) From now on assume (a) fails. If ©(W,; k) diverges, define ©(W,; k) =
K (k) with 0(k) = 0(k)[s1] if d*(k) is defined, or 0(k) fresh otherwise.
(c) Let d*(k) = d°(k) if either d*(k) is undefined or d°(k) < d*(k).
(d) If O(We; k) # K(k) then enumerate d*(k) in D, cancel d°(k) and stop;

otherwise let T be the outcome.

We assign states {1, ¢, w, L, 0} and a parameter state(o) for o.

Let sp = max{s’ < s:a%[s] = a[sy] and o is accessible at s'}.

Procedure 11.3.3. At the beginning of stage s, o picks a fresh agitator a° if a” is

undefined, and takes actions according to the following cases.

1. state(o) = L. If a® <17, pick z° fresh, and let state(o) = 0.
2. state(o) = 0.

(a) If B 1 ¢¥(a”)[s] # B | ¥(a%)[so), let state(o) = L and cancel x°.
(b) If B | (a”)[s] = B | ¢(a”)[s0] and 2% & (N, Wes» do nothing.
(c) Both (a) and (c) fail, let state(c) = w and take the actions in (3) immedi-

ately.
3. state(o) = w (w for waiting).

(a) If(a”) > x°, cancel x°, let state(o) = L;
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(b) If (a) fails and there exist o and k such that o is some M- or R-strategy not
injured so far, «” oo C o, min{a?, 2%} < ¢*(d*(k)) and O*(W*; k) = 0,
choose a(c) as the longest such o and k(o) as the least such k with respect
to a(o), enumerate d?) k(o)) in D, setup a link (a(o), o);

(c) If both (a) and (b) fail, enumerate a° in A and setup a link (1,0) and let
state(o) = c.

4. state(o) = c. Let iy be the least i < |le|| such that B, | ¥ (a%)[s] = Be, |

W(a”)[so], enumerate x° in CJ, and let state(c) = 1.

5. state(o) = 1. Do nothing.

If state(o) € {w,c} or (4) happens, then ¢ has no outcome; otherwise o has

state(o) as outcome.

[1.3.4 The tree of strategies

We may consider N} as subrequirement N, ; of M, where « is an M,-strategy,
Q7 and R ; as subrequirements Q.. and R.; ; of P, where 7 is a P,-strategy, and S/
as subrequirement S, ; j , of R.; ; where 7 is an Ri ; strategy and 7 is as above. Hence
we may regard ©%’s, C7’s and ©"’s as local versions of ©.’s, C,;’s and O ; ;’s.

Fix a computable bijection f mapping w onto the collection of all requirements such

that

Lo f7Y M) < FHNeg);
2. fTUP) < U Qem), [T (Reis);
3. [T Reug) < fHSeijin)-

Let A denote the ordered alphabet set {oo <) 1 <5 0 <x L <) T}

We define the tree of strategies 7' C A<“ inductively.

Suppose £ € T. If € is an N, - (Qen-y Reij- O Seijx-) strategy, let top(§) be the
longest n C & which is an M- (P.-, P.-, or R, ;-) strategy. We say 7 is injured at § if
n C & and either

1. nis an M.- or P.-strategy and there are ; and v such that t"co Cnp C v" L C &,

v is some Q-strategy and p = top(v); or
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2. top(n) is defined and injured at £.

Suppose X is a requirement, let X'(£) be the longest X'-strategy ¢ C & not injured
at &, or undefined if there is no such strategy. X’ is finished at ¢ if one of the following

cases applies

l. Xisan M, or R, ;, and either « = X () is defined and a0 C &, or there is
some ) = N, or S ; ;1 such that 5 = Y() is defined and 5" L C &;

2. X is a P., and either 7 = X (¢) is defined and 7°0 C &, or there is some Q. ,,
such that 0 = Q. ,,(¢) is defined and o~ L C ¢&;

3. Xisan N or Se,ijr and M, or R, ; ; is finished at ;

4. Xisa Q. , or R.; ;, and P, is finished at £.

Otherwise X is unfinished at . Furthermore, X is satisfied at £ if either X' () is defined
or X is finished at £. Otherwise X is unsatisfied at £.

Label ¢ with the X such that f~!(X) is the least among the unsatisfied ones, and

1. If Xissome M, PorR,let o0, £°0€T,
2. f Xissome NorS,leté Land&°T €T,
3. If Xissome Q. ,,let{" 1, £7°0,£71€T.

The following properties of 1" follow immediately from above.

Lemma I1.3.4. Suppose P is an infinite path of T', X an requirement. Then there is a
finite & C P such that X is satisfied at 1) for any finite n such that £ C n C P.

Let & be the shortest ¢ as in the last lemma. Then either X' (&) is defined or X
is finished at &y. In the former case, let X(P) = X(&;). Moreover, it is obvious that
M. (P) and P.(P) are always defined for any e and P.

We say that a parameter p (or p[s']) becomes defined at stage s if p is undefined at
stage s — 1 and is defined at stage s (and is never canceled between s and s’ > s), or
becomes undefined if the reverse happens. And we say that p[s'] becomes defined by &
at stage s, if s < ', £ is accessible at stage s, p becomes defined at the moment that
¢ acts and does not become undefined between s and s’. Or we say that p[s'] becomes

undefined by & at stage s if the reverse happens.
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[1.3.5 Parameters and Conventions

We sum up parameters assigned to strategies.

For o an M- or R-strategy, there are

1. The length of agreement [“;
2. A c.e. functional ©% to be built;
3. An official flip point d* (k) for each k.

For 3 an N~ or S¢'-strategy, there is a personal flip point d” (k).

For 7 a P,-strategy, there are

1. The length of agreement [”;

2. ||e[| many c.e. sets to be built, namely C7, CT, ..., Cf .

For o a Q"-strategy, there are an agitator a?, a witness 27 and state(o).

Given an arbitrary strategy &, if it is initialized then all of its parameters and links
with one end being £ are canceled, i.e. become undefined. But there is an exception,

that if £ is a Q-strategy then state(&) is set to be L.

[1.3.6 Construction

Stage 0. Let all c.e. sets and functionals to be constructed be empty, all parameters

be undefined and initial states of all Q-strategies are L.

Stage s > 0. Let () be accessible. Suppose £ is accessible let sy < s be the latest
stage such that £ is accessible at sy, and never initialized between sy and s. We take
actions according to the following cases.

Case 1, £ is an M- or R-strategy.

Subcase 1.1, s is £-expansionary.

For each k such that W | ¢(d*(k))[s] # W | ¢(d°(k))[s1] where s; < s is the last
&-expansionary stage, cancel d* (k).

If there is a link (£, 0), let o be accessible and cancel the link. Otherwise let £ oo
be accessible.

Subcase 1.2, s is not {-expansionary. Let £"0 be accessible.
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Case 2, { is a P,-strategy.

Subcase 2.1, s is £-expansionary.

For any Q-strategy o such that top(c) = &, state(o) = w and 27 < 1.(a”), cancel
any link with one end being o.

If there is a link (£, o), let o be accessible and cancel the link. Otherwise let £ oo
be accessible.

Subcase 2.1, s is not {-expansionary. Let £ "0 be accessible.

Case 3, { is a Q. ,-strategy. Let 7 = top(§).

If Uic ) OT N W, # 0, let sate(§) = 1 and "1 be accessible.

Otherwise run Procedure I1.3.3. If £ has no outcome, let T'P, = &; otherwise let
&" o be accessible where o is the outcome.

Case 4, ¢ is an V- or S-strategy. Run Procedure 11.3.2. If (2)(a), (2)(d) or (3) of
Procedure 11.3.2 happens, let TP, = &; otherwise let £ o be accessible where o is the

outcome.

If an outcome o is determined and £ "o = s, let TPy = &. If T'P; is defined, we end

stage s immediately by taking the following actions.

(I) If TP, is some Q-strategy and state(T Ps;) = w, then initialize all strategies to
the right of T'F.
(IT) Otherwise initialize all strategies > T'F.

[1.3.7 Verifications

First of all, we study behaviors of flip points.

Lemma IL.3.5. « is an M —strategy, (3 is an N2—strategy extending o.” cc.

(i) If ©“(A, We; k)|s] is defined then ¢.(d*(k))[s] < 6*(k)[s].

(ii) If o is some Q-strategy extending 3" T, 3" T is accessible at s and a’|[s| (or x7[s])
is defined, then a’[s| (or 27[s]) > ¢.(d*(k))][s].

(iii) If o is some Q-strategy extending "1, (5L is accessible at s, O“(W,; k)|s]
converges and a’[s] (x°[s]) is defined, then either a’[s| (z°[s]) > ¢.(d*(k))[s] or
d®(k)[s] > d°(k)[s].

(iv) Suppose o is some Q-strategy > (3. If o enumerates some d in D at s and d°(k)][s]
is defined, then d > d"|[s].
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Proof. During the proof, we occasionally omit o and (3 from the superscripts

(i) Let so < s be the earliest stage such that d*(k)[s] is defined and never canceled
between sy and s. Then (i) holds at sy by (3)(b) of Procedure 11.3.2.

Let 59 < 51 < ... < s,(< s) be all a-expansionary stages. Assume (i) holds at s;
and let u; = ¢.(d*(k))[s,].

If s, + m < s;41 or s and ©(W,; k)[s; + m| converges then
(Welsi + m] — We[si]) [ us © (We[s; +m] — We[s]) | 0(k)[s;] = 0.

Moreover (A[s; +m] — A[s;]) | u; = 0 because elements in A[s; + m] — A[s;] are
contributed by strategies > 0. Hence ¢, (d*(k))[s; +m] = u; < 0(k)[s;] = 0(k)[s; +

Since d*(k) is not canceled at s; 1, (We[s; + m] — W.[s;]) | w; = 0. Moreover,
nothing < u; could be enumerated in A at s;,; and d*(k)[s;+1] < d*(k)[s;]. Hence (i)
holds.

(ii) Let sg < s be the earliest stage such that 3" T is accessible at sy and never
initialized between sy and s. Then d’(k)[s] = d’(k)[so] and (W.[s] — W[so]) |
de(d°(k))[s0] = 0. Let dy = d”(k)[s0).

All elements of A[s] — Also] are chosen as agitators of Q-strategies at stages not
earlier than sy and thus greater than ¢.(do)[so]. Hence ¢.(do)[s] = ¢e(do)[s0] < so.
Since a?[s] (or x7[s]) is also chosen at some stage not earlier than sy and d*(k)[s] < do,
a’[s] (or x7[s]) > sg > ¢e(d“(k))[s].

(iii) Let d = d®(k)[s], so be the earliest stage such that d*(k)[so] = d and d*(k) is
never canceled between s, and s, (3 be an N@-strategy such that d = d (k)[sc] and let
ug = ¢e(d)[s0]-

By the choice of sy and an argument similar to (i), ¢.(d)[s] = uo and (A, W,)[s] |
up = (A, We)[so] T uo-

If d°(k)[s] = d then 3 = (3, and 3" T is accessible at s. This contradicts the
assumption of (iii).

If d°(k)[s] > d then d°[s] becomes defined after sy, and so do a’[s] (or z7]s)).
Hence a“[s] (or 27[s]) > ug = ¢.(d)[s].

(iv) Let s < s be the latest stage at which /3 is accessible, then d’(k)[s] =
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d®(k)[so). Let o/ be some M, -strategy and k' be such that d = d® (k')[s]. As-
sume d (k')[s] becomes defined at stage s; < s by some N -strategy /3’ and is

never canceled between s, and s, then d = d” (k')[s;]. By an argument similar to
(D), der(d)[s] = e (d)[s51].

Suppose d = d* (k')[s1] < dP(k)[s] = dP(k)[so].

If o < @, then 3 < 3. Thus d°(k)[s¢] and a°[s] become defined after s;, and
a’[s] > ¢e(d)[s1] = ¢er(d)[s]. Hence o will not enumerate d in D at s, a contradiction.

If 3/ <, o, then we get a contradiction similar to the previous one.

If o D (7, then a contradiction follows from (ii) and (iii). OJ

By (i) of Lemma I1.3.5, if d*(k) is enumerated in D at s then at s’ > s, the next a-
expansionary stage, either d®(k) is canceled by « or «v is initialized before s’. Moreover

the above lemma also holds with R and S replacing M and N respectively.

Lemma I1.3.6. Suppose o is some Q. ,-strategy accessible at s, and s, > s is the
earliest stage at which o is accessible again. Let T = top(o).

(i) If state(o)[so] = w and o is not initialized between s, and s,, then either state(c)[s;] =
1, or state(o)[s1] = w and a(o)[s1] C a(o)[so), or state(o)[s1] = c.

(ii) If state(o)[so] = c then o is initialized between sy and s, or state(o)[s1] = 1 and
Uicjn CZi O Wy # 0.

Proof. (i) Suppose o is not initialized between sy and s; and state(o)[s1] # L, then
there is a link (a, o) at stage sg, So is a-expansionary and d“(k(o))[so] € D[so] —
D[sy — 1]. By the construction, s; > s is the earliest c-expansionary stage and « is

not initialized between sy and s;.

By (i) of Lemma I1.3.5 and the remark after Lemma I1.3.5, for each k either d*(k)

is canceled by « at s or ¢.(d*(k)) does not increase.
Hence (i) holds by (3) of Procedure 11.3.3.
(ii) By Procedure 11.3.3, ["[sq] > a“[sq],

We(Be; a”)[so] = 0 # 1 = A(a”)[s0],

and o setups a link (7, 0) at stage sop. By CASE 2 of the construction, s; > s is the
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earliest T-expansionary stage and thus

U, (Be;a%)[s1]) =1# 0= V. (Be;a%)[so).

Hence for some i < ||e]|, Be, [ ¥e(a”)[s1] # Be, | 1e(a”)[so] and (ii) holds. O

Let TP = liminf, TP,.

Lemma I1.3.7. For each m,
(i) [TP| > m,
(ii) TP | m is accessible infinitely often;

(iii) T P | m is initialized at most finitely often.

Proof. We prove (i)(i1) and (ii1) simultaneously by induction of m.
For m = 0, (i)(ii) and (iii) hold trivially.
Suppose (i)(ii) and (iii) hold for m. Let £ = T'P | m and fix sq > m such that £ is

never initialized after stage so. We argue by cases.
Case 1, { is some M.- or R ; j-strategy.

It suffices to prove that if there are infinitely many {-expansionary stages then £ oo

is accessible infinitely often.

Suppose s1 > s¢ is £-expansionary and £~ oo is inaccessible at stage s;. Then there
exists a link (&, o). Since £ will no longer be initialized, o will not be initialized before

next {-expansionary stage S, > sj.

If the link is canceled before s; (because of subcase 2.1 of the construction), then

& 00 is accessible at s,.
Otherwise, by Lemma I1.3.6, either a(0)[s2] C £ or state(o)[ss] = c.

By induction hypothesis and Lemma I1.3.6, there is s > s, such that state(o)[s| =
1. Let s3 be the least such s, then T'P;, = o and there is no link along T'P,. Let s4 be

the earliest £-expansionary stage after ss, then " oo is accessible.
Case 2, £ is some P.-strategy.

It suffices to prove that if there are infinitely many £-expansionary stages then &~ oo

is accessible infinitely often.
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Suppose s; > sg is £-expansionary and £~ oo is inaccessible at stage s;. Then there
exists a link (£, 0) and state(o) = c. By Lemma I1.3.6, the link is canceled at s; and

& o0 is accessible at next £-expansionary stage.
Case 3, ¢ is some Q. ,,-strategy.
By induction hypothesis, we may assume that a*[s] = a*[s] for s > s.

If £ has 1 as outcome for infinitely often, then by CASE 3 of the construction,
Procedure 11.3.3 and Lemma I1.3.6, state({)[s] # 1 for s > so. The lemma holds
because by (I) of the construction, £" L will not be initialized when T'P; = £ and
state(§)[s] = w.

If € has 1 as outcome at some stage s > s, then by CASE 3 of the construction and
(5) of Procedure I1.3.3, ¢ eventually has 1 as outcome. Otherwise, ¢ eventually has O as
outcome. In either case the lemma holds obviously.

Case 4, £ is some N, ;- or S.i.jk-strategy. Let oo = top(§). We only prove the case
for NV . since the other case is similar.

If TP, = ¢ ats; > s, then the first clause of (3)(d) of Procedure 11.3.2 happens
at s;. Let so > s; be the next a-expansionary stage, by the remark after Lemma 11.3.5
d*(k) is canceled by « at this stage. Let s3 > sy be the earliest stage at which &
is accessible again, then either {" L is accessible or ©%(W,; k)[s3] = 1 and £"T is

accessible. L]

Lemma IL3.8. If 3 is an N, x- or S, j -strategy on TP, then d” is fixed eventually.

Proof. Let a = top([3) and s( be the stage such that 3 is never initialized after so. We
will only prove the case that /3 is NV, j-strategy since the other is similar and easier.

By the construction, d® could be canceled only if it were enumerated in D previ-
ously. Moreover, d’ could be enumerated in D after sy only if K(k) = 1 # 0 =
O©%*(A, W,; k) or by some o such that a" oo C o C 3.

Note that the former situation could happen at most once. For the latter, if o~ L is
not on 7'P then ¢ could enumerate d° in D at most finitely often.

Assume 0" L C TP. If 1 C a"oo C o, then by the definition of 7', 3 C o. By
Lemma I1.3.5 (iv), o will never enumerate d” in D.

If a"co C 7 and o enumerates d° in D at s; > s, then o setups a link (a, o)

at s;. From then on 7 is skipped and the enumeration B7 will never change until
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later state(c) = c and a link (7, 0) is setup. By Lemma I1.3.6 and the choice of s,

0”1 C T'P. This contradicts the assumption that o~ L. C T'P. 0

Let « = M (T P) and assume « is never initialized after s, then

o = s
$>50

is a consistent p.r. functional.

If 3 is an N?-strategy on T P, then by the lemma above, d°(k) is fixed eventually.
If in addition 3T C TP, then d“(k) is eventually fixed too by (ii) of Lemma I1.3.5,

and ©*(W,; k) = K (k) by Case 4 in the proof of Lemma II.3.7 and (3)(d) of Procedure
I1.3.2.

Thus we get the following.

Lemma I1.3.9. M. is satisfied for every e.

Now we turn to P..

Let 7 = P.(T'P) and assume it is never initialized after s, then

cr=Jcrls

>80

is c.e. fori < ||e||.

If 770 C T'P then C7 is finite for i < ||e||. Otherwise, to determine whether x € CT
for an arbitrary x and i < ||e]|, let s > s( be the earliest 7-expansionary stage such that
B, I * = Bl [s] | z,thenx € C] iff z € C][s|. Hence we establish C7 <t B, for
i< le]l-

Suppose A = V. (B.), and let o be a Q] -strategy on 7'P. Then the satisfaction of
Q7 follows from Lemma I1.3.6. The argument for R ; ;’s is similar to that for Lemma

I1.3.9. Hence we get the next lemma and finish the proof of Theorem I1.3.1.

Lemma I1.3.10. P, is satisfied for every e.

1.4 [PC] < INB UNCup]
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Yu and Yang (2005) showed that / = [NB UNCup]| C M. In this section, we will

prove the following.

Theorem IL.4.1. There is a plus cupping degree a & I.

We construct a c.e. set A satisfying the plus cupping requirements
M. W, =, (A) = W, <t () or W, is cupping,
and the requirements guaranteeing deg(A) ¢ [NB U NCup]
P.: A=V, (XY, )= (Fi<ec—1)(X,, is bounding) or Y,,_, is cupping

where X, is the abbreviation of the tuple (X,,,..., X, ,) and ¢ = ||e||.

We will arrange the construction on a tree of strategies as in the previous section,

and will follow conventions described there.

During the construction, we will in addition build a c.e. set D for some diagonal-

ization purposes which will be clear.

II.4.1 M-strategies

We follow the technique originally developed by Harrington (1978) and refined by
Fejer and Soare (1981).

Suppose « is an M.-strategy, let [“ the length of agreement between W, and ®.(A)
and a-expansionary stages be defined as usual. If there are at most finitely many a-

expansionary stages, o has 0 as outcome; otherwise o has oo as outcome.

In the latter case, a will build a c.e. set C'“ and a p.r. functional A* such that
K = A%(W,,C%), and

./\/;-a : D % Fz(Ca) or We ST (Z)

From now on we will omit the superscript « in this section.

To define A(W,, C; k), at the beginning « defines A(W,,C; k) = K(k) with an
arbitrary use. If later & is enumerated in K, o enumerates 6(k) in C' and redefines
A(We, C; k) = 1 with a fresh use.
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To make N, we arrange N *-strategies above a"co. If § is an N*-strategy, (3
picks a fresh diagonalizer d” and a lifting point k” at the beginning and keeps d° from

entering D. From now on we will omit the superscript (3 in this section.

(3 intends to make §(k) > 7;(d). If this is achieved, d will be enumerated in D.

Suppose (3 has many chances to do this, eventually the inequality D(d) # I';(C; d) will
be established.

To this end, whenever (3 finds I';(C'; d) = 0 it will open a gap by creating a shortcut
(e, B) (whose purpose will be clear later), having g as outcome and allowing strategies
extending 3¢ to contribute anything to A. That is, 3 hopes that W, [ d(k) will be
changed by changes to A.

At the next a-expansionary stage s; > sg, we will have « close the gap for (.
If o finds that W, [ §(k)[s1] # We | d(k)[so], then A(W,, C; k) diverges. « will
closes the gap successfully by defining §(k) > 7;(d) and enumerating d in D. In this

case, 3’s intention will be achieved.

If o finds that W, | 6(k)[s1] = We | §(k)[so], it will try to preserve the computation
®.(A) [ 0(k)[s1] by initializing strategies to the right of 3" ¢. Then a will enumerate
d(k)[so] in C and thus canceling A(W,, C; k') for k' > k. We say that « closes the gap

unsuccessfully.

In either cases above, o will cancel («, 3). The purpose of using shortcuts is to

guarantee validity of the argument below.

If there are infinitely many gaps opened and closed (unsuccessfully), let (s, : m €
w) increasingly enumerate the stages at which [ opens a gap. For each m let ¢,, be
the earliest c-expansionary stage after s,,, then the gap opened at s,, is closed by «
at t,,. Since 6(k)[smi1] > 0(k)[sm], We | 0(k)[sm] is fixed between s,, and t,, while
O (A) | 0(k)[sm) is fixed between t,,, and $,,,+1, W, is computable if W, = ®.(A).

Thus we will arrange no N “-strategies above (3" g.

However, to guarantee that A(W,, C'; k) converges, we must arrange the distribution
of lifting points so that there are at most finitely many A/ “-strategies having lifting point

less than £’ for each £'.

We formally describe the behavior of « at stage s as below. Let

so = max{s’ < s: ais accessible at s’ and not initialized between s’ and s}.
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Procedure 11.4.2. There are two cases.

(i) Case 1, s is not a-expansionary. Just have 0 as outcome.

(ii) Case 2, s is a-expansionary. If in additional there is a shortcut (o, 3), then the

shortcut is setup at stage so, let ko = kP otherwise let ko = s. Let ky = min{k < kg :
A(W,,C; k) =0 # 1 = K(k)}. Whatever « does, let oo be the outcome, and if there

is a shortcut then it will be canceled.

If ky is defined, enumerate 6(k;) in C. Redefine A(W,,C; k') = K(K') fork' > k
with 6 (k') fresh.

From now on assume k; is undefined. For k' < ko, if A(W,,C;K') 1, define
AW, Cy k') = K(K') with (k') = 6(k')[so] if so is defined and A(W,, C; k')[so]
converges, or with 0(k') fresh.

If ko = kP and (W,[s] — W,[so]) | 6(ko)[so] # O, then define A(W.,C; k') =
K (k") with §(K') fresh for k' > ko and enumerate d° in D.

If ko = kP and (W,[s] — W.[so]) | 0(ko)[so] = 0, enumerate §(ko)[so] in C' if
d(ko)[so] is defined, define A(W.,C; k') = K(K') with 6(k") fresh for k' > k

and initialize strategies > 3" 0.

We formally describe the behavior of /3 at stage s as below. Once the outcome is

determined, (3 stops immediately.

Procedure 11.4.3. Define k to be fresh if it is undefined. Whenever (3 finds A(W,, C; k)
is undefined or (k) > 1, it simply stops. Otherwise, [ acts as below.

SR b~

IfT;(C;d) = 1 = D(d), cancel d.

If d is undefined, define it to be fresh.

IfT;(C;d) # 0, let 0 be the outcome.

IfT;(C;d) =0 # 1 = D(d), let 1 be the outcome.

Otherwise 1';(C;d) = 0 = D(d), setup a shortcut (c, 3) and let g be the out-

come.

Il.4.2 ‘P-strategies

We follow the proof of Theorem 1.6 in Yu and Yang (2005).
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Suppose 7 is a P,-strategy, the length of agreement [” and the T-expansionary stages
are defined as usual. If there are at most finitely many 7-expansionary stages, 7 has 0

as outcome; otherwise 7 has oo as outcome.

In the latter case, 7 will construct 2¢ — 1 (¢ = ||e||) c.e. sets
Mgo, Mgys- s M50, M7 51,27

and one p.r. functional ©7 so that M[,, M, <t X, fori <c—1, K = 07(Y, 1,27),
for [[n|]] =c—1and (i,j) € (c—1) x 2

Qrj D # u (Z7) 0r (3i < e = 1)(M]; # W,,), and

Ry (M) = ©;(M])) is total = &;(M],) <1 0, for (i,7) € w2

From now on in this subsection, we will drop the superscript 7 and occasionally also

drop the subscripts such as e and e;.

To define O(Y, Z; k), at the beginning 7 defines O(Y, Z; k) = K (k) with an ar-
bitrary use. If k is enumerated in K later, 7 enumerates 6(k) in Z and redefines
O(Y, Z; k) = 1 with a fresh use.

To satisfy Q7’s and R™’s, we arrange (’s for Q7’s and n’s for R"s above 7" 0.

Suppose ( is a Q] (-strategy. At the beginning ¢ picks a fresh lifting point k, a
fresh diagonalizer d and a fresh agitator a, and keeps d and a from entering D or A

respectively. ¢ makes 6(k) > 1 (a) by lifting 6(k) whenever v(a) grows.

If ¢ finds that the computation ¥ (X, Y’; a) diverges, then it has | as outcome indi-
cating that U (X, Y’; a) diverges. We will have neither Q- nor R-strategies above (L.

If U(X,Y;a) converges eventually, ¢ defines a witness x > 1 (a) and waits for

®(Z;d) =0andx € [;,_._; Wh,. If  keeps waiting for ever, it will have 0 as outcome.

If at some stage sg, P(Z;d) = 0 and x € [) Wi, ¢ will try to make either

i<c—1
0(k) > ¢(d) while preserving the computation ¢(Z; d) = 0 or to enumerate x in some
M; o with permission from X.,. If the former is achieved, ¢ will enumerate d in D and

establish D(d) = 1 # ®(Z; d). In both cases, ¢ will have a local win.

To this end, ¢ will enumerate a in A and setup a link (7, (). At next T-expansionary

stage s1 > g, one of X,,..., X, _, and Y must have been changed below v (a)[so]-.
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The control will be passed immediately from 7 to ¢ and the link will be canceled, i.e.,

the link will be traveled.

If Y changes, then ¢ will redefine O(Y, Z; k) with 0(k) fresh and enumerates d
in D. If some X, does, ¢ will enumerate x in M, . In both cases ¢ will have 1 as

outcome.

The purpose of using links is to either make the lifting of 6(k) in time or make the

enumeration of x in M, o permitted by X, .

We formally describe the actions of 7 at stage s as below. Let sq be defined as

before Procedure 11.4.2 (with 7 in place of «).

Procedure 11.4.4. There are two cases.

(i) Case 1, s is not 7-expansionary. Just let O be the outcome.

(ii) Case 2, s is T-expansionary. If there is a link (T, (), then it is setup by ( at stage
so, let kg = k; otherwise let kg = s. Let ky = min{k < ko : O(Y, Z;k) =0 # 1 =

1. If ky is defined, enumerate 0(ky) in Z and redefine O(Y, Z; k') = K(k') with
O(k") fresh for k' > ky; if there is a link (7, (), travel and cancel it.

2. From now on, assume k; is undefined. For k' < ko, if O(Y, Z; k') diverges define
O, Z; k') = K(K') with O(k') = 0(K')[so] if so is defined and O(Y, Z; k') [so]
converges, or with 0(k') fresh.

3. Ifthere is no link, let 0o be the outcome and stop. Otherwise assume that there is

a link (7, (), travel and cancel the link.

We formally describe the actions of ¢ at stage s as below.

Procedure I1.4.5. There are two cases.
(i) Case 1, a link (7,() is traveled. Suppose the link is setup at stage sy < s. Take

actions according to the following subcases.

1. If K[s] | k # K|[so| | k then cancel a, d and .

2. IfY[s] | ¥(a)[so] # (Y | 9(a))[so), then O(Y, Z; k)[s — 1] diverges, define
O, Z; k') = K(K') with O(k") fresh for k' > k and enumerate d in D.

3. Otherwise, there is some i < c—1 such that X,,[s| | ¥(a)[so] # (X, | ¥(a))[sol-

Let ig be the least such i, enumerate x in M;, ;.
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(i1) Case 2, otherwise. Check the followings one by one. Once an outcome is deter-

mined, ( stops immediately.

If k is undefined, define it to be fresh.

IfD(d)=1=9®,,,(Z;d), cancel a,d and x.

IfD(d) =1# @, _,(Z;d), or U,.. Mi; "W, # 0, let I be the outcome.

If a is undefined, define it to be fresh. If " < a, stop.

Otherwise if ¥(a) > 0(k), enumerate 0(k) in Z and redefine ©(Y, Z; k') with
O(K") fresh for k' > k (if ©(Y, Z; k)[s — 1] is defined), cancel d and x, let L be
the outcome.

6. If d and x are undefined, define them to be fresh. If D(d) = 0 # ®,,._,(Z;d) or
T & (Vice Whi» let 0 be the outcome.

7. Otherwise enumerate a in A and setup a link (1, ().

SR b~

The R-strategies 1’s act in the same way as typical minimal pair constructions. We
define {7 the length of agreement between ®,(M,; () and ®,(M; ;) and n-expansionary
stages as usual. Each 7 has two outcomes, namely oo indicating there are infinitely
many 7-expansionary stages, and 0 indicating there are at most finitely many such

stages. We refer the readers to in (Soare, 1987, XIV.3.2) for details.

[1.4.3 Conflicts

Different M-strategies do not injure each other, because they never intend to change
A and they build local A’s and C’s. Neither do different \/“-strategies above a certain

M. -strategy « injure each other, because none of them intend to change C*.

If 3 is some N-strategy, then the intention of 3 to preserve C® | 7;(d”) may
be injured by the intention of « to define A*(W,,C* k) = K(k) for k < k”, and
the intention of /3 to lift 6%(k”) may injure the intention of « to make A%(W,, C%; k)
converge. The first conflict is solved by guaranteeing that k” is eventually fixed, hence it
could happen at most finitely often (this is also the solution of similar conflicts between
P-strategies and Q-strategies). To solve the second conflict, note that 3 intends to lift
5%(k®) infinitely often only if it opens infinitely many gaps. In this case we will make
W, <t 0 hence will not worry about the definition of A®. Otherwise we arrange the

distribution of lifting points so that each k is used as a lifting point by at most one AN/ ©-



32 Chapter II. Ideals

strategy. This is achieved by the first sentence of Procedure 11.4.3. Hence 6% (k) will
not be lifted for ever if every N *-strategy lifts its lifting point at most finitely often.

Now the intention of « to preserve ®.(A;k“) when unsuccessfully closing a gap
opened by [ could be injured by some Q7-strategy ( where 7 is some P-strategy since
¢ may enumerate its agitator in A. The solution is to initialize ¢ if ( > (°0. Hence
« will succeeded in preserving ®.(A; k7) if Q-strategies < "¢ are never accessible
later, since A can be freely changed above (3" g. This is already incorporated by (ii)(4)
of Procedure 11.4.2.

The last kind of conflicts is between R ;-strategies n’s and Q7 ,,-strategies (’s. The
solution is to allow at most one side of ®;(M];) = ®;(M],) be destroyed between
n-expansionary stages. To this end we will run no more strategies at a stage once (i)(3)

of Procedure I1.4.5 happens.

[1.4.4 Parameters

We sum up parameters associated with strategies.

For o an M-strategy, there are the length of agreement [, a c.e. set C'* to be built

and a p.r. functional A“.
For (3 an N®-strategy, there are a diagonalizer d” and a lifting point k°.

For 7 a P.-strategy, there are

1. The length of agreement [7;
2. 2|[e]| — 1 many c.e. sets Mg, Mgy, ..., My o0, M|, _y, and Z7;
3. A p.r. functional ©7.

For ¢ a Q7-strategy, there are a lifting point k¢, a diagonalizer d°, an agitator a¢ and

a witness z°¢.
For 1 an ‘R™-strategy, there is the length of agreement [".

Assume ¢ is an arbitrary strategy. If it is initialized then all of its parameters, and

shortcuts or links with one end being ¢ are canceled.
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[1.4.5 The tree of strategies

We may consider NV as a subrequirement N, ,; of M, where « is a M.-strategy,
and Q7 ; and R] ; as subrequirements Q. , ; and R, ;; of P. where 7 is a P.-strategy.
Hence C'*, A, M]; and Z7, ©7 may be taken as local versions of C,, A., M., ; and
Z., O, respectively.

Let A be the set of outcomes 0o < 1 <p g <p L <p 0.

Fix a computable bijection f mapping w onto the collection of all requirements and
subrequirements such that f~'(M.) < f~H(MN.x),and fH(Pe) < 71 Qenj), [ (Reis)-
We inductively define T the tree of strategies as a computable subset of A<“.

Let) € T. If £ € T, we say that a requirement O is finished at £ if and only if one
of the followings applies

1. O is M, and either there is an M.-strategy « C "0 C & or there is an N ;-

strategy 3 C B g C €.

2. Ois P, and either there is a P,-strategy 7 C 770 C £ or there is a Q. ,, j-strategy
(celLce

3. OisN,; (Qenyjor Re,;j)and M, (P,) is finished at &.

We say that O is satisfied at & if either O is finished at £ or there is an O-strategy &' C &;

otherwise we say that O is unsatisfied at €.

We assign the unique O to £ such that f~1(Q) is the least among the requirements

unsatisfied at &.

If £ is some M-, P- or R-strategy, let £"oco and £°0 € T if £ is an N -strategy, let
1L, gand 0 e Thif isa Q. j-strategy, let {71, Land §°0 € T

Furthermore, if ¢ is an N, ;-strategy, let top(§) be the unique M.-strategy o C &; if
€isa Q. - or R, j-strategy, let top(§) be the unique P.-strategy 7 C &.

We will use some terminologies defined in subsection I1.3.4.

[1.4.6 Construction

Stage 0. Let all parameters associated with all strategies be undefined, and all c.e.

sets and p.r. functionals to be built be empty.
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Stage s > 0. Let ) be accessible. If £ is accessible and || = s, let TP, = &.
Otherwise we take actions according to the following cases.

Case 1, £ is an M,-strategy. Run Procedure 11.4.2. Let £"o be accessible where o
is the outcome.

Case 2, ¢ is an N, ;-strategy. Run Procedure 11.4.3. If there is no outcome, let

TP, = &; otherwise let £ o be accessible where o is the outcome.

Case 3, ¢ is a P.-strategy. Run Procedure 11.4.4. If there is an outcome o let o be
accessible; otherwise there is a link (£, ¢) at the beginning of s and the last clause of

(i1)(3) of Procedure I1.4.4 happens, let ( be accessible.
Case 4, { isa Q. , ;-strategy. Let 7 = top(£). Run Procedure I1.4.5. If there is no

outcome, let T'P, = &; otherwise let £ "o be accessible where o is the outcome.

Case 5, { is an R ; j-strategy. If s is {-expansionary, let { oo be accessible; other-
wise let £70 be accessible.
In addition, once T'F; is defined, we end stage s immediately by initializing all

strategies > T'P.

[1.4.7 Verification

First we study an important behavior of N\ -strategies.

Lemma I1.4.6. If o is an M .-strategy and (3 is an N?-strategy above o” oo, then either

(3 is initialized infinitely often or d° is eventually fixed.

Proof. During the proof, we occasionally omit o and (3 from the superscripts.

If /3 is accessible at most finitely often, then it is trivial that d” is eventually fixed
(including the possibility that it is canceled at some stage and never becomes defined

from then on).

From now on we assume that 3 is accessible infinitely often and initialized at most
finitely often. We may assume in addition that every proper initial segment of 3 being

also some N ®-strategy has its diagonalizer eventually fixed. Let s, be such that

1. (3 is not initialized after sy and k” = k°[s);
2. Forall k < kP, A(W,, C; k)[so] is defined, and if k € K then A(W,, C; k)[sq] =
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3. For N-strategy 3' C 3, d* = d%[sy).

If at stage s > s, d is canceled by 3 then I';(C;d) = 1 = D(d). Let sy < s be the
stage at which d°[sy — 1] is enumerated in D by a. Then there is a shortcut («, 3) at
the beginning of s,, suppose it is setup by /3 at stage s; < so. We may assume s; > Sg
otherwise d could be canceled at most sy many times.

At stage s1, I;(C;d) = 0 = D(d). At the beginning of stage s, the computation
I';(C; d) is same as that at s; since C' can only be changed by «, and 6(k)[ss] > 7i(d)
for k > k” by (3) of Procedure 11.4.2.

Since d is canceled at s > s,, there is some (k:ﬁ/) enumerated in C' with k% < kP,
at some stage s'(s2 < s’ < s). Then 3’ < (3 and setups a shortcut (a, 3) at some stage
s"(se < 5" < s'). Hence 3'"g C T Pyn.

By the definition of the tree, 3 2 3'"¢g. Since in addition (3 is not initialized at s”,
("1 C 3. Hence 3’1 is accessible at s; and I'y (C;d?)[s1] # 1 = D(d” [s,]) (assume
G’ is an N-strategy).

But I';(C;d?)[s"] = 0 = D(d”[s"]). Hence d”[s,] # d”[s"]. This contradicts

with the choice of sg. ]

Next we study some important behaviors of Q-strategies.

Lemma I1.4.7. Let 7 be a P.-strategy, c = |le|| and { 2 7" cc be a Q] ;-strategy.

(i) Either ( is initialized infinitely often or a is eventually fixed;

(ii) If ¢ is initialized at most finitely often and accessible infinitely often, then there is a
stage sy at which both k* and oS are defined and fixed for ever, and for no k < k¢ and
s > s, 07 (k)[s — 1] is enumerated in Z7;

(iii) Let sy be as in (ii) and moreover ( setups a link (7,() at stage so. Let s1 > s
be the earliest T-expansionary stage. Then (7, () is traveled at stage s, d° = d°|s] is
fixed and either

1. @, (Z7;d°) =0 # 1 = D(d°) and the computation ®,,_,(Z";d°) is exactly
D, (Z7;d%)|[so], or
2. M7, NW,, # 0 for somei < c— 1.

Proof. During the proof we occasionally omit 7 and ¢ from the superscripts, and we

may write X for X, etc.. Let ¢ = ||e||.

(1) As in the proof of Lemma 11.4.6, let sy be such that
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1. ¢ is not initialized after s, and k¢ is defined at s, and fixed for ever;

2. For all k < k¢, ©(Y, Z; k)[so] is defined, and if k € K then O(Y, Z; k)[so] =
1= K(k)[so;

3. For Q7-strategy ¢’ C ¢, a¢’ is defined at s, and fixed for ever.

If a is canceled at s > s by (, then ®(Z;d) = 1 = D(d) at s. Suppose d is
enumerated in D by ( at s, < s, then there is a link (7, () at the beginning of s,.
Suppose the link is setup by ( at s; < s5. As in the proof of Lemma I1.4.6, we assume
S1 > 8-

Then at s;, ®(Z;d) = 0 = D(d) and 0(k*) > 1)(a). The computation ®(Z; d)[s,]
is same as that at s, by the choice of sg, and 0(k¢)[s2] > ¢(d) by (1)(2) of Procedure
11.4.5.

Hence at some stage s’ between s, and s, some Q7-strategy ¢’ < ( enumerates
6(k)in Z. Then ¢'" L C TP,. By the definition of the tree, ("1 C (. Hence '"1is

accessible at s; and a¢ is changed after s;. This contradicts with the choice of s.
(i1) follows immediately from the proof of (i).

(i11) It is obvious that  is never initialized after stage so. Hence the link is traveled

at stage s;.

By Procedure 11.4.5, at stage s

. ¥(X,Y;a)=0#1= A(a);
2. ®(Z;d) = 0= D(d),
3.xeW,, fori <c—1,;

4. P(a) < O(kS).

Since s; is T-expansionary, V(XY a)[s;] = 1 and

(X, Y) T¢(a))[s:] # (X, Y) T 4(a))[so]-

If(Y | (a))[s1] # (Y | ¥(a))[so], then O(Y, Z; k%) [s;—1] diverges and (k') [s1] >
¢(d)[sg] for k' > k¢ by (i)(2) of Procedure 11.4.5. By (ii) the computation ®(Z; d)|s]
no longer changes.

If (X, [ ¥(a))[s1] # (X [ ¢(a))[so] for some i < c—1thenz € M;, ; for iy being
the least such i. [l
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Let T'P = lim inf T'P;, the next lemma states that 7' P is infinite and every strategy

on T'P is eligible to win.

Lemma I1.4.8. For every m
(i) [TP| = m;
(ii) T'P | m is initialized at most finitely often;

(iii) T P | m is accessible infinitely often.

Proof. 1t is trivial for m = 0.

Assume (i)(ii) and (iii) hold for m. Let £ = T'P | m. Assume £ is accessible at

sp > m and never initialized after s,.
Case 1, £ is some M- or R-strategy. (i)(ii) and (iii) hold trivially.
Case 2, £ is an N*-strategy where o = top(&). By Procedure 11.4.3, £ always has

outcome when it is accessible. Let o be the <-least outcome which ¢ has infinitely

often, then ¢ "0 C T'P.

Hence we may assume that either T'P; > £ o for s > sy. At stage s > sg, if £ 0
is initialized, then the initialization could only be launched by a and o = 0. If this
happens then £ setups a shortcut (o, §) at some stage s; < s and £ g C T'P,,. But this
could happen at most finitely often by the choice of o.

Case 3, ¢ is a P.-strategy. If there are at most finitely many £-expansionary stages,
then "0 C T'P. Assume there are infinitely many £-expansionary stages.

If s; > s¢ is £-expansionary but £ oo is not accessible at stage si, then there is a
link (&, () at the beginning of stage s, it is traveled and no new link is setup at stage
s1 by (i1)(3) of Procedure 11.4.4 and (i) of Procedure I1.4.5. Let s, > s; be the next
&-expansionary stage, then £ oo is accessible.

Case 4,  is a Q] ;-strategy where 7 = top(§). Let sq be as in (ii) of Lemma I1.4.7.

If TP, = ¢ then at stage sy, either ¢ setups a link (7,&) or Procedure I1.4.5(i)
happens. In either case by (iii) of Lemma I1.4.7, there is some s; > sy such that either
D # ®, (Z7)or M. # W,, for some i < ¢ — 1 is established for ever at stage s;.

5]
Hence whenever £ is accessible after stage s1, £ 1 is also accessible. ]

Now we are ready to prove the satisfactions of plus cupping requirements.

Lemma I1.4.9. Let o be the unique M.-strategy on TP, and [3 be the unique N?-
strategy on T'P.



38 Chapter II. Ideals

(i) C* is c.e. and A“ is consistent;

(ii) If 3" g ¢ TP, then A*(W,, C%; kP) converges eventually;
(iii) If 3" g C TP, then W, is computable;

(iv) M. is eventually satisfied.

Proof. During the proof, we occasionally omit « and 3 from the superscripts.

(i) By Lemma I1.4.8, assume « is not initialized after s. Then C* = | J,. , C*[t] and

A® = J,., A*[t], and (i) follows from the construction.
(i) Let o = T P(|3]), then 0 = 1 or 0. By Lemma I1.4.6, d = d” is eventually fixed.

If o = 1 then 8" g C T P; for at most finitely many stages, otherwise d could not be
fixed. If o = 0, then 3" g C T'P; for at most finitely many stages too by the definition
of TP.

Assume for every N®-strategy 3 C 3, A(W., C; k”") eventually converges. By the

assumption above, let sy be such that

1. kP = k%[s);

2. For k < kP, A(W,,C; k)[so] is defined, and k € K iff A(W,, C;k)[so] = 1 and
k € Klsol;

3. For k < kP, A(W,, C; k)[so] is defined and fixed for ever;

4. (3 is not initialized and opens no gap after s.

Let s; > s be the earliest a-expansionary stage, then A(W,, C; k?)[s] is defined
and fixed for ever.

(iii) By the definition of the tree, for N*-strategy ' C 3, 3'"g ¢ TP. By (ii)
above, Lemma I1.4.6 and 11.4.8, let s be such that

1. k” = kP[so) and d° = dP[s) are defined and fixed for ever;

2. For k < kP, A(W,,C; k)[so] is defined, and k € K iff A(W,, C;k)[so] = 1 and
k € Klso;

3. Forall k < kP, A(W,, C; k)[so] is defined and fixed for ever;

4. ( and (3" g are accessible at sy and not initialized after s.

Let (s,, : m € w) increasingly enumerate all stages such that s,,, > s, both 5 and
(3" g are accessible at s,,,. For each m, let ¢,,, be the first a-expansionary stage after s,,,,

then ¢,,, < s,,41. Hence 3 open a gap at s,,, while « closes this gap at ¢,,,.
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If « closes a gap successfully at t,,,, by (4) of Procedure 11.4.2, D(d)|[t,,] = 1. By

the choice of sg, d is fixed for ever, and 3 opens no gap after ¢,,,.

Hence « always closes gaps unsuccessfully. Thus
Weltm] 1 6(k)[sm] = (We [ 6(k))[sm] and 6(k)[sm] < 3(K)[tn] ().

We claim that
Welsmi1] [ 0(k)[tm] = (We I 6(K))[tn] ().

If s, 11 = t,, then () holds trivially.
Assume s,,1 > t,,. If there exists some stage t(t,, < t < $,,41) at which some ¢

enumerates a‘ in A, then { > f3.

¢ could not be above 3”1 otherwise (3" g is initialized. If { is above 3" ¢ then 3" ¢ is
accessible at ¢t and s,,,.1 < ¢ by the definition of s,,, 1. This contradicts with the choice
of .

Now it could only be the case that ( > (370. Thus ( is initialized by o when the gap

opened at s,, is closed. Hence

CLC >ty > ¢e(la)[tm] = ¢6(5(k>)[tm]

and (*x) holds since s, iS a-expansionary.

(iii) follows from (x) and ().

(iv) By (i)(ii) and the construction, K = A(W,,C) if 3°g ¢ TP for every N'-
strategy (3. (iv) follows from this and (iii). [

Finally we prove the satisfactions of P-strategies.

Lemma I1.4.10. 7 is the unique P.-strategy on T'P, ( is the unique Qj, ;-strategy on
T'P and ) is the unique R ;-strategy on T'P. Let c = ||e]|.

(i) M7 o, M and Z7 are c.e. sets (i" <c—1), and O7 is a p.r. functional;

(i) If "L ¢ TP then©™(Y,,_ ,, Z7; k%) converges;

(iii) Q7 ; is eventually satisfied;

(iv) R ; is eventually satisfied;

(v) P. is eventually satisfied.
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Proof. During the proof, we occasionally omit 7, ( and 7 from the superscripts, and

write X for X, etc..
(1) follows from an argument similar to that for (i) of Lemma I1.4.9.

(ii) Let o = T'P(|¢]). By Lemma I1.4.7, we may choose s as in the proof for (ii) of
Lemma I1.4.9 such that

1. aS is defined at stage s, and fixed for ever;

2. For all k < k¢, O(Y, Z; k)[so] is defined, and if k& € K then K (k)[sg] = 1 =
O, Z; k)[sol;

3. Forall k < kS, O(Y, Z; k)|[s] is defined and fixed for ever;

4. ("o1is accessible at sy and never initialized after s.

If o = 0 then ©7(Y, Z; k) converges since (" L is never accessible after s.

If o = 1then ©(Y, Z; k) converges by (iii) of Lemma 11.4.7 and (i) of Procedure
11.4.5.

(iii) Let o = TP(|¢|), and a denote the final value of at.

If o = | then W(X,Y’; a) diverges and Q] ; is satisfied trivially.

Otherwise d = d¢ and x = z¢ are eventually fixed. The satisfaction follows easily
from the definitions of outcomes 0 and 1.

(iv) If there are at most finitely many 7-expansionary stages, then R7 ; is satisfied
trivially.

Otherwise, assume 7) is never initialized after sy and sq is n-expansionary. Let
(Sm : m € w) increasingly enumerate all 7-expansionary stages > s.

It suffices to prove that
|{LL’ < (bj(l")[sm} A (Mi’(] U Mi’1>{8m+1 — 1] — (Mi,() U Ml,l)[sm]}\ <1.

Assume s,,,, > s, and some ( enumerate ¢ in M, at some stage t(s,, <t <
Sm1)-

If t > s, then ¢ = 1”0 or > n"0. Hence ( is initialized at s,,, and z¢ > s, >
&; (1) [sm].

Ift = s, then T'P,

Sm

that a number less than ¢;(17)[s,,] enters M; o U M, ;.

= ( and no more strategies act at s,,. This is the only case
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(v) By (ii) and Procedure 11.4.4, if A = ¥(X,Y) then K = O(Y, 7). Now the

satisfaction of P, follows immediately from (iii) and (iv). O

This end the proof of Theorem I1.4.1.






Chapter Il

Filters

llI.1 Filters Generated by Sets

Yu and Yang (2005) and Chapter 2 demonstrate several examples of definable ideals
in R. However NC remains the only definable filter so far. In this chapter we will show

that NC is not the only one. '

Theorem III.1.1 (Nies (2003)). There is a scheme S\, for coding a standard model
of PA™ and a scheme S}, for coding functions such that for each d > 0 there are an
M C R and a map h coded by Sy; and S, respectively and h : M — [d, 0'] is onto.

Since the meet operation is somehow ill behaved, there are several versions of fil-
ters. For n < w, an n-filter F' is a upward closed set such that if ag, ..., a,, € F(m <

n)and a = /\\,,.,,a exists thena € F.

First of all, let us formally define filters generated by sets.

Definition III.1.2. Given n < w and C C R, let [C), denote the n-filter gener-

ated by C, i.e., the set of degrees x such that there exists a finite sequence of degrees

ag, ..., = X and for each i < [ either
(l) a; € C, or
(ii) there are m < n and jy, ..., Jm <t such that /X\Ogmgkajk exists and < a;.

I'The results in this chapter is contained in Wang and Ding (2006b)

43
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It is obvious that [C),, is the least n-filter containing C. We denote [C),, by [C).

From now on we assume 0 ¢ [C). An easy observation follows immediately from

the definition.

Proposition III.1.3. If C = {cy,...,cx} C |y, 0] then [C), C [y,0] for n < w.
Hence (}_,0,¢;] C [0, x] for any x € [C),.

Proof. The first part follows from an easy induction on length of finite sequences in

Definition I11.1.2 and directly implies the second part. [

Note that [C),, = |J{[F), : F is a finite subset of C}.

Next we fix some definable (in arithmetic) coding of finite sequences of natural
numbers. Let [th(n) denote the length of the sequence coded by n and (n); denote the
i-th element of the sequence (i < lth(n)).

Theorem II1.1.4. Given C C R definable, [C),, is also definable.

Proof. Let F = [C). For any x € F and a sequence of degrees ay,...,a; as in

Definition III.1.2. We may assume that (Vi < p)(a; € C) for some p < [.

Fix d such thatd > O and a; € [d,0'] for j < [. Let M and h be as in Theorem
[II.1.1, and let e code a finite sequence such that ith(e) = [ + 1 and h(((e);)™) =
a; for 7 < [. The predicate stating that the conditions of Definition III.1.2 hold for
h(((€)o)™), h(((e)1)™),. .., h(((e);)™), can be expressed by a formula in the language
of partial ordering and satisfactions in M. By the fact that M is interpreted in R and
the choice of e, this predicate is definable (say by ©(x,d, M, h,e™)) and holds in R.
So we have

R E (3d > 0)(3M)(3h)(3eM)p(x,d, M, h, ™).

On the other hand, if we have the satisfaction above then the image under A of the
finite sequence coded by eM is a finite sequence, say a, satisfying the conditions of
Definition I11.1.2. Hence we have x € [@’) C [C). O

lIl.2 Degrees Cupping Cappables

The following is a well known result.
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Theorem IIL.2.1 (Ambos-Spies et al. (1984)). The class of capping degrees, M, and
that of non-capping degrees, NC, form an algebraic decomposition of R into a defin-

able prime ideal and a definable strong ultra filter.

In Ambos-Spies et al. (1984), it is also proved that NC, ENC (effectively non-
capping degrees) and PS (promptly simple degrees) are all coincident with LC (low
cuppable degrees).

Let Cups(a) denote the collection of degrees which cup a to 0’ and Cups(C) =
Uacc Cups(a) where C C R. Itis obvious that Cups(C) is closed upward. Note that
LC = Cups(L). Furthermore, let NCups(a) = R — Cups(a) and NCups(C) =
R — Cups(C).

Fi1 = [Cups(M)) is definable by Theorem III.1.4. We prove an interesting prop-
erty for Fj.

Theorem II1.2.2 (Low Non-Diamond, Ambos-Spies (1984)). Ifay,...,a,andby, ..., b,
are such that \{/,,a; = 0" and \\/,_,b; € L, then there is some i < n such that
[0,2,] N [0,c] Z [0,b;] for any ¢ £ b;.

Theorem II1.2.3 (Harrington and Soare (1992)). Ifa A b = O then there is some c > a
such thatc AN b = 0.

The proof of Theorem I11.2.3 in Harrington and Soare (1992) can be easily extended

to yield a little stronger result.

Corollary II1.2.4. IfaAb = 0 and d < O' then there is some ¢ > a such that ¢ £ d
andc ANb =0.

Theorem IIL.2.5. F; N L = () and hence C NC.

Proof. For contradiction, assume in F; there is a sequence ay, ..., a,,ap41,...,a, =
a € L as in Definition III.1.2 where ay,...,a, € Cups(M) and a,1,...,a; ¢
Cups(M). Then (,,,[0,a;] C [0, a].

Let ¢ < p be the least such that (;.;,[0,a;] C [0,a], then ¢ > 0 since ag ¢ L.
Fix b € (y<;,[0,a;] and b £ a, then [0,b] N [0,a,] C (<,,[0,a;] C [0, a].

By Corollary II1.2.4, choose x,y € M such thata,Vx =0",xAy =0andy £ a.

Then we get a contradiction to Theorem I11.2.2. 0
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It is obvious that the above argument works for any joint-closed C C M. Moreover
such [Cups(C))’s are always non-ultra since every c.e. degree could be split into two

low ones.

Proposition II1.2.6. For any joint-closed C C M, [Cups(C)) is non-ultra and disjoint
with L, hence C NC. In particular, F1 is non-ultra.

A natural question arises that whether F; is strong. Or more aggressively,

Problem II1.2.7. Given a € Cups(M), is there always ab € ()
infimum of some ¢ € Cups(M)?

aEé[Oa a] which is the

[11.3 Non-splitting Bases

In this section we will prove that the so called Lachlan-Harrington’s nonsplitting
bases generate a filter different from NC and F;. Lachlan (1976) introduced the 0"
injury argument when constructing a pair of degrees a < b with b non-splittable above
a. Later Harrington improved this monster result by showing that b could be 0’. We call
those a’s in Harrington’s result as Lachlan-Harrington’s nonsplitting bases and denote
them by NSB.

Proposition IT1.3.1. NSB C PS. Hence [NSB) C R.

Proof. Tosee NSB C PS, leta € NSB and choose a pair of low c. e. degrees joining

to 0". Then a cups one of the two to 0’.

On the other hand NSB N L = () while PS N L # 0. O

We denote [NSB) by F, and prove the following.

Theorem I11.3.2. F; — 7, O Cups(M) — F, # .

To prove the above theorem, we construct a c. e. set A such that deg(A) €

Cups(M) — F, using a tree of strategies, say 7.
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[11.3.1 Making A cupping a cappable

To make deg(A) € Cups(M), we simultaneously build c. e. sets B, C'and a c. e.
functional A so that K = A(A, B),

M. : f=T.B)=T.(C)istotal = f is computable

and
P.:C#W,

where (I, : e < w) is an effectively enumeration of all functionals and (W, : e < w)

sets.

Note that in general we should also make P’s for 5. But combining these require-

ments with those in the next subsection automatically guarantees B non-computable.

To make K = A(A, B) we have one global strategy which is also identified as
A. At any stage of the construction A either extends the domain of A or repairs a
A(A, B; k) disagreeing with K (k) by enumerating §(k) in A and redefines it.

As classical minimal pair constructions we arrange many strategies on 7' for an
M. Assume « is a such one. Its length of agreement [* and a-expansionary stages
are defined as usual. « has two possible outcomes, say oo indicating infinitely many

expansionary stages and 0 for finite. If co appears true then only one of I'(B) [ [* and
['(B) | 1™ is allowed to be destroyed.

We also arrange many strategies for a P. Let 3 be one. It chooses a fresh witness,
say ¢, at the beginning, and waits for this witness to enter . If 3 keeps waiting then

it has 0 as outcome, or it puts ¢ in C' and has 1 as outcome.

The possible outcomes defined so far are ordered reversely, 1. e. co < 1 < 0.

111.3.2 Keeping deg(A) away from F

To make deg(A) & F», for each finite tuples of c. e. sets, we should either prove
that one of them is not in NSB, or find a c. e. set computable in every element of the
tuple but not in A. For notational simplifications we do the above only for tuples of two

elements. The general case would be an easy variance.
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Hence for each pair (X, Y ) of c. e. sets, we either refute that deg(A) is in the filter
generated by deg(X.) and deg(Y,), or find at least two pairs (Ey, £7) and (Fp, F;) of
c. e. sets and two c. e. functionals © and = so that one of the pairs witnesses (via © or

=) that X, or Y, is not a non-splitting base.

Thus we should have a strategy, say 7 € 7' building the sets and functionals men-
tioned, and make
Qe K = @(Eo,El) = E(FQ,Fl).

7 has exactly one outcome denoted by 0. When 7 is accessible during the construction,
it either extends the domain of © and =, or repairs the definitions on some k by enu-
merating 0(k) and (k) into (Ey, £1) and (Fy, F}) respectively. However it depends on
7’s substrategies whether 0(k) (£(k)) should go to Ey or £y (Fy or F}).

7 has many children extending 70 for all tuples (n, 4, j) (where n < wand i, j < 2)
making

NI, D=0,(E;,X)=U,(F,Y)= 3G <1 X,Y(G £1 A)

n’lhj

for some effective enumeration of all possible combinations of the form (®,,, ¥,,, 1, j).

Letm O 770 be an N7, ;-strategy and top(7) = 7. During the construction 7 builds
ac. e set G <t X,Y. It has a parameter [™ to measure the length of agreement
between D, ®(E;, X) and ¥(F};, X). Thus we may define m-expansionary stages as
usual. In addition, 7 has two outcomes, say oo for infinitely many expansionary stages,

and 0O for finitely many. Above 7" 0o, we arrange children of 7 to make

OF : G # Ag(A), for each functional Ay.

Now assume o 2O 7 oo is a child strategy of , let top(c) = 7 and toop(c) =

top(m). In isolation o acts as below

1. Pick an agitator d° and wait for ™ > d. We say d realized if the inequality
realized.

2. Choose a witness g” > ¢(d), 1(d) and keep it from entering G. If later ¢(d) or
1(d) grows then cancel g and go back to (1) for waiting.

3. Wait for A(A4;g) |=0,1i. e. g to be realized.
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4. Enumerate d in D, impose restraints 7 (E) = ¢(d) and 7° (F') = 1(d) on E; and
F; respectively, and 7 (A) = A(g) on A.

5. At next m-expansionary stage, enumerate g in G.

If o waits at (1) for ever or goes back to (1) infinitely often, then it has co as outcome
indicating ® or ¥ diverges at d and hence a failure of the premise of . We arrange no
more children for m above o co. If g is never realized then ¢ has 0 as its outcome. If o

eventually reaches (5) then it has 1 as final outcome.

The intuition of the above procedure is that when ¢ is realized, o diagonalizes
against the premise of 7 for obtaining permissions from X and Y of enumerating ¢
in G. As there may exist many strategies between 7 and o, ¢ in addition creates a link
(7, 0) when it finishes (4), for catching permissions in time. At next m-expansionary

stage the construction should jump via this link from 7 to o and let o finish (5) promptly.

The outcomes are ordered as before.

[11.3.3 Coordinating strategies

The first kind of conflicts between strategies arises when O-strategies on 7' try to
protect A-computations at their witnesses. They do this by imposing a restraint on A,

but A may need to enumerate some §(k) in A for repairing A(A, B; k).

To solve these conflicts, we assign a new parameter k° for each O-strategy o on 7.
o defines k fresh at the beginning. When it is ready to change D(d), besides setting
r7(A), o lifts 6(k’) for ' > k by enumerating 6(k’) in B and redefining all such §(k’)’s.
Thus A would not violate 77 (A) if it were to repair A(A, B; k') for k' > k.

But the restraint may still be violated if A needs to repair A(A, B; k') for k' < k.
If this happens, we let A reset o by canceling g(o), r?(Z) for Z = A, X or Y, and any
link (top(c), o). Note that A does not cancel k.

Moreover to make M’s at the same time, when o lifts §(k) the stage should be

ended immediately as in typical minimal pair constructions.

There are similar conflicts between Q- and O-strategies, but the solution is different.
We apply the trick in the proof of Sacks Splitting Theorem. Suppose an Q-strategy 7
needs to repair some 0(k) and £ (k). First it finds the most prior grandchild O-strategy,
say o, having restraints 77 (E) > 0(k) or r?(F) > &(k). Then T enumerates 6(k) in
Ey_j- and £(k) in Fy_jo. Thus 77 (E) and 77 (F’) are eventually never violated.
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[11.3.4 The construction

Stage 0. Initialize all parameters. Let TPy = ().

Stage s > 0. First deal with A. Let = be the least number such that either
A(A, B;x) is undefined or K(x) # A(A, B;z). If A(A, B;x) is undefined, simply
define it to be K'(z) with §(z) = s. Otherwise, let o € T be the most prior O-strategy
with 77(A) > d(z), do the followings to reset o

1. cancel g7, 77(Z) for Z = A, E and F, and
2. cancel any link of the form (top(o), o).

Then enumerate §(z) in A and redefine A(A, B;z) = K (x) with §(z)[s] = s, initialize
all( >oonT.

Then deal with strategies on 7. We will define an approximation 7'P; to the true

path. Once T'P; is determined, initialize all strategies > 7T'P; and goto stage s + 1.

Let () be accessible. Assume 7 € T is accessible.

Case 1. 7 is an M,-strategy. If s is n-expansionary, let o = co. Otherwise let
o=0.

If || = s, then let TP, = n. If || < s then let 1”0 be accessible.

The above routine of checking the length of an accessible strategy is also called in
other cases when an outcome is determined. We will take this for granted and mention

no more.
Case 2. 7 is an P,-strategy. If C N W # (), let 1 be the current outcome.

Otherwise define ¢" fresh if it is undefined. If ¢ € W then enumerate ¢ in C, let

T P, = n and goto stage s + 1. If ¢ € W then let 0 be the current outcome.

Case 3. 1) is an Q.-strategy. Let x be the least number such that

1. ©(Ey, E1; x) and Z(Fp, Fy; x) are undefined, or
2. K(x) # O(Ey, Ey; x) and K (x) # Z(Fy, Fi; x).

If (1) applies, define ©(Ey, Ey; x) = Z(Fy, Fi; ) = K(x) with 0(z) = &(x) = s.
If (2) applies, let o be the most prior O-strategy on 7' with toop(c) = n and

min{f(z),{(z)} < max{r’(E),r?(F)}, enumerate §(x) in Ey_;» and {(x) in F_jo.

Moreover, initialize ( > o on 7.
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Either one of the above two happens, let 0 be the current outcome.
Case 4. 1) is an N -strategy. If s is n-expansionary and there is a link (7, o) then let

o be accessible.

If s is expansionary and there is no link of the form (7, o) then let co be the current
outcome. Otherwise let 0 be the current outcome.

Case 5. 7 is an O-strategy. Let 7 = top(n).

Subcase 5.1. There is a link (7,7n). Cancel this link, enumerate ¢”7 in G™ and let
TP, =n.

Subcase 5.2. There is no link (7,7n). If ¢ is defined and in G, then let 1 be the
current outcome.

If k7 (d") is undefined, let it be fresh. If either d > [™ or g is defined but <
max{¢(d), ¥ (d)}, then cancel g, r"(Z) (for Z = A, F and F) and let co be the current
outcome.

Otherwise, let g be fresh if it is undefined. If A(A; g) # 0 then let 0 be the current
outcome. If A(A;g) = 0,putdin D, r"(A) = X(g), r"(F) = ¢(d) and r"(F') = (d),
enumerate (k) in B and redefine A(A, B; k) = K(k) with §(k) = s. Finally create a
link (7, n) and let TP, = 7.

[11.3.5 The verification

It follows immediately from the construction that all sets and functionals built are

C. €.

Lemma IIL.3.3 (True Path). Let TP = lim inf, T'P,, for each n € w,

1. |TP|>n,
2. T'P | nis accessible infinitely often,
3. T'P | nisinitialized and reset at most finitely many times, and

4. if TP | nis an O-strategy then r'7'"(Z) converges for Z = A, E and F.

Proof. We prove (1)-(4) simultaneously by induction on n. Let n = T'P | n. The cases
where n = 0 or n is an M-, P- or Q-strategy are trivial.
n is an N, ; j-strategy. Tt suffices to prove that 1" oo is accessible infinitely often

if there are infinitely many 7-expansionary stages. Let s be an n-expansionary stage
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and assume 7) is never initialized after s. If 1" oo is not accessible at s, then there is a
link (n, o) at the beginning of stage s. By Subcase 5.1 in the construction, this link is
canceled and no link is created at s. Hence 1" 0o is accessible at next 7-expansionary

stage.

n is an Oy-strategy. Let m = top(n) and T = toop(n). By induction hypothesis,
d = lim, d"[s|, k = lim, k"[s] and

r=limmax{r’(Z):0 <n,Z =A,E, F}|s]

s

exist. Let sy be a stage when d, k and r reach their final values. In addition we may

assume that

1. nis never initialized after s,
2. K(z) = A(A, B;x)[so] | forx < k and
3. K(y) = O(Eo, Ev;y)[s0] 1= Z(Fo, Fi;y)[s0] | if 0(z)[so] or £(x)[se] < 7

where O, =, Ey, 1, Fy and F7 are c. e. functionals and sets built at 7.
If ) changes D(d) at some s; > so then A(A;¢g) |=0= G(g) and
D(d) = ®(Eiw), X;d) 1=V (Fjq),Y:d) |
at the beginning of s;. While at the end of s;, we have

L. D(d) # ®(Eiw), X;d) |=V(Fj),Y;d) |,
2. (k) > Ag) =r(n,A), and
3. r(n, FE),r(n, F) are defined.

By the choice of sg, the computation I'(A; g) and g are fixed for ever. Let sy > s1 be
the next m-expansionary stage, then g € G[sy]. Hence "1 C T'P.

The lemma follows immediately. [

From the second part of the above proof, A(A, B) is total and equals K. Moreover
each P is satisfied from (2) and (3) of the Lemma.

Lemma II1.3.4 (Minimal Pair). Each M. is satisfied.
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Proof. Let o C a"oo C TP be an M,-strategy. By the True Path Lemma we may
assume that « is neither initialized nor reset after s. Let s < s1 < ... < 8, < ...

enumerate all a-expansionary stages after s, and let [,, = [%[s,,].

If at the end of s,, there is no link of the form (7, o) with m C o C o, then a typical

minimal pair argument shows that f[s,] [ 1, = f[sns1] [ ln

If there does exist a link as described then o changes B but no one changes C' at s,,.
Moreover no strategy could change C' [ v(l,,)[s,] before s,,,1, by initializations and the

choice of s. Hence we have
f[sn] [, = F(C> [Sn] [l = F(C) [5n+1] M = f[sn—l-l] [Mn-
So we can compute f. O

For each Q-strategy 7 C TP, the equality K = O7(Ey, Ey) = Z7(Fy, [1) is

automatically guaranteed by the construction. We have the last lemma.

Lemma IIL3.5. Let 1 C TP be an N, ;-strategy and top(r) = T, then G <r
X7, YT and each O}, is satisfied.

Proof. The lemma holds trivially if there are at most finitely many m-expansionary
stages. So we may assume that 7" oo C T'P and 7 is neither initialized nor reset after

some stage Sp.

To compute G(z) from X, find a stage t > s, at which 7" o0 is accessible and
X | = X[t] | . Then G(z) = G(x)[t]. The algorithm of computing G from Y is

similar.

Now let o be an O -strategy on 7" with top(c) = w. By the True Path Lemma we
may assume that d = lim, d[s] = d7[s]. If 0”00 C TP then the premise of A is

obviously false and the lemma holds.

Otherwise we may assume g = lim, ¢?[s] = ¢g7[so]. By the construction, once 7
enumerates g° in G, A(A;g”) could be changed only if some strategy reset . But
then g7 were canceled. Hence after s, whenever an inequality G(g) = 1 # A(A;g) is

setup, it lasts for ever. If such an inequality never appears then g is never realized and
A(A; ) # 0= G(g). 0
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lll.4 The Supreme of F; and F;

In this section we prove that the supreme of F; and F; is a proper subset of NC.

Theorem I11.4.1. [Cups(M) U NSB) is a proper definable subfilter of NC.

The definability is obvious. It suffices to construct a promptly simple set A with its
degree not in [Cups(M) UNSB).

[11.4.1 Making A promptly simple

To make A promptly simple, we will make A coinfinite and

P. : W, is infinite = 3z, s(z € We s N As).

We will have exactly one strategy for each P., denoted by P.. These P’s will be
ordered naturally by their indices. If at some stage s, P, finds that P, is not satisfied so
far and there is an element greater than 2e showed up in W, then P, puts the least x as

above in A and declares P, satisfied.

lll.4.2 Avoiding the filter

As in the last section, we will only make deg(A) ¢ [{u,v,x% x'}) for any tu-
ple (u,v,x% x') € NSB? x Cups(M)>2. The theorem should follow from a simple

generalization.

The strategies described in this subsection will be arranged on a tree of strategies,

say T'.

Given (U,, V., X%, X} Y., Z.) a tuple of c. e. sets. We have a 7 € T assuming
that (U,, V., X%, X!) is a tuple of representatives of degrees as above, y witnesses
x? x! € Cups(M) (i. e. Y, cups both X? and X! to (') and z witnesses y € M (.
e. they form a minimal pair). 7 builds c. e. sets Ey, 1, Iy, F}, functionals I'; A and an

additional c. e. set D for diagonalization so that

QT K= F(EU,El) = A(F(), Fl)



[II.4. The Supreme of F; and F; 55

and

i i D=0n(E,U) =V (F;, V) =A) (X),Y.) = AL (X, Y.) =
3B <1 U, V., X2, X} (B &1 A) or 3C <1 Y., Z.(C &1 ()

where (@,,, ¥,,,, A% 'Al i j) effectively ranges over all possible combinations of func-

m? 7

tionals when (m, ¢, j) effectively ranges over w X 2 x 2.

The only direct responsibility of 7 is to meet Q, hence it will be referred as Q-
strategy. 7 has exactly one immediate successor on 7', denoted by 7"0. To define I'; A,
7 extends the definitions of the functionals by stage using big uses. Once it finds I' or
A is wrong at some parameter, 7 enumerates the corresponding use in Ey, F or Fy, F

and corrects the definition.

To meet M’s, 7 has many substrategies for each M as its successors. Suppose 7 is
such one, let top(m) = 7. We then define the length of agreement [™ and expansionary
stages for 7 as usual. 7 has two possible outcomes, say oo indicating that there are
infinitely many expansionary stages, and O for finitely many. Now 7 has {™ to measure
the premise of M. For the consequence of M, 7 builds B and C' subjecting to proper
permissions and has its substrategies above 7" oo to make for some proper effective
indexing,

NT:B=6,(A)and C =W, = Z, is computable

where (O,,, W,,) effectively ranges over all combinations of functional and set.

Let o be a substrategy of 7, top(c) = 7 and toop(c) = top(w). At the beginning,
o picks a fresh agitator d and waits for the premise of M established at d. Secondly it
picks a fresh witness b, and waits for B(b) = 0 = ©(A), say realized. Next o picks a
fresh follower ¢y and wait for ¢, realized, i. e. ¢ € W,,. If b and c are realized then o
waits for changes of Z | ¢y (i. e. permission by Z) and simultaneously picks another

follower ¢; and so on.

If Z | ¢, never changes after c; realized then we can compute Z. Thus we re-
fute the assumption of 7 and have a global win for 7. If Z | ¢, changes for some
ci realized, then o enumerates d in D immediately (even if o does not appear to be
on the true path) and creates a link (7, 0) for catching further permissions needed

promptly. At next m-expansionary stage, the flow of control follows the link and jumps
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from 7 to o (say the link is traveled). Now either U, V, X° and X' change below
u(d) = max{¢(d),,0°(d),5'(d)} or Y changes below u(d). If the first case happens,
o enumerates b in B and the second enumerates ¢, in C'. Either one ¢ obtains a local

win, cancels the link and terminates.

Note that u(d) could move after o picks b and cy. If this happens b or ¢, might be too
small to be permitted, then o cancels this witness and all defined followers. Similarly,

0(b) could move after o picks co, then o cancels all defined followers.

o has four possible outcomes listed below.

oo - u(d) moves infinitely often;
b - 0(b) moves infinitely often, b is never realized or b € B;
z - There are infinitely many defined followers but none is ever permitted by Z, thus
Z is computable;

¢ - Some follower is either never realized or enumerated in C.

Both oo and z mean global wins for 7 = toop(c), thus we arrange no descendance
of 7 above 0”00 and " z. While b and c indicate local wins for o, descendance of 7

and 7 are arranged above to make M™’s and N™’s.

All possible outcomes in this subsection are ordered as co < b < z < ¢ < 0. The

tree of strategies, say 7', is defined in a usual way.

[11.4.3 Coordinating strategies

Note that once an N -strategy, say o, puts its agitator in D, it expects no move of
6(b). Hence it should impose a restraint on A. On the other hand, to force changes
of U | u(d) and V' [ wu(d), it should also restrain £; and F;. Hence there are two
kinds of conflicts, the first kind between N -strategies and P’s and the second between

N -strategies and their grandparents Q-strategies.

To solve the first kind, we have o choose a fresh killing point, say k, at the very
beginning. When it expects no change of A [ 0(b), o imposes a restraint (A) = 0(b)
on A. This r(A) will be respected by every P. with e > k. But the other £ many P’s are
free to violate r(A). If such a violation happens, we cancel all parameters (including
possible links) associated with o except the killing point, and say that o is reset. Since

each P needs only one chance for winning, o can be reset by P’s at most finitely often.
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On the other hand we will ensure that there are only finitely many strategies having

killing point below one e and their restraints on A are bounded.

The second kind of conflicts is solved in essentially the same way as in the last

section.

[11.4.4 The construction

During the construction, the even stages are devoted to P’s and the odd stages are
devoted to T'. At the beginning we have all parameters undefined and all c. e. sets and

functionals to be built empty.

At an even stage s, we say a P; requiring attention if and only if ¢ < s, P; is not

satisfied so far and there is an x such that
€ W,us— Aand x > 2i, max{r’(A) : 0 € T, k° < i}

If there is no P requiring attention, proceed to stage s + 1. Otherwise let ¢ be the least
index with P; requiring attention, x be the corresponding least element and o be the
most prior strategy on 7" with 77(A) > x, put x in A, reset o and initialize all strategies

on 7" and less prior than o. Finally declare P; satisfied and proceed to next stage.

At an odd stage s, we will define a finite sequence of accessible strategies on 7" and
an approximation of the true path, say 7'F;. A strategy, say 7, acts immediately after
it becomes accessible. When it finishes its jobs, there are three possible cases, i. €. an
outcome o is determined, 7' F; is defined, or the next accessible strategy is determined.
If the first case happens and |n| > s then define T'P, = 7. If the first case happens but
|n| < s then let 1”0 be accessible. In whichever case, if 7'P; is determined, initialize
strategies less prior than TP, and proceed to next stage. Initially let () be accessible.

Given 7) accessible, the jobs of 7 are defined by cases.

Case 1. ) is a Q.-strategy. Let = be the least number such that
F(Eo, E17 .’L’) T and A(Fo, Fla x) T or K(.CIZ') 7£ F(Eo, E17 .’L‘) = A(Fo, F17 .Z')

If I'(Ey, E1;x) T and A(Fy, Fi;x) 1, let I'(Ey, Ev; ) = A(Fo, Fi;x) = K(x) with
~(x) and \(x) fresh.
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Otherwise, let ¢ € T be the most prior A/-strategy such that toop(c) = n and
max{r?(E),r’(F)} > min{y(x), A(z)}. Put y(x) in Ey_;o and A(x) in F;_;o, rede-
fine I'(Ey, Ev; x) = A(Fy, Fi;x) = K(x) with y(x) and A(x) fresh, initialize strategies
less prior than o.

In both cases, let O be the outcome.

Case 2. 1) is an M . -strategy where 7 = top(n).

mi.j

If s is not n-expansionary, let 0 be the outcome.

If s is expansionary and there is a link of the form (7, o), let o be accessible and
cancel this link.

Otherwise, let sy < s be the last n-expansionary stage. Say an N-strategy o D
1" oo requiring attention if and only if

1. d?,b° are defined and b° > u(d) = min{@(d), ¥ (d), 6°(d), 6*(d)},
O(A;b7) |= 0= B(b7),
CNWye =0,

7 is realized at sg and Z[so] [ ¢f # Z | ¢{ for some k.

Ll

If sq is undefined or there is no N -strategies requiring attention, let oo be the out-
come. Otherwise let the most prior one requiring attention, say o, be accessible.

Case 3. 7 is an N -strategy where 7 = top(n). If b is defined and in B, let b be
the outcome. If C' N W, # (), let ¢ be the outcome. Otherwise act according to the
applicable subcase below.

Subcase 3.1. 7 becomes accessible because a link (7, 77) is just traveled. Let sg < s
be the stage when this link was created. If Y | u(d)[so] # (Y [ u(d))[so] then put the
greatest defined follower in C'. Otherwise put bin B. Let TP, = 7).

Subcase 3.2. 7 becomes accessible because 7 finds it requiring attention. Put d in
D,letr(E) =r(F) = u(d) and r(A) = 0(b), create a link (7, n) and let TP, = n.

Subcase 3.3. None of the above subcases applicable. Define £ and d fresh if they
are undefined. If d > (™ then let T'P; = 7 and stop.

Let u(d) be as in Case 2. If b is defined and less than u(d) then cancel b and all
defined followers, let co be the outcome.

Otherwise define b fresh if it is not defined. If b is not realized, let b be the outcome.
If b is realized and ¢y is defined, let sy be the stage when ¢, became defined. If (A |
0(b))[so] # A | 6(b), then cancel all followers and let b be the outcome.
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Otherwise let k be the least number such that ¢;, is undefined. If £ = 0 or ¢;,_; is
realized, define ¢, fresh and let z be the outcome. If £ > 0 and ¢;,_; is not realized then

let ¢ be the outcome.

[11.4.5 The verification
It is obvious from the construction that all sets and functionals constructed are c. e..

Lemma II1.4.2 (True Path). Let T'P = lim inf, T'P,. For each n we have the following.

|TP| >n,

TP | nis accessible infinitely often,

TP | n is initialized at most finitely often,

If TP | nis an N -strategy then the limits of r'F"(A), rTP"(E) and v (F)

exist, and T'P | n is reset at most finitely often.

N Wb o~

Proof. We prove (1)-(4) simultaneously by induction. It is obvious for n = 0. Assume

the lemma holds for n and n = TP | n.

Case 1. 7 is a Q.-strategy. (1)-(3) hold trivially as 7 has only one immediate

successor on 1. (4) is included in Case 3.

Case 2. 1 is a M] , .-strategy. Firstly we prove (1)-(3) for n + 1. To this end it

niyj
suffices to prove that |TP| > n + 1.

The situation that there are at most finitely many 7n-expansionary stages is trivial.
Now assume there are infinitely many 7-expansionary stage. Let s) > n be a stage
from when on 7 is never initialized. Assume s > s( is n-expansionary but " 0o is not
accessible at stage s. Then either there is a A/"-strategy requiring attention or there is a
link (n, o).

In the first case, a link like (77, o) is created at stage s. Thus this case is reduced to

the second one.

In the second case this link is canceled and no new link is created. Note that only
those N/"-strategies prior than o could require attention before 77" 0o becomes accessible

again. Hence 7" oo is eventually accessible again.

(4) for this case is included in Case 3.
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Case 3. 7 is an N -strategy where 7 = top(n). By induction hypothesis, let sg
be a stage from when on k" is fixed. Hence 7 is neither initialized nor reset after s.
Suppose 7(A),r"(E) and r"(F") become defined at some stage s > s¢. Then at stage

s, we have for d = d",
D(d)[s] =1# 0= D(d)[s — 1] = E(H; d)|s]

where Z(H) = ®(E;, U), U(F;, V), A°(X°,Y) or AY(X,Y).

Let s’ > s be the next m-expansionary stage, then
D(d)[s'] = Z(H;d)[s'] =1 # 0 = E(H; d)]s]

where Z(H ) is as above. As by induction hypothesis the restraints are never initialized
after sg, either U, V, X° and X! change below u(d) or Y | wu(d) changes, and either
b" € B[s'] or C[s'] N W is not empty. By the construction, the restraints are fixed for

cver.

(1) and (2) are obvious. For (3), since the restraints imposed by 7 are eventually
fixed, toop(n) could initialized TP | n + 1 for correcting I" and A at most finitely
often. [

The next lemma follows immediately from (4) of the True Path Lemma and the

construction.

Lemma I11.4.3. All P’s and Q’s are satisfied.

Finally let 7 C TP be an M . .-strategy where 7 = top(mw) C TP is a Q.-strategy,

m7l7.7

we prove the satisfaction of this M and end the proof of the theorem.

Lemma IIL.4.4. M7 . . is eventually satisfied.

m7l7j

Proof. If 170 C TP, then the lemma holds trivially. Assume 7" oo C T P, then there

are infinitely many m-expansionary stages. Let o be an N/"-strategy on T'P.

By the True Path Lemma, d = lim, d°[s] exists. Thus if 0 oo C TP then some
E(H;d) diverges for =(H) = ®(E;, U), V(F;, V), A% X Y) or AY(X!Y) and M is

satisfied since its premise is refuted.
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If 0”00 ¢ TP then b = lim, b7[s] exists. Suppose o°b C TP, then either O(A;b)

changes infinitely often, b is never realized or b € B. The first two cases imply B(b) =

(
0 # O(A;b). For the last case, assume b is enumerated in B at stage s then B(b)
1 #0=0(A;b)[s] and (r7(A) = 0(b))[s] and is never violated. Hence B(b) = 1 #
0=0(A;b).
Next assume 0"z C T'P, then ¢ has infinitely many realized permanent followers.

By the True Path Lemma and Case 2 in the construction, Z | ¢] = Z|si| | ¢ where ¢{

is a permanent follower, s, is a stage when ¢, has been realized and 7" oo is accessible.

Finally assume 0" ¢ C T'P, then either o has finitely many permanent followers and

the greatest one is never realized, or C' N W,, # (. In the first case W, — C # 0.

The satisfaction of M follows from the above argument. [

1.5 Conclusions

[11.5.1 A counter example

People might expect that diamond bases, i. e. infima of splittings of 0', also generate
a proper filter. However by Ambos-Spies et al. (1994), the distributive lattice shown in
Figure 1 can be embedded in R preserving 0 and 1 (where ay A a; is joint-irreducible
and noncappable). Thus there are two diamond bases, namely ¢, and c; (the images of

¢o and c;), forming a minimal pair.

Proposition IIL.5.1. [DB) is not a proper filter.

[11.5.2 Remarks

Firstly, observe that the proof of Theorem I11.4.1 could be improved to made deg(A) €
H. Hence by the Jump Interpolation Theorem in Robinson (1971), we have a clear pic-

ture of the relation between J; and jump hierarchy.

Proposition II1.5.2. NC — F; meets every jump classes.

Secondly we raise a natural question about F; and Fo.
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1
ap (3]
bl o [ ] bO
C1 Co
0

Figure III.1  Two diamond bases forming a minimal pair

Problem I11.5.3. Is F;, a subset of F,? Or even NSB C Cups(M)?

Thirdly, if there exist no n-sequence of degrees pairwise cupping to 0’ above a
then we call a n-nonsplitting. Let NSB,, denote the class of n-nonsplitting degrees.
Obviously NSB = NSB, and NSB,, = {0’} if n < 2. Leonhardi in Leonhardi
(1997) proved that NSB,,.; — NSB,, # 0 forn > 0. Let NSB.,, = Uign NSB,;.

Then we have the question.

Problem IIL.5.4. Does [NSB,,,1) — [NSB.,,) # 0 for each n > 0?

Finally, let NSB,, = | J.__ NSB,.

<w

Proposition II1.5.5. NSB,, is definable.

Proof. Tt is easy to see that NSB, N (M UL) = (). Now let d > 0 be an element
of NSB,, then we could have a standard model M and a surjection h : M — [d, 0]
as in Theorem II1.1.1. The predicate that h(((e)o)™),...,h(((e)i—1)™) do not form

an l-splitting sequence above d where (e); and | = lth(e) are as before, is obviously

definable and uniform in e O

It is then natural to ask the following.

Problem IIL.5.6. Does NSB,, form a (strong) filter?



Chapter IV

A Congruence Relation

IV.1 Introduction

Ambos-Spies et al. (1984) suggested that the quotient structure R /M might give
insights on R. Schwarz (1984) contained a systematic study and found a major prop-
erty of R /M analogous R, namely R /M is downward dense. But the density of R /M
remains open. Another important result on R /M is that Shoenfield’s homogenous con-
jecture fails, by Yi (1996). Recently Li et al. (2006) studied another quotient structure
R /NCup and built a minimal pair in it.

!'In this chapter we will introduce a new congruence relation, denoted by ~, and
deduce from known results that R/ ~ is not dense. This shows that quotient structures

of R could behave very differently from R.

We will also show that ~ is a relation strictly coarser than modulo NCup in the

last section. This again suggests great complexity of R.

V.2 A congruence relation on upper semilattices

We introduce some notions.

Definition IV.2.1. Fix (L, <,V, 1) an upper semilattice with a greatest element 1.

I'The results in this chapter is contained in Wang and Ding (2006a)

63
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1. Fora € L let Cups(a) = {b € LlaV b= 1} and Cups(X) = J,cx Cups(a)
for X C L. We call elements of Cups(a) cupping partners of a.

2. Let NCup(L) = {a € L|Cups(a) = {1}}. Obviously NCup(L) is an ideal and
we call it the ideal of noncuppables and its elements noncuppables.

3. a ~ bifand only if Cups(a) = Cups(b), for a,b € L.

Fix L be as in the above definition. It is immediate that ~ is an equivalent relation

on L. In fact, ~ is a congruence relation.

Proposition IV.2.2. Fora, b, c and d elements of L, a ~ band ¢ ~ dimply aVc ~ bVd.

Proof. IfaVcVax=1thenbVcVar=1asa~b. SimilarlybVdVzx =1asc~d.
By symmetry a Vc~ bV d. [l

We denote a the congruence class represented by a and L=1L / ~.
Proposition IV.2.3. a < b if and only if Cups(a) C Cups(b).

Proof. (=) Trivial.
(<) Assume Cups(a) C Cups(b). f tVaVb=1thenzVbVb=aVb=1
Thus Cups(b) = Cups(aVb)and b~ a Vb > a. O

Moreover Cups(a) = {b|b € Cups(a)} as ~ is commutative with \V and 1 = {1}.

Corollary IV.2.4. @ < b < Cups(a) C Cups(b) < Cups(a) C Cups(b). Hence
a — Cups(a) is a partial order monomorphism from L into the powerset of L ordered

by inclusion.
Proof. Immediately from the last proposition and the above remarks. 0

If NCup(L) is not empty, then we could define another congruence relation modulo
NCup(L) as NCup(L) is an ideal . If moreover L has a least element 0, then from the
definitions, elements in NCup(L) represent the least element in L/NCup(L) as well
as in L. Thus some local properties of L/NCup(L) might also hold for L/ ~. The

following is an example for L = R.

Proposition IV.2.5. There is at least a minimal pair in R/ ~.
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Proof. (Li et al., 2006, Theorem 6) proved that there is a minimal pair in R/NCup
by constructing a and b such that Cups(a) N Cups(b) = {0'}. Tt is easy to see

aAb=0. U

However the two relationships could be different. A simple example of this is the
natural restriction of the least non-modular lattice V5. Later we will prove that these

two congruence relations are different for L = R.

We introduce another notion motivated by degree theory.

Definition I1V.2.6. Call a pair x,y a nontrivial splitting of z if t Vy = 2z, * < z and
y < z. u € L is a nonsplitting base if and only if there are no nontrivial splittings of 1

above u. Let NSB(L) = {u € L|u is a nonsplitting base}.

Proposition IV.2.7. The interval (@i, 1) is empty if and only ifu € NSB(L).

Proof. (=) Assume a € (i, 1) then a < 1 and there is an © € Cups(a) — Cups(u).

Thus x V u < 1. Hence a V uw and = V u form a nontrivial splitting of 1.

(<) If there are a, b > u forming a nontrivial splitting of 1 then we will have a > u

as b € Cups(a) — Cups(u). Hence (i, 1) is not empty. O

We call @ maximal if & < 1 and (%, 1) is empty.

Corollary IV.2.8. If 4 is maximal then i = {v € NSB(L)|u Vv < 1}.

Proof. u C {v € NSB(L)|uV v < 1} by the last proposition.

On the other hand, if v € NSB(L) and v Vv < 1then ¥ = (uV v)~ = @ where
the first equality is by the maximality of © and the second by that of . [

Corollary IV.2.9. R/ ~ is not dense.

Proof. Lachlan (1976) proved that there are a,b € R such that a < b and there
are no nontrivial splittings of b above a. Harrington in an unpublished manuscript (a
published and modern presentation can be found in Leonhardi (1997)) improved this
by showing that b could be 0’ (i. e. the greatest element of R). Hence NSB(R) is not
empty and R/ ~ is not dense by the above proposition. [
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IV.3 Comparing ~ and modulo NCup

In this section we prove that ~ and modulo NCup are different congruence relations
in R. Let NCup = NCup(R) and a be the element in R/NCup represented by
acR.

Theorem IV.3.1. There are c. e. degrees a and b such that b Zaburb < a

We construct two c. e. sets A and B representing a and b mentioned above. To

make b « a it suffices to make
M. :B=9.(A, X,.) = X, is cuppable

for each e, where e is an index of some effective enumeration of pairs of functional and

set. To make b < a we build an additional set D and make
P.:D=V.(B)Y,) = K<rAdY,

for each e, where e is again an appropriate index.

We arrange strategies for meeting requirements on a tree, say 7.

IV.3.1 Meeting M’s

Let 7 € T be an M.-strategy, [ and 7-expansionary stages are defined as usual. 7
has two possible outcomes, say oo indicating that there are infinitely many expansion-

ary stages and 0 indicating finitely many.
If oo appears to be true, 7 builds a set C” and a functional A” such that K =
A(C, X) and
N7 D #T14(0)

where ['; effectively ranges over all functionals when ¢ ranges over w.

To make K = A(C, X), at an expansionary stage 7 either extends dom(A) or
repairs a disagreement between K and A by putting an appropriate use in C'. The uses

of A obey the prescribed conventions and an additional rule,



IV.3. Comparing ~ and modulo NCup 67

(0-rule) If 7 acts at stage s then 6(n)[s — 1] |€ C implies 6(n)[s] > s.

To make N, 7 has children above 7" oo assigned to ;. Let o be such one, define

top(c) = 7. o acts as below.

1. Pick a killing point k°, an agitator b° and a witness d° fresh, keep b from entering
B and d from D.

Wait for b < [".

If later ¢(b) moves, return to (2).

Wait for D(d) = 0 =1I'(C;d) |.

If 0(k) < ¢(b), put (k) in C' and return to (4).

Put b in B, impose a restraint = ¢(b) on A and wait for the next 7-expansionary

A

stage.
7. Putd in D and redefine §(n) fresh for n > k.

If o returns from (3) to (2), it will have outcome co. If this happens infinitely often
then we will have ¢(b) diverging and ® partial. Hence o oo indicates a global win of

7 and we arrange no children of 7 above it.

If o keeps waiting at (4) confinitely often then I'(d) # 0 = D(d), o has outcome w

indicating a local win of itself.

Note that by (d-rule), o will not return from (5) to (4) infinitely often unless o~ oo

is true. Thus we assign no additional outcome for this case.

If o finally reaches (7) we will have

D(d)=1#0=T1(C;qd). (%)

In this case o has s as its outcome. Moreover, (x) will not be destroyed by §(n)(n > k).
If (*) is destroyed by some §(n)(n < k) then we let o pick a fresh agitator and a fresh
witness and restart from (2). As k is fixed o can reach (7) at most £ + 1 times and 0" s

indicates a finite local win of o.

The possible outcome defined so far are ordered in reverse lexicographic, 1.e. 0o <

w < s <0.
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IV.3.2 Meeting P’s

Let o € T be a P.-strategy, [* and a-expansionary stages are defined as usual. « has
two possible outcomes, say oo and 0, with meanings similar to those of M-strategies. «
acts like strategies building nontrivial noncuppable degrees (e.g. see (Wang and Ding,
2005, Theorem 2.1)).

If oo appears to be true « builds a functional ©% such that K = ©(A,Y). To
this end o manages an agitator d*(k) for each k so that (k) > (d(k)) whenever

O(A,Y; k) converges (say k is honest for ), and has its children above " oo to make
Oy K(k)=06(A,Y;k).

Let 5 O a oo be a Qf-strategy and top(3) = a. [ acts as below.

Pick a guard ¢° fresh.

Wait for g < [«.

If later ¢/(g) moves, return to (2).

If ©(A,Y; k) diverges, d(k) is undefined or d(k) > g, let d(k) = g.

If ©(A,Y; k) diverges then let O(A, Y; k) = K (k) with (k) = (d(k)).
If ©(A,Y; k) |# K(k) then put d(k) in D and cancel d(k).

A AN

If 3 returns from (3) to (2) it has oo as outcome. Otherwise (3 has 0 as outcome.

It depends on two assumptions for (3 to win.

(B1) g = lim, ¢”[s] exists, and
(62) If O(k) is defined, then either B [ 1/(d(k)) never changes or (k) could be put in
A for the honesty of k.

If these are achieved then (3" co indicates W partial and a global win of . Hence we
arrange no children of e above 3" o0o. On the other hand, if 570 is true, then either (6)
never happens and K (k) = 0 = O(A,Y; k), or k is always honest and the enumeration
of d(k) in D would cause ©(A, Y’; k) to diverge. Thus eventually ©(A,Y; k) |= K (k)
and [ achieves a local win.

Let us remark on the intuition behind the above procedure. (3 picks a guard in order
to test the premise of «, i.e. whether ¥(B,Y) is total. On the other hand all Q-

strategies share a same agitator and manage the honesty of k£ according to this agitator.
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The purpose of agitators is for strategies to force O diverge on appropriate parameters.
To manage the honesty of %, 3 should prevent numbers below ¢ (d(k)) from entering
B. However 3 can not always control ¢)(d(k)) as d(k) might be defined by other Q-
strategies. But to some extent (3 can control )(g”) and g® would also fit the purpose of

agitators under certain circumstances. This explains Step (4) of the above procedure.

In the proof of (Wang and Ding, 2005, Theorem 2.1) we call guards personal flip
points and agitators official flip points.

IV.3.3 Coordinating strategies

An M-strategy 7 never interferes with other strategies except its children as it builds
its own C” and changes nothing other than C”. Moreover 7 could injure its children on

the true path at most finitely often as argued.

A P-strategy changes nothing and imposes no restraints and thus never interferes

with other strategies.

The only conflicts lie between A -strategies and Q-strategies. Recall that an N -
strategy might need to put its agitator in B and then hope A | r not changed while a
O-strategy assumes (32).

Let o be an N -strategy and ( a Q¢-strategy where 7 = top(c) is an M,-strategy
and o = top(f) is some P-strategy. To solve the described conflict between o and
B3, we would have o destroy ©%(k) by putting d*(k) in D before it could put b in
B. However to respect «’s expectation on totality of ©, we will forbid o to do this if
#°0 C o. Moreover under this situation we will make b” > 1 (d(k)) by initialization
thus 67 would not threat the honesty of k for a.

If ¢ O 3”00 then either d(k) < ¢” and 6(k) converges or ©(A,Y; k) diverge when
o acts. By initialization again we will either have b > (k) | or never worry the honesty

of £ when o acts.

If 0 2 (3 then o might need to worry the honesty of k£ when it wants to put b in
B. As described o then delays the enumeration of b in B and puts d(k) in D first.
Moreover o brings forward the defining of r and defines it right now. Before o could
act again, an c-expansionary stage should be seen and O (A, Y; k) would diverge by the

assumed honesty of k.

Moreover as there might be many P-strategies, say oy C a; C ... C «, below o,
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we make o destroy #% in decreasing order. When o puts some d*/ (k;) in D, it setups
a link (o, o). At the next cj-expansionary stage this link is traveled, i.e. the control
passes from «; directly to o, and o will attempt to destroy some ¢~ if 5 > O or put
b% in B.

We could still make 0(k) converge if each N\ -strategy only attempts to destroy 6(k)
finitely often. However ¢ might want to put its agitator in B infinitely often and thus
destroy (k) constantly. For example, assume that o put d*(k) in D at stage sy which
is both 7- and a-expansionary, but 7 at the next T-expansionary stage s; > sg finds a
disagreement between K and A", and repairs it by putting a use less than ~;(d”) in C.

If this happens infinitely often then o might want to put its agitator in B infinitely often.

To solve this new problem, we build local enumerations for ¢, and X., i.e.
X7[s] = X.[r] and ®7(A, X7)[s] = ®"(A, X7)][r]

for each s, where r < s is the latest stage when 7 acted. Provided 7 acts infinitely

often, we will have

X7 = JX[s] = Xcand @7(A, X7) = | ®7(A, X7)[s] = (A, X).

Intuitively, we will freeze the computation ®.(A, X.) whenever 7 does not act. Chil-
dren of 7 will also deal with these enumerations instead of the standard enumera-
tions. In particular, when the computation is frozen an N "-strategy will not detect
any changes of uses. During the construction below we will not mention the above

again but just take it as granted.

Under this setting the above paragraph will not happen if & C 7 as then 7 will be

covered by a link (a, o).

Assume 7 C o C o and so > s; 1s the earliest a-expansionary stage. We in addition
assume that ¢ (b7) had reached its final value at s (called b-correct assumption). Then
we will have

0(k)[s2] > r[so] > 1°[s0] (k-safe)

if ©(A,Y; k)[s2] | and r?[so] is defined for some N -strategy p prior to o.

This observation might not be critical for p = o, for after o makes (k) diverge it is
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safe for o to honestify k for « by putting 6(k) in A. But it is critical for p # o. p might
have attempted to destroy some 6*(n) before s, and was waiting for a p-expansionary
stage at so. Hence before a p-expansionary stage were seen the restraint 7 should be
respected. Our observation guarantees that the restraint would be respected even if 6 (k)

were put in A.

Thus o simply accepts 0(k) at s,. If later o will put b in B and hurt the honesty of

k for o, we will make o simultaneously put #(k) in A to repair it.

Finally if the b-correct assumption fails infinitely often, then o might cause 0(k) —
oo. But we will have a global win for 7 since ®(A, X; b) then diverges. As in typical
0"”-arguments we arrange backup strategies for o and its children above o oco. We
consider such arrangement as « injured by 7. Furthermore we will have a final strategy

free of injuries for each P along every infinite path of 7.

IV.3.4 Final behaviors of A/- and Q-strategies

In this subsection we summarize behaviors of /- and Q-strategies subjecting to

adjustments in the last subsection, so as to help readers building a clear mind picture.

Let o be an N -strategy where 7 = top(o). o has four parameters: k7, b°, d” and
r?. Assume o is initialized only finitely often then k£ = lim, k7[s] exists. We may

assume k = k7[so]. If o waits for I';(C; d) |= 0 cofinitely often then it wins.

If o finds that ¢(b) moves infinitely often then it will never attempt to destroy any
0%(z) for « C 7, otherwise 7 would be covered by a link and the computation of ®
would be frozen. o will cancel r before 0" oo will act. In this case b = limg b7[s] exists
and a global win of 7 is achieved. Moreover totality of © for a C 7 is not hurt and

those P-strategies between 7 and o will be backup.

If ¢(b) converges, and d is realized but I';(C'; d) is destroyed infinitely often, then o

achieves a win of itself and will stop attempting to destroy 6*’s for o C 0.

Otherwise o will attempt to destroy some 6% (k) with o C 7 at some stage. We could
assume that 7 and thus the computation (A, X; b) would be respected before o would
put d in D. This assumption could be verified by induction and (k-safe). Provided o
acts infinitely often it will eventually make D(d) = 1 # 0 = I';(C; d). Though such
disagreement might be destroyed by enumerations of §(n) in C' for n < k, o needs at

most k£ + 1 times to establish a final one.
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In all cases b = lim,b7[s| and d = lim,d[s] exist. And either 7 is canceled

infinitely often or lim, r7[s] exists.

Next consider a Q¢-strategy 3 with a = top(3). 3 has one parameter g°. Assume
[ is not initialized after stage s, then q° [s] (s > sp) could be canceled only if it enters
D, and ¢”[s] could enter D only if 3 at some stage set d*(k) = ¢°. d*(k) could enter D
for two reasons: some Qf-strategy needs to repair a disagreement between K and O,
or some N -strategy attempts to destroy 6(k). The first case happens at most once and
so might be assumed never do after s. To argue that g = lim, ¢°[s] exists we examine

N -strategies according to their positions on 7'. Let o be as above.

1. o is to the left of 3. Then o never acts after sy by the choice of s,.

2. 0”00 C (. As in classical nonbounding constructions we will have o O ¢ co.
But o would never attempt to destroy any 6°(x).

3. c’woro’s C (. As argued b = lim, b7[s] exists and either ¢”(b) converges
or o eventually stops checking ¢”(b). Hence o could put at most finitely many
d*(k)’sin D.

4. Otherwise, by initialization we may assume that ©(A, Y’; k) diverges or b° >
¥(d(k)) whenever o acts. Then o never puts d(k) in D as b” would not threat the
honesty of £ for a.

If 370 is on the true path we will also have d(k) = lim, d*(k)[s]| existand ©(A, Y; k)

converge.

IV.3.5 Defining the tree of strategies

Firstly, we may restate all requirements in the following forms:

M. :B=93. (A, X,)= 3C,, A.(C, is incomplete N K = A.(C,, X)),
Neit D #Ti(Ce),
P D= U.(B,Y,) = 30.(K = 6,(A,Y.),
Qe K(k) = Oc(A, Ye; k).

Moreover we may consider N7’s and Q%’s as local variances of J\feﬂ-’s and Q. ’s, as
well as C7’s, A™’s and ©“’s.



IV.3. Comparing ~ and modulo NCup 73

Secondly fix a computable bijection f from the set of requirements to w such that
fMe) < f(Ney) and f(Pe) < f(Qe,) for any pair (e, 7).
Finally we define 7, a partial function top : 7' — T' and for each requirement X', a

partial function also denoted as X : T" — T'.

At the beginning we put () in 7" and assign it to f~1(0). Assume £ is enumerated in
T and assigned to Z, we say that £ is a Z-strategy. We define the immediate successors
of &:

1. If £ is some M-, P- or Q-strategy then put £ "co and £°0in 7.
2. If € is an NV -strategy then put £ oo, £ "w and £ "sin T

To define the partial functions we need some notions. For p C &, p is injured at
¢ if and only if it is assigned to some M, N or P, and there are 7 and o such that

T 00 C p C o oo C&, 7 is some M-strategy and top(o) = 7.

For each requirement X', let X'(£) be the longest p C £ assigned to X'. X is satisfied
at ¢ if and only if

1. either X'(§) is defined and not injured at &, or
2. Xissome N, ; or Q.1 = M, (§) or Py, (&) is defined and not injured at &,
and there is some ) = N, , or Q,, , such that v = )() is defined, top(v) = u

and v o0 C &.

If ¢ is some N, ; or Q. j-strategy then let top(§) = M.(&) or P.(§), otherwise
top(§) is undefined.

If  is an immediate successor of £ in 1" then assign ( to the unique X" such that
f(X) = pz(f~(z) is not satisfied at £).

This completes the definition of 7'.

Some useful notions can be derived. For any infinite path P C 7" and a requirement
X, let X(P) = U;cp X(P) given the righthand side is finitely defined; X' is satisfied
on P if and only if there is a finite £ C P and X is satisfied at any ¢ on P extending €.

The facts below are not difficult.

Lemma IV.3.2. For each requirement X and each infinite path P of T,
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1. if X is some M, or P, then X (P) is defined;

2. if X is some M. or P, and for some N.; or Qcr, p = N i(P) or Q. (P) is
defined and p” oo C P, then there isno Y = N, ; or Q. with Y(P) defined and
extending p;

3. again X is some M, or P, but the assumption above fails then p = Y(P) is
defined and p" oo ¢ P forany Y = N, ; or Qcy;

4. X is satisfied on P.

IV.3.6 The construction

At the beginning let all sets and functionals empty and other parameters undefined.

At stage s we will define a finite approximation to the true path, denoted by 7'P[s],
and probably an indicator n[s| € T. As soon as T'P[s] is determined, we will initialize
strategies less prior than T P[s] except those extending 7[s| given 7[s] defined, then
proceed to stage s + 1.

To define T'P[s] we will define a finite sequence of accessible strategies. Initially ()
will be accessible. If a strategy & becomes accessible, it will acts immediately. When
¢ acting it might defined its outcome o = o(&)[s], or the next accessible strategy, or
T P[s]. If one of these happens we end £ immediately. On defining of o, if |{| < s we

will declare £ "o accessible, otherwise let 7' P[s] = £ and 7[s] undefined.

The actions of £ depend on which requirement ¢ is serving.

Case 1. ¢ is an M,-strategy.

If s is not £-expansionary then let o(§) = 0 and end.

If s is £-expansionary and there is no link of the form (£, o) then let n be the least
number such that either A(C, X; n) diverges or K (n) # A(C, X;n).

If A(C, X;n) diverges then let A(C, X;n) = K(n) with §(n) fresh if §(n)[s — 1]
is undefined or is in C, or 6(n) = §(n)[s — 1] otherwise.

If K(n) # A(C, X;n) then put §(n)[s — 1] in C' and redefine A(C, X;n) = K(n)
with 0(n)[s| fresh.

In both situations let 0(§) = cc.

If s is £-expansionary and there exists a link of the form (&, o) then let o be acces-

sible.
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Case 2. ¢ is an N -strategy where 7 = top(§). Let so < s be the last stage when &
was accessible.

Subcase 2.1. d° is defined and D(d®) = 1 # T';(C™; d%). Let o(§) = s.

Subcase 2.2. £ becomes accessible because a link («, ) was traveled where o C &
is some P-strategy. Then b* and s, are defined.

If ¢7(b)[s] > ¢7(b)[so] or C[s] | vi(d)[so] # (C' | 7i(d))[so] then cancel r, let
TP[s] =¢and n[s] = £ .

Otherwise check whether there exists P-strategy ;¢ C o such that
Ax[OH (A, Y x)[s] | Ab < H(d'(x))[s] A (n C TV 0 (x)[s] < 7).

If there exists such P-strategies, let 1 be the longest one and x be the least number

where the matrix of the above holds, put d*(z) in D and setup a link (1, £).
If there does not exist P-strategies as above, put b in B and setup a link (7, ).
In both situation let T'P[s] = n[s] = &.

Subcase 2.3. £ becomes accessible because a link of the form (7, £) was traveled.

1. Putdin D, redefine A(C, X; k) = K (k) with 6(k) fresh.

2. For each P-strategy o C & with 6%(z) defined and ¢*(d*(x)) > b for some z,
put 6%(z) in A for the least such z.

3. Let TP[s] = ¢ and ns] undefined.

Subcase 2.4. The above subcases do not apply. Cancel ¢ if it is defined. Let s; < s

be the last stage when & was accessible and this subcase applied, act as below.

1. If k¢ is undefined then define it fresh. If b° is undefined or in B then define or
redefine it fresh. If d° is undefined or in D then define or redefine it fresh.

If b > [” let T P[s| = £ and n[s] undefined.

If b <17 but ¢"(b)[s] > ¢7(b)[s1], let o(§) = 0.

Ifo <17, ¢7(b)[s] = ¢7(b)[s1] and [';(C’; d) # O then let 0(&) = w.

Ifo <17, ¢7(b)[s] = @7 (b)[s1], [:(C;d) # 0but §(k) < ¢(b), then put (k) in C
and let o(¢) = w.

A

6. Otherwise all the above tests fail, let

r = max({¢(b)} U {r”|p is prior to £})
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and go to subcase 2.2.

Case 3. { is a P,-strategy.

If s is &-expansionary and there exists a link (£, o), cancel this link and let o be

accessible.
If s is £-expansionary and there is no link as above then let o(§) = oo.
Otherwise let o(§) = 0.

Case 4. ¢ is a Qf-strategy where a = top(&). Let 5o < s be the last stage when ¢

was accessible, act as below.

1. If ¢¢ is undefined or in D, define or redefine it fresh.

2. If g > [* then let T'P[s] = ¢ and n[s] undefined.

3. If g < Ibut*(g)[s] > ¥*(g)[so] then let o(&) = oc.

4. Otherwise. If ©*(A,Y* k) T, d*(k) T or d*(k) > g then let d(k) = g.

5.1 O(A, Y3 k) 1, let O(A,Y: k) = K(k) with 0(k) fresh if 0(k)[s — 1] T or
O(k)[s — 1] € A, or (k) = max{0(k)[s — 1],1(d(k))} otherwise.

6. f ©(A,Y;k) |# K(k) then put d(k) in D, cancel d(k) and let T'P[s] = £ and
nls] = £ oo; otherwise let o(&) = 0.

IV.3.7 The verification

Let TP = liminf, 7'P[s]. We have the following facts immediately from the con-

struction.

1. A, B and D are enumerable.

2. If n[s] is defined then n[s] D T P[s].

3. For any P-strategy a, no one above «” oo could ever put any d“(x) in D or ()
in A.

Lemma IV.3.3 (Honesty). Let o be a P.-strategy. For any k and at any stage s if
d*(k)[s] is defined and ©*( A, Y.; k)[s| converges then k is honest for c.

Proof. By Case 4 in the construction when ©%(A,Y;; k) becomes defined k is always
honest. And k keeps honest if nothing enters B | (k).
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But the only case where B is changed is Subcase 2.3 in the construction. If that
happens then either 6“(k) is put in A or « is initialized. This would cause ©%*(A, Y,; k)

to be redefined unless « is later initialized. ]

Lemma IV.3.4 (N -behaviors). Let 7 be an M.-strategy, o 2 7" o0 be an N -strategy

and o C o be a P,-strategy. If o is prior to or on T'P, we have the followings:

1. There is a stage sy such that k = limg k%[s| = k7[s¢] exists. (The other assertions
will assume this sg)
2. At any stage s > s if r7[s] is defined then nothing enters A | r%|[s|.
3. If o created a link (o, o) at s; > sg and is accessible at s, > sy, then at the end
of s9, exactly one of the followings happens:
(@) ¢7(b%)[s2] > ¢7(0%)[s1],
(b) ad(x) < v;(d) is enumerated in C and o D T,
(¢) alink (u, o) is created where j C « is another P-strategy,

(d) alink (7,0) is created.

4. If o created a link (1,0) at s3 > so and acts at s, > s, then d° is put in D,
I;(C;d) = 0and 6(k) > ~;(d) at the end of s,.

5. If o never has oo as its outcome after sy or o C T then o will put no agitators of
a in D after some stage. Moreover even without the assumption o will eventually

stop putting anything in A.

Proof. (1) By the construction we choose sy be a stage such that ¢ is never initialized
after sg. Then either k7 is undefined cofinitely often or becomes defined at some point
and fixes for ever. We may consider the first case a special situation of our assertion.

While in the latter case we may assume that k£ becomes defined at s.

(2) Assume some strategy puts something in A at some s; > sg. From the con-
struction we have that this strategy, say p, is an J\f;r-strategy where m = top(p), and
those enumerated in A are uses of functionals built by P-strategies. Fix an arbitrary
one which is 0#(x) of some P-strategy p. Moreover by the assumption of sy, we have

p = o or less prior than o.

We may in addition assume that r7[s;] is defined and became defined at stage s >
so. By Case 2 of the construction we have that 7°[s;| became defined at some s’ > s
and thus r*[s;] > r7[s1]. By Subcase 2.2 of the construction, we have 0% (z)[s1] >

rP[s1] > r7[s1]. This establishes (2).
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(3) Assume neither (a) nor (b) happens then r = 77[so] = 77[s;]. Recall that at s,
some d®(x)[s;] was put in D and note that s, is a-expansionary and no children of «

acts. By the Honesty Lemma (and induction decreasingly on the length of o)) we have

Ve(O°(A, Y5 x) |— 6(x) > 1)

at s, for any P-strategy € such that o C ¢ C 0. Hence we have (3).

(4) D(d?) = 1 and I';(C; d) = 0 are immediately from Subcase 2.3 in the construc-

tion. By (2) and Subcase 2.2 in the construction we have

(A, XT3 si] = 1 # 0 = (A, X737

and (A | ¢(b))[s4] = (A | ¢(b))[s3]. Hence Step (1) of Subcase 2.3 in the construction
is feasible and (k) > 7;(d).

(5) By (1) we may assume that no §(z) for x < k enters C after stage s,. By
Subcase 2.1 in the construction, Subcase 2.3 could happen at most finitely often and

may be assumed never do after some stage s.

If & C 7 then no link of the form («, o) could be created after s, otherwise by (3)
and (4) Subcase 2.3 eventually happened. Hence o never puts any agitators of o in D

after sg.

If 7 C a C o and o never has oo as its outcome after sy then either Subcase 2.1 in
the construction happens whenever o acts after sq, or we may assume ¢(b) = ¢(b)[so].
The former case is trivial. In the latter case we may assume r°[s] = r7[sq] whenever
s > so and r7[s] is defined. Hence o will put at most finitely many agitators of « in D

after sg.

Now we have established the first half of (5). For the remaining, note that o could
put uses in A only if Subcase 2.3 in the construction happens. But by (4) it could not
happen infinitely often. 0

Lemma IV.3.5 (True Path). For each n we have that |TP| > n, TP | n is accessible

infinitely often and initialized for finitely many times.

Proof. We prove by induction on n. The case for n = 0 is trivial. Let { = T'P [ n and

so be a stage such that £ is never initialized after s.
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Case 1: ¢ is an M.-strategy. If there are finitely many £-expansionary stages then
the lemma holds for TP | (n + 1) = £°0.

Assume there are infinitely many £-expansionary stages, and s > s; is one when
&" oo is not accessible. Then there is a link (£, 0) where o is a child of £. But this
link will be canceled and no new links are created at the end of s. Thus £ oo will be
accessible at the next £-expansionary stage and the lemma holds for TP | (n + 1) =
& 0.

Case 2: & is an N -strategy where 7 = top(§). By the N -behaviors Lemma we

may assume that

1. k = limg k%[s], b = lim, b*[s] and d = lim, d*[s] exist and reached their final
values before s,

2. 10 07(n) (n < k) enters C after sq, and

3. d ¢ D (otherwise the lemma holds for TP | (n+ 1) = £"s).

Then either infinitely often ¢ finds that ¢ (b) moves or I';(C'; d) # 0. In the former case
TP | (n+1) = ¢ oo and in the latter TP | (n+ 1) = £ w. The remaining part is
obvious.

Case 3: & is a P.-strategy. By (3) of the N/-behaviors Lemma, our assertion holds
for TP | (n+ 1) = £ oo if there are infinitely many {-expansionary stages, or for
TP | (n+ 1) =& 0if there are only finitely many.

Case 4: & is a Q-strategy where o = top(&). Note that Step (6) of Case 4 in the
construction is the only one which could stop the process at £, at enough large stages.

Fortunately this happens at most once by the Honesty Lemma. [

For each ¢ C TP, let s¢ be an arbitrary stage such that ¢ is never initialized after s¢.

Lemma IV.3.6 (P-behaviors). Let o« = P.(TP).

1. © = U, ;o ©%[8] is consistent.

2. Ifa" oo CTPand 3 = Q. 1(TP) is defined then g = lim, g°[s] exists.

3. IfBisasin(2)and 3°0 C TP then d(k) = limg d*(k)|[s] and (k) = lim, 6% (k)[s]
exist, and O(A, Ye; k) |= K (k).

Hence ©(A,Y.) is total and equals K if Q. (T P) is defined and Q. ,,(TP)"0 C TP

for every n.
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Proof. (1) The consistency of © is obvious from the construction.

(2) By the definition of 7" and the N -behaviors Lemma, we may assume that no
N -strategies below 3 put any agitator of o in D after s°. In addition assume that no

Q%-strategies put d*(k) in D after s°, as this could happen at most once.

Suppose g” became defined or was redefined at stage s, > s”. Then at this stage, 3

acted, strategies less prior than 3 were initialized.

Assume some strategy o put g° = ¢g°[sg] in D at s; > s4. Then by the construction
there was a stage s between sq and s; at which /3 set d*(k) = g°. Let s < s; be the
latest such stage and u = (g”)][s].

Claim 1. (B,Y)[s] | u= (B,Y)[s1] | u, hence 1(g”)[s1] = w.

Proof. For contradiction suppose s’ is the least stage between s and s; when B | u
or Y | uchanged. But B | u could not change at s’ otherwise d*(k)[s] = ¢” were
enumerated in D before s’ by Subcase 2.2 in the construction. If Y | u changed at &’
then as 0(k)[s] > u, we have ©(A,Y’; k)[s'] diverged and d* (k) redefined at some stage

after s’ > s. Thus we get a contradiction with the choice of s. [

By Claim 1 we have 0 O 570 and 6(k)[s1] = 0(k)][s].

Claim 2. 07[s;] > .

Proof. Assume b7[s;] became defined at t < s;. If t > s, we have b7[t] > 0(k)[s] > u.

If t < sthen b7[t] > t > ¥(g®)[t]. As b[t] > t > I7[t] where 7 = top(o),
o did nothing more at ¢ hence T'P[t] = o and no link existed along 7'P[t]. Then if
¥(g°)[t] < ¥(g”)[s], 3" oo would have been accessible before s and o initialized and
b canceled. Hence we have 1(d(k))[t] = w and again b7[s1] > u. O

Claim 2 refutes our assumption that o put d*(k) in D at s; and establishes (2).

(3) The existence of the limits follows from (2) and its proof, and the equality

follows from the existence and the construction.

The final assertion follows from (3). [

Lemma IV.3.7 (P-satisfaction). Every P, is satisfied.
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Proof. Let a = P.(TP). If there is a child of «, say 3, such that " co C T'P, then by
(2) of the P-behaviors Lemma and Case 4 in the construction, ¥, (B,Y,; ¢°) diverges
and V. (B,Y,) is partial.

Otherwise by the definition of 7', « has a child, say 3, for each Of, and 3,"0 C

T P. By the final assertion of the P-behaviors Lemma we can compute K from A and
Y.. ]

Lemma IV.3.8 (M-satisfaction). Every M. is satisfied.

Proof. Let 1 = M (T P). Immediately from the construction, A = [

consistent and C' = |J

ATls] is
C7[s] is enumerable. If 700 C TP then M., is satisfied

s>s8T
§>sT
trivially. Assume otherwise.

By induction on 4, assume o0 = N, ;(TP) is defined. We may assume s° > sy
where s, is as in (4) of the N-behaviors Lemma. By (3) and (4) of the N -behaviors
Lemma k = lim, k7[s], b = lim, b7 [s] and d = lim, d°[s] exist.

Thus if 0"co C T'P then ®.(A, X,;b) diverges. If c"w C TP then I';(C™;d) #
0 = D(d). Otherwise I';(C7;d) = 0 # 1 = D(d). This establishes the satisfaction of
AT

For M. we may assume that each o; = N ;(TP) is defined and 0, c0 ¢ TP.
Then by (4) of the N-behaviors Lemma each o; will eventually stop changing ¢ (k;)
(k; = lim, k%[s]. As 7 could put each §(k) in D at most once, we have A(C, X,) total.

A(C, X.) = K then follows directly from Case 1 of the construction. ]

Theorem 1V.3.1 follows immediately from the P-satisfaction Lemma and the M-

satisfaction Lemma.
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