
Hardware-Software Cosynthesis of Multi-Mode Multi-Task
Embedded Systems with Real-Time Constraints

Hyunok Oh Soonhoi Ha
The School of Electrical Engineering and Computer Science

Seoul National University
Seoul 151-742, KOREA

TEL : +82-28807292

{oho,sha}@comp.snu.ac.kr

ABSTRACT
An embedded system is called multi-mode when it supports
multiple applications by dynamically reconfiguring the system
functionality. This paper proposes a hardware-software
cosynthesis technique for multi-mode multi-task embedded
systems with real-time constraints. The cosynthesis problem
involves three subproblems: selection of appropriate processing
elements, mapping and scheduling of function modules to the
selected processing elements, and schedule analysis. The
proposed cosynthesis framework defines an iteration loop of three
steps that solve the subproblems separately. One of the key
benefits of such a modular approach is extensibility and
adaptability. Moreover, unlike the previous approaches, the
proposed technique considers task sharing between modes and
hardware sharing between tasks at the same time. We demonstrate
the usefulness of the proposed technique with a realistic multi-
mode embedded system that supports three modes of operation
with 5 different tasks.

Keywords
Hardware-software cosynthesis, multi-mode, multi-task

1. Introduction
An embedded system is called multi-mode when it supports
multiple applications by dynamically reconfiguring the system
functionality. Such reconfigurability is desirable to cope with
rapidly evolving standards and signal processing algorithms as
well as to enhance the hardware utilization significantly. A multi-
mode mobile terminal, for example, can be used for a PCS phone,
MP3 player, and VOD terminal, by manually selecting the mode.
We assume that an application defines a mode of the system and
the system runs a single application at a time.

A single mode, in general, is a real-time multi-task system
meaning that each application consists of a set of real-time tasks
that should be scheduled within time constraints. Therefore, a
critical design constraint of a multi-mode multi-task embedded

system is to make all applications schedulable. Violation of this
schedulability constraint can be detected using the schedulability
tests applicable for real-time scheduling techniques[1][2].

The main focus of this paper is to find a minimum-cost system
architecture that satisfies the schedulability constraints, given a
real-time scheduling technique. We assume that a task is specified
as an acyclic graph of which a node represents a function module
such as DCT(Discrete Cosine Transform), MC (Motion
Compensation), and so on. And there is a library of candidate
processing elements, processors and IP blocks, with given timing
information for each function module: how long it takes for each
processing element(PE) to execute the function. A hardware
implementation of a module may also be regarded as a processing
element which takes infinite amount of time for other function
modules. Then, the problem becomes selecting the appropriate
processing elements and mapping function modules to the
selected processing elements. We define this problem as the
HW/SW cosynthesis problem.

While there have been some research efforts for cosynthesis of
multi-task systems[3][4], only a few research results exist for
multi-mode multi-task systems[5]. A naive approach of applying
the cosynthesis techniques of multi-task systems directly to each
mode separately is not optimal if a task is common in multiple
modes. Therefore, the approach proposed in [5] considers the task
sharing effect. Given task sets and processing elements, they
examine the schedulability of each mode assuming that all tasks
are run in a processor. If the schedulability constraint is violated,
they single out the best task and the amount of execution time to
be reduced to make all modes schedulable. They reduce the task
execution time by implementing some code fragments to hardware
component. However, they do not consider the resource sharing
possibility between tasks so that they determine the best function
module for hardware implementation separately for each selected
task. 1

Compared with this previous approach, the proposed technique
differs in two aspects. We address two issues at the same time:
which processing elements to choose and which functional
module to implement in hardware. Second, we consider the
possibility of hardware resource sharing between tasks.

This research is supported by National Research Laboratory Program
(number M1-0104-00-0015).
This work is sponsored by Brain Korea 21 project.
The RIACT at Seoul National University provides research facilities for
this study.

The rest of the paper is organized as follows. In the next section,
we state the problem and assumptions more clearly and present an
example multi-mode multi-task system, experimented in this
paper. Section 3 presents the structure of the proposed cosynthesis
framework and section 4 explains the proposed algorithm in detail.
And some experimental results are shown in section 5. We draw
conclusion in section 6.

2. Preliminaries
In this section, we define some notations and terminologies and
state the cosynthesis problem clearly with an example multi-mode
system

A multi-mode system Π consists of a fixed number of modes {Πi}
or Π={Π1, Π2, Π3,…}. Each mode Π i includes a number of tasks
{τj} and each task τj is composed of modules {mk} that are
functional blocks. The period Tij and deadline Dij of each task τj
are defined separately for each mode Π i. In case of a sporadic task,
Tij may be set as the minimum inter-arrival time between
successive requests.

We are also given a library of candidate processing elements
(PE's) {pm} that includes microprocessors, IPs, and ASIC core
implementations of function modules. For each processing
element pm, its cost cm and the worst case execution time tm,k of
module mk on pm are assumed to be given for each module.

Then, the cosynthesis problem is to select a set of processing
elements, PE={pn}, and to find a mapping φ:{mk}Æ{pn} and
scheduling of tasks {τj} to minimize the total cost of processing
elements while satisfying the schedulability condition. Depending
on which real-time scheduling technique is used, we use the
appropriate schedulability test. We let sl(τj,PE) be the schedule
length of task τj on the selected processing elements. Then, the
utilization of mode Πi,)(PEU

iΠ , becomes

∑
∏∈

Π =
ij

i
ij

j

T

Psl
PU

τ

τ),(
)((1)

For instance, if a rate-monotonic scheduling technique is adopted,
the schedulability test compares this utilization value with

)12(
1

−nn where n is the number of tasks[1].

Figure 1 shows a real-life example of multi-mode embedded
system experimented in this paper. The system supports 3
different modes of operation: video phone (Π1), video player (Π2),
and MP3 player (Π3). On the other hand, there are 5 different
tasks: H.263 encoder (τ1), H.263 decoder (τ2), MP3 decoder (τ3),
G.723 encoder (τ4), and G.723 decoder (τ5). Figure 1(a) shows
which tasks compose which mode of operation. For instance, the
video phone mode runs 4 tasks {τ1,τ2,τ4,τ5} concurrently.

The task period Tij is dependent on the mode. Task τ2 in Π2 mode
is scheduled twice as frequent as in Π1 since the task decodes 20
frames per second in the video player mode Π2 while it decodes
10 frames in Π1. In this example, the task deadlines are set equal
to the task periods. In case of audio encoder/decoder tasks, we
assume that each invocation processes a buffered packet of 25ms
voice samples to reduce the context switch overhead.

Each task is specified by an acyclic graph as shown in Figure 1(b).
Note that three function modules are shared between tasks τ1 and

τ2. In the graph, the annotated number on each arc indicates
communication overhead to be counted if the source module and
the sink module of the arc are mapped onto different processing
elements. We do not show the graphs for tasks τ4 and τ5 assuming
that they will not be broken down into multiple processing
elements.

Mode Π1 Π2 Π3

Task τ1 τ2 τ4 τ5 τ2 τ3 τ3

Period 100 100 25 25 50 40 40

Deadline 100 100 25 25 50 40 40

 (a)

τ1

τ2

τ3

 (b)

 P0(HW) : time(cost) P1(100) P2(900)

ME MEhw:17(100) 518 259

Diff - 5.2 2.6

DCT DCThw:5.6(20) 17 8.5

Q Qhw:4.6(24) 11.4 5.7

VLC VLChw:6(20) 16 8

deQ deQhw:2(10) 4 12

IDCT IDCThw:5.8(20) 18 9

MC MChw1:2.2(10), MChw2:1(30) 7.2 3.6

PD1 - 4.4 2.2

PD2 - 0.7 0.4

HD - 3 1.5

deMQ deMQhw:0.4(10) 1.2 0.6

IMDCT IMDCThw:2(30) 5.7 2.9

FB FBhw:5(5) 10.2 5.1

τ4 - 1.6 0.8

τ5 - 1.8 0.9

(c)

Figure 1. An example multi-mode embedded system: (a)
Modes of the system, and task periods and deadlines that
depend on modes (b) Tasks specified by acyclic graphs (c)
Module-PE profile table

Figure 1(c) shows the candidate processing elements and their
cost and timing information. This table is called a module-PE
profile table. The third and the fourth column indicate that there
are two candidate microprocessors. We obtain the timing
information for processing element P1 from running the real code
with the Armulator[6] assuming 500MHz ARM processor.

tl k��� kj{

tj

X Y

Y

x
Y

}sj

��x pkj{
Y

Y

Y

wkX tj
Y

��x pkj{
YY

wkY mi
X

ok pkj{
XX

��x
X

Processing element P2 is about twice faster, but nine times more
expensive. The first column lists the hardware implementations
that will be regarded as separate processing elements. For each
hardware implementation, the worst-case execution time and the
hardware cost are given. For instance, MChw1 has the value of 2.2
(msec) for the worst-case execution time and 10 for the cost. We
admit that the numbers are not from the exact measurements.
Packet decoding blocks PD1 and PD2, and Huffman decoding
block HD have no hardware implementation.

3. Proposed Cosynthesis Framework
The cosynthesis problem involves three subproblems: selection of
appropriate processing elements, mapping and scheduling of
function modules to the selected processing elements, and
schedule analysis. The proposed cosynthesis framework defines
an iteration loop of three steps that attack the subproblems
separately as depicted in Figure 2. The inputs to the cosynthesis
framework are a library of candidate processing elements and a
module-PE profile table as well as input task graphs.

The iteration starts with the module-PE allocation controller. The
module-PE allocation controller selects a set of processing
elements {pn} from the input candidate processing elements {pm}
and constructs a reduced module-PE profile table that includes the
selected processing elements only. This step is most critical since
design objectives are considered when selecting the appropriate
processing elements. If the design objective is to minimize the
cost, we first select the cheapest processor first. The detailed
mechanism will be explained in the next section.

The role of the next step is to schedule the acyclic graph of each
task to the selected processing elements in order to minimize the
schedule length. While the task graphs are given as inputs, the
reduced module-PE profile table is obtained from the PE
Allocation Controller step. Since this is a typical problem of
heterogeneous multiprocessor (HMP) scheduling, we use any
heterogeneous scheduler in this step. We obtain the schedule
result and the schedule length sl(τ j,PE) for task τj. We apply this
step for each task graph separately. An interesting observation in
this step is that the scheduler may not consume all selected
processing elements to further reduce the system cost if possible.

The next step is the performance evaluation step. It first checks
whether the design constraints are satisfied. Based on the schedule
lengths of all tasks obtained from the previous step, we compute
the utilization factors for schedulability analysis. If the
schedulability constraint is satisfied, it may end the iteration and
record the scheduling results. In case tradeoffs between multiple
objectives are searched, it records the schedule results and restarts
the iteration until all desired number of optimal points are
collected. If any design constraint is violated, it passes the
scheduling results and violation information to the PE Allocation
Controller to select other processing elements. More detailed
discussion can be found elsewhere [7].

One of the key benefits of such modular approach is extensibility.
Without modification of the core mapping and scheduling step,
we can add more design constraints to the performance evaluation
step. More processing elements can be added to the PE Allocation
Controller seamlessly. Even multiple design objectives can be
considered without modifying the core mapping and scheduling
step.

Second benefit is adaptability. We can easily change the mapping
and scheduling algorithm even though our implementation uses a
specific HMP scheduler, called the BIL scheduler[8], based on a
list scheduling heuristic. It is reported that this specific scheduler
performs reasonably good while time complexity is order of
magnitude faster than other well-formulated algorithms. Another
adaptation can be found in choosing the right schedulability test
for a given real-time scheduler. Only performance evaluation step
is modified to use the modified schedulability test.

Success

Heterogeneous
Multiprocessor
Scheduler

PE Allocation
Controller

Performance
Evaluation

Fail

Result

Time Table

Module-PE
profile
table

candidate
Processor
elements

Task
graphs

scheduling

result

{Pm}

{Pn}

Figure 2. The proposed cosynthesis framework

3.1 Time Complexity
The worst case iteration counts of the proposed algorithm is p
where p is the total number of the candidate processing elements
because it adds one processing element at a time. For each
iteration, we call the HMP scheduler pr×Nt times where pr is the
number of remaining candidate processing elements and Nt is the
number of tasks. To select the best processing element, we call the
HMP scheduler once for each candidate processing element even
though we can prune the search tree drastically in real
implementation. If we let the time complexity of the HMP
scheduler as S, the total time complexity becomes O(Sp2Nt). The
time complexity of the HMP scheduler depends on the size of the
task graphs and the number of selected processing elements.

Even for a single mode system, the proposed technique has more
advantageous in terms of time complexity than other previous
approaches such as genetic algorithms and integer linear
programming. It is well-known that the ILP approach is
prohibitively complex to solve even reasonable size problems.
MOGAC[4] uses a genetic algorithm to solve cosynthesis problem
for multi-task systems. It has much larger time complexity than
ours due to two main reasons. First, the problem size is
proportional to the number of tasks while the time complexity is
proportional to the number of tasks in our proposed approach. If
the problem size grows, the time complexity of a genetic
algorithm grows much faster in general. Second, to satisfy the
schedulability constraint, they consider a hyper-period that is the
least common multiple of the tasks periods. If the task periods are
different each other, the hyper-period can be huge and the
problem size can be huge proportionally. On the other hand, the
proposed algorithm uses the schedulability test without problem
size increment, assuming that a real-time operating system is used.

4. Processing Element Selection
In this section, we explain how the PE allocation controller selects
the processing elements to achieve the design objectives. For
simplicity, we assume that the design objective is to minimize the
system cost. And we use a simple example to show how the
algorithm proceeds.

Consider an example of Figure 3 that has two modes of operation
and two different tasks. Mode Π1 needs two tasks while mode Π2

needs the second task only. Two tasks consist of three function
modules respectively, while two function modules are shared
between two tasks. We assume that the period of task1 and task2 in
mode Π1 is 40 and 60 respectively, and task2 in mode Π2 30.
There are two candidate processors and 6 different hardware
implementations for the constituent function modules as shown in
the module-PE profile table of Figure 3(b).

Since the design objective is to minimize the system cost, initially
the PE Allocation Controller allocates the cheapest processing
element: P1 in this example. The reduced module-PE profile table
can be depicted as Figure 3(c) where infinite time indicates the
corresponding processing element is not selected. Consequently
the HMP scheduler maps all modules onto the PE's of minimum
cost P1 as displayed in Figure 3(d). We obtain two separate
scheduling results for two task graphs.

Π1 Π2
task1 task2 task2

Period 40 60 30
Deadline 40 60 30

h i j
Y Z

h i k
Y \

����
X

����
Y

(a)

(b) (c)

w
X

����
X

h i

^ X\

j

Y\

����
Y

h i

^ X\

k

ZX

(d)

Figure 3. (a) Modes and task graphs (b) Module-PE profile
table (c) Initially reduced module-PE profile table (d)
Scheduling results

The next step is the performance evaluation step that tests if tasks
are schedulable. As discussed earlier, it is utilization that is a
measure to determine the schedulability for a given real-time
scheduler such as rate-monotonic, earliest deadline first and so on.
If the utilization becomes larger than the given utilization
constraint then the evaluation fails and more PE's need to be
allocated. From the scheduling result in Figure 3(d), utilization

1ΠU of mode Π1 becomes 1.14 (
60

31

40

25 +=) and
2ΠU becomes

1.03 (
30

31=). If we assume that the utilization constraint is 1.0,

we should allocate more PE's in order to reduce the scheduling
length of all tasks until utilization constraint is satisfied for all
tasks.

Now, we arrive at the core of the selection technique. Among
many candidate processing elements, we want to select another
PE, which reduces the task execution times as much as possible,
but minimizes the cost increment. We define the expected
utilization decrement(EUD) and the expected cost increment(ECI)
for each candidate processing element. Furthermore, we define the
slack as the difference between the utilization constraint U* and
the current utilization in order to avoid reducing the utilization
factor too much with more expensive PE.

*)(UPEUSlack
ii

−= ΠΠ (2).

While ECI(pn) is simply the cost of processing element pn,
EUD(pn) is defined as the difference between the utilization
before allocating pn and the utilization after allocating pn.

∑
Π∈Π

ΠΠΠ ∪−=
i

iii
SlackpPEUPEUpEUD nn)}),{()(min()((3).

 schedule length

 task1 task2
EUD ECI

ECI

EUD

Ahw 21 27 0.17 12 0.014
Bhw 24 31 0.03 5 0.005
Bhw 23 31 0.05 15 0.003
Chw 20 31 0.125 10 0.013
Chw 19 31 0.15 20 0.008
Dhw 25 24 0.15 15 0.010
P2 10 10 0.17 60 0.003

(a)

w
X

����
X

h

i

X XX

j

YX

w
W

����
Y

h

i

X XX

k

Y^

w
X

w
W

(b) (c)

Figure 4. (a)
ECI

EUD
 value for all candidate processing elements

(b) Modified module-PE profile table after Ahw is selected (c)
Scheduling results

After computing EUDs and ECIs of all PE's, we choose an entry

that has the largest
ECI

EUD
value among unselected PE's since the

utilization is expected to decrease significantly with minimal cost
increase. And we modify the reduced module-PE profile table and
pass it to the HMP scheduler. It is not guaranteed however that

 P0(HW):time(cost) P1(10) P2(60)
A Ahw:1(12) 7 2
B Bhw1:2(5),Bhw2:1(15) 8 3
C Chw1:2(10),Chw2:1(20) 10 5
D Dhw:4(10) 16 5

 P0 P1 P2
A ∞ 7 ∞
B ∞ 8 ∞
C ∞ 10 ∞
D ∞ 16 ∞

 P0 P1 P2
A 1 7 ∞
B ∞ 8 ∞
C ∞ 10 ∞
D ∞ 16 ∞

the modules are mapped to the newly selected PE. Modules will
be scheduled onto the PE only when the total schedule length is
actually reduced considering communication overheads.

Figure 4(a) represents EUD and ECI values of candidate
processing elements at the onset of the second iteration. For

example, EUD(Ahw) is the sum of)14.0),
60

27

40

21
(14.1min(+− of

mode Π1 and)03.0,
30

27
03.1min(− of mode Π2. In this example,

Ahw is chosen since its ratio is the largest. The HMP scheduling
result is shown in Figure 4(c). Since we can schedule all tasks
within the utilization constraint, we exit from the iteration loop.

The multi-function problem[9] is a cosynthesis problem to
support multiple functions or applications of which only one is
executed at any instant. Since the problem allows each mode or
application to have one task, it is a sub-problem of the cosynthesis
problem discussed in this paper. The fact that each mode has one
task enables us not to compute utilization. Instead of utilization,
the schedule length of each task can be used to compute expected
utilization increment. The other procedures remains as described
in the previous section.

5. Experimental Results
We apply the proposed technique to the multi-mode embedded
system described in section 2. The HW speed and HW cost
information is reasonably estimated while not obtained from real
implementation.

For comparison, we first apply the proposed cosynthesis
algorithm for each mode of operation separately and add up the
estimated system cost at the end. Table 1 shows which processing
elements are selected and what is the resultant system cost. While
processor P1 is commonly selected, different hardware
implementations are selected for video phone and video player
applications. As a result, 5 processing elements are selected and
the system cost becomes 235.

Table 1. Results without considering multi-mode multi-task

Mode Used PE’s Cost

video phone MEhw, IDCThw, P1 220

video player MChw1, FBhw, P1 115

MP3 player P1 100

Total MEhw, IDCThw, P1, MChw1, FBhw 235

Now, we apply the proposed algorithm to all modes together
considering the resource sharing possibility. As shown in Table 2,
the video player mode selects a different set of hardware
implementations. Instead of selecting Motion Compensation and
Filter Bank blocks, it selects IDCT block for HW implementation
since the IDCT HW is already selected in the video-phone mode.
Since resource sharing is successfully exploited in the proposed
technique, the total system cost is reduced to 220.

The proposed algorithm has been implemented in C++ on a
codesign framework[10]. It takes 0.1 seconds with Pentium 667
MHz processors. Considering the problem size of 3 modes, 5
tasks, 16 function modules, and 13 processing elements, the time
complexity is reasonable.

Table 2. Results with considering multi-mode multi-task

Mode Used PE’s Cost

video phone MEhw, IDCThw, P1 220

video player IDCThw, P1 120

MP3 player P1 100

Total MEhw, IDCThw, P1 220

We apply the proposed technique to the examples used in Hou's
research[3]. They have three processing elements and four tasks
which includes 10 modules. They tested three examples of task
combination, which we interpret them as three different modes of
operation: Π1, Π2 and Π3 as shown Table 3. If we use the same
task periods as [3], we cannot reduce system cost further since
independent application of the cosynthesis algorithm to each
mode also selects two processing elements. However if we
prolong the period of τ1 and τ3 in Π2 to 2000, then the system cost
increases since the algorithm allocates lower cost PE for tasks in
Π2 instead of reusing PE's allocated for tasks in the other modes.

Table 3. Hou's task graphs : period and system cost

Π1 Π2 Π3

task1 task2 task1 task3 task3 task4

original period 240 240 240 200 200 380

relaxed period 240 240 2000 2000 200 380

6. Conclusions
In this paper, a HW/SW cosynthesis framework is proposed for
multi-mode multi-task embedded systems with real-time
constraints. The proposed iterative consynthesis procedure
consists of three steps: selection of processing elements including
ASIC core implementations, mapping and scheduling of task
graphs onto the selected processing elements, and schedulability
test.

Unlike the previous approaches, we take into account of task
sharing between operation modes as well as HW resource sharing
between tasks. As a result, the proposed algorithm achieves about
10% reduction of system cost with an example multi-mode
embedded system, compared with an approach without
considering the resource sharing opportunities. Since the time
complexity of the proposed algorithm is only linear to the number
of tasks, it is applicable for large size applications.

The key benefits of the proposed framework are extensibility and
adaptability. Even though we concern about the schedulability
and the system cost only in this paper, more design constraints
and design objectives can be easily augmented. The main
difficulty of using this approach to practical system design is
constructing the module-PE profile table, which is assumed to be
given in this paper.

cost without considering

multi-mode
cost with considering

multi-mode

original period 170 170

relaxed period 190 170

7. REFERENCES
[1] C. L. Liu and J. W. Layland, "Scheduling algorithm for

multiprogramming in a hard real time environment," Journal
of ACM, vol. 20, pp. 46-61, Jan. 1973.

[2] N.Audsley, A. Burns, M. Richardson, and A. Wellings,
"Hard real-time scheduling: The deadline-monotonic
approach," In Proc. of IEEE Workshop on Real-Time
Operating Systems and Software, pp. 133-137, May 1991.

[3] J. Hou and W. Wolf, "Process partitioning for distributed
embedded systems," in Proc. Int. Workshop Hardware-
Software Codesign, pp. 70-76, March 1996.

[4] R. P. Dick and N. K. Jha, "MOGAC: A Multiobjective
Genetic Algorithm for Hardware-Software Cosynthesis of
Distributed Embedded Systems," IEEE Trans. on Computer-
Aided Design of integrated circuits and systems, vol. 17, no.
10, pp. 920-935, Oct. 1998.

[5] Y. Shin, D. Kim, and K. Choi , "Schedulability-driven
performance analysis of multiple mode embedded real-time

systems," Proc. Design Automation Conf., pp. 495-500, June
2000.

[6] ARM Ltd., "Software Development Toolkit", available at
http://www.arm.com/product/SDT/.

[7] Hyunok Oh and Soonhoi Ha, "A Hardware-Software
Cosynthesis Technique Based on Heterogeneous
Multiprocessor Scheduling", 7th International Workshop on
Hardware/Software Codesign, pp. 183-187, May 1999.

[8] Hyunok Oh and Soonhoi Ha, "A Static Scheduling Heuristic
for Heterogeneous Processors", Second International
EuroPar Conference Proceedings, vol. II, August 1996.

[9] A. Kalavade and P. A. Subrahmanyam, "Hardware / Software
Partitioning for Multi-function Systems", Proc. International
Conference on Computer Aided Design, pp. 516-521, Nov.
1997.

[10] http://peace.snu.ac.kr/research/peace : PeaCE codesign
Environment

	Main Page
	CODES'02
	Front Matter
	Table of Contents
	Author Index

