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ABSTRACT 
An embedded system is called multi-mode when it supports 
multiple applications by dynamically reconfiguring the system 
functionality. This paper proposes a hardware-software 
cosynthesis technique for multi-mode multi-task embedded 
systems with real-time constraints. The cosynthesis problem 
involves three subproblems: selection of appropriate processing 
elements, mapping and scheduling of function modules to the 
selected processing elements, and schedule analysis. The 
proposed cosynthesis framework defines an iteration loop of three 
steps that solve the subproblems separately. One of the key 
benefits of such a modular approach is extensibility and 
adaptability. Moreover, unlike the previous approaches, the 
proposed technique considers task sharing between modes and 
hardware sharing between tasks at the same time. We demonstrate 
the usefulness of the proposed technique with a realistic multi-
mode embedded system that supports three modes of operation 
with 5 different tasks. 
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1. Introduction 
An embedded system is called multi-mode when it supports 
multiple applications by dynamically reconfiguring the system 
functionality. Such reconfigurability is desirable to cope with 
rapidly evolving standards and signal processing algorithms as 
well as to enhance the hardware utilization significantly. A multi-
mode mobile terminal, for example, can be used for a PCS phone, 
MP3 player, and VOD terminal, by manually selecting the mode. 
We assume that an application defines a mode of the system and 
the system runs a single application at a time.  

A single mode, in general, is a real-time multi-task system 
meaning that each application consists of a set of real-time tasks 
that should be scheduled within time constraints. Therefore, a 
critical design constraint of a multi-mode multi-task embedded 

system is to make all applications schedulable. Violation of this 
schedulability constraint can be detected using the schedulability 
tests applicable for real-time scheduling techniques[1][2].  

The main focus of this paper is to find a minimum-cost system 
architecture that satisfies the schedulability constraints, given a 
real-time scheduling technique. We assume that a task is specified 
as an acyclic graph of which a node represents a function module 
such as DCT(Discrete Cosine Transform), MC (Motion 
Compensation), and so on. And there is a library of candidate 
processing elements, processors and IP blocks, with given timing 
information for each function module: how long it takes for each 
processing element(PE) to execute the function. A hardware 
implementation of a module may also be regarded as a processing 
element which takes infinite amount of time for other function 
modules. Then, the problem becomes selecting the appropriate 
processing elements and mapping function modules to the 
selected processing elements. We define this problem as the 
HW/SW cosynthesis problem.  

While there have been some research efforts for cosynthesis of 
multi-task systems[3][4], only a few research results exist for 
multi-mode multi-task systems[5]. A naive approach of applying 
the cosynthesis techniques of multi-task systems directly to each 
mode separately is not optimal if a task is common in multiple 
modes. Therefore, the approach proposed in [5] considers the task 
sharing effect. Given task sets and processing elements, they 
examine the schedulability of each mode assuming that all tasks 
are run in a processor. If the schedulability constraint is violated, 
they single out the best task and the amount of execution time to 
be reduced to make all modes schedulable. They reduce the task 
execution time by implementing some code fragments to hardware 
component. However, they do not consider the resource sharing 
possibility between tasks so that they determine the best function 
module for hardware implementation separately for each selected 
task. 1 

Compared with this previous approach, the proposed technique 
differs in two aspects. We address two issues at the same time: 
which processing elements to choose and which functional 
module to implement in hardware. Second, we consider the 
possibility of hardware resource sharing between tasks.  
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The rest of the paper is organized as follows. In the next section, 
we state the problem and assumptions more clearly and present an 
example multi-mode multi-task system, experimented in this 
paper. Section 3 presents the structure of the proposed cosynthesis 
framework and section 4 explains the proposed algorithm in detail. 
And some experimental results are shown in section 5. We draw 
conclusion in section 6.  

2. Preliminaries 
In this section, we define some notations and terminologies and 
state the cosynthesis problem clearly with an example multi-mode 
system  

A multi-mode system Π consists of a fixed number of modes {Πi} 
or Π={Π1, Π2, Π3,…}. Each mode Π i includes a number of tasks 
{τj} and each task τj is composed of modules {mk} that are 
functional blocks. The period Tij and deadline Dij of each task τj  
are defined separately for each mode Π i. In case of a sporadic task, 
Tij may be set as the minimum inter-arrival time between 
successive requests.  

We are also given a library of candidate processing elements 
(PE's) {pm} that includes microprocessors, IPs, and ASIC core 
implementations of function modules. For each processing 
element pm, its cost cm and the worst case execution time tm,k of 
module mk on pm are assumed to be given for each module.  

Then, the cosynthesis problem is to select a set of processing 
elements, PE={pn}, and to find a mapping φ:{mk}Æ{pn} and 
scheduling of tasks {τj} to minimize the total cost of processing 
elements while satisfying the schedulability condition. Depending 
on which real-time scheduling technique is used, we use the 
appropriate schedulability test. We let sl(τj,PE) be the schedule 
length of task τj on the selected processing elements. Then, the 
utilization of mode Πi, )(PEU
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For instance, if a rate-monotonic scheduling technique is adopted, 
the schedulability test compares this utilization value with 

)12(
1

−nn where n is the number of tasks[1]. 

Figure 1 shows a real-life example of multi-mode embedded 
system experimented in this paper. The system supports 3 
different modes of operation: video phone (Π1), video player (Π2), 
and MP3 player (Π3). On the other hand, there are 5 different 
tasks: H.263 encoder (τ1), H.263 decoder (τ2), MP3 decoder (τ3), 
G.723 encoder (τ4), and G.723 decoder (τ5). Figure 1(a) shows 
which tasks compose which mode of operation. For instance, the 
video phone mode runs 4 tasks {τ1,τ2,τ4,τ5} concurrently. 

The task period Tij is dependent on the mode. Task τ2 in Π2 mode 
is scheduled twice as frequent as in Π1 since the task decodes 20 
frames per second in the video player mode Π2 while it decodes 
10 frames in Π1. In this example, the task deadlines are set equal 
to the task periods. In case of audio encoder/decoder tasks, we 
assume that each invocation processes a buffered packet of 25ms 
voice samples to reduce the context switch overhead.  

Each task is specified by an acyclic graph as shown in Figure 1(b). 
Note that three function modules are shared between tasks τ1 and 

τ2. In the graph, the annotated number on each arc indicates 
communication overhead to be counted if the source module and 
the sink module of the arc are mapped onto different processing 
elements. We do not show the graphs for tasks τ4 and τ5 assuming 
that they will not be broken down into multiple processing 
elements. 

Mode Π1 Π2 Π3 

Task τ1 τ2 τ4 τ5 τ2 τ3 τ3 

Period 100 100 25 25 50 40 40 

Deadline 100 100 25 25 50 40 40 

 (a)  

 

τ1 

 

 

τ2 

 

τ3 

 (b)  

 P0(HW) : time(cost) P1(100) P2(900) 

ME MEhw:17(100) 518 259 

Diff - 5.2 2.6 

DCT DCThw:5.6(20) 17 8.5 

Q Qhw:4.6(24) 11.4 5.7 

VLC VLChw:6(20) 16 8 

deQ deQhw:2(10) 4 12 

IDCT IDCThw:5.8(20) 18 9 

MC MChw1:2.2(10), MChw2:1(30) 7.2 3.6 

PD1 - 4.4 2.2 

PD2 - 0.7 0.4 

HD - 3 1.5 

deMQ deMQhw:0.4(10) 1.2 0.6 

IMDCT IMDCThw:2(30) 5.7 2.9 

FB FBhw:5(5) 10.2 5.1 

τ4 - 1.6 0.8 

τ5 - 1.8 0.9 

(c)  

Figure 1. An example multi-mode embedded system: (a) 
Modes of the system, and task periods and deadlines that 
depend on modes (b) Tasks specified by acyclic graphs (c) 
Module-PE profile table  

Figure 1(c) shows the candidate processing elements and their 
cost and timing information. This table is called a module-PE 
profile table. The third and the fourth column indicate that there 
are two candidate microprocessors. We obtain the timing 
information for processing element P1 from running the real code 
with the Armulator[6] assuming 500MHz ARM processor. 
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Processing element P2 is about twice faster, but nine times more 
expensive. The first column lists the hardware implementations 
that will be regarded as separate processing elements. For each 
hardware implementation, the worst-case execution time and the 
hardware cost are given. For instance, MChw1 has the value of 2.2 
(msec) for the worst-case execution time and 10 for the cost. We 
admit that the numbers are not from the exact measurements. 
Packet decoding blocks PD1 and PD2, and Huffman decoding 
block HD have no hardware implementation.  

3. Proposed Cosynthesis Framework 
The cosynthesis problem involves three subproblems: selection of 
appropriate processing elements, mapping and scheduling of 
function modules to the selected processing elements, and 
schedule analysis. The proposed cosynthesis framework defines 
an iteration loop of three steps that attack the subproblems 
separately as depicted in Figure 2. The inputs to the cosynthesis 
framework are a library of candidate processing elements and a 
module-PE profile table as well as input task graphs.  

The iteration starts with the module-PE allocation controller. The 
module-PE allocation controller selects a set of processing 
elements {pn} from the input candidate processing elements {pm} 
and constructs a reduced module-PE profile table that includes the 
selected processing elements only. This step is most critical since 
design objectives are considered when selecting the appropriate 
processing elements. If the design objective is to minimize the 
cost, we first select the cheapest processor first. The detailed 
mechanism will be explained in the next section.  

The role of the next step is to schedule the acyclic graph of each 
task to the selected processing elements in order to minimize the 
schedule length. While the task graphs are given as inputs, the 
reduced module-PE profile table is obtained from the PE 
Allocation Controller step. Since this is a typical problem of 
heterogeneous multiprocessor (HMP) scheduling, we use any 
heterogeneous scheduler in this step. We obtain the schedule 
result and the schedule length sl(τ j,PE) for task τj. We apply this 
step for each task graph separately. An interesting observation in 
this step is that the scheduler may not consume all selected 
processing elements to further reduce the system cost if possible.  

The next step is the performance evaluation step. It first checks 
whether the design constraints are satisfied. Based on the schedule 
lengths of all tasks obtained from the previous step, we compute 
the utilization factors for schedulability analysis. If the 
schedulability constraint is satisfied, it may end the iteration and 
record the scheduling results. In case tradeoffs between multiple 
objectives are searched, it records the schedule results and restarts 
the iteration until all desired number of optimal points are 
collected. If any design constraint is violated, it passes the 
scheduling results and violation information to the PE Allocation 
Controller to select other processing elements. More detailed 
discussion can be found elsewhere [7].  

One of the key benefits of such modular approach is extensibility. 
Without modification of the core mapping and scheduling step, 
we can add more design constraints to the performance evaluation 
step. More processing elements can be added to the PE Allocation 
Controller seamlessly. Even multiple design objectives can be 
considered without modifying the core mapping and scheduling 
step.  

Second benefit is adaptability. We can easily change the mapping 
and scheduling algorithm even though our implementation uses a 
specific HMP scheduler, called the BIL scheduler[8], based on a 
list scheduling heuristic. It is reported that this specific scheduler 
performs reasonably good while time complexity is order of 
magnitude faster than other well-formulated algorithms. Another 
adaptation can be found in choosing the right schedulability test 
for a given real-time scheduler. Only performance evaluation step 
is modified to use the modified schedulability test.  
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Figure 2. The proposed cosynthesis framework 

3.1 Time Complexity  
The worst case iteration counts of the proposed algorithm is p 
where p is the total number of the candidate processing elements 
because it adds one processing element at a time. For each 
iteration, we call the HMP scheduler pr×Nt times where pr is the 
number of remaining candidate processing elements and Nt is the 
number of tasks. To select the best processing element, we call the 
HMP scheduler once for each candidate processing element even 
though we can prune the search tree drastically in real 
implementation. If we let the time complexity of the HMP 
scheduler as S, the total time complexity becomes O(Sp2Nt). The 
time complexity of the HMP scheduler depends on the size of the 
task graphs and the number of selected processing elements.  

Even for a single mode system, the proposed technique has more 
advantageous in terms of time complexity than other previous 
approaches such as genetic algorithms and integer linear 
programming. It is well-known that the ILP approach is 
prohibitively complex to solve even reasonable size problems. 
MOGAC[4] uses a genetic algorithm to solve cosynthesis problem 
for multi-task systems. It has much larger time complexity than 
ours due to two main reasons. First, the problem size is 
proportional to the number of tasks while the time complexity is 
proportional to the number of tasks in our proposed approach. If 
the problem size grows, the time complexity of a genetic 
algorithm grows much faster in general. Second, to satisfy the 
schedulability constraint, they consider a hyper-period that is the 
least common multiple of the tasks periods. If the task periods are 
different each other, the hyper-period can be huge and the 
problem size can be huge proportionally. On the other hand, the 
proposed algorithm uses the schedulability test without problem 
size increment, assuming that a real-time operating system is used.  



4. Processing Element Selection 
In this section, we explain how the PE allocation controller selects 
the processing elements to achieve the design objectives. For 
simplicity, we assume that the design objective is to minimize the 
system cost. And we use a simple example to show how the 
algorithm proceeds.  

Consider an example of Figure 3 that has two modes of operation 
and two different tasks. Mode Π1 needs two tasks while mode Π2 

needs the second task only. Two tasks consist of three function 
modules respectively, while two function modules are shared 
between two tasks. We assume that the period of task1 and task2 in 
mode Π1 is 40 and 60 respectively, and task2 in mode Π2 30. 
There are two candidate processors and 6 different hardware 
implementations for the constituent function modules as shown in 
the module-PE profile table of Figure 3(b).  

Since the design objective is to minimize the system cost, initially 
the PE Allocation Controller allocates the cheapest processing 
element: P1 in this example. The reduced module-PE profile table 
can be depicted as Figure 3(c) where infinite time indicates the 
corresponding processing element is not selected. Consequently 
the HMP scheduler maps all modules onto the PE's of minimum 
cost P1 as displayed in Figure 3(d). We obtain two separate 
scheduling results for two task graphs.  

 

Π1 Π2 
task1 task2 task2

Period  40 60 30 
Deadline  40 60 30 
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Figure 3. (a) Modes and task graphs (b) Module-PE profile 
table (c) Initially reduced module-PE profile table (d) 
Scheduling results  

The next step is the performance evaluation step that tests if tasks 
are schedulable. As discussed earlier, it is utilization that is a 
measure to determine the schedulability for a given real-time 
scheduler such as rate-monotonic, earliest deadline first and so on. 
If the utilization becomes larger than the given utilization 
constraint then the evaluation fails and more PE's need to be 
allocated. From the scheduling result in Figure 3(d), utilization 

1ΠU  of mode Π1 becomes 1.14 (
60

31

40

25 += ) and 
2ΠU  becomes 

1.03 (
30

31= ). If we assume that the utilization constraint is 1.0, 

we should allocate more PE's in order to reduce the scheduling 
length of all tasks until utilization constraint is satisfied for all 
tasks. 

Now, we arrive at the core of the selection technique. Among 
many candidate processing elements, we want to select another 
PE, which reduces the task execution times as much as possible, 
but minimizes the cost increment. We define the expected 
utilization decrement(EUD) and the expected cost increment(ECI) 
for each candidate processing element. Furthermore, we define the 
slack as the difference between the utilization constraint U* and 
the current utilization in order to avoid reducing the utilization 
factor too much with more expensive PE.  

*)( UPEUSlack
ii

−= ΠΠ  (2).  

While ECI(pn) is simply the cost of processing element pn, 
EUD(pn) is defined as the difference between the utilization 
before allocating pn and the utilization after allocating pn. 

∑
Π∈Π

ΠΠΠ ∪−=
i

iii
SlackpPEUPEUpEUD nn )}),{()(min()( (3).  

  
 schedule length 

 task1 task2 
EUD ECI 

ECI

EUD
 

Ahw 21 27 0.17 12 0.014 
Bhw 24 31 0.03 5 0.005 
Bhw 23 31 0.05 15 0.003 
Chw 20 31 0.125 10 0.013 
Chw 19 31 0.15 20 0.008 
Dhw 25 24 0.15 15 0.010 
P2 10 10 0.17 60 0.003 

(a) 
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Figure 4. (a) 
ECI

EUD
 value for all candidate processing elements 

(b) Modified module-PE profile table after Ahw is selected (c) 
Scheduling results  

After computing EUDs and ECIs of all PE's, we choose an entry 

that has the largest 
ECI

EUD
value among unselected PE's since the 

utilization is expected to decrease significantly with minimal cost 
increase. And we modify the reduced module-PE profile table and 
pass it to the HMP scheduler. It is not guaranteed however that 

 P0(HW):time(cost) P1(10) P2(60) 
A Ahw:1(12) 7 2 
B Bhw1:2(5),Bhw2:1(15) 8 3 
C Chw1:2(10),Chw2:1(20) 10 5 
D Dhw:4(10) 16 5 

 P0 P1 P2 
A ∞ 7 ∞ 
B ∞ 8 ∞ 
C ∞ 10 ∞ 
D ∞ 16 ∞ 

 P0 P1 P2 
A 1 7 ∞ 
B ∞ 8 ∞ 
C ∞ 10 ∞ 
D ∞ 16 ∞ 



the modules are mapped to the newly selected PE. Modules will 
be scheduled onto the PE only when the total schedule length is 
actually reduced considering communication overheads.  

Figure 4(a) represents EUD and ECI values of candidate 
processing elements at the onset of the second iteration. For 

example, EUD(Ahw) is the sum of )14.0),
60

27

40

21
(14.1min( +−  of 

mode Π1 and )03.0,
30

27
03.1min( −  of mode Π2. In this example, 

Ahw is chosen since its ratio is the largest. The HMP scheduling 
result is shown in Figure 4(c). Since we can schedule all tasks 
within the utilization constraint, we exit from the iteration loop. 

The multi-function problem[9] is a cosynthesis problem to 
support multiple functions or applications of which only one is 
executed at any instant. Since the problem allows each mode or 
application to have one task, it is a sub-problem of the cosynthesis 
problem discussed in this paper. The fact that each mode has one 
task enables us not to compute utilization. Instead of utilization, 
the schedule length of each task can be used to compute expected 
utilization increment. The other procedures remains as described 
in the previous section.  

5. Experimental Results 
We apply the proposed technique to the multi-mode embedded 
system described in section 2. The HW speed and HW cost 
information is reasonably estimated while not obtained from real 
implementation.  

For comparison, we first apply the proposed cosynthesis 
algorithm for each mode of operation separately and add up the 
estimated system cost at the end. Table 1 shows which processing 
elements are selected and what is the resultant system cost. While 
processor P1 is commonly selected, different hardware 
implementations are selected for video phone and video player 
applications. As a result, 5 processing elements are selected and 
the system cost becomes 235.  

Table 1. Results without considering multi-mode multi-task  

Mode Used PE’s Cost 

video phone MEhw, IDCThw, P1 220 

video player MChw1, FBhw, P1 115 

MP3 player P1 100 

Total MEhw, IDCThw, P1, MChw1, FBhw 235 

 

Now, we apply the proposed algorithm to all modes together 
considering the resource sharing possibility. As shown in Table 2, 
the video player mode selects a different set of hardware 
implementations. Instead of selecting Motion Compensation and 
Filter Bank blocks, it selects IDCT block for HW implementation 
since the IDCT HW is already selected in the video-phone mode. 
Since resource sharing is successfully exploited in the proposed 
technique, the total system cost is reduced to 220. 

The proposed algorithm has been implemented in C++ on a 
codesign framework[10]. It takes 0.1 seconds with Pentium 667 
MHz processors. Considering the problem size of 3 modes, 5 
tasks, 16 function modules, and 13 processing elements, the time 
complexity is reasonable. 

Table 2. Results with considering multi-mode multi-task  

Mode Used PE’s Cost 

video phone MEhw, IDCThw, P1 220 

video player IDCThw, P1 120 

MP3 player P1 100 

Total MEhw, IDCThw, P1 220 

 

We apply the proposed technique to the examples used in Hou's 
research[3]. They have three processing elements and four tasks 
which includes 10 modules. They tested three examples of task 
combination, which we interpret them as three different modes of 
operation: Π1, Π2 and Π3 as shown Table 3. If we use the same 
task periods as [3], we cannot reduce system cost further since 
independent application of the cosynthesis algorithm to each 
mode also selects two processing elements. However if we 
prolong the period of τ1 and τ3 in Π2 to 2000, then the system cost 
increases since the algorithm allocates lower cost PE for tasks in 
Π2 instead of reusing PE's allocated for tasks in the other modes.  

Table 3. Hou's task graphs : period and system cost  

Π1 Π2 Π3
 

task1 task2 task1 task3 task3 task4

original period 240 240 240 200 200 380 

relaxed period 240 240 2000 2000 200 380 

 

 

6. Conclusions 
In this paper, a HW/SW cosynthesis framework is proposed for 
multi-mode multi-task embedded systems with real-time 
constraints. The proposed iterative consynthesis procedure 
consists of three steps: selection of processing elements including 
ASIC core implementations, mapping and scheduling of task 
graphs onto the selected processing elements, and schedulability 
test.  

Unlike the previous approaches, we take into account of task 
sharing between operation modes as well as HW resource sharing 
between tasks. As a result, the proposed algorithm achieves about 
10% reduction of system cost with an example multi-mode 
embedded system, compared with an approach without 
considering the resource sharing opportunities. Since the time 
complexity of the proposed algorithm is only linear to the number 
of tasks, it is applicable for large size applications.  

The key benefits of the proposed framework are extensibility and 
adaptability. Even though we concern about the schedulability 
and the system cost only in this paper, more design constraints 
and design objectives can be easily augmented. The main 
difficulty of using this approach to practical system design is 
constructing the module-PE profile table, which is assumed to be 
given in this paper.  

 
cost without considering 

multi-mode  
cost with considering 

multi-mode 

original period 170 170 

relaxed period 190 170 
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