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Abstract
Modeling club structures as bipartite directed networks, we formulate the

problem of club formation as a noncooperative game of network formation and
we identify conditions on network formation rules and players’ network pay-
offs sufficient to guarantee the existence of a unique nonempty set of Nash club
networks stable (externally and internally) with respect to noncooperative path
dominance. Our sufficient conditions on network formation rules require that
each player be able to move freely and unilaterally from one club to another and
choose freely and unilaterally feasible activities within those clubs joined by the
player. We refer to our conditions on rules as noncooperative free mobility. Our
sufficient conditions on network payoffs require that players’ payoffs be additively
separable in player-specific payoffs and externalities and that payoff externali-
ties, a function of club membership, club activities, and crowding, be identical
across players. We refer to our conditions on payoffs as additive separability and
externality homogeneity. We then show that under noncooperative free mobility,
additive separability, and externality homogeneity, the noncooperative game of
club network formation is a potential game over directed club networks. The
existence of a unique nonempty set of Nash club networks, stable with respect
to noncooperative path dominance, then follows easily.
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1 Introduction

Club theory and the theory of local public good provision has a long history in eco-
nomics, dating back to seminal papers of Charles Tiebout (1956) and James Buchanan
(1965). Three types of approaches have been applied: price taking equilibrium the-
ory; cooperative game theory, and; non-cooperative models of club/jurisdiction for-
mation. There has been very little study, however, of club models where players
can belong to multiple clubs, a situation introduced in Shubik and Wooders (1982).1

Also, even in situations allowing multiple memberships in clubs, no account is taken
of the fact that individuals may be connected in different ways to the same club and
have different connections with different clubs. Networks appear to provide a promis-
ing approach to modeling strategic club formation where players can have multiple
club memberships with different connections within clubs and across clubs.

Modeling club structures as bipartite directed networks, we formulate the prob-
lem of club formation as a noncooperative game of network formation and identify
conditions on network formation rules and players’ network payoffs sufficient to guar-
antee the existence of a unique nonempty set of Nash club networks that are stable
(externally and internally) with respect to noncooperative path dominance, intro-
duced in Page and Wooders (2005). Our sufficient conditions on network formation
rules require that each player be able to move freely and unilaterally from one club to
another and choose freely and unilaterally feasible activities within those clubs joined
by the player. We refer to our conditions on rules as noncooperative free mobility.
Our sufficient conditions on network payoffs require that players’ payoffs be additively
separable in player-specific payoffs and externalities and that payoff externalities —
a function of club membership, club activities, and crowding — be identical across
players. We refer to our conditions on payoffs as additive separability and external-
ity homogeneity. We then show that under noncooperative free mobility, additive
separability, and externality homogeneity, the noncooperative game of club network
formation is a potential game over directed club networks. The existence of a unique
nonempty set of Nash club networks, stable with respect to noncooperative path
dominance, then follows easily.

This paper grew out of earlier work (Page and Wooders, 2005) where we develop
a game theoretic model of network formation whose primitives consist of a feasi-
ble set of networks (bipartite or otherwise), player preferences, the rules of network
formation, and a dominance relation. A specification of the primitives induces an
abstract game consisting of (i) a feasible set of networks and (ii) a path dominance
relation defined on the feasible set of networks. Under the path dominance relation,
a network G path dominates another networkG� if there is a finite sequence of net-
works, beginning with G and ending with G� where each network along the sequence
dominates its predecessor.2 Using this induced abstract game as our basic analytic

1Shubik and Wooders (1982) is the first contribution known to us allowing multiple member-
ships. Allouch an Wooders (2007) presents a discussion of this literature, primarily concerned with
nonemptiness of cores, existence of equilibrium, and core-equilibrium equivalence.

2Stated formally, given feasible set of networks G and dominance relation >, network G� ∈ G
(weakly) path dominates network G ∈ G, written G� ≥p G, if G� = G or if there exists a finite
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tool we demonstrate that for any set of primitives the following results hold:

1. The feasible set of networks contains a unique, finite, disjoint collection of
nonempty subsets each constituting a strategic basin of attraction. Given pref-
erences and the rules of governing network formation, these basins of attraction
are the absorbing sets of the process of network formation modeled via the
game.

2. A stable set (in the sense of von Neumann Morgenstern) with respect to path
dominance consists of one network from each basin of attraction.

3. The path dominance core, defined as a set of networks having the property that
no network in the set is path dominated by any other feasible network, consists
of one network from each basin of attraction containing a single network. Thus,
the path dominance core is contained in each stable set and is nonempty if and
only if there is a basin of attraction containing a single network.3

If the rules of network formation are noncooperative (as in this paper), then the
set of networks contained in the path dominance core is equal to the set of Nash
networks, and thus the set of Nash networks is nonempty if and only if there is
a basin of attraction containing a single network. Viewed in this light, we show
here that in games of club network formation satisfying noncooperative free mobility,
additive separability, and externality homogeneity all basins of attraction contain
a single network. In fact, we accomplish this by showing that any game of club
network formation satisfying our three conditions is a potential game (see Monderer
and Shapley, 1996).

Our research is also related to that of Kalai and Schmeidler (1977) since in any
network formation game the union of basins of attraction is equal to the admissible
set, introduced in their work.4 To define the admissible set, take as given a set of
feasible alternatives, denoted by S, a dominance relationM and the transitive closure
of M , denoted by fM . The admissible set is the set A(S,M) = {x ∈ S : y ∈ S and
yfMx imply xfMy}. The admissible set describes those outcomes that are likely to be
reached by any dynamic process that respects preferences. The admissible set concept
can be applied to a host of game-theoretic situations, ranging from non-cooperative
games, where a coalition consists of an individual player, to fully cooperative games,
where any coalition can be allowed to form. As shown by Kalai and Schmeidler
through a series of examples, the relationship of the admissible set to the set of Nash
equilibrium depends on the definition of the dominance relation and, in some cases,

sequence of networks {Gk}nk=0 in G with G = G0 and G� = Gn such that for k = 1, 2, . . . , n
Gk > Gk−1.

The path dominance relation ≥p induced by the dominance relation > is sometimes referred to as
the transitive closure of >.

3Put differently, the path dominance core is empty if and only if all basins of attraction contain
multiple networks.

4See also Kalai, Pazner and Schmeidler (1976) and Shenoy (1980).

3



the set of Nash equilibrium and the admissible set coincide. It is interesting to note
that if the dominance relation is defined based on a notion of “possible replies”, which
can be thought of as “improving replies” (rather than best replies in the usual sense),
then the admissible set is equivalent to the set of Nash equilibrium. In the framework
of the current paper, in part because of the finiteness of the strategy sets, each Nash
equilibrium strategy profile is a basin of attraction and the union of all basins of
attraction coincides with (the network rendition of) the admissible set.

2 Club Networks with Multiple Memberships

We begin by introducing the notion of a club network where players can have multiple
club memberships. Using bipartite networks we are able to represent any such club
structure in a compact and precise way.

Let D be a finite set of players consisting of two or more players with typical
element denoted by d and let C be a finite set of club types (or alternatively, a set
of club labels or club locations) with typical element denoted by c. Finally, let A be
a finite set of arcs (or actions) potentially available to all players. For each player d
and club c, denote by A(d, c) the feasible set of actions that can be taken by player
d in club c.
Definition 1 (Club Networks with Multiple Memberships)

Given a finite set of players D, a finite set of clubs C, and a finite set of arcs A,
a club network G is a nonempty subset of A × (D × C) such that (i) for all players
d ∈ D, the section of G at d given by

G(d) := {(a, c) ∈ A× C : (a, (d, c)) ∈ G} (1)

is nonempty; and (ii) for all (a, (d, c)) ∈ G, a ∈ A(d, c). Let K denote the collection
of all such club networks.

Given network G ∈ K, (a, (d, c)) ∈ G means that player d is a member of club c
and takes action a ∈ A(d, c) in club c. The section of G at d is the set of action-club
pairs summarizing the clubs to which player d belongs and the action taken by player
d in each of those clubs. The set

G(a, c) := {d ∈ D : (a, (d, c)) ∈ G } (2)

(i.e., the section of G at (a, c)) is the set of all players who, in club network G ∈ K,
are members of club c and take action a in club c. Thus, the cardinality of the set
G(a, c), denoted by |G(a, c)|, is the total number of players who are members in club
c and take action a in club c, and the sum[

a∈A
|G(a, c)|

is the total number of players active in club c.5

5 If G(a, c) = ∅, then |G(a, c)| = 0.

4



Example 1 (Marketing Networks as Club Networks with Multiple Memberships)
Suppose there are five firms D = {d1, d2, d3, d4, d5}, two markets C = {c1, c2}, where
c1 = New York and c2 = Paris, and three possible product lines A = {a1, a2, a3}.
Each firms feasible product lines appear in the list below:

A(d1, c) = {a1, a3} for all c ∈ C,

A(d2, c) = {a1, a2} for all c ∈ C,

A(d3, c) = {a2, a3} for all c ∈ C,

A(d4, c) = {a2, a3} for all c ∈ C,

A(d5, c) = {a1, a3} for all c ∈ C.
Marketing network G0 depicted in Figure 1 represents one possible product line-
market profile for firms D.

d1

d2

d3

d4

d5

c1

c2

a2

a1

a3

a1

a1

G0

a3

a3

Figure 1: Marketing Network G0

In marketing networkG0 both firms d1 and d5 offer product line a1 in the Paris market
(i.e., in the c2 market), while no firm offers product line a2 in the Paris market, and
only one firm, d4, offers product line a3 in the Paris market. Thus,

G0(a1,c2) = {d1, d5} , G0(a2,c2) = ∅, and G0(a3,c2) = {d4} .

Also, note that in marketing network G0 two firms, d1 and d4, are active in the New
York and Paris markets. Firms d2 and d3 specialize in the New York market, while
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firm d5 specializes in the Paris market. Thus,

G0(d1) = {(a3, c1), (a1, c2)} G0(d4) = {(a3, c1), (a3, c2)}

G0(d2) = {(a1, c1)} G0(d3) = {(a2, c1)}

G0(d5) = {(a1, c2)} .

Note that all product line offerings are feasible (see the list above). Finally, note that
four firms are active in the New York market; that is

G0(c1) := ∪a∈AG0(a, c1) = {d1, d2, d3, d4} .

We shall maintain the following assumption throughout:

(A-1) (noncooperative free mobility) Each player can move freely and unilaterally
from one club to another and each player can choose freely and unilaterally
his feasible activity within the club. This means that a player can drop his
membership and activity in any given club and join any other club and take
any other feasible action without bargaining with or seeking the permission of
any player or group of players. In this sense, our model of club formation, as
a game over club networks with moral hazard and multiple memberships, is
noncooperative.

The assumption of noncooperative free mobility is quite common in other models
of noncooperative network formation (see, for example, Bala and Goyal 2000). Under
the assumption of noncooperative free mobility, each player can alter any existing club
network by simply switching his memberships and/or changing his activities.

Example 2 Figure 2 depicts the marketing network which results when firm d1
noncooperatively changes its product line-market profile from

G0(d1) = {(a3, c1), (a1, c2)} to G1(d1) = {(a3, c1), (a1, c2), (a3, c1)} .
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G1

d1

d2

d3

d4

d5

c1

c2

a2

a1

a3

a1

a1

a3

a3

a3

Figure 2: Marketing Network G1

This change is brought about by firm d1 adding product line a3 to its offerings in the
Paris market. Note that in marketing network G1 product line a1 is offered by two
firms, d1 and d5, and product line a3 is offered by firms d1 and d4.

The noncooperative move by firm d1 changing marketing network G0 in Example
1 to marketing network G1 above is depicted in Figure 3 below.

d1

d2

d3

d4

d5

c1

c2

a2

a1

a3

a1

a1

G0

a3

a3

−→d1
G1

d1

d2

d3

d4

d5

c1

c2

a2

a1

a3

a1

a1

a3

a3

a3

Figure 3: The noncooperative move by firm d1 from network G0 to network G1

The move from G0 to G1 brought about by firm d1 is denoted by

G0 →d1 G1,

where the resulting network G1 is given by

G1 = G0\ (d1 ×G0(d1)) ∪ (d1 ×G1(d1)) ,
and where

d1 ×G0(d1) := {(a, (d1, c)) : (a, c)) ∈ G0(d1)}
and

d1 ×G1(d1) := {(a, (d1, c)) : (a, c)) ∈ G1(d1)} .
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Referring to Figure 3, note that

d1 ×G0(d1) := {(a3, (d1, c1)), (a1, (d1, c2))}
and

d1 ×G1(d1) := {(a3, (d1, c1)), (a1, (d1, c2)), (a3, (d1, c2))} .

3 Payoffs, Potentials, and Nash Club Networks

3.1 Payoffs

We will assume that (i) each players payoffs are additively separable in player specific
payoffs, internal effects, and external effects; and (ii) that internal effects and external
effects are homogenous across players. In particular, we will maintain the following
assumption throughout:

(A-2) (additive separability and externality homogeneity) Each player’s payoff over
club networks is given by

vd(G) =
[

(a,c)∈G(d)
rd(a, c) +

[
(a,c)∈G(d)

I(a,c)(|G(a, c)|) +
[

(a,c)∈G(d)c
E(a,c)(|G(a, c)|),

(3)

where,

G(d)c is the complement of the set G(d) in A× C,
rd(a, c) is the player-specific payoff generated by the action-club pair, (a, c) ∈ G(d),

chosen by player d in network G,

I(a,c)(|G(a, c)|) is the payoff externality generated by the number of players who
choose the action-club pair, (a, c), chosen by player d in network G,

E(a,c)(|G(a, c))|) is the payoff externality generated by the number of players who
choose an action-club pair (a, c) in network G not contained in the set of action-
club pairs G(d) chosen by player d in network G, and[

(a,c)∈G(d)
I(a,c)(|G(a, c)|) +

[
(a,c)∈G(d)c

E(a,c)(|G(a, c)|)

is the sum of all of these payoff externalities.

We will refer to the quantity I(a,c)(|G(a, c)|) as the internal effect of action-club
pair (a, c) on a player in club network G and we will refer to E(a,c)(|G(a, c)|) as the
external effect of action-club pair (a, c) on a player in club network G. The internal
effect I(a,c)(|G(a, c)|) accrues to a player, say player d, if and only if (a, c) is contained
in the set of action-club pairs chosen by player d in network G; that is, if and only if
(a, c) ∈ G(d). The external effect E(a,c)(|G(a, c)|) accrues to a player, say player d, if
and only if (a, c) is not contained in the set of action-club pairs chosen by player d in
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network G; that is, if and only if (a, c) /∈ G(d). Note that for each action-club pair
(a, c), the functions I(a,c)(·) and E(a,c)(·) are the same for all players. Our specification
of player payoffs given in (3) is a network rendition of a specification introduced in
Hollard (2000).

3.2 Potentials

Our objective in this section is to show that under the assumptions of noncooper-
ative free mobility (A-1) and payoff separability (A-2), the club network formation
game with multiple club memberships is a finite potential game. This will allow us
to show, in a manner similar to Monderer and Shapley (1996), that under assump-
tions (A-1) and (A-2) all noncooperative club network formation games with multiple
membership possesses Nash club networks.

We begin with three definitions.
Definition 2 (noncooperative network changes and noncooperative club network

formation games)
(1)A noncooperative network change from network G0 ∈ K to network G1 ∈ K

is a change brought about by a single player, say player d1, denoted by G0 →d1 G1
such that (i) G1 = G0\ (d1 ×G0(d1)) ∪ (d1 ×G1(d1)), and (ii) G0(d1) 9= G1(d1).

(2) A noncooperative club network formation game, (K, vd(·))d∈D, is a game where
only noncooperative network changes are allowed.

Definition 3 (Nash clubs)
A club network G0 ∈ K is said to be a Nash club network for the noncooperative

club network formation game (K, vd(·))d∈D if for all noncooperative changes G0 →d1

G1, vd1(G0) ≥ vd1(G1). Let NCN denote the set of all Nash club networks.
Definition 4 (potential game)
The noncooperative club network formation game (K, vd(·))d∈D is a potential

game if there exists a function,

P (·) : K→ R

such that for all for all noncooperative changes G0 →d1 G1

vd1(G1)− vd1(G0) = P (G1)− P (G0).

It is easy to see that if (K, vd(·))d∈D is a potential game with potential P (·),
then any club network contained in argmaxG∈K P (G) is a Nash club network for
(K, vd(·))d∈D. Moreover, since K is finite, argmaxG∈K P (G) is nonempty. Thus, one
way to resolve the Nash problem for club network formation games is to show that
these games possess potential functions. Our next objective, therefore, will be to
show that for club network formation games satisfying noncooperative free mobility
(A-1) and payoff separability (A-2) a potential function can be constructed.

Following Hollard (2000), let

Φ(a,c)(k) = I(a,c)(k)−E(a,c)(k − 1), k = 0, 1, . . . , |D| .

9



In club network G ∈ K, if player d chooses action-club pairs G(d) and (a, c) ∈ G(d),
then

Φ(a,c)(|G(a, c)|) = I(a,c)(|G(a, c)|)−E(a,c)(|G(a, c)|− 1)
is the difference between the internal effect derived by player d in network G from
being in group G(a, c) and the external effect player d would derive from group
G(a, c) if player d were to leave that group by noncooperatively choosing some other
action-club (a�, c�) not equal to (a, c).

Our main result is the following:
Theorem 1 (Club network formation names with multiple memberships satisfying

noncooperative free mobility, additive separability, and externality homogeneity are
potential games).

Let (K, vd(·))d∈D be a club network formation game satisfying noncooperative free
mobility (A-1), payoff separability, and externality homogeneity (A-2). Then the
function

P (·) : K→ R

given by

P (G) =
[

(a,c)∈A×C

⎡⎣ [
d∈G(a,c)

rd(a, c) +

|G(a,c)|[
k=0

Φ(a,c)(k)

⎤⎦ , (4)

is a potential function for this game.

Since the proof consists primarily of long and tedious elementary algebra it is
relegated to the appendix.

3.3 Nash Club Networks

We now have our main result on the existence of Nash club networks for noncooper-
ative club network formation games with multiple memberships.

Theorem 2 (Club network formation names with multiple memberships satisfy-
ing noncooperative free mobility, additive separability, and externality homogeneity
possess Nash club networks).

Let (K, vd(·))d∈D be a club network formation game satisfying noncooperative free
mobility (A-1), payoff separability, and externality homogeneity (A-2). Then there
exists a Nash club network G∗ ∈ K; that is, there exists a club network G∗ ∈ K
such that for all noncooperative changes G0 →d1 G1, G1 ∈ K, brought about by some
player d1,

vd1(G
∗) ≥ vd1(G1).

PROOF: By Theorem 1 the club network formation game, (K, vd(·))d∈D, is a
potential game with potential

P (G) =
[

(a,c)∈A×C

⎡⎣ [
d∈G(a,c)

rd(a, c) +

|G(a,c)|[
k=0

Φ(a,c)(k)

⎤⎦ .
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Since the set of club networks K is finite, argmaxG∈K P (G) is nonempty. Let G∗ ∈
argmaxG∈K P (G). Then G∗ is a Nash club network. If not, then there exists a
noncooperative change in club network G∗, say G∗ →d1 G1 ∈ K, which can be
brought about by some player d1 such that vd1(G1) > vd1(G

∗). Because P (·) is a
potential,

P (G1)− P (G∗) = vd1(G1)− vd1(G∗) > 0.
But this contradicts the fact that G∗ ∈ argmaxG∈K P (G).

4 The Noncooperative Path Dominance Core

Because all club network formation games satisfying noncooperative free mobility
(A-1) and additive separability and externality homogeneity (A-2) are a potential
games, much more can be said about stability with respect to noncooperative network
changes. In particular, we can show that no noncooperative improvement path forms
a circuit and that each club network in K is either a Nash club network or is a
network on a finite, noncooperative improvement path leading to a Nash club network.
Thus all club network formation games satisfying (A-1) and (A-2) have nonempty
noncooperative path dominance cores (see Page andWooders, 2005). Now we provide
the details.

4.1 Noncooperative Path Dominance

We begin with a definition of noncooperative direct dominance. The definitions and
some of the results of this section are special cases or applications from Page and
Wooders (2005). Since we treat potential games, however, we are able to obtain
stronger results.

Definition 5 (Noncooperative Direct Dominance)
(1) We say that club network G� ∈ K noncooperatively directly dominates club

network G ∈ K via player d, written G� d G, if for player d ∈ D,
G→d G

� and vd(G�) > vd(G).

(2) We say that club network G� ∈ K noncooperatively directly dominates club
network G ∈ K, written G� G, if for some player d ∈ D,

G→d G
� and vd(G�) > vd(G).

Thus, G� noncooperatively directly dominates G if there is some player d who
can noncooperatively change club network G to club network G� by changing his
action-club profile and who wants to change club network G to club network G�.6

6Written compactly,

G� G⇔ ∃d ∈ D such that G� d G.
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The noncooperative direct dominance relation on K induces a noncooperative
path dominance relation ≥np on K specified as follows:

Definition 6 (Noncooperative Path dominance)
Club network G� ∈ K (weakly) noncooperatively path dominates club network

G ∈ K with respect to , written G� ≥np G, if G� = G or if there exists a finite
sequence of club networks {Gk}hk=0 in K with Gh = G� and G0 = G such that for
k = 1, 2, . . . , h

Gk Gk−1.

We refer to such a finite sequence of club networks as a finite improvement path and
we say network G� is -reachable from network G if there exists a finite improvement
path from G to G�. Thus,

G� ≥np G if and only if
�
G� is -reachable from G, or
G� = G. (5)

Note that if club network G� is -reachable from G via some finite sequence of
networks {Gk}hk=0 in K (not necessarily unique), then corresponding to this sequence
there is a unique finite sequence of players {dk}hk=1 ⊆ D such that Gk dk Gk−1.

4.2 Circuits, Equivalence, and Isolation

If club network G1 is reachable from club network G0, and if G0 is reachable from
G1 (i.e., if G1 ≥np G0 and G0 ≥np G1), then networks G1 and G0 are said to be
noncooperatively equivalent, denoted by G1 ≡np G0. If networks G0 and G1 are
noncooperatively equivalent but not equal (i.e., G0 9= G1), then there is a noncoop-
erative domination path leading from network G0 back to network G0 which includes
network G1. We call such a path a noncooperative circuit, and we say that networks
G0 and G1 are on the same circuit. Thus, if networks G0 and G1 are equivalent then
either networks G1 and G0 coincide (G0 = G1) or G1 and G0 are on the same circuit.
Finally, if network G is not reachable from any network in K and if no network in K
is reachable from G, then network G is noncooperatively isolated (i.e., network G ∈ K
is noncooperatively isolated if there does not exist a network G� ∈ K with G� ≥np G
or G ≥np G�).

4.3 The Noncooperative Path Dominance Game of Club Network
Formation

Corresponding to the noncooperative game (K, vd(·))d∈D of club network formation
there is an abstract game (in the sense of vonNewmann-Morgenstern) of club network
formation with respect to noncooperative path dominance given by the pair

(K,≥np) .
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Definition 7 (The Noncooperative Path Dominance Core)
A club network G ∈ K is said to be a core network of (K,≥np) if there does not

exist a network G� ∈ K, G� 9= G, such that G� ≥np G. Let C denote the set of all core
networks and call C the noncooperative path dominance core of (K,≥np).

In attempting to identify those club networks which are in the noncooperative
path dominance core, club networks without descendants are of particular interest.

4.4 Club Networks Without Descendants

If club network G1 noncooperatively path dominates club network G0, so that G1 ≥np
G0 but G1 and G0 are not equivalent (i.e., not G1 ≡np G0), then network G1 is a
descendant of network G0 and we write

G1 >np G0. (6)

Thus, if G1 is a descendant of G0, then there is a noncooperative domination path
from G0 to G1, but there is not a noncooperative domination path from G1 back to
G0.

Definition 8 (Club Networks Without Descendants)
We say that club network G� ∈ K has no descendants in K if for any network

G ∈ K

G ≥np G� implies that G ≡np G�.

Thus, if G� has no descendants then G ≥np G� implies that G and G� coincide or lie
on the same circuit.7

Here is our main result concerning club networks without descendants. The fol-
lowing Theorem is a rendition of Page and Wooders (2005, Theorem 1) for club
network formation games.

Theorem 3 (All noncooperative path dominance games of club network formation
have networks without descendants)

Let (K,≥np) be a noncooperative path dominance games of club network forma-
tion. For every club network G ∈ K there exists a network G� ∈ K such that G� ≥np G
and G� has no descendants.
Proof. Let G0 be any club network in K. If G0 has no descendants then we are done.
If not choose G1 such that G1 >np G0. If G1 has no descendants then we are done.
If not, continue by choosing G2 >p G1. Proceeding iteratively, we can generate a
sequence, G0, G1,G2, . . . . Now observe that in a finite number of iterations we must
come to a club network Gk� without descendants. Otherwise, we could generate an
infinite sequence, {Gk}k such that for all k,

Gk >p Gk−1.

However, because K is finite this sequence would contain at least one club network,
say Gk� , which is repeated an infinite number of times. Thus, all the networks in

7Note that any isolated network is by definition a network without descendants.
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the sequence lying between any two consecutive repetitions of Gk� would be on the
same circuit, contradicting the fact that for all k, Gk is a descendant of Gk−1 (i.e.,
Gk >p Gk−1).

While Theorem 3 does not require assumption (A-1) and/or assumption (A-2),
our next Theorem requires both (A-1) and (A-2).

Theorem 4 (Non-cooperative path dominance games of club network formation
satisfying (A-1) and (A-2) have no circuits)

Let (K, vd(·))d∈D be a noncooperative club network formation game satisfying non-
cooperative free mobility (A-1), payoff separability, and externality homogeneity (A-2)
with corresponding noncooperative path dominance game (K,≥np) . Then the follow-
ing statements are true.

(1) K contains no noncooperative circuits.
(2) For all club networks G� ∈ K without descendants, if G ∈ K noncooperatively

path dominates G�, then club networks G and G� are equal.
Thus, if G� has no descendants, then G ≥np G� implies that G and G� are equal.

Theorem 3 is an immediate consequence of the fact that all noncooperative club
network formation games satisfying (A-1) and (A-2) are potential games.

Let Z denote the set of all club networks in K without descendance. By Theorem
3, Z is nonempty. By Theorem 4, under the assumptions of noncooperative free
mobility (A-1) and payoff separability and externality homogeneity (A-2), each club
network G contained in Z is unique in the sense that there are no other networks
equivalent to G; that is for each G ∈ Z,�

G� ∈ K : G� ≡np G
�
= {G} .

Given these observations, we can state the following:
Theorem 5
Let (K, vd(·))d∈D be a noncooperative club network formation game satisfying non-

cooperative free mobility (A-1), payoff separability, and externality homogeneity (A-2)
with corresponding noncooperative path dominance game (K,≥np) . Then the follow-
ing statements are true.

(1) The noncooperative path dominance core is equal to the set of club networks
without descendance; that is,

C = Z.

(2) The set of Nash club networks is equal to the set of club networks without
descendance; that is,

NCN = Z.

By Theorem 5, under assumptions (A-1) and (A-2),

NCN = C = Z.
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Moreover, under assumptions (A-1) and (A-2), the noncooperative game of club net-
work formation (K, vd(·))d∈D is a potential game with potential function

P (G) =
[

(a,c)∈A×C

⎡⎣ [
d∈G(a,c)

rd(a, c) +

|G(a,c)|[
k=0

Φ(a,c)(k)

⎤⎦ .
Thus,

argmax
G∈K

P (G) ⊆ NCN = C = Z.

5 Some relationships to the literature

The literature on economies with local public goods or clubs most closely related to
the current paper is the line of literature including, for example, Demange (1994,
2005) and Konishi, Le Breton and Weber (1998), who study economies with a fixed
number of jurisdictions and free mobility of agents between jurisdictions. A club
model in which players could belong to multiple clubs, as in our paper, was introduced
in Shubik and Wooders (1982). Unlike our model, however, free entry was not allowed
in the Shubik-Wooders models or in subsequent models with multiple memberships.8

In the literature on potential games, as we have already noted our results are
related to those of Hollard (2000). Important references in this literature include
Monderer and Shapley (1996) and Rosenthal (1973).

6 Appendix

Theorem 1 (Club Network Formation Games with Multiple Memberships are Po-
tential Games).

Let (K, vd(·))d∈D be a club network formation game satisfying noncooperative free
mobility (A-1), payoff separability, and externality homogeneity (A-2). Then the
function

P (·) : K→ R

given by

P (G) =
[

(a,c)∈A×C

⎡⎣ [
d∈G(a,c)

rd(a, c) +

|G(a,c)|[
k=0

Φ(a,c)(k)

⎤⎦ , (7)

is a potential function for this game.

8See Allouch and Wooders (2007) for a recent discussion of club models with multiple
memberships.
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PROOF: Let G0 →d1 G1 be a noncooperative network change where G1 =
G0\ (d1 ×G0(d1)) ∪ (d1 ×G1(d1)) and G0(d1) 9= G1(d1). We have

vd1(G1)− vd1(G0)

=
�S

(a,c)∈G1(d1) rd1(a, c)−
S
(a,c)∈G0(d1) rd1(a, c)

�
+
�S

(a,c)∈G1(d1) I(a,c)(|G1(a, c)|)−
S
(a,c)∈G0(d1) I(a,c)(|G0(a, c)|)

�
+
�S

(a,c)∈G1(d1)c E(a,c)(|G1(a, c)|)−
S
(a,c)∈G0(d1)c E(a,c)(|G0(a, c)|)

�
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(8)

First, observe that,S
(a,c)∈G1(d1) rd1(a, c)−

S
(a,c)∈G0(d1) rd1(a, c)

=
S
(a,c)∈G1(d1)\G0(d1) rd1(a, c)−

S
(a,c)∈G0(d1)\G1(d1) rd1(a, c).

⎫⎬⎭ (9)

Second, observe that

for all (a, c) ∈ (G1(d1) ∩G0(d1)) ∪ (A× C\(G1(d1) ∪G0(d1)) ,

|G1(a, c)| = |G0(a, c)| .

⎫⎬⎭ (10)

Thus, S
(a,c)∈G1(d1) I(a,c)(|G1(a, c)|)−

S
(a,c)∈G0(d1) I(a,c)(|G0(a, c)|)

=
S
(a,c)∈G1(d1)\G0(d1) I(a,c)(|G1(a, c)|)

−S(a,c)∈G0(d1)\G1(d1) I(a,c)(|G0(a, c)|),

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (11)

and S
(a,c)∈G1(d1)c E(a,c)(|G1(a, c)|)−

S
(a,c)∈G0(d1)c E(a,c)(|G0(a, c)|)

=
S
(a,c)∈G0(d1)\G1(d1)E(a,c)(|G1(a, c)|)

−S(a,c)∈G1(d1)\G0(d1)E(a,c)(|G0(a, c)|)

=
S
(a,c)∈G0(d1)\G1(d1)E(a,c)(|G0(a, c)|− 1)

−S(a,c)∈G1(d1)\G0(d1)E(a,c)(|G1(a, c)|− 1).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(12)
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From (9)-(12) we conclude therefore that

vd1(G1)− vd1(G0)

=
S
(a,c)∈G1(d1)\G0(d1) rd1(a, c)

+
kS

(a,c)∈G1(d1)\G0(d1)
�
I(a,c)(|G1(a, c)|)−E(a,c)(|G1(a, c)|− 1)

�l
−S(a,c)∈G0(d1)\G1(d1) rd1(a, c)

−
kS

(a,c)∈G0(d1)\G1(d1)
�
I(a,c)(|G0(a, c)|)−E(a,c)(|G0(a, c)|− 1)

�l
=
S
(a,c)∈G1(d1)\G0(d1)

�
rd1(a, c) + Φ(a,c)(|G1(a, c)|)

�
−
�S

(a,c)∈G0(d1)\G1(d1)
�
rd1(a, c) + Φ(a,c)(|G0(a, c)|)

��
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(13)

Next consider P (G1)− P (G0). We have,

P (G1)− P (G0)

=
S
(a,c)

kS
d∈G1(a,c) rd(a, c) +

S|G1(a,c)|
k=0 Φ(a,c)(k)

l
−S(a,c)

kS
d∈G0(a,c) rd(a, c) +

S|G0(a,c)|
k=0 Φ(a,c)(k)

l
.

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(14)

For G ∈ K let

H(G) := {(a, c) ∈ A× C : (a, (d, c)) ∈ G for some d ∈ D} ,

and note that

H(G1)\G1(d1) ∪G0(d1) = H(G0)\G1(d1) ∪G0(d1) := S.

Now observe thatS
(a,c)

S
d∈G1(a,c) rd(a, c)−

S
(a,c)

S
d∈G0(a,c) rd(a, c)

=
S
(a,c)∈S∪(G1(d1)∩G0(d1))

�S
d∈G1(a,c) rd(a, c)−

S
d∈G0(a,c) rd(a, c)

�
+
S
(a,c)∈G1(d1)\G0(d1)

�S
d∈G1(a,c) rd(a, c)−

S
d∈G0(a,c) rd(a, c)

�
+
S
(a,c)∈G0(d1)\G1(d1)

�S
d∈G1(a,c) rd(a, c)−

S
d∈G0(a,c) rd(a, c)

�
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(15)
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Moreover, note thatS
(a,c)∈S∪(G1(d1)∩G0(d1))

�S
d∈G1(a,c) rd(a, c)−

S
d∈G0(a,c) rd(a, c)

�
= 0

S
(a,c)∈G1(d1)\G0(d1)

�S
d∈G1(a,c) rd(a, c)−

S
d∈G0(a,c) rd(a, c)

�
=
S
(a,c)∈G1(d1)\G0(d1) rd1(a, c)

andS
(a,c)∈G0(d1)\G1(d1)

�S
d∈G1(a,c) rd(a, c)−

S
d∈G0(a,c) rd(a, c)

�
= −S(a,c)∈G0(d1)\G1(d1) rd1(a, c).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(16)

Therefore, S
(a,c)

S
d∈G1(a,c) rd(a, c)−

S
(a,c)

S
d∈G0(a,c) rd(a, c)

=
S
(a,c)∈G1(d1)\G0(d1) rd1(a, c)−

S
(a,c)∈G0(d1)\G1(d1) rd1(a, c).

⎫⎬⎭ (17)

Next, observe thatS
(a,c)

S|G1(a,c)|
k=0 Φ(a,c)(k)−

S
(a,c)

S|G0(a,c)|
k=0 Φ(a,c)(k)

=
S
(a,c)∈S∪(G1(d1)∩G0(d1))

�S|G1(a,c)|
k=0 Φ(a,c)(k)−

S|G0(a,c)|
k=0 Φ(a,c)(k)

�
+
S
(a,c)∈G1(d1)\G0(d1)Φ(a,c)(|G1(a, c)|)

−S(a,c)∈G0(d1)\G1(d1)Φ(a,c)(|G0(a, c)|).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(18)

Moreover, given (9),

[
(a,c)∈S∪(G1(d1)∩G0(d1))

⎛⎝|G1(a,c)|[
k=0

Φ(a,c)(k)−
|G0(a,c)|[
k=0

Φ(a,c)(k)

⎞⎠ = 0. (19)

From (15)-(19) we conclude that

P (G1)− P (G0)

=
S
(a,c)∈G1(d1)\G0(d1) rd1(a, c) +

S
(a,c)∈G1(d1)\G0(d1)Φ(a,c)(|G1(a, c)|)

−S(a,c)∈G0(d1)\G1(d1) rd1(a, c)−
S
(a,c)∈G0(d1)\G1(d1)Φ(a,c)(|G0(a, c)|)

=
S
(a,c)∈G1(d1)\G0(d1)

�
rd1(a, c) + Φ(a,c)(|G1(a, c)|)

�
−
�S

(a,c)∈G0(d1)\G1(d1)
�
rd1(a, c) + Φ(a,c)(|G0(a, c)|)

��
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(20)

Therefore, for all noncooperative changes G0 →d1 G1,

vd1(G1)− vd1(G0) = P (G1)− P (G0).
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